JP2011031532A - 液吐出不良検出装置およびインクジェット記録装置 - Google Patents

液吐出不良検出装置およびインクジェット記録装置 Download PDF

Info

Publication number
JP2011031532A
JP2011031532A JP2009181076A JP2009181076A JP2011031532A JP 2011031532 A JP2011031532 A JP 2011031532A JP 2009181076 A JP2009181076 A JP 2009181076A JP 2009181076 A JP2009181076 A JP 2009181076A JP 2011031532 A JP2011031532 A JP 2011031532A
Authority
JP
Japan
Prior art keywords
light
light beam
light receiving
receiving means
output value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009181076A
Other languages
English (en)
Inventor
Kazumasa Ito
和正 伊藤
Hironao Hayashi
宏尚 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2009181076A priority Critical patent/JP2011031532A/ja
Publication of JP2011031532A publication Critical patent/JP2011031532A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ink Jet (AREA)

Abstract

【課題】吐出状態を安定して検知する。
【解決手段】複数のノズルから吐出される液滴の飛行経路に光ビームを照射する発光素子30と、光ビームが液滴に衝突して生じる散乱光を受光する散乱光受光素子103aと、光ビームの光軸から所定の方向にずれた位置であって、散乱光受光素子103aより大きい光強度の光ビームを受光可能な位置で光ビームを受光する位置検出素子103bと、位置検出素子103bにより受光される光ビームの光強度と所定の規定値とを比較し、比較結果に応じて散乱光受光素子103aの上記所定の方向の位置を補正する補正部106と、散乱光の光強度に基づいて液滴の吐出不良を検出する検出部104と、を備える。
【選択図】図3

Description

本発明は、液吐出不良検出装置および液吐出不良検出装置を備えるインクジェット記録装置に関するものである。
インクジェット記録装置では、微細なノズルから微小な各色インク滴を吐出する各色のインクジェットヘッドを備え、用紙等の記録媒体に対してそのインクジェットヘッドを移動させながらインク滴を吐出することで記録媒体上に画像を形成する。高解像度の画像形成のためにはノズルを微細化してインク滴サイズを微小化する必要がある。しかし、ノズルが微細なため、印刷停止時にインクが乾燥する等してノズル詰まりが起きてインク滴の吐出不良が発生し、画像にドット抜け等が生じて画像品質が低下する問題がある。
この問題を解決するため、インクジェット記録装置には、液吐出不良を検出する液吐出不良検出装置が備えられている。例えば、ノズルから吐出するインク滴等の液滴に、レーザーダイオード等の発光素子から射出したレーザー光を照射して散乱光を発生させ、その散乱光をフォトダイオード等の受光素子で受光し、受光素子が得る出力電圧と基準電圧値とを比較して、インク滴が正常に吐出されたか否かを判定する液吐出不良検出装置が知られている。
液吐出不良を高精度に検出するには、発光素子と受光素子との光軸を適切に調整することが重要となる。特許文献1では、液滴に対する光束の光軸と開口の中心位置と受光センサとの受光面の中心位置とを自動的に調整する光軸自動調整機構に関する技術が提案されている。具体的には、特許文献1の方法では、液滴が光束内を通過する際の光量変化の信号に基づいてシャッタの位置を調整し、次いで受光センサの位置を調整した後、シャッタの位置を再び調整している。
特開2000−085140号公報
しかしながら、特許文献1の方法では、光軸の位置を安定して補正することができず、このため吐出不良を安定して検出できない場合があった。すなわち、特許文献1の方法は、液滴を検知する前に光軸を調整する方法であり、液滴を検知中に光軸を補正することができなかった。
また、フルラインヘッドのようにヘッドが長尺となると、液滴を検知するための光軸も長くなり、受発光素子間の距離も長くなる。したがって、特に散乱光を用いて液吐出不良を検知する方式の場合、発光素子の光軸と受光素子の位置関係を精度よく維持することが重要となる。一方、印字スピードが重視される場合は、印字中に液吐出不良を検知することにより、スループットを向上させることも望まれる。
しかし、例えば印字中に液滴を検知する場合は、紙送りの等の駆動系による振動が発生するおそれがある。このため、発光部と受光部の保持構造を強固にしなければ、光軸の振れが生じ、適切に位置関係を維持できない可能性が生じうる。
本発明は、上記に鑑みてなされたものであって、ラインヘッドのような長尺のヘッドでインク滴を検知中の場合であっても、吐出状態を安定して検知することができる液吐出不良検出装置およびインクジェット記録装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、複数のノズルから吐出される液滴の飛行経路に光ビームを照射する発光手段と、前記光ビームと前記光ビームが前記液滴に衝突して生じる散乱光とを受光する第1受光手段と、前記光ビームの光軸から予め定められた方向にずれた位置であって、前記第1受光手段より大きい光強度の前記光ビームを受光可能な位置で、前記光ビームを受光する第2受光手段と、前記第2受光手段により受光される前記光ビームの光強度と予め定められた第1規定値とを比較し、比較結果に応じて前記第1受光手段の前記方向の位置を補正する補正手段と、前記散乱光の光強度に基づいて前記液滴の吐出不良を検出する検出手段と、を備えることを特徴とする。
本発明によれば、ラインヘッドのような長尺のヘッドでインク滴を検知中の場合であっても、吐出状態を安定して検知することができるという効果を奏する。
図1は、本実施の形態にかかる液吐出不良検出装置を備えるインクジェットプリンタの正面図を示す。 図2は、インクジェットプリンタの一部を斜め上から観察した図を示す。 図3は、本実施の形態にかかるインクジェットプリンタの機能構成の一例を示すブロック図である。 図4は、本実施の形態の液吐出不良検出処理の概略を示す説明図である。 図5は、光ビームの光強度分布の一例を表す図である。 図6は、散乱光受光素子のオフセットと光出力値との関係を示すグラフである。 図7は、時間経過と光出力値との関係を示す図である。 図8は、時間経過と光出力値との関係を示す図である。 図9は、時間経過と光出力値との関係を示す図である。 図10は、図4に位置検出素子を含む受光ユニット等を追加して詳細化した図を表す。 図11は、図5に位置検出素子を追加して詳細化した図を表す。 図12は、位置検出素子の光出力値と散乱光受光素子の光出力値との関係をオフセット位置の中心を基準に示した比較グラフである。 図13は、図11に位置検出素子を追加して詳細化した図を表す。 図14は、位置検出素子の光出力値と散乱光受光素子の光出力値との関係をオフセット位置の中心を基準に示した比較グラフである。 図15は、初期位置合わせ処理の全体の流れを示すフローチャートである。 図16は、液吐出不良検出処理の全体の流れを示すフローチャートである。 図17は、変形例1の液吐出不良検出処理の全体の流れを示すフローチャートである。 図18は、変形例2にかかる液吐出不良検出装置を備えるインクジェットプリンタの概略構成図である。
以下に添付図面を参照して、この発明にかかる液吐出不良検出装置およびインクジェット記録装置の最良な実施の形態を詳細に説明する。
図1は、本実施の形態にかかる液吐出不良検出装置を備えるインクジェットプリンタ(インクジェット記録装置)100の正面図を示す。また、図2は、インクジェットプリンタ100の一部を斜め上から観察した図を示す。
図1に示すように、インクジェットプリンタ100の筐体10の左右の側板11、12には、ガイドシャフト13とガイド板14とが平行に掛け渡して設けられている。ガイドシャフト13およびガイド板14は、キャリッジ15に摺動可能に貫通される。キャリッジ15には、不図示の無端ベルトが取り付けられる。無端ベルトは、筐体10内の左右に設けられる図示しない駆動プーリと従動プーリに掛けまわされる。そして、駆動プーリの回転とともに従動プーリが従動回転されて無端ベルトを走行する。これにより、キャリッジ15が、図1の矢印で示されるよう左右に移動される。
キャリッジ15には、イエロ、シアン、マゼンタ、ブラックの4色のインクジェットヘッド16y、16c、16m、16b(以下、単にヘッド16という)が、キャリッジ15の移動方向に並列配置されている。各ヘッド16は、下向きのノズル面に複数のノズルを直線状に並べたノズル列を有する。図示しないが、直線状のノズル列は、キャリッジ15の移動方向と直交する方向に設けられる。
そして、キャリッジ15が図1のように右端のホームポジションに存在するときには、各ヘッド16は、筐体10内の底板17上に設置する単独回復装置18と対向する。単独回復装置18は、液吐出不良検出装置20でインク滴吐出不良を検出したノズルからインクを吸い出し、インクジェットプリンタ100自身で単独で液体吐出不良を回復する装置である。
液吐出不良検出装置20は、筐体10内の底板17上に、単独回復装置18の隣接配置される。液吐出不良検出装置20の詳細については後述する。
液吐出不良検出装置20に隣接する位置には、板状のプラテン22を設置する。プラテン22の背面側には、記録媒体である用紙23をプラテン22上に供給する給紙台24が斜めに立てて設けられる。また、図示を省略するが、給紙台24上の用紙23をプラテン22上に送り出す給紙ローラが備えられる。さらに、プラテン22上の用紙23を矢示方向に搬送して正面側に排出する搬送ローラ25が設けられる。
筐体10内の底板17上には、さらに左端に駆動装置26が設置される。駆動装置26は、不図示の給紙ローラや搬送ローラ25などを駆動するとともに、上述した駆動プーリを駆動することにより無端ベルトを走行してキャリッジ15を移動する。
そして、記録時は、駆動装置26で駆動されることにより用紙23がプラテン22上に移動され、所定位置に位置決めされる。また、キャリッジ15が移動されて用紙23上を走査され、左方向に移動しながら4色のヘッド16y、16c、16m、16bを用いて順にそれぞれのノズルからインク滴が吐出され、用紙23上に画像が記録される。画像記録後、キャリッジ15が右方向に戻されるとともに、用紙23が図2の矢印の方向に所定量搬送される。
次いで、再びキャリッジ15が左方向に移動されながら往路で4色のヘッド16y、16c、16m、16bを用いて順にそれぞれのノズルからインク滴が吐出され、用紙23上に画像が記録される。そして、同様に画像記録後、キャリッジ15が右方向に戻されるとともに、用紙23が図2の矢印の方向に所定量搬送される。以下同様の動作が繰り返され、1枚の用紙23上に画像が記録される。
次に、本実施の形態にかかるインクジェットプリンタ100の機能構成について説明する。図3は、本実施の形態にかかるインクジェットプリンタ100の機能構成の一例を示すブロック図である。本実施の形態にかかるインクジェットプリンタ100は、ヘッド16と、吐出制御部101と、発光制御部102と、発光素子30と、受光ユニット103と、検出部104と、監視部105と、補正部106と、記憶部121とを主に備えている。
本実施の形態のインクジェットプリンタ100は、ノズルnx(1≦x≦N、Nはノズルの個数)からインク滴が正常に吐出するか否かを検出する液吐出不良検出処理を行う。液吐出不良検出処理では、インク滴の飛行経路に対して発光素子30から光ビームを出射し、出射した光ビームにノズルnxからインク滴を吐出して、インク滴による散乱光を発生させる。この散乱光を散乱光受光素子103aが受光し、受光して得られる出力電圧によって検出部104がインク滴が正常に吐出されたか否かを検出する。
なお、図3では、主に液吐出不良検出処理に関連する機能を備えた構成部を記載しており、画像の記録に関連する構成部は図示を省略している。
吐出制御部101は、ヘッド16の各ノズルからインク滴を吐出する吐出処理を制御する。
発光制御部102は、発光素子30を発光させる発光処理を制御する。例えば液吐出不良検出処理では、発光制御部102は、一定電圧値の発光制御信号を送出して、発光素子30を連続点灯させる。
発光素子30は、例えば、半導体レーザ等の発光素子であって、発光制御部102から送出される発光制御信号にしたがって点灯し、光ビームを発生する。ヘッド16が短尺である場合には、発光素子30としてLEDを用いてコスト低減を図ることもできる。
受光ユニット103は、図3に示すように、散乱光受光素子103aと、位置検出素子103bと、を備えている。
散乱光受光素子103aは、発光素子30から発光された光ビームがインク滴に衝突して生じる散乱光を受光する受光素子である。一方、位置検出素子103bは、光ビームの光軸に対する散乱光受光素子103aの位置を検出するための受光素子である。
散乱光受光素子103aおよび位置検出素子103bは、例えば、フォトダイオード等の受光素子により構成できる。散乱光受光素子103aおよび位置検出素子103bは、受光する光の強度に比例する電流を発生し、発生させた電流を電圧に変換して、受光した光強度を表す電圧値(以下、光出力値ともいう)を出力する。なお、電流を電圧に変換する機能を受光素子の外部に備えるように構成してもよい。
位置検出素子103bは、散乱光受光素子103aより光ビームの光軸側に設置され、発光素子30から発光された光ビームを受光する。そして、位置検出素子103bは、受光した光ビームの光強度に応じた電圧値を出力する。散乱光受光素子103aおよび位置検出素子103bの設置位置の詳細については後述する。
検出部104は、散乱光受光素子103aから出力された出力信号(光出力値VPD)から、インク滴の吐出不良を検出する。例えば、検出部104は、光出力値VPDと、不良吐出を判定するための基準電圧として予め定められた閾値VPSHとを比較し、光出力値VPDが閾値VPSHより小さい場合に、インク滴に曲がりが発生したことを検出する。検出部104が、閾値VPSHより小さい所定の閾値より光出力値VPDが小さい場合に、不吐出の状態であることを検出するように構成してもよい。
監視部105は、位置検出素子103bが受光した光ビーム31の光強度を表す電圧値(光出力値)の上下変動を監視する。
補正部106は、監視された光出力値と、予め定められた光強度の規定値とを比較し、比較結果に応じて散乱光受光素子103aの位置を補正する。
記憶部121は、補正部106が補正時に参照する規定値を記憶する。
次に、図4および図5を用いて、本実施の形態の液吐出不良検出装置20の動作原理について説明する。
図4は、本実施の形態の液吐出不良検出処理の概略を示す説明図である。図4のノズルn1、n2、・・・、nx、・・・、nNは、キャリッジ15に搭載する1つのヘッド16で、1つのノズル列を構成する各ノズルである。本実施の形態の液吐出不良検出装置20が備えられたインクジェットプリンタ100では、このノズル列のうち1つのノズルnxからインク滴36が吐出される。
発光素子30から発した拡散光は、コリメートレンズ32でほぼ平行な光ビーム31に変換される。発光素子30は、光ビーム31の光軸35がインク滴36の吐出方向と直交する方向に配置される。
散乱光受光素子103aは、光ビーム31のビーム径を外れた位置に配置される。具体的には、散乱光受光素子103aは、受光面が光ビーム31のビーム径と重ならない位置で、できるだけ光軸35の中心近くにオフセットして配設される。これにより、効率の良い検知が可能となる。図4では、光ビーム31の下部であって、ノズル直下よりも発光素子30から離れた位置に散乱光受光素子103aが配置された例が示されている。
図4のような構成で、ヘッド16のノズルnxからインク滴36が吐出され、光ビーム31と交わると、散乱光S1〜S7が発生する。散乱光受光素子103aは、この散乱光S1〜S7のうち、特に光強度が強い前方散乱光S1〜S3を受光し、受光した散乱光の光強度を表す電圧値(光出力値VPD)を出力する。光出力値VPDと閾値VPSHとを比較することにより、インク滴36の吐出の有無(不吐出)、曲がりなどの吐出不良を検出することができる。ここで、光ビーム31の光強度が強い場合、散乱光S1〜S7の光強度も高くなる。
図5は、光ビーム31の光強度分布の一例を表す図である。図5は、発光素子側から観察した光ビーム31の断面(レーザビーム断面501)を表している。
半導体レーザを発光する発光素子30を使用した場合、垂直方向および水平方向にそれぞれ発散角度(一般的な例として、垂直方向に14°および水平方向に30°)を持つ拡散光が出射される。以下では、このような半導体レーザを使用した場合を例に説明する。
このようにして発光された拡散光をコリメートレンズ32で平行光にした場合、縦横比が異なる楕円形状となる。図5は、楕円形状の長軸方向にX軸、短軸方向にY軸を取った例を示している。図5のX軸方向(水平方向)は、インク滴吐出方向に対して直角の方向である。また、図5のY軸方向(垂直方向)は、インク滴吐出方向である。f(X)およびf(Y)は、それぞれX軸方向およびY軸方向の光ビーム31の光強度分布を示す。
図5から、光ビーム31の中心(光軸35)で最も光強度が強く、縁に行くにしたがい光強度は低下しており、ガウシャン分布となっていることがわかる。
ここで、光ビーム31の外側にはフレア部502が存在する。Y軸方向の光ビーム31の光強度分布f(Y)(図5の右のグラフ)に示すように、フレア部502の光強度は、光ビーム31に比べ小さい。
散乱光受光素子103aは、散乱光強度が強い前方散乱光S1〜S3を受光できるようにするため、受光面503がフレア部502に掛かるように設置される。このため、光出力値VPDは常にある一定の値を持っている。これについて図6を用いて説明する。
図6は、散乱光受光素子103aのオフセットOYと光出力値VPDとの関係を示すグラフである。オフセットOYとは、光軸35の中心から散乱光受光素子103aの受光面503の中心までのY軸方向の距離を表す。曲線601は、インク検知時以外で出力される光出力値VPDの変化を表している。上述のように、受光面503がフレア部502に掛かっているため、インク検知時以外であっても、散乱光受光素子103aは、フレア部502の光強度に相当する光出力値VPDを出力する。
図6の矢印611〜615は、インク検知時に出力される散乱光の光出力値Ipdの大きさを示す。このように、インク検知時には、フレア部502の光ビーム31の光強度に、散乱光の光強度が加えられた光出力値が出力される。
図6のΔY1は、オフセットOYの有効範囲を表す。ΔY1は、散乱光受光素子103aが出力しうる光出力値の最大値、および、閾値VPSHとの比較により不良を検知しうる光出力値の最小値から決定される。
例えば、オフセットOY=−Oyの位置(図6の(1))で出力される光出力値V12(フレア部502の光出力値V+散乱光の光出力値V(矢印611))は、散乱光受光素子103aの光出力値が飽和せずに適正な出力を得られる最大値を表す。すなわち、−Oyの位置は、散乱光受光素子103aがこれ以上光軸35に近づくと光出力値が飽和し適正な出力を得ることができない位置を表している。そこで、この−Oyに相当するオフセットOYを、有効なオフセットOYの下限(最小値)とする。
一方、オフセットOYが図6の(2)〜(5)の位置に変化すると、散乱光受光素子103aが光ビーム31から離れることを意味するため、散乱光の光出力値が低下する。オフセットOY=+Oyの位置に相当する図6の(5)では、散乱光の光出力値(矢印615)は、V−V(=V)となる。本実施の形態では、この値を吐出不良検知のための閾値VPSHとする。そして、+Oyに相当するオフセットOYを、有効なオフセットOYの上限(最大値)とする。
したがって、オフセットOYの最適位置は、このグラフではΔY1の中心である(3)の位置に設定できる。本実施の形態では、このようにして設定されたオフセットOYの最適位置に散乱光受光素子103aを固定し散乱光検知機構を構成する。
次に、散乱光受光素子103aの位置を補正しない構成(従来と同様の構成)とした場合に検知される光出力値の具体例について図7〜図9を用いて詳細に説明する。図7は、吐出状態を正常に判定できる場合の時間経過と光出力値VPDとの関係を示す図である。図8および図9は、オフセットOYの変動等により吐出状態を誤検知する場合の時間経過と光出力値VPDとの関係を示す図である。
図7は、時間経過とともにノズルn1から順次インク滴を吐出した場合に出力される光出力値VPDを表している。
図7の(A)のグラフに示すように、まず時刻tで発光素子30から光ビーム31を照射する。これにより、散乱光受光素子103aの出力する電圧値である光出力値VPDは、VP0(=0)からVPMに上昇する。VPMは、フレア部502の光ビーム31の光強度に相当する光出力値であり、図6では位置(3)での光出力値であるVに対応する。
次に、時刻tでノズルn1、n2、n3、・・・、nNの順で順次インク滴の吐出を開始する。これにより、時刻t、t、t、・・・、tで、インク滴と光ビーム31の光軸の中心(光出力最大)を通過し最大の散乱光が発生する。この結果、図7に示すように、散乱光の光強度が、散乱光受光素子103aが出力する電圧値である光出力値VPDとして検出できる。
図7の(B)のグラフは、吐出有無の判定結果を表す出力信号VKYの例を表す。すなわち、光出力値VPDが閾値VPSHを超えたか否かによってインク滴の吐出有無が判定され、超えたと判定された場合に出力信号VKYが出力される。
図8の(A)のグラフは、時刻tで発光素子30から光ビーム31を照射後、例えば駆動系の微振動によりオフセットOYの変動が発生した場合に検知される光出力値の例を示している。オフセットOYが変動すると、フレア部502の光ビーム31の光強度が変動し、閾値VPSHを超えるピーク値が生じる場合がある。図8は、上方のピーク値VPUに相当するピーク値801〜805が発生し((A)のグラフ)、出力信号VKYが出力されたため((B)のグラフ)、インク滴の吐出が誤検知される例を示している。なお、(A)のグラフのVPLは下方のピーク値を表す。
図9は、インク滴が吐出されていない状態では誤検知が生じないが、インク滴が吐出された場合に誤検知が生じる例を表している。すなわち、図9の(A)のグラフに示すように、オフセットOYの変動により生じたピーク値VPUは、閾値VPSHを超えていない。したがって、この状態では誤検知は生じない。一方、図9の(B)のグラフに示すように、インク滴が吐出され、散乱光の検知波形が出力されると閾値VPSHを超えるピーク値V等が出力される。この例では、時刻tの前後および時刻tの前の時刻で、閾値VPSHを超えるピーク値901〜903が生じ、出力信号VKYが誤って出力される(図9の(C))。
このように、駆動系の微振動等によりオフセットOYが変動したときに、散乱光受光素子103aの位置を補正しないと、インク滴の吐出不良を正常に検知できない場合がある。そこで、本実施の形態では、位置検出素子103bによって光ビーム31の位置を検出し、事前に設定された光強度の規定値と比較しながら補正部106によって散乱光受光素子103aの位置を補正しながらインク滴の吐出有無を検知する。
まず、Y軸上に位置検出素子103b(以下、Y軸上の位置検出素子103bを位置検出素子103b−Yとする)を配設した場合について図10および図11を用いて説明する。図10は、図4に位置検出素子103b−Yを含む受光ユニット103等を追加して詳細化した図を表す。また、図11は、図5に位置検出素子103b−Yを追加して詳細化した図を表す。
図10および図11に示すように、位置検出素子103b−Yは、散乱光受光素子103aより大きい光強度の光ビームを受光可能な位置に配設する。具体的には、図11に示すように、散乱光受光素子103aが受光するレーザビーム断面501の微小なフレア光の光出力値fより高い光出力値fに相当する位置に、位置検出素子103b−Yの中心を配設する。
そして、本実施の形態のインクジェットプリンタ100は、位置検出素子103b−Yの光出力値の上下変動を監視する監視部105と、所定の規定値を記憶する記憶部121と、記憶された規定値と監視される光出力値とを比較しながら散乱光受光素子103aの位置を補正する補正部106とを備える。これにより、受光ユニット103として一体構成された状態で上下調節(矢印:上下)を行い、光軸35と散乱光受光素子103aとのオフセットOYを一定に保つことができる。
なお、図10は、散乱光受光素子103aと位置検出素子103b−Yとを一体的に支持する支持手段としての受光ユニット103を備える構成例を表している。位置検出素子103b−Yを散乱光受光素子103aと一体構成せず、位置検出素子103b−Yによる検出結果に応じて、散乱光受光素子103aの位置のみを補正するように構成してもよい。
散乱光検知のY軸方向の変動許容量をΔY1とすると(図6のオフセットOYの有効範囲ΔY1)、位置検出素子103b−Yの変動量も同様のΔY1となる(図11右のグラフ)。
位置検出素子103b−Yは、光ビーム断面のY軸方向の光強度分布f(Y)の傾斜面の光出力値fに対応する位置が受光面の中心位置と一致するように配設する。図11のオフセットOSYは、光軸35の中心から位置検出素子103b−Yの受光面の中心までのY軸方向の距離を表す。
監視部105は、位置検出素子103b−Yの光出力値の上下変動を、ΔY1に対応する光出力値f〜fの範囲内で監視する。そして、補正部106は、位置検出素子103b−Yの光出力値と記憶部121に記憶された規定値(第1規定値)とを比較する。そして、比較の結果、差が検出された場合は、補正部106は、その差が0(または所定の閾値以下)となるように受光ユニット103の上下の位置(Y軸方向の位置)を補正する。これにより、散乱光受光素子103aのオフセット位置(オフセットOY)を一定に保つことができる。このとき、Y軸方向の光強度分布f(Y)の傾斜面の光出力値f〜fの間には、f<f<fの関係がある。このため、補正部106は、いずれの方向に変動しているかを容易に判定できる。
一方、X軸方向のずれを表すΔX1は、光ビーム断面のX軸方向の光強度分布f(X)の頂点付近での光出力値の変動であり、無視できる範囲である。
図12は、位置検出素子103b−Yの光出力値と散乱光受光素子103aの光出力値との関係を、各素子のオフセット位置の中心であるOSYとOYとを基準に示した比較グラフである。
図12の縦軸は、散乱光受光素子103aの光出力値1211(V〜V12)、および、位置検出素子103b−Yの光出力値1212(VyL、VyM、VyH、VyP)を表す。図12の横軸は、散乱光受光素子103aのオフセットOYおよび位置検出素子103b−YのオフセットOSYを表す。
ここで、Y軸方向の変動許容量であるオフセットの有効範囲ΔY1での各素子の光出力値を比較する。オフセットOY(オフセットOSY)が−Oy(+Osy)側に移動した場合は、散乱光受光素子103aの光出力値はV12(図12の(1))となる。また、このときの位置検出素子103b−Yの光出力値は、VyLとなる。
また、図12に示すように、V12<VyLであるため、散乱光が位置検出素子103b−Yの光出力値に与える影響は小さい。なお、V12に対するVyLの倍率が大きいほど散乱光による影響は小さくなる。このため、インク滴の検知中であっても安定した位置補正の制御を行うことができる。
同様に、各素子のオフセットが最適位置OY(OSY)の場合は、位置検出素子103b−Yの光出力値はVyMとなる。また、オフセットOY(オフセットOSY)が+Oy(−Osy)側に移動した場合は、位置検出素子103b−Yの光出力値はVyHとなる。したがって、位置検出素子103b−Yの光出力値の曲線1201の頂点VyPより低い位置で、VyH〜VyLを配置する位置での曲線1201の傾斜が概ね最大になるように、受光感度と位置検知の規定値の光出力値VyMを決定する。言い換えると、光出力値の変化率が最大となる部分の光ビームを受光可能な位置を、位置検出素子103b−Yのオフセットの最適位置(OSY)とする。これにより、光出力値の幅が広くなり調整精度を向上できる。
これまでは、Y軸上に位置検出素子103b(位置検出素子103b−Y)を配設し、散乱光受光素子103aのY軸方向の位置を補正する場合を例に説明した。補正の方向は上下方向(Y軸方向)に限られるものではなく、予め定められた任意の方向に位置を補正するように構成することができる。また、互いに異なる方向の位置を補正するための複数の位置検出素子103bを備えるように構成してもよい。例えば、光ビームが楕円形状の場合は、楕円形状の短軸方向(Y軸方向)および長軸方向(X軸方向)で位置を補正するように構成してもよい。
以下では、さらにX軸上に位置検出素子103b(以下、X軸上の位置検出素子103bを位置検出素子103b−Xとする)を配設し、散乱光受光素子103aのX軸方向の位置も補正可能とする構成について、図13および図14を用いて説明する。
図13は、図11に位置検出素子103b−Xを追加して詳細化した図を表す。また、図14は、位置検出素子103b−Xの光出力値と散乱光受光素子103aの光出力値との関係を、オフセット位置の中心であるOSXを基準に示した比較グラフである。
図13に示すように、位置検出素子103b−Xは、概ねレーザビーム断面501のX軸上に中心を置き、光ビームのX軸方向の光強度分布f(X)の傾斜面の光出力値fに対応する位置が受光面の中心と一致するように配設する。図13のオフセットOSXは、光軸35の中心から位置検出素子103b−Xの受光面の中心までのX軸方向の距離を表す。
監視部105は、さらに、位置検出素子103b−Xの光出力値の上下変動を監視する。また、補正部106は、監視された位置検出素子103b−Xの光出力値と、予め定められた光強度の規定値(第2規定値)とを比較し、比較結果に応じて散乱光受光素子103aの位置を補正する。記憶部121は、このときに参照される規定値(第2規定値)を記憶する。
これにより、補正部106が、位置検出素子103b−Xの光出力値に応じて、散乱光受光素子103aの左右方向(X軸方向)のオフセット位置(オフセットOSX)を一定に保つことができる。このとき、X軸方向の光強度分布f(X)の傾斜面の光出力値f〜fの間には、f<f<fの関係がある。このため、補正部106は、いずれの方向に変動しているかを容易に判定できる。
一方、Y軸方向のずれを表すΔY2は、光ビーム断面のY軸方向の光強度分布f(Y)の頂点付近での光出力値の変動であり、無視できる範囲である。
このような構成により、受光ユニット103として一体構成された状態で上下調節(矢印:上下)と左右調節(矢印:左右)とを行い、光軸35と散乱光受光素子103aの上下左右の位置関係を最適規定値に常に保つことができる。すなわち、光ビーム31の光軸35の全ての方向の変動に対しても追従が可能となる。なお、上下左右に調節する補正部106は、例えばXY2軸の超音波リニアアクチェ−タ等を用いることができる。
図14は、位置検出素子103b−Xの光出力値と散乱光受光素子103aの光出力値との関係を、各素子のオフセット位置の中心であるOSXを基準に示した比較グラフである。
図14のΔX2は、オフセットOSXの有効範囲(散乱光検知のX軸方向の変動許容量)を表す。図14の縦軸は、散乱光受光素子103aの光出力値1411(V〜V12)、および、位置検出素子103b−Xの光出力値1412(VxL、VxM、VxH、VxP)を表す。図14の横軸は、位置検出素子103b−XのオフセットOSXを表す。また、曲線1401は、インク検知時以外で出力される光出力値VPDの変化を表している。図14の矢印1421〜1423は、インク検知時に出力される散乱光の光出力値の大きさを示す。
ここで、X軸方向の変動許容量であるオフセットの有効範囲ΔX2での各素子の光出力値を比較する。オフセットOSXが+Osx側に移動した場合は、散乱光受光素子103aの光出力値は約V(図14の(1))となる。また、このときの位置検出素子103b−Xの光出力値は、VxLとなる。
また、図14に示すように、V<VxLであるため、散乱光が位置検出素子103b−Xの光出力値に与える影響は小さい。なお、Vに対するVxLの倍率が大きいほど散乱光による影響は小さくなる。このため、インク滴の検知中であっても安定した位置補正の制御を行うことができる。
同様に、オフセットOSXが最適位置OSXの場合は、位置検出素子103b−Xの光出力値はVxMとなる。また、オフセットOSXが−Osx側に移動した場合は、位置検出素子103b−Xの光出力値はVxHとなる。したがって、位置検出素子103b−Xの光出力値の曲線1402の頂点VxPより低い位置で、VxH〜VxLを配置する位置での曲線1402の傾斜が概ね最大になるように、受光感度と位置検知の規定値の光出力値VxMを決定する。言い換えると、光出力値の変化率が最大となる部分の光ビームを受光可能な位置を、位置検出素子103b−Xのオフセットの最適位置(OSX)とする。これにより、光出力値の幅が広くなり調整精度を向上できる。
次に、本実施の形態のインクジェットプリンタ100による初期位置合わせ処理について説明する。図15は、初期位置合わせ処理の全体の流れを示すフローチャートである。なお、初期位置合わせ処理とは、受光ユニット103内の各受光素子の初期位置を決定する処理をいう。
まず、発光制御部102が、レーザダイオード(LD)などで構成される発光素子30の発光を開始する(ステップS101)。次に、補正部106が、散乱光受光素子103aのオフセットOYを調節する(ステップS102)。そして、補正部106が、散乱光受光素子103aの光出力値と規定値(図6ではV)とを比較し、光出力値と規定値とが一致するか否かを判定する(ステップS103)。
一致しない場合は(ステップS103:NO)、補正部106は、さらにオフセットOYを調節して処理を繰り返す(ステップS102)。一致する場合は(ステップS103:YES)、補正部106は、一致するときのオフセットOYを記憶部121等に記憶する(ステップS104)。
このように、補正部106は、散乱光受光素子103aの光出力値を規定値に合わせ込み、光ビーム31と散乱光受光素子103aとの位置関係を決定して記憶する。この位置関係は常に補正する必要はないため、機械的に固定して構成の簡略化を図ることもできる。
同様にして、Y軸上の位置検出素子103b−YのY軸方向のオフセットと、X軸上の位置検出素子103b−XのX軸方向のオフセットとを決定して記憶する。
すなわち、まず補正部106が、位置検出素子103b−YのオフセットOSYを調節する(ステップS105)。そして、補正部106が、位置検出素子103b−Yの光出力値と規定値(図12ではVyM)とを比較し、光出力値と規定値とが一致するか否かを判定する(ステップS106)。
一致しない場合は(ステップS106:NO)、補正部106は、さらにオフセットOSYを調節して処理を繰り返す(ステップS105)。一致する場合は(ステップS106:YES)、補正部106は、一致するときのオフセットOSYを記憶部121等に記憶する(ステップS107)。
次に、補正部106が、位置検出素子103b−XのオフセットOSXを調節する(ステップS108)。そして、補正部106が、位置検出素子103b−Xの光出力値と規定値(図14ではVxM)とを比較し、光出力値と規定値とが一致するか否かを判定する(ステップS109)。
一致しない場合は(ステップS109:NO)、補正部106は、さらにオフセットOSXを調節して処理を繰り返す(ステップS108)。一致する場合は(ステップS109:YES)、補正部106は、一致するときのオフセットOSXを記憶部121等に記憶する(ステップS110)。
そして、発光制御部102が、発光素子30の発光を終了して(ステップS111)、初期位置合わせ処理を終了する。
次に、本実施の形態のインクジェットプリンタ100による液吐出不良検出処理について説明する。図16は、液吐出不良検出処理の全体の流れを示すフローチャートである。
まず、発光制御部102が、発光素子30の発光を開始する(ステップS201)。次に、補正部106が、位置検出素子103b−Yおよび位置検出素子103−Xを、それぞれ初期位置合わせ処理で記憶したオフセットOSYおよびオフセットOSXに対応する位置に移動する(ステップS202)。
その後、補正部106は、散乱光受光素子103aの光出力値が所定の検出規格値内か否かを判定する(ステップS203)。補正部106は、例えば図12の光出力値V−A〜光出力値V+Aまでの範囲を検出規格値として用いる。値Aは、図12の−Oy〜+Oyの範囲での散乱光受光素子103aの光出力値の範囲(V3〜V7)内で、ばらつき等の余裕分を見込んで設定することが好ましい。
光出力値が検出規格値内でない場合(ステップS203:NO)、再度、初期位置合わせ処理が実行される。光出力値が検出規格値内の場合(ステップS203:YES)、ノズルn1からnNの順に順次インク滴を吐出して吐出不良を検出する(ステップS205〜ステップS213)
まず、吐出制御部101が、未処理のノズルからインクを吐出する(ステップS205)。次に、補正部106が、Y軸上の位置検出素子103b−Yの光出力値と規定値とを比較し、光出力値と規定値(図12ではVyM)とが一致するか否かを判定する(ステップS206)。なお、光出力値と規定値とは厳密に一致する必要はなく、所定の誤差範囲内の場合に一致すると判定してもよい。例えば、光出力値が、図12の規定値VyM−B〜規定値VyM+Bまでの範囲内であれば一致すると判定してもよい。このときの値Bは、図12の−Oy〜+OyのY軸上の位置検出素子103b−Yの光出力VyL〜VyHの範囲内で、ばらつき等の余裕分を見込んで設定することが好ましい。
位置検出素子103b−Yの光出力値と規定値とが一致しない場合(ステップS206:NO)、補正部106は、散乱光受光素子103aの上下位置を調整し(ステップS207)、再度光出力値と規定値とを比較して処理を繰り返す(ステップS206)。
位置検出素子103b−Yの光出力値と規定値とが一致する場合(ステップS206:YES)、補正部106が、X軸上の位置検出素子103b−Xの光出力値と規定値とを比較し、光出力値と規定値(図14ではVxM)とが一致するか否かを判定する(ステップS208)。上述のように、例えば、光出力値が、図14の規定値VxM−C〜規定値VxM+Cまでの範囲内であれば一致すると判定してもよい。このときの値Cは、図14の−Osx〜+OsxのX軸上の位置検出素子103b−Xの光出力VxL〜VxHの範囲内で、ばらつき等の余裕分を見込んで設定することが好ましい。
位置検出素子103b−Xの光出力値と規定値とが一致しない場合(ステップS208:NO)、補正部106は、散乱光受光素子103aの左右位置を調整し(ステップS209)、再度光出力値と規定値とを比較して処理を繰り返す(ステップS208)。
なお、位置の補正後に散乱光受光素子103aによる散乱光の計測が行われる。検知時間のスループットは、インク滴の吐出サイクルの高速化および補正部106の制御スピードの高速化に左右される。このため、補正部106として超音波アクチュエータ等による補正機構を用いることが有効である。
位置検出素子103b−Xの光出力値と規定値とが一致する場合(ステップS208:YES)、散乱光受光素子103aが散乱光を計測し、散乱光の光強度に応じた光出力値を出力する(ステップS210)。次に、検出部104が、光出力値(VPD)と予め定められた閾値(VPSH)とを比較する(ステップS211)。
光出力値が閾値より小さい場合(ステップS211:YES)、検出部104は、不良ノズルであると判定し、ノズルを識別する番号(不良ノズルNo.)を記憶部121等に記憶する(ステップS212)。
不良ノズルNo.を記憶後、または、光出力値が閾値以上の場合(ステップS211:NO)、吐出制御部101は、すべてのノズルを処理したか否かを判定する(ステップS213)。すべてのノズルを処理していない場合(ステップS213:NO)、吐出制御部101は、次のノズルからインクを吐出して処理を繰り返す(ステップS205)。すべてのノズルを処理した場合(ステップS213:YES)、発光制御部102が、発光素子30の発光を終了して(ステップS214)、液吐出不良検出処理を終了する。
なお、この後、記憶された不良ノズルNo.のノズルに対して、別途定められた判定基準によりクリーニング等の再生処置が実行される。
(変形例1)
ここで、液吐出不良検出処理の変形例について説明する。図17は、変形例1の液吐出不良検出処理の全体の流れを示すフローチャートである。図17のフローチャートは、吐出不良の検出と、散乱光受光素子103aの位置の補正とを独立に制御する例を表している。
ステップS301からステップS304までは、図16のステップS201からステップS204までと同様であるため、説明を省略する。この後、本変形例では、インクの吐出と無関係に、位置検出素子103bによる位置の補正を実行する(ステップS306〜ステップS309)。ステップS306、ステップS307、およびステップS309の処理は、図16のステップS206、ステップS207、およびステップS208と同様であるため、説明を省略する。
本変形例では、吐出不良の検出と独立に位置の補正が実行されるため、ステップS308で位置検出素子103b−Xの光出力値と規定値とが一致すると判定された場合(ステップS308:YES)、ステップS306に戻って位置の補正が繰り返される点が、図16と異なっている。
一方、吐出不良の検出は、若干のタイムラグを持って開始される。すなわち、ノズルn1からnNの順に順次インク滴を吐出して吐出不良の検出が開始される(ステップS305)。この後、ステップS310からステップS314までの処理は、図16のステップS210からステップS214までと同様であるため、説明を省略する。
このような手順により、吐出サイクルに関係なく、散乱光受光素子103aの位置を制御することができる。また、補正部106の影響を受けることなく、吐出不良検出のスループットを決定することができる。
なお、多列のノズル列を有する場合は、ノズル列それぞれに同様の検知装置を設け個々に吐出不良を検知するように構成すればよい。
(変形例2)
次に、ラインヘッド方式によるインクジェット記録装置に液吐出不良検出装置を搭載した例について説明する。図18は、変形例2にかかる液吐出不良検出装置を備えるインクジェットプリンタ(インクジェット記録装置)200の概略構成図である。
ヘッド216は、ライン印字が可能な長尺タイプのヘッドであり、ヘッドベース209に固定されている。発光素子30およびコリメートレンズ32等を含む発光部208は、ヘッドベース209に固定されている。発光素子30から照射した光は、コリメートレンズ32で平行光に変換される。この平行光は、ヘッド216のノズルn1、n2、・・・、nN(ノズル列)と平行に位置合わせされる。そして、上記実施の形態と同様の補正部106が、位置検出素子203bの光出力値等を参照して受光ユニット203をY軸上の規定の位置に合わせるように位置調節を実行する。
このように長尺のラインヘッドを用いる場合、発光素子30と散乱光受光素子103aとの間隔が長くなる。このようなラインプリンタの特性上、紙送りの駆動中の検知がスループット向上のために必須となる。一方、上述のように、紙送りの駆動中に吐出不良を検出するように構成すると、駆動系の振動等が、光軸の変動、および、受発光素子の位置関係の変動等の要因となることが考えられる。そこで、液吐出不良検出装置として、上記実施の形態と同様の装置を搭載することが有効になる。
なお、図18に示すように、本変形例のインクジェットプリンタ200は、光ビーム31の迷光を低減する迷光部207をさらに備えている。迷光部207は、光ビーム31を反射する反射手段としての反射面207aを備え、光ビーム31を迷光部207内に反射させることで光ビーム31の迷光を低減する。そして、本変形例の位置検出素子203bは、少なくとも反射面207aの一部として迷光部207へ入射する光ビーム31の光軸上に設けられる。これにより、装置の小型化を図ることができる。
以上のように、本実施の形態の液吐出不良検出装置およびインクジェット記録装置によれば、インク滴の吐出検知中でも光軸と受光素子との位置関係の変化を監視し、最適な位置を保つことができる。これにより、ラインヘッドのような長尺のヘッドでインク滴を検知中の場合であっても、インク滴吐出不良の誤検知を回避し、インク滴の吐出状態を安定して検知することができる。
また、光軸に対する散乱光受光素子の位置関係を監視するための位置検出素子を、散乱光検知出力の影響を受けない程度の光ビームの高光出力域に設置する。これにより、散乱光の影響を回避し、より安定的に吐出不良の検知を実行できる。
10 筐体
11、12 側板
13 ガイドシャフト
14 ガイド板
15 キャリッジ
16y、16c、16m、16b インクジェットヘッド
17 底板
18 単独回復装置
20 液吐出不良検出装置
22 プラテン
23 用紙
24 給紙台
25 搬送ローラ
26 駆動装置
30 発光素子
31 光ビーム
32 コリメートレンズ
35 光軸
36 インク滴
100、200 インクジェットプリンタ
101 吐出制御部
102 発光制御部
103、203 受光ユニット
103a 散乱光受光素子
103b、203b 位置検出素子
104 検出部
105 監視部
106 補正部
121 記憶部
207 迷光部
207a 反射面
208 発光部
209 ヘッドベース
216 ヘッド

Claims (8)

  1. 複数のノズルから吐出される液滴の飛行経路に光ビームを照射する発光手段と、
    前記光ビームと前記光ビームが前記液滴に衝突して生じる散乱光とを受光する第1受光手段と、
    前記光ビームの光軸から予め定められた方向にずれた位置であって、前記第1受光手段より大きい光強度の前記光ビームを受光可能な位置で、前記光ビームを受光する第2受光手段と、
    前記第2受光手段により受光される前記光ビームの光強度と予め定められた第1規定値とを比較し、比較結果に応じて前記第1受光手段の前記方向の位置を補正する補正手段と、
    前記散乱光の光強度に基づいて前記液滴の吐出不良を検出する検出手段と、
    を備えることを特徴とする液吐出不良検出装置。
  2. 前記発光手段は、断面が楕円形状の前記光ビームを照射し、
    前記第2受光手段は、前記光ビームの光軸から、前記楕円形状の短軸方向にずれた位置であって、前記第1受光手段より大きい光強度の前記光ビームを受光可能な位置で前記光ビームを受光し、
    前記補正手段は、前記第2受光手段により受光される前記光ビームの光強度と前記第1規定値との差を算出し、算出した差が予め定められた第1閾値以下となるように前記第1受光手段の前記短軸方向の位置を補正すること、
    を特徴とする請求項1に記載の液吐出不良検出装置。
  3. 前記光ビームの光軸から、前記楕円形状の長軸方向にずれた位置であって、前記第1受光手段より大きい光強度の前記光ビームを受光可能な位置で前記光ビームを受光する第3受光手段をさらに備え、
    前記補正手段は、さらに、前記第3受光手段により受光される前記光ビームの光強度と予め定められた第2規定値との差を算出し、算出した差が予め定められた第2閾値以下となるように前記第1受光手段の前記長軸方向の位置を補正すること、
    を特徴とする請求項2に記載の液吐出不良検出装置。
  4. 前記発光手段は、断面が楕円形状の前記光ビームを照射し、
    前記第2受光手段は、前記光ビームの光軸から、前記楕円形状の長軸方向にずれた位置であって、前記第1受光手段より大きい光強度の前記光ビームを受光可能な位置で前記光ビームを受光し、
    前記補正手段は、前記第2受光手段により受光される前記光ビームの光強度と前記第1規定値との差を算出し、算出した差が予め定められた第3閾値以下となるように前記第1受光手段の前記長軸方向の位置を補正すること、
    を特徴とする請求項1に記載の液吐出不良検出装置。
  5. 前記発光手段は、光軸の光強度が最大で光軸から離れるほど光強度が小さくなる光強度分布の前記光ビームを照射し、
    前記第2受光手段は、光強度の変化率が最大となる部分の前記光ビームを受光可能な位置で、前記光ビームを受光すること、
    を特徴とする請求項1に記載の液吐出不良検出装置。
  6. 前記第1受光手段と前記第2受光手段とを一体的に支持する支持手段をさらに備え、
    前記補正手段は、前記第2受光手段により受光される前記光ビームの光強度と前記第1規定値とを比較し、比較結果に応じて前記支持手段の前記方向の位置を補正すること、
    を特徴とする請求項1に記載の液吐出不良検出装置。
  7. 前記光ビームの迷光を低減する迷光部に前記光ビームを反射する反射手段をさらに備え、
    前記第2受光手段は、前記反射手段上に形成されること、
    を特徴とする請求項1に記載の液吐出不良検出装置。
  8. 請求項1〜7のいずれか1つに記載の液吐出不良検出装置を備えることを特徴とするインクジェット記録装置。
JP2009181076A 2009-08-03 2009-08-03 液吐出不良検出装置およびインクジェット記録装置 Pending JP2011031532A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181076A JP2011031532A (ja) 2009-08-03 2009-08-03 液吐出不良検出装置およびインクジェット記録装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181076A JP2011031532A (ja) 2009-08-03 2009-08-03 液吐出不良検出装置およびインクジェット記録装置

Publications (1)

Publication Number Publication Date
JP2011031532A true JP2011031532A (ja) 2011-02-17

Family

ID=43761087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181076A Pending JP2011031532A (ja) 2009-08-03 2009-08-03 液吐出不良検出装置およびインクジェット記録装置

Country Status (1)

Country Link
JP (1) JP2011031532A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8770705B2 (en) 2011-09-26 2014-07-08 Ricoh Company, Ltd. Droplet discharge detection device and image forming apparatus including droplet discharge detection device
JP2015120274A (ja) * 2013-12-20 2015-07-02 株式会社リコー 液滴吐出状態検出装置、液滴吐出状態検出方法、および、画像形成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8770705B2 (en) 2011-09-26 2014-07-08 Ricoh Company, Ltd. Droplet discharge detection device and image forming apparatus including droplet discharge detection device
JP2015120274A (ja) * 2013-12-20 2015-07-02 株式会社リコー 液滴吐出状態検出装置、液滴吐出状態検出方法、および、画像形成装置

Similar Documents

Publication Publication Date Title
JP5594103B2 (ja) 画像形成装置および不良ノズル検知方法
JP5652264B2 (ja) 画像形成装置および該画像形成装置における液滴吐出検知方法
JP5652263B2 (ja) 画像形成装置および該画像形成装置における液滴吐出検知方法
JP2010018022A (ja) 液吐出不良検出装置、およびインクジェット記録装置
JP5521383B2 (ja) 液吐出不良検出装置、およびインクジェット記録装置
JP4925184B2 (ja) 液吐出不良検出装置、およびインクジェット記録装置
JP2011031532A (ja) 液吐出不良検出装置およびインクジェット記録装置
JP2011093155A (ja) 液吐出不良検出装置およびインクジェット記録装置
JP5365465B2 (ja) 液吐出不良検出装置およびインクジェット記録装置
JP5724320B2 (ja) 液滴検出装置およびインクジェット記録装置
JP2010162909A (ja) 印刷動作状態判定用光学式センサ、印刷装置及び印刷動作状態判定方法
JP2010131799A (ja) インク滴検出装置
JP5716314B2 (ja) 液吐出不良検出装置、その調整方法、およびインクジェット記録装置
JP4967234B2 (ja) 微小液滴の検出装置、微小液滴の検出方法及びインクジェット記録装置
JP2005059552A (ja) 印刷動作状態判定用光学式センサ、印刷装置及び印刷動作状態判定方法
JP2010162789A (ja) 液吐出不良検出装置およびインクジェットプリンタ
JP2008105304A (ja) 液吐出不良検出装置、およびインクジェット記録装置
US20230321973A1 (en) Inkjet printer
JP2013078879A (ja) 液吐出不良検出装置及びインクジェット記録装置
JP5038164B2 (ja) 液滴吐出装置
JP2005059553A (ja) 印刷動作状態判定用光学式センサ、印刷装置及び印刷動作状態判定方法
JP2013063578A (ja) 液滴吐出検出装置およびインクジェット記録装置
JP2013132801A (ja) 液滴吐出検知装置および画像形成装置
JP5201258B2 (ja) 液滴の検出装置、液滴の検出方法及びインクジェット記録装置
JP2005262813A (ja) 印刷動作状態判定システム及び印刷装置並びに印刷動作状態判定方法