JP2011032389A - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP2011032389A
JP2011032389A JP2009180869A JP2009180869A JP2011032389A JP 2011032389 A JP2011032389 A JP 2011032389A JP 2009180869 A JP2009180869 A JP 2009180869A JP 2009180869 A JP2009180869 A JP 2009180869A JP 2011032389 A JP2011032389 A JP 2011032389A
Authority
JP
Japan
Prior art keywords
resin composition
mass
resin
content
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009180869A
Other languages
Japanese (ja)
Other versions
JP5482002B2 (en
Inventor
Yuki Yamamoto
有希 山本
Shigeo Nakamura
茂雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2009180869A priority Critical patent/JP5482002B2/en
Publication of JP2011032389A publication Critical patent/JP2011032389A/en
Application granted granted Critical
Publication of JP5482002B2 publication Critical patent/JP5482002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition suitable for forming an insulating layer of a circuit board, such as a multilayer circuit board, wherein flame retardancy is improved, dielectric loss tangent and a coefficient of thermal expansion of the insulating layer are low, and adhesion between a conductor layer and an insulating resin can be more stably maintained. <P>SOLUTION: The problem is solved when a specific acrylate compound, an epoxy resin, and a cyanate ester resin are contained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、特定のアクリレート化合物、エポキシ樹脂、シアネートエステル樹脂を含有する樹脂組成物に関する。   The present invention relates to a resin composition containing a specific acrylate compound, an epoxy resin, and a cyanate ester resin.

従来多層プリント配線板の絶縁層に使用する樹脂組成物としては、シアネートエステル樹脂を含有する樹脂組成物が耐熱性、誘電特性に優れた絶縁層を形成できることが知られていた(特許文献1、2)が、必ずしもその難燃性は満足いくものではなかった。   Conventionally, as a resin composition used for an insulating layer of a multilayer printed wiring board, it has been known that a resin composition containing a cyanate ester resin can form an insulating layer having excellent heat resistance and dielectric properties (Patent Document 1, 2) However, the flame retardancy was not always satisfactory.

そのため樹脂組成物の難燃性を向上させる取組みは種々行われてきた。たとえば、非特許文献1には、りん系難燃剤の添加により難燃性向上を図る方法が開示されている。しかしながら、耐熱性の低下、比誘電率、誘電正接低下及び熱膨張率が上昇してしまう、高温高湿下での環境試験を行うと、回路導体層との絶縁層間の剥離強度が著しく低下する等、添加前に有していた特性を著しく低下させるという問題があった。   Therefore, various efforts have been made to improve the flame retardancy of the resin composition. For example, Non-Patent Document 1 discloses a method for improving flame retardancy by adding a phosphorus-based flame retardant. However, when the environmental test is performed under high temperature and high humidity, the heat resistance decreases, the relative permittivity, the dielectric loss tangent decreases, and the coefficient of thermal expansion increases. The peel strength between the insulating layers and the circuit conductor layer decreases significantly. There was a problem that the characteristics possessed before the addition were significantly reduced.

一方、特許文献3には、ラジカル重合性難燃樹脂組成物用の難燃剤としてリン含有(メタ)アクリル化合物が開示されている。しかしながら、樹脂組成物の大半ががラジカル重合性を有するものであるため、その適用範囲は限定的であると考えられていた。   On the other hand, Patent Document 3 discloses a phosphorus-containing (meth) acrylic compound as a flame retardant for a radical polymerizable flame retardant resin composition. However, since most of the resin compositions have radical polymerizability, their application range has been considered to be limited.

国際公開2003/099952号パンフレットInternational Publication 2003/099952 Pamphlet 国際公開2008/044766号パンフレットInternational Publication No. 2008/044766 Pamphlet 特開2007−238738号JP 2007-238738 A

日立化成テクニカルレポートNo.45(2005−7)Hitachi Chemical Technical Report No. 45 (2005-7)

本発明が解決しようとする課題は、絶縁層の誘電正接及び熱膨張率が低く、導体層と絶縁樹脂の密着性をより安定的に保ちながら、難燃性が向上した樹脂組成物を提供することである。   The problem to be solved by the present invention is to provide a resin composition having improved flame retardancy while keeping the dielectric tangent and thermal expansion coefficient of the insulating layer low and maintaining more stable adhesion between the conductor layer and the insulating resin. That is.

本発明者らは鋭意検討した結果、特定のアクリレート化合物、エポキシ樹脂、シアネートエステル樹脂を含有させることにより上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the above problem can be solved by containing a specific acrylate compound, epoxy resin, and cyanate ester resin, and have completed the present invention.

すなわち本発明は以下の態様を含む。
(1)(A)ホスファフェナントレン骨格を有する(メタ)アクリレート化合物、(B)エポキシ樹脂、(C)シアネートエステル樹脂をを含有することを特徴とする樹脂組成物。
(2)更に、(D)有機過酸化物を含有することを特徴とする上記(1)に記載の樹脂組成物。
(3)更に、(E)金属系硬化促進剤を含有することを特徴とする上記(1)又は(2)に記載の樹脂組成物。
(4)樹脂組成物の不揮発分を100質量%とした場合、成分(B)の含有量が5〜60質量%、成分(C)の含有量が5〜50質量%、成分(A)の含有量が2〜20質量%、成分(E)の含有量が25〜500ppm、及び成分(D)の含有量が0.05〜3質量%であり、シアネートエステル基とエポキシ基との比率が1:0.4〜1:2である、上記(3)に記載の樹脂組成物。
(5)(E)金属系硬化促進剤が、コバルト 、銅、亜鉛、鉄、ニッケル、マンガン、及びスズから選択される1種または2種以上の金属の、有機金属錯体又は有機金属塩である上記(3)又は(4)に記載の樹脂組成物。
(6)更に、(F) ビニルベンジル化合物を含有することを特徴とする上記(1)〜(5)のいずれかに記載の樹脂組成物。
(7)更に、(G)高分子化合物を含有することを特徴とする上記(1)〜(6)のいずれかに記載の樹脂組成物。
(8)更に、(H)無機充填材を含有することを特徴とする上記(1)〜(7)のいずれかに記載の樹脂組成物。
(9)更に、(I)ゴム粒子を含有することを特徴とする上記(1)〜(8)のいずれかに記載の樹脂組成物。
(10)更に、(J)難燃剤(ホスファフェナントレン骨格を有する(メタ)アクリレート化合物を除く)を含有することを特徴とする上記(1)〜(9)のいずれかに記載の樹脂組成物。
(11)更に、(K)硬化促進剤(金属系硬化促進剤、有機過酸化物を除く)を含有することを特徴とする上記(1)〜(10)のいずれかに記載の樹脂組成物。
(12)誘電正接特性が0.001〜0.018であり、環境試験前後の密着強度低下率が0.1%〜70%であることを特徴とする、上記(1)〜(11)のいずれかに記載の樹脂組成物。
(13)上記(1)〜(12)のいずれかに記載の樹脂組成物を含有することを特徴とするシート状材料。
(14)上記(13)に記載のシート状材料を含有することを特徴とする多層プリント配線板。
That is, the present invention includes the following aspects.
(1) A resin composition comprising (A) a (meth) acrylate compound having a phosphaphenanthrene skeleton, (B) an epoxy resin, and (C) a cyanate ester resin.
(2) The resin composition as described in (1) above, further comprising (D) an organic peroxide.
(3) The resin composition as described in (1) or (2) above, further comprising (E) a metal-based curing accelerator.
(4) When the nonvolatile content of the resin composition is 100% by mass, the content of the component (B) is 5 to 60% by mass, the content of the component (C) is 5 to 50% by mass, and the component (A) The content is 2 to 20% by mass, the content of the component (E) is 25 to 500 ppm, and the content of the component (D) is 0.05 to 3% by mass, and the ratio between the cyanate ester group and the epoxy group is The resin composition as described in said (3) which is 1: 0.4-1: 2.
(5) (E) The metal-based curing accelerator is an organometallic complex or organometallic salt of one or more metals selected from cobalt, copper, zinc, iron, nickel, manganese, and tin. The resin composition as described in said (3) or (4).
(6) The resin composition as described in any one of (1) to (5) above, further comprising (F) a vinylbenzyl compound.
(7) The resin composition according to any one of (1) to (6), further comprising (G) a polymer compound.
(8) The resin composition as described in any one of (1) to (7) above, further comprising (H) an inorganic filler.
(9) The resin composition as described in any one of (1) to (8) above, which further comprises (I) rubber particles.
(10) The resin composition according to any one of (1) to (9) above, further comprising (J) a flame retardant (excluding a (meth) acrylate compound having a phosphaphenanthrene skeleton). .
(11) The resin composition as described in any one of (1) to (10) above, further comprising (K) a curing accelerator (excluding metal-based curing accelerators and organic peroxides). .
(12) The dielectric loss tangent characteristic is 0.001 to 0.018, and the adhesion strength reduction rate before and after the environmental test is 0.1% to 70%. The resin composition in any one.
(13) A sheet-like material comprising the resin composition according to any one of (1) to (12) above.
(14) A multilayer printed wiring board comprising the sheet-like material according to (13).

特定のアクリレート化合物、エポキシ樹脂、シアネートエステル樹脂を含有させることにより、形成される絶縁層の誘電正接及び熱膨張率が低く、導体層と絶縁樹脂の密着をより安定的に保ちながら、難燃性が向上した樹脂組成物が提供できるようになった。 By containing a specific acrylate compound, epoxy resin, cyanate ester resin, the dielectric loss tangent and thermal expansion coefficient of the formed insulating layer is low, and the flame resistance is maintained while keeping the adhesion between the conductor layer and the insulating resin more stable. It has become possible to provide a resin composition with improved

本発明は、(A)ホスファフェナントレン骨格を有する(メタ)アクリレート化合物、(B)エポキシ樹脂、(C)シアネートエステル樹脂を含有することを特徴とする樹脂組成物である。   The present invention is a resin composition comprising (A) a (meth) acrylate compound having a phosphaphenanthrene skeleton, (B) an epoxy resin, and (C) a cyanate ester resin.

〔(A)ホスファフェナントレン骨格を有する(メタ)アクリレート化合物〕
本発明において使用される(A)ホスファフェナントレン骨格を有する(メタ)アクリレート化合物は、樹脂組成物の難燃性を向上させながら、他の諸物性を安定的に保つことができる。(A)成分としては、特に限定されるものではなく、ホスファフェナントレン骨格を有する化合物と(メタ)アクリレート化合物をマイケル付加反応することによって得ることができ、(メタ)アクリロイル基等のラジカル重合性基を有し、リン原子がラジカル重合で硬化中に取り込まれるものをいう。特に、9、10−ジヒドロ−9オキサ−10−ホスファフェナントレン−10オキサイド化合物と1分子中に3個以上の(メタ)アクリロイル基を有する多官能アクリレート化合物からなるリン含有(メタ)アクリレート化合物が好ましい。このようなホスファフェナントレン骨格を有する(メタ)アクリレート化合物は、9、10−ジヒドロ−9オキサ−10−ホスファフェナントレン−10オキサイド、HCA(三光(株)製)とトリメチロールプロパントリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、トリス(2−アクルロイルオキシエチル)イソシアヌレートをマイケル付加する方法により製造することができる。具体的には、特開2007−238738号公報に記載のホスファフェナントレン骨格を有する(メタ)アクリレート化合物を使用することができる。これらは1種または2種以上組み合わせて使用してもよい。
[(A) (Meth) acrylate compound having phosphaphenanthrene skeleton]
The (meth) acrylate compound having (A) phosphaphenanthrene skeleton used in the present invention can stably maintain other physical properties while improving the flame retardancy of the resin composition. The component (A) is not particularly limited, and can be obtained by Michael addition reaction between a compound having a phosphaphenanthrene skeleton and a (meth) acrylate compound, and a radical polymerizable property such as a (meth) acryloyl group. It has a group and a phosphorus atom is taken in during curing by radical polymerization. In particular, a phosphorus-containing (meth) acrylate compound comprising a 9,10-dihydro-9oxa-10-phosphaphenanthrene-10 oxide compound and a polyfunctional acrylate compound having three or more (meth) acryloyl groups in one molecule preferable. The (meth) acrylate compound having such a phosphaphenanthrene skeleton includes 9,10-dihydro-9oxa-10-phosphaphenanthrene-10 oxide, HCA (manufactured by Sanko Co., Ltd.) and trimethylolpropane tri (meth). It can be produced by a method of Michael addition of acrylate, pentaerythritol tetra (meth) acrylate, or tris (2-acryloyloxyethyl) isocyanurate. Specifically, a (meth) acrylate compound having a phosphaphenanthrene skeleton described in JP-A-2007-238738 can be used. You may use these 1 type or in combination of 2 or more types.

市販されているホスファフェナントレン骨格を有する(メタ)アクリレート化合物としては、HFA−6007M(昭和高分子(株)製、リン含有量8.6%)、HFA−6065P(昭和高分子(株)製、リン含有量4.9%)、HFM−9B(昭和高分子(株)製、リン含有量7.2%)等が挙げられる。なかでも、HFA−6007M(昭和高分子(株)製、リン含有量8.6%)、HFM−9B(昭和高分子(株)製、リン含有量7.2%)が好ましい。   Examples of commercially available (meth) acrylate compounds having a phosphaphenanthrene skeleton include HFA-6007M (manufactured by Showa Polymer Co., Ltd., phosphorus content 8.6%), HFA-6065P (manufactured by Showa Polymer Co., Ltd.). , Phosphorus content 4.9%), HFM-9B (Showa High Polymer Co., Ltd., phosphorus content 7.2%), and the like. Of these, HFA-6007M (Showa High Polymer Co., Ltd., phosphorus content 8.6%) and HFM-9B (Showa High Polymer Co., Ltd., phosphorus content 7.2%) are preferable.

樹脂組成物中のホスファフェナントレン骨格を有する(メタ)アクリレート化合物の含有量は、特に制限はない。樹脂組成物中のホスファフェナントレン骨格を有する(メタ)アクリレート化合物の含有量の上限値は、熱膨張率の上昇を防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、20質量%が好ましく、15質量%がより好ましく、10質量%が更に好ましい。一方、樹脂組成物中のホスファフェナントレン骨格を有する(メタ)アクリレート化合物の含有量の下限値は、十分な難燃性を得るという観点から、樹脂組成物中の不揮発分100質量%に対し、1質量%が好ましく、2質量%がより好ましく、3質量%が更に好ましい。   The content of the (meth) acrylate compound having a phosphaphenanthrene skeleton in the resin composition is not particularly limited. The upper limit of the content of the (meth) acrylate compound having a phosphaphenanthrene skeleton in the resin composition is 20% with respect to 100% by mass of the nonvolatile content in the resin composition from the viewpoint of preventing an increase in the coefficient of thermal expansion. % By mass is preferable, 15% by mass is more preferable, and 10% by mass is still more preferable. On the other hand, the lower limit of the content of the (meth) acrylate compound having a phosphaphenanthrene skeleton in the resin composition is 100% by mass with respect to the nonvolatile content in the resin composition from the viewpoint of obtaining sufficient flame retardancy. 1 mass% is preferable, 2 mass% is more preferable, and 3 mass% is still more preferable.

〔(B)エポキシ樹脂〕
(B)成分としては、特に限定されるものではなく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノール類とフェノール性ヒドロキシル基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、トリグリシジルイソシアヌレート等を挙げることができる。エポキシ樹脂は2種以上を組み合わせて使用してもよい。エポキシ樹脂としては、耐熱性、絶縁信頼性、金属膜との密着性の観点から、ビスフェノールA型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂が好ましい。エポキシ樹脂としては、特に下記一般式(1)で表されるナフトール型エポキシ樹脂が好ましい。
[(B) Epoxy resin]
Component (B) is not particularly limited, and bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, biphenyl type epoxy resin, Aralkyl-type epoxy resin, naphthol-type epoxy resin, dicyclopentadiene-type epoxy resin, naphthalene-type epoxy resin, epoxidized product of condensation products of phenols and aromatic aldehydes having phenolic hydroxyl groups, biphenyl aralkyl-type epoxy resin, fluorene-type Examples thereof include an epoxy resin, a xanthene type epoxy resin, and triglycidyl isocyanurate. Two or more epoxy resins may be used in combination. Epoxy resins include bisphenol A type epoxy resins, naphthol type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, and epoxy resins having a butadiene structure from the viewpoint of heat resistance, insulation reliability, and adhesion to metal films. preferable. As the epoxy resin, a naphthol type epoxy resin represented by the following general formula (1) is particularly preferable.

Figure 2011032389
Figure 2011032389

(式(1)中、nは平均値として1〜6の数を示し、Xはグリシジル基又は炭素数1〜8の炭化水素基を示し、炭化水素基/グリシジル基の比率は0.05〜2.0である。)
エポキシ樹脂中の平均値としての炭化水素基とグリシジル基の比率は、炭化水素基/グリシジル基=0.05〜2.0の範囲であり、好ましくは0.1〜1.0の範囲である。Xが炭素数1〜8の炭化水素基を示す場合の炭化水素基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、アリル基、プロパルギル基、ブチル基、n−ペンチル基、sec−ペンチル基、tert−ペンチル基、シクロヘキシル基、フェニル基、ベンジル基等が挙げられ、特にメチル基が好ましい。式(1)で表されるナフトールエポキシ樹脂は特開2006−160868記載の公知の樹脂であり、該公報記載の製法に従って製造することができる。
(In Formula (1), n shows the number of 1-6 as an average value, X shows a glycidyl group or a C1-C8 hydrocarbon group, and the ratio of hydrocarbon group / glycidyl group is 0.05- 2.0.)
The ratio of the hydrocarbon group and glycidyl group as an average value in the epoxy resin is in the range of hydrocarbon group / glycidyl group = 0.05 to 2.0, preferably in the range of 0.1 to 1.0. . Examples of the hydrocarbon group when X represents a hydrocarbon group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, allyl group, propargyl group, butyl group, n-pentyl group, sec -Pentyl group, tert-pentyl group, cyclohexyl group, phenyl group, benzyl group and the like can be mentioned, and a methyl group is particularly preferable. The naphthol epoxy resin represented by the formula (1) is a known resin described in JP-A-2006-160868, and can be produced according to the production method described in the publication.

市販されているエポキシ樹脂としては、ジャパンエポキシレジン(株)製「jER828EL」(液状ビスフェノールA型エポキシ樹脂)、DIC(株)製「HP4032」、「HP4032D](ナフタレン型2官能エポキシ樹脂)、DIC(株)製「HP4700」(ナフタレン型4官能エポキシ樹脂)、東都化成(株)製「ESN−475V」「ESN−185V」(ナフトール型エポキシ樹脂)、ダイセル化学工業(株)製「PB−3600」(ブタジエン構造を有するエポキシ樹脂)、日本化薬(株)製「NC3000H」、「NC3000L」、「NC3100」、「NC3000」、「NC3000FH−75M」(ビフェニル型エポキシ樹脂)、ジャパンエポキシレジン(株)製「YX4000」(ビフェニル型エポキシ樹脂)、ジャパンエポキシレジン(株)製「YX8800」(アントラセン骨格含有型エポキシ樹脂)などが挙げられる。これらは1種または2種以上組み合わせて使用してもよい。   Commercially available epoxy resins include “jER828EL” (liquid bisphenol A type epoxy resin) manufactured by Japan Epoxy Resin Co., Ltd., “HP4032”, “HP4032D” (naphthalene type bifunctional epoxy resin) manufactured by DIC Corporation, and DIC. "HP4700" (naphthalene type tetrafunctional epoxy resin) manufactured by Co., Ltd. "ESN-475V" and "ESN-185V" (naphthol type epoxy resin) manufactured by Toto Kasei Co., Ltd., "PB-3600" manufactured by Daicel Chemical Industries, Ltd. ”(Epoxy resin having a butadiene structure),“ NC3000H ”,“ NC3000L ”,“ NC3100 ”,“ NC3000 ”,“ NC3000FH-75M ”(biphenyl type epoxy resin) manufactured by Nippon Kayaku Co., Ltd., Japan Epoxy Resin Co., Ltd. ) "YX4000" (biphenyl type epoxy tree) ), Manufactured by Japan Epoxy Resins Co., Ltd. "YX8800" (anthracene skeleton-containing epoxy resin) and the like. You may use these 1 type or in combination of 2 or more types.

樹脂組成物中のエポキシ樹脂の含有量は、特に制限はない。樹脂組成物中のエポキシ樹脂の含有量の上限値は、相対的にシアネートエステル樹脂の含有量が減少することで熱膨張率及び誘電正接が増大するのを防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、60質量%が好ましく、50質量%がより好ましく、40質量%が更に好ましい。一方、樹脂組成物中のエポキシ樹脂の含有量の下限値は、導体層との密着性低下を防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、5質量%が好ましく、10質量%がより好ましく、15質量%が更に好ましい。   There is no restriction | limiting in particular in content of the epoxy resin in a resin composition. The upper limit of the content of the epoxy resin in the resin composition is relatively low in the resin composition from the viewpoint of preventing the coefficient of thermal expansion and the dielectric loss tangent from increasing due to the relatively decreased content of the cyanate ester resin. 60 mass% is preferable with respect to 100 mass% of non volatile matter of 50, 50 mass% is more preferable, 40 mass% is still more preferable. On the other hand, the lower limit of the content of the epoxy resin in the resin composition is preferably 5% by mass with respect to 100% by mass of the nonvolatile content in the resin composition, from the viewpoint of preventing a decrease in adhesion with the conductor layer. 10 mass% is more preferable and 15 mass% is still more preferable.

〔(C)シアネートエステル樹脂〕
本発明において使用される(C)シアネートエステル樹脂は、樹脂組成物の高耐熱性、低誘電正接、低熱膨張率等を付与させることができる。(C)成分としては、特に限定されるものではなく、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型など)シアネートエステル樹脂、ジシクロペンタジエン型シアネートエステル樹脂、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、ビスフェノールS型など)シアネートエステル樹脂、及びこれらが一部トリアジン化したプレポリマーなどが挙げられる。これらは1種または2種以上組み合わせて使用してもよい。シアネートエステル樹脂の重量平均分子量は、特に限定されるものではないが、好ましくは500〜4500であり、より好ましくは600〜3000である。
[(C) Cyanate ester resin]
The (C) cyanate ester resin used in the present invention can impart high heat resistance, low dielectric loss tangent, low coefficient of thermal expansion, and the like of the resin composition. The component (C) is not particularly limited, and is a novolak type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester resin, dicyclopentadiene type cyanate ester resin, bisphenol type (bisphenol A type, bisphenol F type, Examples thereof include cyanate ester resins (such as bisphenol S type) and prepolymers in which these are partially triazine. You may use these 1 type or in combination of 2 or more types. Although the weight average molecular weight of cyanate ester resin is not specifically limited, Preferably it is 500-4500, More preferably, it is 600-3000.

シアネートエステル樹脂の具体例としては、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3−メチレン−1,5−フェニレンシアネート)、4,4’−メチレンビス(2,6−ジメチルフェニルシアネート)、4,4’−エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2−ビス(4−シアネート)フェニルプロパン、1,1−ビス(4−シアネートフェニルメタン)、ビス(4−シアネート−3,5−ジメチルフェニル)メタン、1,3−ビス(4−シアネートフェニル−1−(メチルエチリデン))ベンゼン、ビス(4−シアネートフェニル)チオエーテル、ビス(4−シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック、クレゾールノボラック、ジシクロペンタジエン構造含有フェノール樹脂等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。これらは1種または2種以上組み合わせて使用してもよい。   Specific examples of the cyanate ester resin include bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4 ′. -Ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3,5-dimethylphenyl) ) Bifunctional cyanate resins such as methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether, phenol novolac, Cresolno Examples thereof include polyfunctional cyanate resins derived from racks, dicyclopentadiene structure-containing phenol resins, prepolymers in which these cyanate resins are partly triazines, etc. These may be used alone or in combination of two or more. .

市販されているシアネートエステル樹脂としては、下式(2)で表されるフェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製、PT30、シアネート当量124)、下式(3)で表されるビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー(ロンザジャパン(株)製、BA230、シアネート当量232)、下式(4)で表されるジシクロペンタジエン構造含有シアネートエステル樹脂(ロンザジャパン(株)製、DT−4000、DT−7000)等が挙げられる。   As a commercially available cyanate ester resin, a phenol novolak type polyfunctional cyanate ester resin represented by the following formula (2) (manufactured by Lonza Japan Co., Ltd., PT30, cyanate equivalent 124), represented by the following formula (3): Prepolymer (part Lona Japan Co., Ltd., BA230, cyanate equivalent 232), containing a dicyclopentadiene structure represented by the following formula (4) Examples include cyanate ester resins (Lonza Japan Co., Ltd., DT-4000, DT-7000).

Figure 2011032389
[式(2)中、nは平均値として任意の数(好ましくは0〜20)を示す。]
Figure 2011032389
[In Formula (2), n shows arbitrary numbers (preferably 0-20) as an average value. ]

Figure 2011032389
Figure 2011032389
(式(4)中、nは平均値として0〜5の数を表す。)
Figure 2011032389
Figure 2011032389
(In Formula (4), n represents the number of 0-5 as an average value.)

樹脂組成物中のシアネートエステル樹脂の含有量は、特に制限はない。樹脂組成物中のシアネートエステル樹脂の含有量の上限値は、導体層との密着性低下を防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、50質量%が好ましく、40質量%がより好ましく、30質量%が更に好ましい。一方、樹脂組成物中のシアネートエステル樹脂の含有量の下限値は、耐熱性低下、熱膨張率増加、誘電正接増加を防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、5質量%が好ましく、8質量%がより好ましく、10質量%が更に好ましい。   There is no restriction | limiting in particular in content of the cyanate ester resin in a resin composition. The upper limit of the content of the cyanate ester resin in the resin composition is preferably 50% by mass with respect to 100% by mass of the non-volatile content in the resin composition from the viewpoint of preventing a decrease in adhesion with the conductor layer. % By mass is more preferable, and 30% by mass is even more preferable. On the other hand, the lower limit of the content of the cyanate ester resin in the resin composition is from the viewpoint of preventing a decrease in heat resistance, an increase in thermal expansion coefficient, and an increase in dielectric loss tangent, with respect to 100% by mass of the nonvolatile content in the resin composition, 5 mass% is preferable, 8 mass% is more preferable, and 10 mass% is still more preferable.

シアネートエステル樹脂のシアネート当量と、エポキシ樹脂のエポキシ当量との比は、1:0.4〜1:2が好ましく、1:0.5〜1:1.5がより好ましい。当量比が1:0.4よりも少ない場合は、下地導体層と絶縁層の密着が低化する傾向があり、当量比が1:2よりも多い場合は、熱膨張率及び誘電正接が上昇する傾向にある。   The ratio of the cyanate equivalent of the cyanate ester resin to the epoxy equivalent of the epoxy resin is preferably 1: 0.4 to 1: 2, and more preferably 1: 0.5 to 1: 1.5. When the equivalence ratio is less than 1: 0.4, the adhesion between the underlying conductor layer and the insulating layer tends to decrease, and when the equivalence ratio is more than 1: 2, the coefficient of thermal expansion and the dielectric loss tangent increase. Tend to.

本発明の樹脂組成物は(A)成分、(B)成分、(C)成分を含み、絶縁層の誘電正接及び熱膨張率が低く、導体層と絶縁樹脂の密着性をより安定的に保ちながら、難燃性を付与することができる。   The resin composition of the present invention contains the component (A), the component (B), and the component (C), the dielectric loss tangent and thermal expansion coefficient of the insulating layer are low, and the adhesion between the conductor layer and the insulating resin is more stably maintained. However, flame retardancy can be imparted.

本発明の(A)成分、(B)成分、(C)成分を含有する樹脂組成物の誘電正接特性は、後述する<誘電正接の測定>に記載の測定方法により把握することができる。   The dielectric loss tangent characteristic of the resin composition containing the component (A), the component (B), and the component (C) of the present invention can be grasped by the measurement method described in <Measurement of dielectric loss tangent> described later.

本発明の樹脂組成物の誘電正接特性の上限値は、0.018が好ましく、0.017がより好ましく、0.016が更に好ましく、0.015が更に一層好ましい。本発明の樹脂組成物の誘電正接特性の下限値は、0.004が好ましく、0.003がより好ましく、0.002が更に好ましく、0.001が更に一層好ましい。   The upper limit value of the dielectric loss tangent characteristic of the resin composition of the present invention is preferably 0.018, more preferably 0.017, still more preferably 0.016, and still more preferably 0.015. The lower limit of the dielectric loss tangent characteristic of the resin composition of the present invention is preferably 0.004, more preferably 0.003, still more preferably 0.002, and still more preferably 0.001.

本発明の(A)成分、(B)成分、(C)成分を含有する樹脂組成物の難燃特性は、後述する<難燃性の評価>に記載の評価方法により把握することができる。   The flame retardancy characteristics of the resin composition containing the component (A), the component (B), and the component (C) of the present invention can be grasped by an evaluation method described in <Flame retardance evaluation> described later.

本発明の樹脂組成物の難燃特性は、いずれもV−0を示した。   The flame retardant properties of the resin composition of the present invention all showed V-0.

本発明の(A)成分、(B)成分、(C)成分を含有する樹脂組成物の環境試験前後の密着強度は、後述する<CZ処理銅箔と樹脂組成物間の密着強度の測定>に記載の測定方法により把握することができる。   The adhesion strength before and after the environmental test of the resin composition containing the components (A), (B), and (C) of the present invention is described later <Measurement of adhesion strength between CZ-treated copper foil and resin composition> Can be grasped by the measuring method described in 1.

本発明の樹脂組成物の環境試験前後の密着強度低下率の上限値は、70%が好ましく、65%がより好ましく、60%が更に好ましく、55%が更に一層好ましい。本発明の樹脂組成物の密着性低下率特性の下限値は、15%が好ましく、10%がより好ましく、8%が更に好ましく、5%が更に一層好ましく、1%が殊更好ましく、0.1%が特に好ましい。   The upper limit of the adhesion strength reduction rate before and after the environmental test of the resin composition of the present invention is preferably 70%, more preferably 65%, still more preferably 60%, and even more preferably 55%. The lower limit value of the adhesiveness reduction rate characteristic of the resin composition of the present invention is preferably 15%, more preferably 10%, still more preferably 8%, still more preferably 5%, even more preferably 1%, 0.1% % Is particularly preferred.

〔(D)有機過酸化物〕
本発明の樹脂組成物には、更に(D)有機過酸化物を含有させる事により、効率的にアクリレートの硬化を行うことができる。有機過酸化物の種類は、特に制限はないが、シクロヘキサノンパーオキサイド、tert-ブチルパーオキシベンゾエート、メチルエチルケトンパーオキサイド、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、ジ−tert−ブチルパーオキシド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキシド、tert−ブチルハイドロパーオキサイドなどの有機過酸化物が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。
[(D) Organic peroxide]
By further containing (D) an organic peroxide in the resin composition of the present invention, the acrylate can be efficiently cured. There are no particular restrictions on the type of organic peroxide, but cyclohexanone peroxide, tert-butyl peroxybenzoate, methyl ethyl ketone peroxide, dicumyl peroxide, tert-butyl cumyl peroxide, di-tert-butyl peroxide, diisopropyl Organic peroxides such as benzene hydroperoxide, cumene hydroperoxide, and tert-butyl hydroperoxide are listed. You may use these 1 type or in combination of 2 or more types.

有機過酸化物の含有量は、効率的にアクリレートの硬化が行えさえすれば特に制限はない。樹脂組成物中の有機過酸化物の含有量の上限値は、誘電正接、熱膨張率の上昇を防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、3質量%が好ましく、2質量%がより好ましい。一方、樹脂組成物中の有機過酸化物の含有量の下限値は、下地導体層との密着性低下の防止という観点から、樹脂組成物中の不揮発分100質量%に対し、0.05質量%が好ましく、0.1質量%がより好ましい。   The content of the organic peroxide is not particularly limited as long as the acrylate can be efficiently cured. The upper limit of the content of the organic peroxide in the resin composition is preferably 3% by mass with respect to 100% by mass of the non-volatile content in the resin composition from the viewpoint of preventing increase in dielectric loss tangent and thermal expansion coefficient. 2 mass% is more preferable. On the other hand, the lower limit value of the content of the organic peroxide in the resin composition is 0.05 mass relative to 100 mass% of the non-volatile content in the resin composition from the viewpoint of preventing adhesion deterioration with the underlying conductor layer. % Is preferable, and 0.1% by mass is more preferable.

〔(E)金属系硬化促進剤〕
本発明の樹脂組成物は、更に(E)金属系硬化促進剤を含有させる事によりシアネートエステル樹脂を効率的に硬化させることができる。金属系硬化促進剤の種類は、特に制限はないが、コバルト 、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体などが挙げられる。有機金属塩としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。なかでも、硬化性、溶剤溶解性の観点から、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛、鉄(III)アセチルアセトナートが好ましく、コバルト(II)アセチルアセトナート、ナフテン酸亜鉛がより好ましい。これらは1種または2種以上組み合わせて使用してもよい。
[(E) Metal-based curing accelerator]
The resin composition of the present invention can efficiently cure the cyanate ester resin by further containing (E) a metal curing accelerator. The type of the metal curing accelerator is not particularly limited, and examples thereof include an organometallic complex or an organometallic salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. Of these, cobalt (II) acetylacetonate, cobalt (III) acetylacetonate, zinc (II) acetylacetonate, zinc naphthenate, and iron (III) acetylacetonate are preferable from the viewpoints of curability and solvent solubility. Cobalt (II) acetylacetonate and zinc naphthenate are more preferable. You may use these 1 type or in combination of 2 or more types.

樹脂組成物中の金属系硬化促進剤の添加量は、特に制限はない。樹脂組成物中の金属系硬化促進剤の添加量の上限値は、保存安定性、絶縁性の低下を防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、金属系硬化促進剤に基づく金属の含有量が500ppmが好ましく、200ppmがより好ましい。一方、樹脂組成物中の金属系硬化促進剤の添加量の下限値は、下地導体層との密着性低下の防止という観点から、樹脂組成物中の不揮発分100質量%に対し、25ppmが好ましく、40ppmがより好ましい。 There is no restriction | limiting in particular in the addition amount of the metal type hardening accelerator in a resin composition. The upper limit of the addition amount of the metal-based curing accelerator in the resin composition is the acceleration of the metal-based curing with respect to 100% by mass of the non-volatile content in the resin composition from the viewpoint of preventing storage stability and deterioration of insulation. The metal content based on the agent is preferably 500 ppm, more preferably 200 ppm. On the other hand, the lower limit of the addition amount of the metal-based curing accelerator in the resin composition is preferably 25 ppm with respect to 100% by mass of the non-volatile content in the resin composition from the viewpoint of preventing the deterioration of adhesion with the underlying conductor layer. 40 ppm is more preferable.

〔(F)ビニルベンジル化合物〕
本発明の樹脂組成物には、更に(F)ビニルベンジル化合物を含有させる事により、誘電特性を向上させることができる。本発明において使用されるビニルベンジル化合物は、特に限定はされないが、分子内に2以上のビニルベンジル基を有する化合物であり、インデン化合物を、(i)ビニルベンジルハライドとアルカリ存在下に反応させる方法、(ii)ビニルベンジルハライド及び炭素数2〜20のジハロメチル化合物とアルカリ存在下に反応させる方法、もしくは(iii)フルオレン化合物、ビニルベンジルハライド及び炭素数2〜20のジハロメチル化合物とアルカリ存在下に反応させる方法(特開2003−277440号公報参照)、又は(iv)フルオレン化合物及びビニルベンジルハライドをアルカリ存在下に反応させる方法(国際公開02/083610号パンフレット)等により製造することができる。ビニルベンジル化合物は、低誘電正接という観点から分子内にヘテロ原子を含まないものが好ましい。
[(F) Vinylbenzyl compound]
The dielectric composition can be improved by further containing (F) a vinylbenzyl compound in the resin composition of the present invention. The vinyl benzyl compound used in the present invention is not particularly limited, but is a compound having two or more vinyl benzyl groups in the molecule, and the indene compound is reacted with (i) vinyl benzyl halide in the presence of an alkali. (Ii) a method of reacting vinylbenzyl halide and a C2-C20 dihalomethyl compound in the presence of an alkali, or (iii) reaction of fluorene compound, vinylbenzyl halide and a C2-C20 dihalomethyl compound in the presence of an alkali. (Iv) a method of reacting a fluorene compound and vinyl benzyl halide in the presence of an alkali (WO 02/083610 pamphlet) or the like. From the viewpoint of low dielectric loss tangent, the vinylbenzyl compound preferably does not contain a hetero atom in the molecule.

樹脂組成物中のビニルベンジル化合物の含有量は、特に制限はない。樹脂組成物中のビニルベンジル化合物の含有量の上限値は、密着性低下を防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、50質量%が好ましく、40質量%がより好ましく、25質量%が更に好ましい。一方、樹脂組成物中のビニルベンジル化合物の含有量の下限値は、誘電正接の増加を防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、2質量%が好ましく、5質量%がより好ましく、8質量%が更に好ましい。   The content of the vinyl benzyl compound in the resin composition is not particularly limited. The upper limit of the content of the vinylbenzyl compound in the resin composition is preferably 50% by mass and more preferably 40% by mass with respect to 100% by mass of the non-volatile content in the resin composition from the viewpoint of preventing a decrease in adhesion. Preferably, 25 mass% is more preferable. On the other hand, the lower limit of the content of the vinylbenzyl compound in the resin composition is preferably 2% by mass, preferably 5% by mass with respect to 100% by mass of the nonvolatile content in the resin composition, from the viewpoint of preventing an increase in dielectric loss tangent. % Is more preferable, and 8% by mass is still more preferable.

インデン化合物としては、以下の式(5)で表されるインデン化合物が挙げられる。

Figure 2011032389
式(5)中、Rは、同一又は異なっていてもよく、水素原子、ハロゲン原子、アルキル基(好ましくは炭素数1〜5のアルキル基)、アルコキシ基(好ましくは炭素数1〜5のアルコキシ基)及びチオアルコキシ基(好ましくは炭素数1〜5のチオアルコキシ基)からなる群より選択される1つの基を示し(または2以上のRが一体となって環を形成していてもよい)、pは0〜4の整数を示す。環を形成する場合としては、5〜8員のシクロアルキル環、ベンゼン環等の環が縮環した構造を挙げることができる。 Examples of the indene compound include indene compounds represented by the following formula (5) .
Figure 2011032389
In Formula (5), R 3 may be the same or different, and is a hydrogen atom, a halogen atom, an alkyl group (preferably an alkyl group having 1 to 5 carbon atoms), or an alkoxy group (preferably having 1 to 5 carbon atoms). One group selected from the group consisting of an alkoxy group) and a thioalkoxy group (preferably a thioalkoxy group having 1 to 5 carbon atoms) (or two or more R 3 groups together to form a ring) P) represents an integer of 0 to 4. Examples of forming a ring include a structure in which a ring such as a 5- to 8-membered cycloalkyl ring or a benzene ring is condensed.

フルオレン化合物としては、以下の式(6)で表されるフルオレン化合物が挙げられる。

Figure 2011032389
式(6)中、Rは、同一又は異なっていてもよく、水素原子、ハロゲン原子、アルキル基(好ましくは炭素数1〜5のアルキル基)、アルコキシ基(好ましくは炭素数1〜5のアルコキシ基)及びチオアルコキシ基(好ましくは炭素数1〜5のチオアルコキシ基)からなる群より選択される1つの基を示し(または2以上のRが一体となって環を形成していてもよい)、mは0〜4の整数を示す。環を形成する場合としては、5〜8員のシクロアルキル環、ベンゼン環等の環が縮環した構造を挙げることができる。 Examples of the fluorene compound include fluorene compounds represented by the following formula (6).
Figure 2011032389
In formula (6), R 2 may be the same or different, and is a hydrogen atom, a halogen atom, an alkyl group (preferably an alkyl group having 1 to 5 carbon atoms), or an alkoxy group (preferably having 1 to 5 carbon atoms). One group selected from the group consisting of an alkoxy group) and a thioalkoxy group (preferably a thioalkoxy group having 1 to 5 carbon atoms) (or two or more R 2 groups together to form a ring) And m represents an integer of 0 to 4. Examples of forming a ring include a structure in which a ring such as a 5- to 8-membered cycloalkyl ring or a benzene ring is condensed.

ビニルベンジルハライドとしては、上記で記載したものが挙げられる。また炭素数2〜20のジハロメチル化合物としては、1,2−ジクロロエタン、1,2−ジブロモエタン、1,3−ジクロロプロパン、1,3−ジブロモプロパン、1,4−ジクロロブタン、1,4−ジブロモブタン等のアルキレンジハライド、o−キシリレンジクロライド、o−キシリレンジブロマイド、m−キシリレンジクロライド、m−キシリレンジブロマイド、p−キシリレンジクロライド、p−キシリレンジブロマイド、4,4’−ビス(クロロメチル)ビフェニル、4,4’−ビス(クロロメチル)ジフェニルエーテル、4,4’−ビス(クロロメチル)ジフェニルスルフィド、2,6−ビス(ブロモメチル)ナフタレン、1,8−ビス(ブロモメチル)ナフタレン、1,4−ビス(クロロメチル)ナフタレン等が挙げられる。   Examples of the vinyl benzyl halide include those described above. Examples of the dihalomethyl compound having 2 to 20 carbon atoms include 1,2-dichloroethane, 1,2-dibromoethane, 1,3-dichloropropane, 1,3-dibromopropane, 1,4-dichlorobutane, 1,4- Alkylene dihalides such as dibromobutane, o-xylylene dichloride, o-xylylene dibromide, m-xylylene dichloride, m-xylylene dibromide, p-xylylene dichloride, p-xylylene dibromide, 4,4'-bis (Chloromethyl) biphenyl, 4,4′-bis (chloromethyl) diphenyl ether, 4,4′-bis (chloromethyl) diphenyl sulfide, 2,6-bis (bromomethyl) naphthalene, 1,8-bis (bromomethyl) naphthalene 1,4-bis (chloromethyl) naphthalene and the like.

アルカリとしては、ナトリウムメトキサイド、ナトリウムエトキサイド、水素化ナトリウム、水素化カリウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。   Examples of the alkali include sodium methoxide, sodium ethoxide, sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide and the like.

このようなビニルベンジル化合物は、特開2003−277440号公報、国際公開02/083610号パンフレットの記載に従って容易に製造することができる。   Such a vinyl benzyl compound can be easily produced according to the description in JP-A No. 2003-277440 and WO 02/083610.

ビニルベンジル化合物の種類は、特に制限はないが、以下の式(7)で表されるものが好ましい。   The kind of the vinylbenzyl compound is not particularly limited, but those represented by the following formula (7) are preferable.

Figure 2011032389
式(7)中、Rは炭素数2〜20の2価の有機基を示し、Rは、同一又は異なっていてもよく、水素原子、ハロゲン原子、アルキル基(好ましくは炭素数1〜5のアルキル基)、アルコキシ基(好ましくは炭素数1〜5のアルコキシ基)及びチオアルコキシ基(好ましくは炭素数1〜5のチオアルコキシ基)からなる群より選択される1つの基を示し(または2以上のRが一体となって環を形成していてもよい)、mは0〜4の整数を示し、nは平均値として0〜20の数を示す。環を形成する場合としては、5〜8員のシクロアルキル環、ベンゼン環等の環が縮環した構造を挙げることができる。
Figure 2011032389
In Formula (7), R 1 represents a divalent organic group having 2 to 20 carbon atoms, and R 2 may be the same or different, and may be a hydrogen atom, a halogen atom, or an alkyl group (preferably having a carbon number of 1 to 5 group), an alkoxy group (preferably an alkoxy group having 1 to 5 carbon atoms) and a thioalkoxy group (preferably a thioalkoxy group having 1 to 5 carbon atoms). Alternatively, two or more R 2 may be integrated to form a ring), m represents an integer of 0 to 4, and n represents an average value of 0 to 20. Examples of forming a ring include a structure in which a ring such as a 5- to 8-membered cycloalkyl ring or a benzene ring is condensed.

ビニルベンジル化合物としては、以下の式(8)で表されるものがより好ましい。

Figure 2011032389
(式(8)中、Rは炭素数2〜20の2価の有機基(好ましくはアルキル基)、nは平均値として0〜20の数を示す) As the vinylbenzyl compound, those represented by the following formula (8) are more preferable.
Figure 2011032389
(In the formula (8), R 4 is a divalent organic group (preferably an alkyl group) having 2 to 20 carbon atoms, and n is an average value of 0 to 20)

市場で入手可能なものとしては昭和高分子(株)製のポリビニルベンジル樹脂V−5000X(硬化物のTg154℃、比誘電率2.63、誘電正接0.0016)、V−6000X(硬化物のTg136℃、比誘電率2.59、誘電正接0.0013)などが挙げられる。   As commercially available products, polyvinyl benzyl resin V-5000X (Tg 154 ° C. of cured product, relative dielectric constant 2.63, dielectric loss tangent 0.0016) manufactured by Showa Polymer Co., Ltd., V-6000X (of cured product) Tg 136 ° C., relative dielectric constant 2.59, dielectric loss tangent 0.0013) and the like.

本発明におけるビニルベンジル化合物は、ビニルベンジルエーテル化合物であっても良い。1分子中に2個以上のヒドロキシベンジル基を有する化合物(ポリフェノール化合物)をビニルベンジルハライドとアルカリ存在下に反応させることによって得ることが出来る(特開平9−31006号公報、特開2001−181383号公報参照)。   The vinyl benzyl compound in the present invention may be a vinyl benzyl ether compound. It can be obtained by reacting a compound having two or more hydroxybenzyl groups in one molecule (polyphenol compound) with vinylbenzyl halide in the presence of an alkali (JP-A-9-31006, JP-A-2001-181383). See the official gazette).

ポリフェノール化合物としては、ハイドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、フェノールノボラック樹脂、フェノールとベンズアルデヒドの縮合物、ザイロック(Xylok)型フェノール樹脂等が挙げられる。これら化合物の芳香環はアルキル基、ハロゲンなどで置換されているものが好ましい。   Examples of the polyphenol compound include hydroquinone, bisphenol A, bisphenol F, bisphenol S, biphenol, phenol novolac resin, a phenol / benzaldehyde condensate, and a xylok type phenol resin. The aromatic ring of these compounds is preferably substituted with an alkyl group, halogen or the like.

ビニルベンジルハライドとしては、p−ビニルベンジルクロライド、m−ビニルベンジルクロライド及びこれらの任意の混合物等が挙げられる。   Examples of the vinyl benzyl halide include p-vinyl benzyl chloride, m-vinyl benzyl chloride, and any mixture thereof.

ビニルベンジルエーテル化合物の種類は、特に制限はないが、以下の式(9)で表されるものを挙げることができる(特開平9−31006号公報、特開2001−181383号公報等参照)。 Although there is no restriction | limiting in particular in the kind of vinylbenzyl ether compound, The thing represented by the following formula | equation (9) can be mentioned (refer Unexamined-Japanese-Patent No. 9-31006, Unexamined-Japanese-Patent No. 2001-181383 etc.).

Figure 2011032389
式(9)中、Rはメチル基又はエチル基、Rは水素原子又は1〜10の炭化水素基、Rは水素原子又はビニルベンジル基(但し、水素原子とビニルベンジル基のモル比は60:40〜0:100の範囲である)、nは平均値として2〜4の数を表す。
Figure 2011032389
In formula (9), R 1 is a methyl group or an ethyl group, R 2 is a hydrogen atom or a hydrocarbon group of 1 to 10, R 3 is a hydrogen atom or a vinylbenzyl group (provided that the molar ratio of the hydrogen atom to the vinylbenzyl group) Is a range of 60:40 to 0: 100), and n represents a number of 2 to 4 as an average value.

これらポリビニルベンジルエーテル化合物は特開平9−31006号公報、特開2001−181383号公報の記載に従って容易に製造することができる。   These polyvinyl benzyl ether compounds can be easily produced according to the descriptions in JP-A-9-31006 and JP-A-2001-181383.

市場で入手可能なものとしては昭和高分子(株)製V−1000X(硬化物のTg160℃、比誘電率2.7、誘電正接0.0045)、V−1100X(硬化物のTg171℃、比誘電率2.56、誘電正接0.0038)などが挙げられる。   The products available on the market are Showa Polymer Co., Ltd. V-1000X (Tg 160 ° C. of cured product, relative dielectric constant 2.7, dielectric loss tangent 0.0045), V-1100X (Tg 171 ° C. of cured product, ratio) Dielectric constant 2.56, dielectric loss tangent 0.0038) and the like.

これらは1種または2種以上組み合わせて使用してもよい。   You may use these 1 type or in combination of 2 or more types.

〔(G)高分子化合物〕
本発明の樹脂組成物には、更に(G)高分子化合物を含有させる事により硬化物の機械強度を向上させることができる。更に、接着フィルムの形態で使用する場合のフィルム成型能を向上させることもできる。このような(G)高分子化合物としては、特に限定はされないが、ポリビニルアセタール樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂を挙げることができる。なかでも、ポリビニルアセタール樹脂、フェノキシ樹脂が好ましい。ポリビニルアセタール樹脂としては、ポリビニルブチラール樹脂がより好ましい。これらは1種または2種以上組み合わせて使用してもよい。
[(G) polymer compound]
The resin composition of the present invention can further improve the mechanical strength of the cured product by containing (G) a polymer compound. Furthermore, the film molding ability when used in the form of an adhesive film can also be improved. Such (G) polymer compound is not particularly limited, but polyvinyl acetal resin, phenoxy resin, polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate Examples thereof include resins, polyether ether ketone resins, and polyester resins. Of these, polyvinyl acetal resin and phenoxy resin are preferable. As the polyvinyl acetal resin, a polyvinyl butyral resin is more preferable. You may use these 1 type or in combination of 2 or more types.

ポリビニルアセタール樹脂の具体例としては、電気化学工業(株)製、電化ブチラール4000−2、5000−A、6000−C、6000−EP、積水化学工業(株)製エスレックBHシリーズ、BXシリーズ、KSシリーズ、BLシリーズ、BMシリーズ等が挙げられる。フェノキシ樹脂の具体例としては東都化成(株)製FX280、FX293、ジャパンエポキシレジン(株)製YX8100、YX6954、YL6974、YL7482、YL7553、YL6794、YL7213、YL7290等が挙げられる。ポリビニルアセタール樹脂はガラス転移温度が80℃以上のものが特に好ましい。ここでいう「ガラス転移温度」はJIS K 7197に記載の方法に従って決定される。なお、ガラス転移温度が分解温度よりも高く、実際にはガラス転移温度が観測されない場合には、分解温度を本発明におけるガラス転移温度とみなすことができる。なお、分解温度とは、JIS K 7120に記載の方法に従って測定したときの質量減少率が5%となる温度で定義される。   Specific examples of the polyvinyl acetal resin include those manufactured by Denki Kagaku Kogyo Co., Ltd., electrified butyral 4000-2, 5000-A, 6000-C, 6000-EP, and Sekisui Chemical Co., Ltd., ESREC BH series, BX series, and KS. Series, BL series, BM series and the like. Specific examples of the phenoxy resin include FX280 and FX293 manufactured by Toto Kasei Co., Ltd., YX8100, YX6954, YL6974, YL7482, YL7553, YL6794, YL7213, YL7290, and the like manufactured by Japan Epoxy Resins Co., Ltd. The polyvinyl acetal resin having a glass transition temperature of 80 ° C. or higher is particularly preferable. The “glass transition temperature” here is determined according to the method described in JIS K7197. When the glass transition temperature is higher than the decomposition temperature and the glass transition temperature is not actually observed, the decomposition temperature can be regarded as the glass transition temperature in the present invention. The decomposition temperature is defined as the temperature at which the mass reduction rate is 5% when measured according to the method described in JIS K 7120.

高分子化合物の重量平均分子量は5000〜200000の範囲であるのが好ましい。この範囲よりも小さいとフィルム成型能や機械強度向上の効果が十分発揮されない傾向にあり、この範囲よりも大きいとシアネートエステル樹脂及びエポキシ樹脂との相溶性が低下し、絶縁層表面の粗化処理後の粗度が増大する傾向にある。   The weight average molecular weight of the polymer compound is preferably in the range of 5,000 to 200,000. If it is smaller than this range, the effect of improving the film forming ability and mechanical strength tends to be insufficient. If it is larger than this range, the compatibility with the cyanate ester resin and the epoxy resin is lowered, and the surface of the insulating layer is roughened. Later roughness tends to increase.

なお本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC−9A/RID−6Aを、カラムとして昭和電工(株)社製Shodex K−800P/K−804L/K−804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。   In addition, the weight average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L is measured at a column temperature of 40 ° C. using chloroform or the like as a mobile phase, and can be calculated using a standard polystyrene calibration curve.

高分子化合物の含有量は、特に制限はない。樹脂組成物中の高分子化合物の含有量の上限値は、粗化後の絶縁層表面の粗度上昇を防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、20質量%が好ましく、15質量%がより好ましい。一方、樹脂組成物中の高分子化合物の含有量の下限値は、フィルム成型能向上や機械強度向上の効果を得るという観点から、樹脂組成物中の不揮発分100質量%に対し、1質量%が好ましく、2質量%がより好ましい。   The content of the polymer compound is not particularly limited. The upper limit of the content of the polymer compound in the resin composition is 20% by mass with respect to 100% by mass of the nonvolatile content in the resin composition from the viewpoint of preventing the roughness of the insulating layer surface after the roughening from increasing. Is preferable, and 15 mass% is more preferable. On the other hand, the lower limit of the content of the polymer compound in the resin composition is 1% by mass with respect to 100% by mass of the non-volatile content in the resin composition from the viewpoint of obtaining an effect of improving film molding ability and mechanical strength. Is preferable, and 2 mass% is more preferable.

〔(H)無機充填材〕
本発明の樹脂組成物は、更に(H)無機充填材を配合含有させる事により、絶縁層の熱膨張率をさらに低下させることができる。無機充填材としては、特に限定はされないが、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。なかでもシリカが好ましく、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカがより好ましい。シリカの形状としては球状のものが好ましい。これらは1種または2種以上組み合わせて使用してもよい。
[(H) inorganic filler]
The resin composition of the present invention can further reduce the thermal expansion coefficient of the insulating layer by further blending (H) an inorganic filler. The inorganic filler is not particularly limited, but silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, Examples include barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. Of these, silica is preferable, and amorphous silica, fused silica, crystalline silica, and synthetic silica are more preferable. The shape of silica is preferably spherical. You may use these 1 type or in combination of 2 or more types.

無機充填材の平均粒径は、特に限定されるものではない。無機充填材の平均粒径の上限値は、絶縁層への微細配線形成を可能にするという観点から、5μmが好ましく1μmがより好ましく、0.7μmが更に好ましい。一方無機充填材の平均粒径の下限値は、樹脂組成物を樹脂ワニスとした場合に、ワニスの粘度が上昇し、取り扱い性が低下するのを防止するという観点から、0.05μmが好ましく、0.1μmがより好ましい。上記無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製 LA−500等を使用することができる。 The average particle diameter of the inorganic filler is not particularly limited. The upper limit value of the average particle size of the inorganic filler is preferably 5 μm, more preferably 1 μm, and still more preferably 0.7 μm, from the viewpoint of enabling fine wiring formation on the insulating layer. On the other hand, the lower limit of the average particle size of the inorganic filler is preferably 0.05 μm from the viewpoint of preventing the viscosity of the varnish from increasing and handling properties from decreasing when the resin composition is a resin varnish. 0.1 μm is more preferable. The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring apparatus, LA-500 manufactured by Horiba Ltd. can be used.

無機充填材は、表面処理剤で表面処理してその耐湿性を向上させたものが好ましい。表面処理剤としては、アミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン、N−2(アミノエチル)アミノプロビルトリメトキシシラン等のアミノシラン系カップリング剤、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系カップリング剤、メルカトプロピルトリメトキシシラン、メルカトプロピルトリエトキシシラン等のメルカプトシラン系カップリング剤、メチルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、メタクロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等のシラン系カップリング剤、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5−ヘキサメテルシクロトリシラザン等のオルガノシラザン化合物、ブチルチタネートダイマー、チタンオクチレングリコレート、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジヒドロキシチタンビスラクテート、ジヒドロキシビス(アンモニウムラクテート)チタニウム、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリ−n−ブトキシチタンモノステアレート、テトラ−n−ブチルチタネート、テトラ(2−エチルヘキシル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミドエチル・アミノエチル)チタネート等のチタネート系カップリング剤等が挙げられる。   The inorganic filler is preferably one that has been surface treated with a surface treatment agent to improve its moisture resistance. As the surface treatment agent, aminosilane-based cups such as aminopropylmethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, N-2 (aminoethyl) aminopropyl trimethoxysilane, etc. Epoxy silanes such as ring agents, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl) ethyltrimethoxysilane Coupling agents, mercaptosilane coupling agents such as mercatopropyltrimethoxysilane, mercatopropyltriethoxysilane, methyltrimethoxysilane, octadecyltrimethoxysilane Silane coupling agents such as lan, phenyltrimethoxysilane, methacroxypropyltrimethoxysilane, imidazolesilane, triazinesilane, hexamethyldisilazane, hexaphenyldisilazane, trisilazane, cyclotrisilazane, 1,1,3,3 , 5,5-hexametacyclotrisilazane and other organosilazane compounds, butyl titanate dimer, titanium octylene glycolate, diisopropoxy titanium bis (triethanolaminate), dihydroxy titanium bis lactate, dihydroxy bis (ammonium lactate) titanium, bis (Dioctyl pyrophosphate) ethylene titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, tri-n-butoxy titanium monostearate, Tra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) Bis (ditridecyl) phosphite titanate, isopropyl trioctanoyl titanate, isopropyl tricumyl phenyl titanate, isopropyl triisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tri Dodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) Titanate, isopropyl tri (N- amidoethyl-aminoethyl) titanate coupling agents such as titanates.

無機充填材の添加量は、特に限定されるものではない。無機充填材の添加量の上限値は、硬化物が脆くなることや、ピール強度が低下することを防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、80質量%が好ましく、75質量%がより好ましく、70質量%が更に好ましい。一方、無機充填材の添加量の下限値は、無機充填材を配合することの効果を十分得るという観点から、樹脂組成物中の不揮発分100質量%に対し、10質量%が好ましく、20質量%がより好ましく、30質量%が更に好ましい。   The addition amount of the inorganic filler is not particularly limited. The upper limit of the amount of the inorganic filler added is preferably 80% by mass with respect to 100% by mass of the non-volatile content in the resin composition from the viewpoint of preventing the cured product from becoming brittle and reducing the peel strength. 75 mass% is more preferable, and 70 mass% is still more preferable. On the other hand, the lower limit of the addition amount of the inorganic filler is preferably 10% by mass and 20% by mass with respect to 100% by mass of the non-volatile content in the resin composition from the viewpoint of sufficiently obtaining the effect of blending the inorganic filler. % Is more preferable, and 30% by mass is still more preferable.

〔(I)ゴム粒子〕
本発明の樹脂組成物は、更に(I)ゴム粒子を含有させる事により、メッキ密着性を向上させることができる。ゴム粒子としては、特に限定はされないが、当該樹脂組成物のワニスを調製する際に使用する有機溶剤にも溶解せず、必須成分であるシアネートエステル樹脂やエポキシ樹脂などとも相溶しないものを用いることができる。従って、該ゴム粒子は、本発明の樹脂組成物のワニス中では分散状態で存在する。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製される。
[(I) Rubber particles]
The resin composition of the present invention can improve plating adhesion by further containing (I) rubber particles. The rubber particles are not particularly limited, but those that do not dissolve in the organic solvent used when preparing the varnish of the resin composition and are incompatible with the essential components cyanate ester resin and epoxy resin are used. be able to. Accordingly, the rubber particles exist in a dispersed state in the varnish of the resin composition of the present invention. Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles.

本発明で使用され得るゴム粒子としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが好ましい。コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、又は外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス層は、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は、ブチルアクリレート重合物(ブチルゴム)などで構成される。ゴム粒子は2種以上を組み合わせて使用してもよい。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N(商品名、ガンツ化成(株)製)、メタブレンKW−4426(商品名、三菱レイヨン(株)製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER−91(平均粒径0.5μm、JSR(株)製)などが挙げられる。架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK−500(平均粒径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.2μm)(三菱レイヨン(株)製)などが挙げられる。これらは1種または2種以上組み合わせて使用してもよい。   The rubber particles that can be used in the present invention are preferably core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, acrylic rubber particles, and the like. The core-shell type rubber particle is a rubber particle having a core layer and a shell layer. The outer shell layer is made of a glassy polymer, and the inner core layer is made of a rubbery polymer. Examples include a three-layer structure in which the shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer. The glass layer is made of a polymer of methyl methacrylate, and the rubbery polymer layer is made of a butyl acrylate polymer (butyl rubber). Two or more rubber particles may be used in combination. Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N (trade name, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.). Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size: 0.5 μm, manufactured by JSR Corporation). Specific examples of the crosslinked styrene butadiene rubber (SBR) particles include XSK-500 (average particle size 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include methabrene W300A (average particle size 0.1 μm), W450A (average particle size 0.2 μm) (manufactured by Mitsubishi Rayon Co., Ltd.), and the like. You may use these 1 type or in combination of 2 or more types.

配合するゴム粒子の平均粒径は、0.005〜1μmが好ましく、0.2〜0.6μmがより好ましい。本発明で使用されるゴム粒子の平均粒径は、動的光散乱法を用いて測定することができる。適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、濃厚系粒径アナライザー(FPAR−1000;大塚電子(株)製)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。   The average particle diameter of the rubber particles to be blended is preferably 0.005 to 1 μm, and more preferably 0.2 to 0.6 μm. The average particle diameter of the rubber particles used in the present invention can be measured using a dynamic light scattering method. The rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and a particle size distribution of the rubber particles is created on a mass basis using a concentrated particle size analyzer (FPAR-1000; manufactured by Otsuka Electronics Co., Ltd.) It can be measured by setting the median diameter as the average particle diameter.

ゴム粒子の含有量は、樹脂組成物中の不揮発分100質量%に対し、1〜10質量%が好ましく、2〜5質量%がより好ましい。   1-10 mass% is preferable with respect to 100 mass% of non volatile matters in a resin composition, and, as for content of a rubber particle, 2-5 mass% is more preferable.

〔(J)難燃剤(ホスファフェナントレン骨格を有する(メタ)アクリレート化合物を除く)〕
本発明の樹脂組成物は、更に(J)難燃剤(ホスファフェナントレン骨格を有する(メタ)アクリレート化合物を除く)を含有させる事により、更なる難燃性を付与することができる。難燃剤(ホスファフェナントレン骨格を有する(メタ)アクリレート化合物を除く)としては、特に限定はされないが、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤としては、三光(株)製のHCA、HCA−HQ、HCA−NQ等のフェナントレン型リン化合物、昭和高分子(株)製のHFB−2006M等のリン含有ベンゾオキサジン化合物、味の素ファインテクノ(株)製のレオフォス30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、TIBP、北興化学工業(株)製のPPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX305等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂、ジャパンエポキシレジン(株)製のYL7613等のリン含有エポキシ樹脂等が挙げられる。有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルミド化合物、大塚化学(株)社製のSPB100、SPE100、(株)伏見製作所製FP−series等のホスファゼン化合物等が挙げられる。金属水酸化物としては、宇部マテリアルズ(株)製のUD65、UD650、UD653等の水酸化マグネシウム、巴工業(株)社製のB−30、B−325、B−315、B−308、B−303、UFH−20等の水酸化アルミニウム等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。
[(J) Flame retardant (excluding (meth) acrylate compounds having a phosphaphenanthrene skeleton)]
The resin composition of the present invention can further impart flame retardancy by further containing (J) a flame retardant (excluding a (meth) acrylate compound having a phosphaphenanthrene skeleton). Although it does not specifically limit as a flame retardant (except the (meth) acrylate compound which has a phosphaphenanthrene skeleton), An organic phosphorus flame retardant, an organic nitrogen containing phosphorus compound, a nitrogen compound, a silicone flame retardant, metal hydroxide Thing etc. are mentioned. Examples of organic phosphorus flame retardants include phenanthrene-type phosphorus compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa Polymer Co., Ltd., and Ajinomoto Co., Inc. Reefos 30, 50, 65, 90, 110, Fine Techno Co., TPP, RPD, BAPP, CPD, TCP, TXP, TBP, TOP, KP140, TIBP, PPQ, Clariant (made by Hokuko Chemical Co., Ltd.) Phosphoric acid ester compounds such as OP930 manufactured by Daihachi Chemical Co., Ltd., FX289 compounds manufactured by Tohto Kasei Co., Ltd., phosphorus-containing epoxy resins such as FX305, phosphorus such as ERF001 manufactured by Tohto Kasei Co., Ltd. And a phosphorus-containing epoxy resin such as YL7613 manufactured by Japan Epoxy Resin Co., Ltd. Examples of organic nitrogen-containing phosphorus compounds include phosphate ester compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and FP-series manufactured by Fushimi Seisakusho Co., Ltd. Examples thereof include phosphazene compounds. As the metal hydroxide, magnesium hydroxide such as UD65, UD650, UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315, B-308 manufactured by Sakai Kogyo Co., Ltd. Examples thereof include aluminum hydroxide such as B-303 and UFH-20. You may use these 1 type or in combination of 2 or more types.

〔(K)硬化促進剤(金属系硬化促進剤、有機過酸化物を除く)〕
本発明の樹脂組成物は、更に、(K)硬化促進剤(金属系硬化促進剤、有機過酸化物を除く)を含有させる事により、樹脂組成物の硬化性能を向上させることができる。硬化促進剤(金属系硬化促進剤、有機過酸化物を除く)としては、特に限定はされないが、イミダゾール系硬化促進剤、アミン系硬化促進剤、アゾ系化合物などが挙げられる。これらは1種または2種以上組み合わせて使用してもよい。
[(K) curing accelerator (excluding metal-based curing accelerator and organic peroxide)]
The resin composition of the present invention can further improve the curing performance of the resin composition by containing (K) a curing accelerator (excluding metal-based curing accelerators and organic peroxides). Although it does not specifically limit as a hardening accelerator (a metal type hardening accelerator and an organic peroxide are remove | excluded), An imidazole type hardening accelerator, an amine type hardening accelerator, an azo type compound etc. are mentioned. You may use these 1 type or in combination of 2 or more types.

イミダゾール系硬化促進剤の種類は、特に制限はないが、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、 1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド、2−メチルイミダゾリン、2−フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。   The type of imidazole curing accelerator is not particularly limited, but 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1, 2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl- 2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate 1-cyano Ethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'- Undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2, 4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl- Examples thereof include imidazole compounds such as 2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline, and 2-phenylimidazoline, and adducts of imidazole compounds and epoxy resins.

アミン系硬化促進剤の種類は、特に制限はないが、トリエチルアミン、トリブチルアミンなどのトリアルキルアミン、4−ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ(5,4,0)−ウンデセン(以下、DBUと略記する。)などのアミン化合物などが挙げられる。   The type of amine curing accelerator is not particularly limited, but trialkylamine such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, And amine compounds such as 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbreviated as DBU).

アゾ系化合物の種類は、特に制限はないが、アゾビスイソブチロニトリル、アゾビスジエチルバレロニトリルなどのアゾ系化合物などが挙げられる。   The type of the azo compound is not particularly limited, and examples thereof include azo compounds such as azobisisobutyronitrile and azobisdiethylvaleronitrile.

硬化促進剤(金属系硬化促進剤、有機過酸化物を除く)の含有量は、特に制限はない。樹脂組成物中の硬化促進剤(金属系硬化促進剤、有機過酸化物を除く)の含有量の上限値は、誘電正接、熱膨張率の上昇を防止するという観点から、樹脂組成物中の不揮発分100質量%に対し、3質量%が好ましく、2質量%がより好ましい。一方、樹脂組成物中の硬化促進剤(金属系硬化促進剤、有機過酸化物を除く)の含有量の下限値は、下地導体層との密着性低下の防止という観点から、樹脂組成物中の不揮発分100質量%に対し、0.05質量%が好ましく、0.1質量%がより好ましい。 There is no restriction | limiting in particular in content of a hardening accelerator (except for a metal type hardening accelerator and an organic peroxide). The upper limit of the content of the curing accelerator (excluding metal-based curing accelerators and organic peroxides) in the resin composition is from the viewpoint of preventing increase in dielectric loss tangent and coefficient of thermal expansion. 3 mass% is preferable with respect to 100 mass% of non volatile matters, and 2 mass% is more preferable. On the other hand, the lower limit of the content of the curing accelerator (except for the metal-based curing accelerator and the organic peroxide) in the resin composition is within the resin composition from the viewpoint of preventing a decrease in adhesion with the underlying conductor layer. The non-volatile content of 100% by mass is preferably 0.05% by mass, and more preferably 0.1% by mass.

本発明の樹脂組成物は、本発明の効果を阻害しない程度に、樹脂組成物に配合しうる各種添加剤を使用することができる。具体的には、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シラン系カップリング剤等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。   The resin composition of this invention can use the various additives which can be mix | blended with a resin composition to such an extent that the effect of this invention is not inhibited. Specifically, organic fillers such as silicon powder, nylon powder, and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based, polymer-based antifoaming or leveling agents, imidazole-based, thiazole-based Examples thereof include adhesion imparting agents such as triazole-based and silane-based coupling agents, and colorants such as phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, and carbon black.

本発明の樹脂組成物の調製方法は、特に限定されるものではなく、配合成分を、必要により溶媒等を添加し、回転ミキサーなどを用いて混合する方法などが挙げられる。   The method for preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method in which a compounding component is added with a solvent or the like as necessary and mixed using a rotary mixer or the like.

本発明の樹脂組成物は、接着フィルム、プリプレグ等のシート状材料として使用することができる。   The resin composition of the present invention can be used as a sheet-like material such as an adhesive film or a prepreg.

〔接着フィルム〕
本発明の接着フィルムは、当業者に公知の方法にて作製することができる。有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、この樹脂ワニスを、ダイコーターなどを用いて、支持体に塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させることにより製造することが挙げられる。
[Adhesive film]
The adhesive film of the present invention can be produced by methods known to those skilled in the art. A resin varnish in which a resin composition is dissolved in an organic solvent is prepared. It can be produced by forming a physical layer.

有機溶剤としては、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等が挙げられる。有機溶剤は2種以上を組みわせて用いてもよい。   As organic solvents, ketones such as acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, acetate esters such as carbitol acetate, carbitols such as cellosolve, butyl carbitol, Aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like can be mentioned. Two or more organic solvents may be used in combination.

乾燥条件は特に限定されないが、乾燥後の樹脂組成物層への有機溶剤の含有量は10質量%以下が好ましく、5質量%以下がより好ましい。ワニス中の有機溶剤量、有機溶剤の沸点によっても異なるが、30〜60質量%の有機溶剤を含むワニスを50〜150℃で3〜10分乾燥させることにより、樹脂組成物層を形成することができる。当業者であれば、簡単な実験により適宜、好適な乾燥条件を設定することができる。   Although drying conditions are not specifically limited, 10 mass% or less is preferable and, as for content of the organic solvent to the resin composition layer after drying, 5 mass% or less is more preferable. Depending on the amount of organic solvent in the varnish and the boiling point of the organic solvent, a resin composition layer is formed by drying a varnish containing 30 to 60% by mass of an organic solvent at 50 to 150 ° C. for 3 to 10 minutes. Can do. Those skilled in the art can appropriately set suitable drying conditions through simple experiments.

接着フィルムにおいて形成される樹脂組成物層の厚さは、導体層の厚さ以上とすることが好ましい。回路基板が有する導体層の厚さが5〜70μmである場合には、樹脂組成物層は10〜100μmの厚さを有するのが好ましい。   The thickness of the resin composition layer formed in the adhesive film is preferably equal to or greater than the thickness of the conductor layer. When the thickness of the conductor layer included in the circuit board is 5 to 70 μm, the resin composition layer preferably has a thickness of 10 to 100 μm.

支持体としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィンのフィルム、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステルのフィルム、ポリカーボネートフィルム、ポリイミドフィルムなどの各種プラスチックフィルムが挙げられる。また離型紙や銅箔、アルミニウム箔等の金属箔などを使用してもよい。支持体及び後述する保護フィルムには、マッド処理、コロナ処理等の表面処理が施してあってもよい。また、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤で離型処理が施してあってもよい。   Examples of the support include polyolefin films such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester films such as polyethylene naphthalate, polycarbonate films, and polyimide films. Various plastic films are listed. Moreover, you may use release foil, metal foil, such as copper foil and aluminum foil. The support and a protective film described later may be subjected to surface treatment such as mud treatment or corona treatment. The release treatment may be performed with a release agent such as a silicone resin release agent, an alkyd resin release agent, or a fluororesin release agent.

支持体の厚さは特に限定されないが、10〜150μmが好ましく、25〜50μmがより好ましい。   Although the thickness of a support body is not specifically limited, 10-150 micrometers is preferable and 25-50 micrometers is more preferable.

樹脂組成物層の支持体が密着していない面には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚みは、特に限定されるものではないが、1〜40μmが好ましく、10〜30μmがより好ましい。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを防止することができる。接着フィルムは、ロール状に巻きとって貯蔵することもできる。   A protective film according to the support can be further laminated on the surface of the resin composition layer on which the support is not in close contact. Although the thickness of a protective film is not specifically limited, 1-40 micrometers is preferable and 10-30 micrometers is more preferable. By laminating the protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches. The adhesive film can also be stored in a roll.

〔プリプレグ〕
本発明のプリプレグは、本発明の樹脂組成物を繊維からなるシート状補強基材にホットメルト法又はソルベント法により含浸させ、加熱して半硬化させることにより製造することができる。すなわち、本発明の樹脂組成物が繊維からなるシート状補強基材に含浸した状態となるプリプレグとすることができる。繊維からなるシート状補強基材としては、ガラスクロスやアラミド繊維等のプリプレグ用繊維として常用されている繊維からなるものを用いることができる。
[Prepreg]
The prepreg of the present invention can be produced by impregnating the resin composition of the present invention into a sheet-like reinforcing base material made of fibers by a hot melt method or a solvent method, and heating and semi-curing. That is, it can be set as the prepreg which will be in the state which the resin composition of this invention impregnated the sheet-like reinforcement base material which consists of fibers. As the sheet-like reinforcing substrate made of fibers, those made of fibers commonly used as prepreg fibers such as glass cloth and aramid fibers can be used.

ホットメルト法は、本発明の樹脂組成物を、有機溶剤に溶解することなく、該樹脂との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする、あるいは樹脂を、有機溶剤に溶解することなく、ダイコーターによりシート状補強基材に直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、接着フィルムと同様にして樹脂を有機溶剤に溶解して樹脂ワニスを調製し、このワニスにシート状補強基材を浸漬し、樹脂ワニスをシート状補強基材に含浸させ、その後乾燥させる方法である。   In the hot melt method, the resin composition of the present invention is once coated on a coated paper having good releasability from the resin without dissolving it in an organic solvent, and then laminated on a sheet-like reinforcing substrate, or resin In this method, the prepreg is produced by directly coating a sheet-like reinforcing substrate with a die coater without dissolving it in an organic solvent. In the solvent method, a resin varnish is prepared by dissolving a resin in an organic solvent in the same manner as the adhesive film, and a sheet-like reinforcing base material is immersed in the varnish, and then the resin-like varnish is impregnated into the sheet-like reinforcing base material. It is a method of drying.

〔多層プリント配線板〕
本発明の樹脂組成物は、多層プリント配線板の製造において絶縁層を形成するために好適に使用することができる。本発明の樹脂組成物は、ワニス状態で回路基板に塗布して絶縁層を形成することもできるが、工業的には、接着フィルム、プリプレグ等のシート状材料の形態で用いるのが好ましい。樹脂組成物の軟化点は、シート状積層材料のラミネート性の観点から40〜150℃が好ましい。
[Multilayer printed wiring board]
The resin composition of the present invention can be suitably used for forming an insulating layer in the production of a multilayer printed wiring board. The resin composition of the present invention can be applied to a circuit board in a varnish state to form an insulating layer, but industrially, it is preferably used in the form of a sheet-like material such as an adhesive film or a prepreg. The softening point of the resin composition is preferably 40 to 150 ° C. from the viewpoint of the laminate property of the sheet-like laminated material.

まずは、上記のようにして製造した接着フィルムを用いて多層プリント配線板を製造する方法の一例を説明する。   First, an example of a method for producing a multilayer printed wiring board using the adhesive film produced as described above will be described.

まず、接着フィルムを、真空ラミネーターを用いて回路基板の片面又は両面にラミネートする。回路基板に用いられる基板としては、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層とを交互に積層してなる多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっているものも、ここでいう回路基板に含まれる。なお導体層表面には、黒化処理、銅エッチング等により予め粗化処理が施されていてもよい。   First, an adhesive film is laminated on one side or both sides of a circuit board using a vacuum laminator. Examples of the substrate used for the circuit substrate include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate. In addition, a circuit board means here that the conductor layer (circuit) patterned was formed in the one or both surfaces of the above boards. Also, in a multilayer printed wiring board in which conductor layers and insulating layers are alternately laminated, one of the outermost layers of the multilayer printed wiring board is a conductor layer (circuit) in which one or both sides are patterned. It is included in the circuit board. The surface of the conductor layer may be previously roughened by blackening, copper etching, or the like.

上記ラミネートにおいて、接着フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、必要に応じて接着フィルム及び回路基板をプレヒートし、接着フィルムを加圧及び加熱しながら回路基板に圧着する。本発明の接着フィルムにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。ラミネートの条件は、特に限定されるものではないが、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法は、バッチ式であってもロールでの連続式であってもよい。 In the above laminate, when the adhesive film has a protective film, after removing the protective film, the adhesive film and the circuit board are preheated as necessary, and the adhesive film is pressed and heated to the circuit board. Crimp. In the adhesive film of the present invention, a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is preferably used. Lamination conditions are not particularly limited, but the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C., and the pressure bonding pressure is preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9). × 10 4 N / m 2 ) and laminating under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less. The laminating method may be a batch method or a continuous method using a roll.

真空ラミネートは、市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、ニチゴー・モートン(株)製バキュームアップリケーター、(株)名機製作所製真空加圧式ラミネーター、(株)日立インダストリイズ製ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。   The vacuum lamination can be performed using a commercially available vacuum laminator. Commercially available vacuum laminators include Nichigo Morton's vacuum applicator, Maki Seisakusho's vacuum pressurizing laminator, Hitachi Industries' roll-type dry coater, Hitachi AIC Co., Ltd. A vacuum laminator etc. can be mentioned.

接着フィルムを回路基板にラミネートした後、室温付近に冷却してから、支持体を剥離する場合は剥離し、熱硬化することにより回路基板に絶縁層を形成することができる。熱硬化の条件は、樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよく、硬化温度は150℃〜220℃が好ましく、160℃〜200℃がより好ましい。硬化時間は20分〜180分が好ましく、30〜120分がより好ましい。   After laminating the adhesive film on the circuit board, it is cooled to around room temperature, and when the support is peeled off, the insulating film can be formed on the circuit board by peeling and thermosetting. The thermosetting conditions may be appropriately selected according to the type and content of the resin component in the resin composition, and the curing temperature is preferably 150 ° C to 220 ° C, more preferably 160 ° C to 200 ° C. The curing time is preferably 20 minutes to 180 minutes, more preferably 30 to 120 minutes.

絶縁層を形成した後、硬化前に支持体を剥離しなかった場合は、ここで剥離する。次いで必要により、回路基板上に形成された絶縁層に穴開けを行ってビアホール、スルーホールを形成する。穴あけは、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができる。なかでも、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけが好ましい。   If the support is not peeled off after the insulating layer is formed, it is peeled off here. Next, if necessary, holes are formed in the insulating layer formed on the circuit board to form via holes and through holes. Drilling can be performed by a known method such as drilling, laser, plasma, or a combination of these methods if necessary. Of these, drilling with a laser such as a carbon dioxide laser or a YAG laser is preferred.

次いで、乾式メッキ又は湿式メッキにより絶縁層上に導体層を形成する。乾式メッキとしては、蒸着、スパッタリング、イオンプレーティング等の公知の方法を使用することができる。湿式メッキの場合は、まず、硬化した絶縁層の表面を、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で粗化処理し、凸凹のアンカーを形成する。酸化剤としては、特に過マンガン酸カリウム、過マンガン酸ナトリウム等の水酸化ナトリウム水溶液(アルカリ性過マンガン酸水溶液)が好ましく用いられる。次いで、無電解メッキと電解メッキとを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として、当業者に公知のサブトラクティブ法、セミアディティブ法などを用いることができる。   Next, a conductor layer is formed on the insulating layer by dry plating or wet plating. As the dry plating, a known method such as vapor deposition, sputtering, or ion plating can be used. In the case of wet plating, the surface of the hardened insulating layer is first oxidized with permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid, etc. Roughening treatment is performed with an agent to form uneven anchors. As the oxidizing agent, an aqueous sodium hydroxide solution (alkaline permanganate aqueous solution) such as potassium permanganate and sodium permanganate is particularly preferably used. Next, a conductor layer is formed by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. As a subsequent pattern formation method, a subtractive method, a semi-additive method, or the like known to those skilled in the art can be used.

次に、上記のようにして製造したプリプレグを用いて多層プリント配線板を製造する方法の一例を説明する。   Next, an example of a method for producing a multilayer printed wiring board using the prepreg produced as described above will be described.

まず、回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートで挟み、加圧・加熱条件下でプレス積層する。加圧・加熱条件は、圧力が5〜40kgf/cm(49×10〜392×10N/m)、温度が120〜200℃、時間が20〜100分であることが好ましい。また接着フィルムと同様に、プリプレグを真空ラミネート法により回路基板にラミネートした後、加熱硬化することも可能である。その後、上記で記載した方法と同様にして、硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成して多層プリント配線板を製造することができる。 First, one or several prepregs of the present invention are stacked on a circuit board, sandwiched by a metal plate through a release film, and press laminated under pressure and heating conditions. The pressurization / heating conditions are preferably a pressure of 5 to 40 kgf / cm 2 (49 × 10 4 to 392 × 10 4 N / m 2 ), a temperature of 120 to 200 ° C., and a time of 20 to 100 minutes. Similarly to the adhesive film, the prepreg can be laminated on a circuit board by a vacuum laminating method and then cured by heating. Thereafter, in the same manner as described above, the surface of the cured prepreg is roughened, and then a conductor layer is formed by plating to produce a multilayer printed wiring board.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、「部」は「質量部」を意味する。     EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the following description, “part” means “part by mass”.

〔測定方法・評価方法〕
まずは各種測定方法・評価方法について説明する。
[Measurement and evaluation methods]
First, various measurement methods and evaluation methods will be described.

<線熱膨張率及びガラス転移温度の測定>
支持体にフッ素樹脂系離型剤(ETFE)処理したPET(三菱樹脂(株)製「フルオロージュRL50KSE」を用いて、実施例及び比較例における樹脂組成物層の接着フィルムを得た。得られた接着フィルムを190℃で90分熱硬化させてシート状の硬化物を得た。その硬化物を、幅約5mm、長さ約15mmの試験片に切断し、エスアイアイ・ナノテクノロジー製熱・応力・歪測定装置(EXSTAR TMA/SS6100)を使用して、引張加重法で熱機械分析を行った。試験片を前記装置に装着後、荷重1g、昇温速度5℃/分の測定条件にて連続して2回測定した。2回目の測定における25℃から150℃までの平均線熱膨張率(ppm)を算出した。また2回目の測定における寸法変化シグナルの傾きが変化する点からガラス転移温度(℃)を算出した。
<Measurement of linear thermal expansion coefficient and glass transition temperature>
Adhesive films of resin composition layers in Examples and Comparative Examples were obtained using PET ("Fluorogen RL50KSE" manufactured by Mitsubishi Resin Co., Ltd.) treated with a fluororesin mold release agent (ETFE) on the support. The adhesive film was thermally cured at 190 ° C. for 90 minutes to obtain a sheet-like cured product, which was cut into a test piece having a width of about 5 mm and a length of about 15 mm, and heat / stress produced by SII Nanotechnology.・ Thermomechanical analysis was performed by the tensile load method using a strain measuring device (EXSTAR TMA / SS6100) After mounting the test piece on the device, under the measurement conditions of 1 g load and 5 ° C./min. The average linear thermal expansion coefficient (ppm) was calculated from 25 ° C. to 150 ° C. in the second measurement, and the difference in slope of the dimensional change signal in the second measurement was calculated. To calculate the transition temperature (℃).

<誘電正接の測定>
支持体にフッ素樹脂系離型剤(ETFE)処理したPET(三菱樹脂(株)製「フルオロージュRL50KSE」を用いて、実施例及び比較例における樹脂組成物層の接着フィルムを得た。得られた接着フィルムを190℃で90分間加熱することで熱硬化させ、支持体を剥離することによりシート状の硬化物を得た。その硬化物を長さ80mm、幅2mmに切り出し評価サンプルとした。この評価サンプルについてアジレントテクノロジーズ(Agilent Technologies)社製HP8362B装置を用い空洞共振摂動法により測定周波数5.8GHz、測定温度23℃にて誘電正接を測定した。
<Measurement of dielectric loss tangent>
Adhesive films of resin composition layers in Examples and Comparative Examples were obtained using PET ("Fluorogen RL50KSE" manufactured by Mitsubishi Resin Co., Ltd.) treated with a fluororesin mold release agent (ETFE) on the support. The adhesive film was cured by heating at 190 ° C. for 90 minutes, and the support was peeled off to obtain a sheet-like cured product, which was cut into a length of 80 mm and a width of 2 mm as an evaluation sample. The evaluation sample was measured for dielectric loss tangent at a measurement frequency of 5.8 GHz and a measurement temperature of 23 ° C. by a cavity resonance perturbation method using an HP 8362B apparatus manufactured by Agilent Technologies.

<難燃性の評価>
実施例及び比較例で作成した接着フィルム80μmを、基板厚み0.2mmの銅張積層板(日立化成(株)製「679−FG」)の銅箔をエッチング除去した基材の両面に、バッチ式真空加圧ラミネーターMVLP-500(名機(株)製商品名)を用いて、積層板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。支持体のPETフィルム剥離後、190℃で90分熱硬化させ、難燃試験用サンプルを得た。幅12.7mm、長さ127mmに切り出し、切り出した面を研磨機(Struers製、RotoPol−22)で研磨した。以上5個のサンプルを一組とし、UL94垂直難燃試験に従って、難燃試験を実施した。10秒間接炎後の燃え残りサンプルがない場合は×とした。
<CZ処理銅箔と樹脂組成物間の密着強度の測定>
(1)積層板の下地処理
内層回路を形成したガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.3mm、松下電工(株)製R5715ES)の両面をメック(株)製メックエッチボンドCZ8100に浸漬して銅表面の粗化処理を行った(Ra値1μm)。
(2)接着フィルムのラミネート
実施例及び比較例で作成される接着フィルムを、バッチ式真空加圧ラミネーターMVLP-500(名機(株)製商品名)を用いて、積層板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。
(3)銅箔の下地処理
三井金属鉱山(株)製3EC−III(電界銅箔、35μm)の光沢面をメック(株)製メックエッチボンドCZ−8100に浸漬して銅表面に粗化処理(Ra値1μm)を行った。
(4)銅箔のラミネートと絶縁層形成
上記(2)においてラミネートされた接着フィルムからPETフィルムを剥離し、上記(3)で処理した銅箔の処理面を樹脂組成物層側にし、上記(2)と同様の条件で、銅箔を、回路基板両面に形成された樹脂組成物層上にラミネートを行った。190℃、90分の硬化条件で樹脂組成物を硬化して絶縁層を形成することで、サンプルを作製した。
(5)密着強度の測定
上記(4)のサンプル510×340mmを150×30mmの小片に切断した。、小片の銅箔部分に、幅10mm、長さ100mmの部分の切込みをいれ、銅箔の一端を剥がしてつかみ具で掴み、インストロン万能試験機を用いて、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重をJIS C6481に準拠して測定し、密着強度(kgf/cm)とした。
(6)高温高湿下での密着強度の測定
上記(4)のサンプルに対して、130℃で85%RHの環境下で、100時間放置するHAST試験(highly accelerated temperature and humidity Stress Test)を実施した。その後室温に戻し、上記(5)と同様にして密着強度を測定した。
<Evaluation of flame retardancy>
A batch of 80 μm adhesive films prepared in Examples and Comparative Examples was applied to both sides of a base material from which the copper foil of a copper-clad laminate (“679-FG” manufactured by Hitachi Chemical Co., Ltd.) having a substrate thickness of 0.2 mm was removed by etching. The laminate was laminated on both sides of the laminated plate using a vacuum pressurizing laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds. After peeling the PET film from the support, it was thermoset at 190 ° C. for 90 minutes to obtain a flame retardant test sample. The width was cut to 12.7 mm and the length was 127 mm, and the cut surface was polished with a polishing machine (Struers, RotoPol-22). The above five samples were made into one set, and the flame retardant test was performed according to the UL94 vertical flame retardant test. When there was no unburned sample after 10 seconds of indirect flame, it was set as x.
<Measurement of adhesion strength between CZ-treated copper foil and resin composition>
(1) Substrate treatment of laminated board Both sides of glass cloth base epoxy resin double-sided copper-clad laminate (copper foil thickness 18μm, substrate thickness 0.3mm, Matsushita Electric Works R5715ES) on which inner layer circuits were formed The surface of the copper was roughened by being immersed in Mek Et Bond CZ8100 manufactured by Co., Ltd. (Ra value 1 μm).
(2) Lamination of adhesive film The adhesive film created in Examples and Comparative Examples was laminated on both sides of a laminate using a batch type vacuum pressure laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). . Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds.
(3) Substrate treatment of copper foil The glossy surface of 3EC-III (electrolytic copper foil, 35 μm) manufactured by Mitsui Mining Co., Ltd. is immersed in Mec Etch Bond CZ-8100 manufactured by Mec Co., Ltd., and roughened on the copper surface. (Ra value 1 μm).
(4) Lamination of copper foil and formation of insulating layer The PET film is peeled from the adhesive film laminated in (2) above, and the treated surface of the copper foil treated in (3) is set to the resin composition layer side. Under the same conditions as in 2), the copper foil was laminated on the resin composition layer formed on both surfaces of the circuit board. A sample was prepared by curing the resin composition at 190 ° C. for 90 minutes to form an insulating layer.
(5) Measurement of adhesion strength Sample 510 × 340 mm of (4) above was cut into small pieces of 150 × 30 mm. Cut the copper foil part of the small piece with a width of 10 mm and a length of 100 mm, peel off one end of the copper foil and grab it with a gripper, and use an Instron universal testing machine at room temperature, 50 mm / min. The load when peeling 35 mm in the vertical direction at a speed of was measured in accordance with JIS C6481, and was defined as the adhesion strength (kgf / cm).
(6) Measurement of adhesion strength under high temperature and high humidity The sample of (4) above is subjected to a HAST test (highly accelerated temperature and humidity Stress Test) that is allowed to stand for 100 hours at 130 ° C. in an environment of 85% RH. Carried out. Thereafter, the temperature was returned to room temperature, and the adhesion strength was measured in the same manner as in (5) above.

〔実施例1〕
ビスフェノールAジシアネートのプレポリマー(ロンザジャパン(株)製「BA230S75」、シアネート当量約232、不揮発分75質量%のメチルエチルケトン(以下MEKと略す)溶液)13質量部、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製「PT30」、シアネート当量約124)9質量部をシクロヘキサノン20部と共に加熱溶解させた後、ナフトール型エポキシ樹脂として東都化成(株)製「ESN−475V」(前記一般式(1)で表されるエポキシ当量約340の不揮発分65質量%のトルエン溶液)15質量部、さらに液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製「jER828EL」、エポキシ当量約185)3質量部、ビフェニル型エポキシ樹脂(エポキシ当量約328の不揮発分75質量%のMEK溶液、日本化薬(株)製「NC3000FH−75M」)27部、リン含有エポキシ樹脂(東都化成(株)製「FX289EK75」、エポキシ当量約306の不揮発分75質量%のMEK溶液)7質量部、ホスファフェナントレン骨格含有アクリレート(昭和高分子(株)製「HFA−6007M」不揮発分65質量%の2−メトキシプロパノール、リン含有量8.6%)7質量部、フェノキシ樹脂溶液(ジャパンエポキシレジン(株)製「YX−6954」、不揮発分30質量%のMEKとシクロヘキサノンとの混合溶液)11質量部、有機過酸化物としてジクミルパーオキサイド(日本油脂(株)製「パークミルD」0.5質量部、イミダゾール化合物とエポキシ樹脂とのアダクト体(ジャパンエポキシレジン(株)製「jERcure P200H50」、不揮発分50質量%のプロピレングリコールモノメチルエーテル溶液)0.5質量部、コバルト(II)アセチルアセトナート(東京化成(株)製)の3質量%のN,N−ジメチルホルムアミド(DMF)溶液4質量部、及び球形シリカ((株)アドマテックス製「SOC2」をアミノシランで表面処理したもの、平均粒子径0.5μm、3um上限カット品)85質量部を混合し、高速回転ミキサーで均一に分散して、熱硬化性樹脂組成物のワニスを作製した。
樹脂組成物の不揮発分中、エポキシ樹脂26質量%、シアネートエステル樹脂12質量%、ホスファフェナントレン骨格含有アクリレート3質量%、有機過酸化物0.3%、硬化促進剤0.2質量%、有機金属系触媒として添加した金属(コバルト)48ppm、高分子樹脂2質量%、無機充填材56質量%となる。
次に、かかる樹脂組成物ワニスをポリエチレンテレフタレートフィルム(厚さ38μm、以下PETフィルムと略す)上に、乾燥後の樹脂組成物層の厚みが40μmとなるようにダイコーターにて均一に塗布し、80〜120℃(平均100℃)で6分間乾燥した(樹脂組成物層中の残留溶媒量:約1.5質量%)。次いで、樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、507×336mmサイズのシート状の接着フィルムを得た。
[Example 1]
Prepolymer of bisphenol A dicyanate (“BA230S75” manufactured by Lonza Japan Co., Ltd., 13 parts by mass of methyl ethyl ketone (hereinafter abbreviated as MEK) solution having a cyanate equivalent of about 232 and a non-volatile content of 75% by mass, a phenol novolac type polyfunctional cyanate ester resin ( After 9 parts by mass of “PT30” manufactured by Lonza Japan Co., Ltd., cyanate equivalent weight of about 124) together with 20 parts of cyclohexanone was heated and dissolved, “ESN-475V” manufactured by Tohto Kasei Co., Ltd. as a naphthol type epoxy resin (the above general formula ( 1) 15 parts by mass of a toluene solution with an epoxy equivalent of about 340 having a nonvolatile content of about 340, and 3 parts by mass of a liquid bisphenol A type epoxy resin (“jER828EL” manufactured by Japan Epoxy Resin Co., Ltd., epoxy equivalent of about 185) Part, biphenyl type epoxy tree (MEK solution having an epoxy equivalent of about 328 with a nonvolatile content of 75% by mass, “NC3000FH-75M” manufactured by Nippon Kayaku Co., Ltd.), phosphorus-containing epoxy resin (“FX289EK75” manufactured by Toto Kasei Co., Ltd.), epoxy equivalent of about 306 7 parts by mass of a MEK solution having a nonvolatile content of 75% by mass, phosphaphenanthrene skeleton-containing acrylate (“HFA-6007M” manufactured by Showa Polymer Co., Ltd.) 2-methoxypropanol having a nonvolatile content of 65% by mass, phosphorus content of 8.6 %) 7 parts by mass, 11 parts by mass of phenoxy resin solution (“YX-6654” manufactured by Japan Epoxy Resin Co., Ltd., a mixed solution of MEK and cyclohexanone having a nonvolatile content of 30% by mass), dicumyl peroxide as an organic peroxide (Nippon Yushi Co., Ltd. “Park Mill D” 0.5 parts by mass, adduct of imidazole compound and epoxy resin 3 parts by mass (Japan Epoxy Resin Co., Ltd. “jERcure P200H50”, propylene glycol monomethyl ether solution having a nonvolatile content of 50% by mass), cobalt (II) acetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd.) % N, N-dimethylformamide (DMF) solution 4 parts by mass and spherical silica (“SOC2” manufactured by Admatechs Co., Ltd., surface-treated with aminosilane, average particle size 0.5 μm, 3 um upper limit cut product) 85 Mass parts were mixed and dispersed uniformly with a high-speed rotary mixer to prepare a varnish of a thermosetting resin composition.
In the nonvolatile content of the resin composition, 26% by mass of epoxy resin, 12% by mass of cyanate ester resin, 3% by mass of acrylate containing phosphaphenanthrene skeleton, 0.3% of organic peroxide, 0.2% by mass of curing accelerator, organic The metal (cobalt) added as a metal catalyst is 48 ppm, the polymer resin is 2% by mass, and the inorganic filler is 56% by mass.
Next, such a resin composition varnish is uniformly applied on a polyethylene terephthalate film (thickness 38 μm, hereinafter abbreviated as PET film) with a die coater so that the thickness of the resin composition layer after drying is 40 μm, It dried for 6 minutes at 80-120 degreeC (average 100 degreeC) (residual solvent amount in a resin composition layer: about 1.5 mass%). Subsequently, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film on the surface of a resin composition layer. The roll-like adhesive film was slit to a width of 507 mm to obtain a sheet-like adhesive film having a size of 507 × 336 mm.

〔実施例2〕
ジシクロペンタジエン型シアネートエステル樹脂(ロンザジャパン(株)製「DT−4000」、シアネート当量約140、不揮発分85質量%のトルエン溶液)13.8質量部、ビスフェノールAジシアネートのプレポリマー(ロンザジャパン(株)製「BA230S75」、シアネート当量約232、不揮発分75質量%のメチルエチルケトン(以下MEKと略す)溶液)21質量部、およびビフェニル型エポキシ樹脂(エポキシ当量269、日本化薬(株)製「NC3000L」)15部をシクロヘキサノン20部と共に加熱溶解させた後、ナフタレン型2官能エポキシ樹脂(DIC(株)製「HP4032SS」エポキシ当量約145)3質量部、リン含有エポキシ樹脂(東都化成(株)製「FX289EK75」、エポキシ当量約306の不揮発分75質量%のMEK溶液)21質量部、ビニルベンジル化合物(昭和高分子(株)製「V5000X」、不揮発分65質量%のトルエン溶液)7質量部、ホスファフェナントレン骨格含有アクリレート(昭和高分子(株)製「HFA−6007M」不揮発分65質量%の2−メトキシプロパノール、リン含有量8.6%)6質量部を添加した。そこへ、ポリビニルブチラール樹脂溶液(ガラス転移温度105℃、積水化学工業(株)製「KS-1」)を固形分15%のシクロヘキサノンとMEKの1:1溶液)50部を混合し、さらに有機過酸化物としてジクミルパーオキサイド(日本油脂(株)製「パークミルD」0.5質量部、イミダゾール化合物とエポキシ樹脂とのアダクト体(ジャパンエポキシレジン(株)製「jERcure P200H50」)0.4質量部、ナフテン酸亜鉛(II)(東京化成(株)製、亜鉛含有量8%のミネラルスピリット溶液)の3質量%のシクロヘキサノン溶液3質量部、及び球形シリカ((株)アドマテックス製「SOC2」をアミノシランで表面処理したもの、平均粒子径0.5μm、3um上限カット品)105質量部を混合し、高速回転ミキサーで均一に分散して、熱硬化性樹脂組成物のワニスを作製した。
樹脂組成物の不揮発分中、エポキシ樹脂19質量%、シアネートエステル樹脂15質量%、ビニルベンジル化合物3質量%、ホスファフェナントレン骨格含有アクリレート2質量%、有機過酸化物0.3質量%、硬化促進剤0.1質量%、有機金属系触媒として添加した金属(亜鉛)39ppm、高分子樹脂4質量%、無機充填材57質量%となる。
次に、かかる樹脂組成物ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
[Example 2]
Dicyclopentadiene type cyanate ester resin (Lonza Japan Co., Ltd. "DT-4000", cyanate equivalent of about 140, non-volatile content 85% by weight toluene solution) 13.8 parts by weight, bisphenol A dicyanate prepolymer (Lonza Japan ( "BA230S75" manufactured by Co., Ltd., 21 parts by mass of methyl ethyl ketone (hereinafter abbreviated as MEK) solution having a cyanate equivalent of about 232 and a non-volatile content of 75% by mass, and biphenyl type epoxy resin (epoxy equivalent 269, manufactured by Nippon Kayaku Co., Ltd. "NC3000L" ”) 15 parts together with 20 parts of cyclohexanone was heated and dissolved, and then 3 parts by weight of a naphthalene type bifunctional epoxy resin (DIC Corporation“ HP4032SS ”epoxy equivalent of about 145), a phosphorus-containing epoxy resin (manufactured by Toto Kasei Co., Ltd.) “FX289EK75”, epoxy equivalent of about 30 21 parts by mass of a MEK solution having a nonvolatile content of 75% by mass, 7 parts by mass of a vinylbenzyl compound (“V5000X” manufactured by Showa Polymer Co., Ltd., a toluene solution having a nonvolatile content of 65% by mass), an acrylate containing a phosphaphenanthrene skeleton (Showa) 6 parts by mass of “HFA-6007M” manufactured by Polymer Co., Ltd., 2-methoxypropanol having a nonvolatile content of 65% by mass and a phosphorus content of 8.6%) was added. Thereto, 50 parts of a polyvinyl butyral resin solution (glass transition temperature 105 ° C., “KS-1” manufactured by Sekisui Chemical Co., Ltd.) is mixed with 50 parts of a solid solution of cyclohexanone and MEK having a solid content of 15%, and further organic. Dicumyl peroxide (Nippon Yushi Co., Ltd. “Park Mill D” 0.5 part by mass, adduct of imidazole compound and epoxy resin (Japan Epoxy Resin Co., Ltd. “jERcure P200H50”) 0.4 Parts by mass, 3 parts by mass of a 3% by mass cyclohexanone solution of zinc naphthenate (II) (manufactured by Tokyo Chemical Industry Co., Ltd., mineral spirit solution having a zinc content of 8%), and spherical silica ("SOC2" manufactured by Admatechs Co., Ltd.) ”Surface treated with aminosilane, average particle size 0.5 μm, 3 um upper limit cut product) A varnish of a thermosetting resin composition was prepared by uniformly dispersing with a xer.
In the nonvolatile content of the resin composition, 19% by mass of epoxy resin, 15% by mass of cyanate ester resin, 3% by mass of vinylbenzyl compound, 2% by mass of acrylate containing phosphaphenanthrene skeleton, 0.3% by mass of organic peroxide, acceleration of curing 0.1 mass% of the agent, 39 ppm of metal (zinc) added as the organometallic catalyst, 4 mass% of the polymer resin, and 57 mass% of the inorganic filler.
Next, using this resin composition varnish, an adhesive film was obtained in exactly the same manner as in Example 1.

〔実施例3〕
ジシクロペンタジエン型シアネートエステル樹脂(ロンザジャパン(株)製「DT−4000」、シアネート当量約140、不揮発分85質量%のトルエン溶液)13.8質量部、ビスフェノールAジシアネートのプレポリマー(ロンザジャパン(株)製「BA230S75」、シアネート当量約232、不揮発分75質量%のメチルエチルケトン(以下MEKと略す)溶液)21質量部、およびビフェニル型エポキシ樹脂(エポキシ当量269、日本化薬(株)製「NC3000L」)15部をシクロヘキサノン20部と共に加熱溶解させた後、ナフタレン型2官能エポキシ樹脂(DIC(株)製「HP4032SS」エポキシ当量約145)3質量部、リン含有エポキシ樹脂(東都化成(株)製「FX289EK75」、エポキシ当量約306の不揮発分75質量%のMEK溶液)21質量部、ビニルベンジル化合物(昭和高分子(株)製「V5000X」、不揮発分65質量%のトルエン溶液)7質量部、ホスファフェナントレン骨格含有アクリレート(昭和高分子(株)製「HFA−6007M」不揮発分65質量%の2−メトキシプロパノール、リン含有量8.6%)12質量部を添加した。そこへ、ポリビニルブチラール樹脂溶液(ガラス転移温度105℃、積水化学工業(株)製「KS-1」)を固形分15%のシクロヘキサノンとMEKの1:1溶液)50部を混合し、さらに有機過酸化物としてジクミルパーオキサイド(日本油脂(株)製「パークミルD」0.5質量部、イミダゾール化合物とエポキシ樹脂とのアダクト体(ジャパンエポキシレジン(株)製「jERcure P200H50」)0.4質量部、ナフテン酸亜鉛(II)(東京化成(株)製、亜鉛含有量8%のミネラルスピリット溶液)の3質量%のシクロヘキサノン溶液3質量部、及び球形シリカ((株)アドマテックス製「SOC2」をアミノシランで表面処理したもの、平均粒子径0.5μm、3um上限カット品)105質量部を混合し、高速回転ミキサーで均一に分散して、熱硬化性樹脂組成物のワニスを作製した。
樹脂組成物の不揮発分中、エポキシ樹脂18質量%、シアネートエステル樹脂15質量%、ビニルベンジル化合物2質量%、ホスファフェナントレン骨格含有アクリレート4質量%、有機過酸化物0.3質量%、硬化促進剤0.1質量%、有機金属系触媒として添加した金属(亜鉛)39ppm、高分子樹脂4質量%、無機充填材56質量%となる。
次に、かかる樹脂組成物ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
Example 3
Dicyclopentadiene type cyanate ester resin (Lonza Japan Co., Ltd. "DT-4000", cyanate equivalent of about 140, non-volatile content 85% by weight toluene solution) 13.8 parts by weight, bisphenol A dicyanate prepolymer (Lonza Japan ( "BA230S75" manufactured by Co., Ltd., 21 parts by mass of methyl ethyl ketone (hereinafter abbreviated as MEK) solution having a cyanate equivalent of about 232 and a non-volatile content of 75% by mass, and biphenyl type epoxy resin (epoxy equivalent 269, manufactured by Nippon Kayaku Co., Ltd. "NC3000L" ”) 15 parts together with 20 parts of cyclohexanone was heated and dissolved, and then 3 parts by weight of a naphthalene type bifunctional epoxy resin (DIC Corporation“ HP4032SS ”epoxy equivalent of about 145), a phosphorus-containing epoxy resin (manufactured by Toto Kasei Co., Ltd.) “FX289EK75”, epoxy equivalent of about 30 21 parts by mass of a MEK solution having a nonvolatile content of 75% by mass, 7 parts by mass of a vinylbenzyl compound (“V5000X” manufactured by Showa Polymer Co., Ltd., a toluene solution having a nonvolatile content of 65% by mass), an acrylate containing a phosphaphenanthrene skeleton (Showa) 12 parts by mass of “HFA-6007M” manufactured by Polymer Co., Ltd., 2-methoxypropanol having a nonvolatile content of 65% by mass and phosphorus content of 8.6%) was added. Thereto, 50 parts of a polyvinyl butyral resin solution (glass transition temperature 105 ° C., “KS-1” manufactured by Sekisui Chemical Co., Ltd.) is mixed with 50 parts of a solid solution of cyclohexanone and MEK having a solid content of 15%, and further organic. Dicumyl peroxide (Nippon Yushi Co., Ltd. “Park Mill D” 0.5 part by mass, adduct of imidazole compound and epoxy resin (Japan Epoxy Resin Co., Ltd. “jERcure P200H50”) 0.4 Parts by mass, 3 parts by mass of a 3% by mass cyclohexanone solution of zinc naphthenate (II) (manufactured by Tokyo Chemical Industry Co., Ltd., mineral spirit solution having a zinc content of 8%), and spherical silica ("SOC2" manufactured by Admatechs Co., Ltd.) ”Surface treated with aminosilane, average particle size 0.5 μm, 3 um upper limit cut product) A varnish of a thermosetting resin composition was prepared by uniformly dispersing with a xer.
In the nonvolatile content of the resin composition, 18% by mass of epoxy resin, 15% by mass of cyanate ester resin, 2% by mass of vinylbenzyl compound, 4% by mass of acrylate containing phosphaphenanthrene skeleton, 0.3% by mass of organic peroxide, acceleration of curing 0.1 mass% of the agent, 39 ppm of metal (zinc) added as the organometallic catalyst, 4 mass% of the polymer resin, and 56 mass% of the inorganic filler.
Next, using this resin composition varnish, an adhesive film was obtained in exactly the same manner as in Example 1.

〔実施例4〕
ビスフェノールAジシアネートのプレポリマー(ロンザジャパン(株)製「BA230S75」、シアネート当量約232、不揮発分75質量%のメチルエチルケトン(以下MEKと略す)溶液)13質量部、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製「PT30」、シアネート当量約124)9質量部をシクロヘキサノン20部と共に加熱溶解させた後、ナフトール型エポキシ樹脂として東都化成(株)製「ESN−475V」(前記一般式(1)で表されるエポキシ当量約340の不揮発分65質量%のトルエン溶液)15質量部、さらに液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製「jER828EL」、エポキシ当量約185)3質量部、ビフェニル型エポキシ樹脂(エポキシ当量約328の不揮発分75質量%のMEK溶液、日本化薬(株)製「NC3000FH−75M」)27部、リン含有エポキシ樹脂(東都化成(株)製「FX289EK75」、エポキシ当量約306の不揮発分75質量%のMEK溶液)7質量部、ホスファフェナントレン骨格含有メタアクリレート(昭和高分子(株)製「HFM−9B」不揮発分80質量%のプロピレングリコールモノメチルエーテル溶液、リン含有量7.2%)7質量部、フェノキシ樹脂溶液(ジャパンエポキシレジン(株)製「YX−6954」、不揮発分30質量%のMEKとシクロヘキサノンとの混合溶液)11質量部、有機過酸化物としてジクミルパーオキサイド(日本油脂(株)製「パークミルD」0.5質量部、イミダゾール化合物とエポキシ樹脂とのアダクト体(ジャパンエポキシレジン(株)製「jERcure P200H50」、不揮発分50質量%のプロピレングリコールモノメチルエーテル溶液)0.5質量部、コバルト(II)アセチルアセトナート(東京化成(株)製)の3質量%のN,N−ジメチルホルムアミド(DMF)溶液4質量部、及び球形シリカ((株)アドマテックス製「SOC2」をアミノシランで表面処理したもの、平均粒子径0.5μm、3um上限カット品)85質量部を混合し、高速回転ミキサーで均一に分散して、熱硬化性樹脂組成物のワニスを作製した。
樹脂組成物の不揮発分中、エポキシ樹脂25質量%、シアネートエステル樹脂12質量%、ホスファフェナントレン骨格含有アクリレート4質量%、有機過酸化物0.3質量%、硬化促進剤0.2質量%、有機金属系触媒として添加した金属(コバルト)47ppm、高分子樹脂2質量%、無機充填材56質量%となる。次に、かかる樹脂組成物ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
Example 4
Prepolymer of bisphenol A dicyanate (“BA230S75” manufactured by Lonza Japan Co., Ltd., 13 parts by mass of methyl ethyl ketone (hereinafter abbreviated as MEK) solution having a cyanate equivalent of about 232 and a non-volatile content of 75% by mass, a phenol novolac type polyfunctional cyanate ester resin ( After 9 parts by mass of “PT30” manufactured by Lonza Japan Co., Ltd., cyanate equivalent weight of about 124) together with 20 parts of cyclohexanone was heated and dissolved, “ESN-475V” manufactured by Tohto Kasei Co., Ltd. as a naphthol type epoxy resin (the above general formula ( 1) 15 parts by mass of a toluene solution with an epoxy equivalent of about 340 having a nonvolatile content of about 340, and 3 parts by mass of a liquid bisphenol A type epoxy resin (“jER828EL” manufactured by Japan Epoxy Resin Co., Ltd., epoxy equivalent of about 185) Part, biphenyl type epoxy tree (MEK solution having an epoxy equivalent of about 328 with a nonvolatile content of 75% by mass, “NC3000FH-75M” manufactured by Nippon Kayaku Co., Ltd.), phosphorus-containing epoxy resin (“FX289EK75” manufactured by Toto Kasei Co., Ltd.), epoxy equivalent of about 306 7 parts by mass of MEK solution having a nonvolatile content of 75% by mass, phosphaphenanthrene skeleton-containing methacrylate (“HFM-9B” manufactured by Showa Polymer Co., Ltd.), propylene glycol monomethyl ether solution having a nonvolatile content of 80% by mass, phosphorus content 7 0.2%) 7 parts by mass, 11 parts by mass of phenoxy resin solution (“YX-6654” manufactured by Japan Epoxy Resin Co., Ltd., a mixed solution of MEK and cyclohexanone having a nonvolatile content of 30% by mass), dicumyl as an organic peroxide Peroxide (0.5 parts by weight of “Park Mill D” manufactured by NOF Corporation), imidazole compound and epoxy Adduct with resin ("JERcure P200H50" manufactured by Japan Epoxy Resin Co., Ltd., 0.5 parts by mass of propylene glycol monomethyl ether solution having a nonvolatile content of 50% by mass), cobalt (II) acetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd.) ) 3 mass% N, N-dimethylformamide (DMF) solution 4 parts by mass, and spherical silica ("SOC2" manufactured by Admatechs Co., Ltd., surface-treated with aminosilane, average particle size 0.5 μm, 3 um upper limit Cut product) 85 parts by mass were mixed and uniformly dispersed with a high-speed rotary mixer to prepare a varnish of a thermosetting resin composition.
In the nonvolatile content of the resin composition, epoxy resin 25% by mass, cyanate ester resin 12% by mass, phosphaphenanthrene skeleton-containing acrylate 4% by mass, organic peroxide 0.3% by mass, curing accelerator 0.2% by mass, The metal (cobalt) added as an organometallic catalyst is 47 ppm, the polymer resin is 2 mass%, and the inorganic filler is 56 mass%. Next, using this resin composition varnish, an adhesive film was obtained in exactly the same manner as in Example 1.

<比較例1>
実施例1において、ホスファフェナントレン含有アクリレート(昭和高分子(株)製「HFA−6007M」不揮発分65質量%の2−メトキシプロパノール、リン含有量8.6%)を添加しない硬化性樹脂組成物のワニスを使用する以外は、実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 1>
In Example 1, a curable resin composition not containing phosphaphenanthrene-containing acrylate (“HFA-6007M” manufactured by Showa Polymer Co., Ltd., 2-methoxypropanol having a nonvolatile content of 65% by mass, phosphorus content of 8.6%) An adhesive film was obtained in the same manner as in Example 1 except that the above varnish was used.

<比較例2>
実施例2において、ホスファフェナントレン含有アクリレート(昭和高分子(株)製「HFA−6007M」不揮発分65質量%の2−メトキシプロパノール、リン含有量8.6%)を添加しない硬化性樹脂組成物のワニスを使用する以外は、実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 2>
In Example 2, a curable resin composition containing no phosphaphenanthrene-containing acrylate ("HFA-6007M" manufactured by Showa Polymer Co., Ltd., 2-methoxypropanol having a nonvolatile content of 65% by mass, phosphorus content of 8.6%) An adhesive film was obtained in the same manner as in Example 1 except that the above varnish was used.

<比較例3>
実施例1において、ホスファフェナントレン含有アクリレート(昭和高分子(株)製「HFA−6007M」不揮発分65質量%の2−メトキシプロパノール、リン含有量8.6%)7質量部の代わりに2−ヒドロキシエチルメタクリレートリン酸エステル(城北化学工業(株)製「JPA−514」)5質量部を添加した硬化性樹脂組成物のワニスを使用する以外は、実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 3>
In Example 1, instead of 7 parts by mass of phosphaphenanthrene-containing acrylate (“HFA-6007M” manufactured by Showa Polymer Co., Ltd., 2-methoxypropanol having a nonvolatile content of 65% by mass, phosphorus content of 8.6%) An adhesive film was prepared in exactly the same manner as in Example 1 except that a varnish of a curable resin composition to which 5 parts by mass of hydroxyethyl methacrylate phosphate ester (“JPA-514” manufactured by Johoku Chemical Industry Co., Ltd.) was added was used. Obtained.

結果を表1に示す。

Figure 2011032389
The results are shown in Table 1.
Figure 2011032389

表1の結果から、実施例1〜4で得られた接着フィルムにより形成された絶縁層は、難燃性が向上し、かつ熱膨張率及び誘電正接を悪化させることなく、HAST試験後のCZ銅箔との密着性の低下率が抑制されていることが分かる。
一方、ホスファフェナントレン骨格を有する(メタ)アクリレート化合物を含まない比較例1、2は、実施例1〜4と比較して難燃性が不十分であり、HAST試験後のCZ銅箔との密着性も大きく低下している。また、メタクリレートリン酸エステルを含む比較例3は難燃性は向上したものの、硬化フィルムが脆く、各種物性(線熱膨張率、ガラス転移温度、誘電正接)の測定ができなかった。さらにHAST試験後のCZ銅箔との密着は大きく低下した。
From the results of Table 1, the insulating layer formed by the adhesive films obtained in Examples 1 to 4 has improved flame retardancy and does not deteriorate the thermal expansion coefficient and dielectric loss tangent, and CZ after the HAST test. It turns out that the fall rate of adhesiveness with copper foil is suppressed.
On the other hand, Comparative Examples 1 and 2 that do not contain a (meth) acrylate compound having a phosphaphenanthrene skeleton have insufficient flame retardancy compared to Examples 1 to 4, and the CZ copper foil after the HAST test Adhesion is also greatly reduced. In Comparative Example 3 containing methacrylate phosphate, although the flame retardancy was improved, the cured film was brittle, and various physical properties (linear thermal expansion coefficient, glass transition temperature, dielectric loss tangent) could not be measured. Furthermore, the adhesion with the CZ copper foil after the HAST test was greatly reduced.

特定のアクリレート化合物、エポキシ樹脂、シアネートエステル樹脂を含有させることにより、形成される絶縁層の誘電正接及び熱膨張率が低く、導体層と絶縁樹脂の密着性をより安定的に保ちながら難燃性が向上した樹脂組成物、さらには、接着フィルム、プリプレグ、回路基板を提供できるようになったことは意義深い。   By containing a specific acrylate compound, epoxy resin, and cyanate ester resin, the dielectric loss tangent and thermal expansion coefficient of the formed insulating layer are low, and flame retardancy is maintained while maintaining more stable adhesion between the conductor layer and the insulating resin. It is significant that an improved resin composition, and further an adhesive film, a prepreg, and a circuit board can be provided.

Claims (14)

(A)ホスファフェナントレン骨格を有する(メタ)アクリレート化合物、(B)エポキシ樹脂、(C)シアネートエステル樹脂を含有することを特徴とする樹脂組成物。 (A) A resin composition comprising a (meth) acrylate compound having a phosphaphenanthrene skeleton, (B) an epoxy resin, and (C) a cyanate ester resin. 樹脂組成物の不揮発分を100質量%とした場合、成分(A)の含有量が1〜20質量%、成分(B)の含有量が5〜60質量%、成分(C)の含有量が5〜50質量%であり、シアネートエステル基とエポキシ基との比率が1:0.4〜1:2であることを特徴とする、請求項1に記載の樹脂組成物。   When the nonvolatile content of the resin composition is 100% by mass, the content of the component (A) is 1 to 20% by mass, the content of the component (B) is 5 to 60% by mass, and the content of the component (C) is 2. The resin composition according to claim 1, wherein the resin composition is 5 to 50% by mass, and the ratio of the cyanate ester group to the epoxy group is 1: 0.4 to 1: 2. 更に、(D)有機過酸化物を含有することを特徴とする請求項1又は2に記載の樹脂組成物。   3. The resin composition according to claim 1, further comprising (D) an organic peroxide. 更に、(E)金属系硬化促進剤を含有することを特徴とする請求項1〜3のいずれか1項に記載の樹脂組成物。   Furthermore, (E) metal type hardening accelerator is contained, The resin composition of any one of Claims 1-3 characterized by the above-mentioned. (E)金属系硬化促進剤が、コバルト 、銅、亜鉛、鉄、ニッケル、マンガン、及びスズから選択される1種または2種以上の金属の、有機金属錯体又は有機金属塩である請求項4に記載の樹脂組成物。   (E) The metal-based curing accelerator is an organometallic complex or an organometallic salt of one or more metals selected from cobalt, copper, zinc, iron, nickel, manganese, and tin. The resin composition described in 1. 更に、(F) ビニルベンジル化合物を含有することを特徴とする請求項1〜5のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 5, further comprising (F) a vinylbenzyl compound. 更に、(G)高分子化合物を含有することを特徴とする請求項1〜6のいずれか1項に記載の樹脂組成物。   Furthermore, (G) a high molecular compound is contained, The resin composition of any one of Claims 1-6 characterized by the above-mentioned. 更に、(H)無機充填材を含有することを特徴とする請求項1〜7のいずれか1項に記載の樹脂組成物。   Furthermore, (H) inorganic filler is contained, The resin composition of any one of Claims 1-7 characterized by the above-mentioned. 更に、(I)ゴム粒子を含有することを特徴とする請求項1〜8のいずれか1項に記載の樹脂組成物。   Furthermore, (I) rubber particles are contained, The resin composition of any one of Claims 1-8 characterized by the above-mentioned. 更に、(J)難燃剤(ホスファフェナントレン骨格を有する(メタ)アクリレート化合物を除く)を含有することを特徴とする請求項1〜9のいずれか1項に記載の樹脂組成物。   Furthermore, (J) a flame retardant (except the (meth) acrylate compound which has a phosphaphenanthrene skeleton) is contained, The resin composition of any one of Claims 1-9 characterized by the above-mentioned. 更に、(K)硬化促進剤(金属系硬化促進剤、有機過酸化物を除く)を含有することを特徴とする請求項1〜10のいずれか1項に記載の樹脂組成物。     Furthermore, (K) hardening accelerator (a metal type hardening accelerator and an organic peroxide are excluded) is contained, The resin composition of any one of Claims 1-10 characterized by the above-mentioned. 誘電正接特性が0.001〜0.018であり、環境試験前後の密着強度低下率が0.1%〜70%であることを特徴とする、請求項1〜11のいずれか1項に記載の樹脂組成物。 The dielectric loss tangent characteristic is 0.001 to 0.018, and the decrease rate of adhesion strength before and after the environmental test is 0.1% to 70%, according to any one of claims 1 to 11. Resin composition. 請求項1〜12のいずれか1項に記載の樹脂組成物を含有することを特徴とするシート状材料。   A sheet-like material comprising the resin composition according to claim 1. 請求項13に記載のシート状材料を含有することを特徴とする多層プリント配線板。   A multilayer printed wiring board comprising the sheet-like material according to claim 13.
JP2009180869A 2009-08-03 2009-08-03 Resin composition Active JP5482002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009180869A JP5482002B2 (en) 2009-08-03 2009-08-03 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009180869A JP5482002B2 (en) 2009-08-03 2009-08-03 Resin composition

Publications (2)

Publication Number Publication Date
JP2011032389A true JP2011032389A (en) 2011-02-17
JP5482002B2 JP5482002B2 (en) 2014-04-23

Family

ID=43761784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009180869A Active JP5482002B2 (en) 2009-08-03 2009-08-03 Resin composition

Country Status (1)

Country Link
JP (1) JP5482002B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046815A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Liquid thermosetting resin composition and copper-clad laminate using the same
JP2015530444A (en) * 2012-09-21 2015-10-15 ヒルティ アクチエンゲゼルシャフト Use of surface-functionalized silicic acid as an additive for reactive resin compositions, and resin and hardener compositions containing the same
JP2018070761A (en) * 2016-10-28 2018-05-10 株式会社日本触媒 Curable resin composition, and sealing material and semiconductor device prepared therewith
JP2022031285A (en) * 2018-03-08 2022-02-18 味の素株式会社 Resin composition, sheet-like laminate material, printed wiring board, and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121245A (en) * 2000-10-16 2002-04-23 Showa Highpolymer Co Ltd Flame retardant resin composition
JP2002256041A (en) * 2001-02-27 2002-09-11 Showa Highpolymer Co Ltd Curable resin composition for frp
JP2004091683A (en) * 2002-08-30 2004-03-25 Hitachi Chem Co Ltd Thermosetting resin composition, prepreg obtained using the same, laminated board, resin film, metal foil with resin, multi-layered printed wiring board and method for manufacturing multi-layered wiring board
JP2005244150A (en) * 2004-01-28 2005-09-08 Ajinomoto Co Inc Resin composition, adhesive film using it, and multi-layer printed wiring board
WO2008044766A1 (en) * 2006-10-13 2008-04-17 Ajinomoto Co., Inc. Resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121245A (en) * 2000-10-16 2002-04-23 Showa Highpolymer Co Ltd Flame retardant resin composition
JP2002256041A (en) * 2001-02-27 2002-09-11 Showa Highpolymer Co Ltd Curable resin composition for frp
JP2004091683A (en) * 2002-08-30 2004-03-25 Hitachi Chem Co Ltd Thermosetting resin composition, prepreg obtained using the same, laminated board, resin film, metal foil with resin, multi-layered printed wiring board and method for manufacturing multi-layered wiring board
JP2005244150A (en) * 2004-01-28 2005-09-08 Ajinomoto Co Inc Resin composition, adhesive film using it, and multi-layer printed wiring board
WO2008044766A1 (en) * 2006-10-13 2008-04-17 Ajinomoto Co., Inc. Resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046815A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Liquid thermosetting resin composition and copper-clad laminate using the same
JP2015530444A (en) * 2012-09-21 2015-10-15 ヒルティ アクチエンゲゼルシャフト Use of surface-functionalized silicic acid as an additive for reactive resin compositions, and resin and hardener compositions containing the same
JP2018070761A (en) * 2016-10-28 2018-05-10 株式会社日本触媒 Curable resin composition, and sealing material and semiconductor device prepared therewith
JP2022031285A (en) * 2018-03-08 2022-02-18 味の素株式会社 Resin composition, sheet-like laminate material, printed wiring board, and semiconductor device
JP7272405B2 (en) 2018-03-08 2023-05-12 味の素株式会社 Resin composition, sheet laminate material, printed wiring board and semiconductor device

Also Published As

Publication number Publication date
JP5482002B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5556222B2 (en) Resin composition
JP5950005B2 (en) Resin composition
JP5408046B2 (en) Resin composition
JP6123169B2 (en) Resin composition
KR102147632B1 (en) Resin composition for printed circuit board material, and prepreg, resin sheet, metal foil-laminated board, and printed circuit board employing same
JP6069887B2 (en) Resin composition
JP5636962B2 (en) Resin composition
JP2019173009A (en) Cured body, resin material and multilayer printed board
JP2017179351A (en) Cured article of resin composition, resin composition and multilayer substrate
TWI636089B (en) Resin composition,prepreg,laminated sheet,and metal foil-clad laminate
JP5293065B2 (en) Resin composition
JP5482002B2 (en) Resin composition
JP6819921B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6761572B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2022512567A (en) Epoxy resin composition
CN110506066B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP5664693B2 (en) Resin composition
JP6796276B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JPWO2016088743A1 (en) Resin sheet and printed wiring board
TWI735441B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP6025090B1 (en) Resin composition for printed wiring board, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP6485728B2 (en) Resin composition for printed wiring board material, prepreg, resin sheet, metal foil-clad laminate and printed wiring board using the same
CN110869410B (en) Resin composition for printed wiring board, prepreg, resin sheet, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP6829808B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6761573B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5482002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250