JP2011026643A - Gas blowing nozzle - Google Patents

Gas blowing nozzle Download PDF

Info

Publication number
JP2011026643A
JP2011026643A JP2009171846A JP2009171846A JP2011026643A JP 2011026643 A JP2011026643 A JP 2011026643A JP 2009171846 A JP2009171846 A JP 2009171846A JP 2009171846 A JP2009171846 A JP 2009171846A JP 2011026643 A JP2011026643 A JP 2011026643A
Authority
JP
Japan
Prior art keywords
gas
blowing nozzle
carbon
alloy layer
gas blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009171846A
Other languages
Japanese (ja)
Other versions
JP5489568B2 (en
Inventor
Masayuki Sugiura
正之 杉浦
Noriaki Nukushina
法明 温品
Shinobu Imai
忍 今井
Kanichiro Uragami
監一郎 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd, Nisshin Steel Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2009171846A priority Critical patent/JP5489568B2/en
Publication of JP2011026643A publication Critical patent/JP2011026643A/en
Application granted granted Critical
Publication of JP5489568B2 publication Critical patent/JP5489568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prolong the life of a gas blowing nozzle for injecting gas into molten metal. <P>SOLUTION: The gas blowing nozzle 10 includes a gas introducing metallic tube 11 for injecting the gas into the molten metal, and a carbon-containing refractory 12 surrounding the outer circumference of the gas introducing metallic tube 11. The gas introducing metallic tube 11 has an aluminum-containing alloy layer 14 on the outer surface. It is desirable that the aluminum-containing alloy layer 14 is formed by calorizing treatment and is formed so as to have a thickness of 50-200 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、溶融金属にガスを吹込むためのガス導入用金属管を炭素含有耐火物で外囲して形成されるガス吹込みノズルに関する。   The present invention relates to a gas injection nozzle formed by surrounding a metal pipe for introducing gas into molten metal with a carbon-containing refractory.

金属精錬では、窒素ガス、アルゴンガス、一酸化炭素ガスまたは二酸化炭素ガスなどを溶融金属に吹込んで撹拌し、溶融金属とガスや造滓剤との反応を促進することで、精錬効果を高めることが行われている。金属の一種である鋼の製造では、電気炉および転炉などの製鋼炉または取鍋に、ガスを吹込むためのガス吹込みノズルが設けられ、脱炭または脱硫などに用いられている。   In metal refining, nitrogen gas, argon gas, carbon monoxide gas or carbon dioxide gas is blown into the molten metal and stirred to enhance the refining effect by accelerating the reaction between the molten metal and the gas or slagging agent. Has been done. In the production of steel, which is a kind of metal, a gas blowing nozzle for blowing gas is provided in a steel making furnace or ladle such as an electric furnace and a converter, which is used for decarburization or desulfurization.

以下、ガス吹込みノズルが電気炉に設けられる場合について例示する。図4は、従来のガス吹込みノズルを備える電気炉1の概略的な構成を示す。電気炉1は、鋼製の殻体2に耐火物を内張りして形成される耐火壁3と、不図示の電極などを含む。電気炉1は、炉中に入れたスクラップなどの溶解原料を溶解して溶鋼原料になる溶銑4とする。ガス吹込みノズル5は、炉底の殻体2および耐火壁3に形成される孔を充填するように設けられる。   Hereinafter, the case where the gas blowing nozzle is provided in the electric furnace will be exemplified. FIG. 4 shows a schematic configuration of an electric furnace 1 having a conventional gas blowing nozzle. The electric furnace 1 includes a refractory wall 3 formed by lining a refractory material on a steel shell 2, an electrode (not shown), and the like. The electric furnace 1 is a hot metal 4 that melts a melting raw material such as scrap put in the furnace to become a molten steel raw material. The gas blowing nozzle 5 is provided to fill holes formed in the shell body 2 and the fire wall 3 at the bottom of the furnace.

ガス吹込みノズル5は、溶銑4にガスを吹込むためのガス導入用金属管6と、ガス導入用金属管6を外囲する炭素含有耐火物7と、吹込み前のガスを一旦プールしてサージタンクの役目をする風箱8と、を含む。ガス吹込みノズル5は、耐熱スポーリング性、耐摩耗性および耐食性が要求されるので、ガス導入用金属管6を外囲し、高温の溶銑4に接する部分に上記特性に優れる炭素含有耐火物7が用いられている。炭素含有耐火物7としては、たとえばMgO−Cレンガなどが挙げられる。   The gas blowing nozzle 5 is a gas introduction metal pipe 6 for blowing gas into the hot metal 4, a carbon-containing refractory 7 surrounding the gas introduction metal pipe 6, and the gas before blowing is temporarily pooled and surged. A wind box 8 serving as a tank. Since the gas blowing nozzle 5 is required to have heat spalling resistance, wear resistance, and corrosion resistance, a carbon-containing refractory having excellent characteristics as described above is surrounded by the gas introduction metal tube 6 and in contact with the hot metal 4 at a high temperature. 7 is used. Examples of the carbon-containing refractory 7 include MgO—C brick.

ガス吹込みノズル5を用いて溶銑4中へガス9を吹込む使用時には、炭素含有耐火物7およびガス導入用金属管6の温度が上昇する。この昇温により、炭素含有耐火物7からガス導入用金属管6へ炭素が浸透する浸炭現象が発生する。浸炭によって炭素濃度が高くなるガス導入用金属管6は、その融点が低下して溶融する。ガス導入用金属管6が溶融すると、吹込まれるガス9によって生じる溶融金属流で、溶融したガス導入用金属管周辺の炭素含有耐火物7が損耗する。このような損耗でガス吹込みノズル5の耐用寿命が短くなるという問題がある。   When the gas 9 is blown into the molten iron 4 using the gas blowing nozzle 5, the temperatures of the carbon-containing refractory 7 and the gas introducing metal pipe 6 rise. This temperature rise causes a carburizing phenomenon in which carbon penetrates from the carbon-containing refractory 7 to the gas introducing metal pipe 6. The gas introducing metal tube 6 whose carbon concentration is increased by carburizing is melted with a lower melting point. When the gas introducing metal tube 6 is melted, the molten metal flow generated by the injected gas 9 wears the carbon-containing refractory 7 around the molten gas introducing metal tube. There is a problem that the service life of the gas blowing nozzle 5 is shortened due to such wear.

このような問題に対応する先行技術として、炭素を含まないキャスタブル耐火物でガス導入用金属管を被覆すること(特許文献1参照)、ガス導入用金属管の外周にMgO質コーティング材をコーティングすること(特許文献2参照)、ガス導入用金属管と炭素含有耐火物との間に耐火性焼結体を配設すること(特許文献3参照)、またガス導入用金属管にアルミナまたはマグネシアを溶射すること(特許文献4参照)が提案されている。   As a prior art to cope with such a problem, a metal pipe for gas introduction is coated with a castable refractory that does not contain carbon (see Patent Document 1), and an outer periphery of the metal pipe for gas introduction is coated with an MgO-based coating material. (Refer to Patent Document 2), disposing a refractory sintered body between the gas introducing metal tube and the carbon-containing refractory (refer to Patent Document 3), and adding alumina or magnesia to the gas introducing metal tube. Thermal spraying (see Patent Document 4) has been proposed.

実開平2−61950号公報Japanese Utility Model Publication 2-61950 特開平10−265829号公報Japanese Patent Laid-Open No. 10-265829 特開2003−231912号公報Japanese Patent Laid-Open No. 2003-231912 特開2000−212634号公報JP 2000-212634 A

しかし、特許文献1に開示されるガス吹込みノズルは、炭素を含まないキャスタブル耐火物が耐熱スポーリング性および耐食性に劣るので、キャスタブル耐火物が寿命律速となり、耐用寿命を長くすることができないという問題がある。特許文献2に開示されるガス吹込みノズルは、MgO質コーティング層が炭素含有耐火物のノズル本体へ内設する際に剥離し易く、剥離部分で浸炭が生ずるので、耐用寿命を長くすることができないという問題がある。特許文献3に開示されるガス吹込みノズルは、ガス導入用金属管と耐火性焼結体との間等に充填するモルタルが耐摩耗性および耐食性に乏しく寿命律速となるので、耐用寿命を長くすることができないという問題がある。特許文献4に開示されるガス吹込みノズルは、ガス導入用金属管と溶射層の線膨張係数が例えばガス導入用金属管としてSUS304鋼、溶射材としてアルミナを用いた場合、それぞれ次の表1に示すように、18.7×10−6(1/K)、8.8×10−6(1/K)と大きく異なるため、加熱と冷却を繰り返し受けることにより、ガス導入用金属管と溶射層が剥離し易く、剥離部分で浸炭が生ずるので、耐用寿命を長くすることができないという問題がある。 However, in the gas blowing nozzle disclosed in Patent Document 1, the castable refractory that does not contain carbon is inferior in heat spalling resistance and corrosion resistance, so that the castable refractory becomes life rate limiting and the service life cannot be extended. There's a problem. The gas blowing nozzle disclosed in Patent Document 2 is easy to peel when the MgO-based coating layer is installed in the nozzle body of the carbon-containing refractory, and carburization occurs at the peeled portion, so that the service life can be extended. There is a problem that you can not. In the gas blowing nozzle disclosed in Patent Document 3, the mortar filled between the gas-introducing metal tube and the refractory sintered body has poor wear resistance and corrosion resistance and has a life rate-determining function. There is a problem that you can not. In the gas blowing nozzle disclosed in Patent Document 4, when the linear expansion coefficient of the gas introducing metal tube and the sprayed layer is, for example, SUS304 steel as the gas introducing metal tube and alumina as the spraying material, the following Table 1 is used. As shown in FIG. 1, since it is greatly different from 18.7 × 10 −6 (1 / K) and 8.8 × 10 −6 (1 / K), by repeatedly receiving heating and cooling, Since the thermal spray layer is easily peeled off and carburization occurs at the peeled portion, there is a problem that the service life cannot be extended.

Figure 2011026643
Figure 2011026643

本発明の目的は、耐用寿命を長くすることができるガス吹込みノズルを提供することである。   An object of the present invention is to provide a gas blowing nozzle capable of extending the service life.

本発明は、溶融金属にガスを吹込むためのガス導入用金属管を炭素含有耐火物で外囲して形成されるガス吹込みノズルにおいて、
ガス導入用金属管は、外表面にアルミニウムを含有する合金層を有することを特徴とするガス吹込みノズルである。
The present invention is a gas injection nozzle formed by surrounding a metal pipe for gas introduction for injecting gas into a molten metal with a carbon-containing refractory,
The metal pipe for gas introduction is a gas blowing nozzle characterized by having an alloy layer containing aluminum on the outer surface.

また本発明で、前記合金層の厚さは50〜200μmであることを特徴とする。   In the present invention, the alloy layer has a thickness of 50 to 200 μm.

また本発明で、前記合金層はカロライズ処理で形成されることを特徴とする。   In the present invention, the alloy layer is formed by calorizing treatment.

本発明によれば、ガス導入用金属管外表面のアルミニウムを含有する合金層は、炭素含有耐火物からの炭素の浸透を抑制することができる。したがって、ガス導入用金属管は、浸炭に伴う融点低下が生じないので、溶融が防止される。さらに、ガス導入用金属管の溶融が防止されることで、ガス導入用金属管周辺の炭素含有耐火物の損耗が抑制され、ガス吹込みノズルの耐用寿命を長くすることができる。   According to the present invention, the alloy layer containing aluminum on the outer surface of the gas introducing metal tube can suppress the penetration of carbon from the carbon-containing refractory. Therefore, the melting point of the metal pipe for gas introduction does not decrease due to carburization, so that melting is prevented. Further, by preventing the gas introducing metal tube from melting, the wear of the carbon-containing refractory around the gas introducing metal tube is suppressed, and the service life of the gas blowing nozzle can be extended.

また本発明によれば、合金層は、厚さが50〜200μmに形成されるので、十分な耐浸炭性を発揮するとともに、脆化による損耗を生じることがない。耐浸炭性に優れ堅牢な合金層は、ガス導入用金属管の溶融を防止し、ガス吹込みノズルの耐用寿命延長に寄与することができる。   According to the present invention, since the alloy layer is formed to a thickness of 50 to 200 μm, it exhibits sufficient carburization resistance and does not cause wear due to embrittlement. A solid alloy layer having excellent carburization resistance can prevent melting of the metal pipe for gas introduction and contribute to extending the service life of the gas blowing nozzle.

また本発明によれば、合金層は、カロライズ処理で形成され、素地とコーティング層が合金化されているため、ガス導入用金属管の金属素地との密着性および耐摩耗性に優れる。したがって、合金層は、剥離や損耗を生じにくく、耐浸炭性を長く保持することができるので、ガス吹込みノズルの耐用寿命延長に寄与することができる。   Further, according to the present invention, the alloy layer is formed by calorizing treatment, and the base and the coating layer are alloyed. Therefore, the adhesion of the gas introducing metal tube to the metal base and the wear resistance are excellent. Therefore, the alloy layer is unlikely to be peeled off or worn, and can retain carburization resistance for a long time, which can contribute to extending the service life of the gas blowing nozzle.

図1は、本発明の実施の形態であるガス吹込みノズル10を示す正面断面図である。FIG. 1 is a front sectional view showing a gas blowing nozzle 10 according to an embodiment of the present invention. 図2は、図1に示すガス吹込みノズル10のガス導入用金属管11の部分を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing a portion of the gas introducing metal tube 11 of the gas blowing nozzle 10 shown in FIG. 図3は、実施例として用いたガス吹込みノズル10を示す平面図である。FIG. 3 is a plan view showing the gas blowing nozzle 10 used as an example. 図4は、従来のガス吹込みノズルを備える電気炉1の概略的な構成を示す正面断面図である。FIG. 4 is a front sectional view showing a schematic configuration of an electric furnace 1 having a conventional gas blowing nozzle.

図1は、本発明の実施の形態であるガス吹込みノズル10を示す。ガス吹込みノズル10は、溶融金属にガスを吹込むためのガス導入用金属管11と、ガス導入用金属管11を外囲する炭素含有耐火物12と、風箱13と、を含み、ガス導入用金属管11が外表面にアルミニウムを含有する合金層14を有することを特徴とする。ガス吹込みノズル10は、風箱13の天井部にガス導入用金属管11が接続され、ガス導入用金属管11を外囲するように炭素含有耐火物12が配設される。風箱13の底部には、ガス供給源から配管されるガス供給管15が接続される。風箱13は、その周囲がキャスタブル耐火物16で覆われる。   FIG. 1 shows a gas blowing nozzle 10 according to an embodiment of the present invention. The gas injection nozzle 10 includes a gas introduction metal tube 11 for injecting gas into the molten metal, a carbon-containing refractory 12 surrounding the gas introduction metal tube 11, and an air box 13. The metal tube 11 has an alloy layer 14 containing aluminum on the outer surface. In the gas blowing nozzle 10, a gas introducing metal tube 11 is connected to a ceiling portion of the wind box 13, and a carbon-containing refractory 12 is disposed so as to surround the gas introducing metal tube 11. A gas supply pipe 15 piped from a gas supply source is connected to the bottom of the wind box 13. The periphery of the wind box 13 is covered with a castable refractory 16.

図2は、図1に示すガス吹込みノズル10のガス導入用金属管11の部分を拡大して示す。ガス導入用金属管11には、ステンレス鋼、普通鋼、耐熱鋼などの管を用いることができる。ガス導入用金属管11の寸法は、内径が1〜4mm、肉厚が1〜2mm程度であることが好ましい。内径が1mm未満であると、溶融金属の撹拌に十分なガスの供給が困難になる。内径が4mmを超えると、ガス導入用金属管11に溶融金属が流入して閉塞を生じるおそれがある。ガス導入用金属管11は、1本または複数本が設けられる。複数本を設ける場合、ガス導入用金属管同士の中心間距離を10〜70mm程度にすることが好ましい。   FIG. 2 is an enlarged view of a portion of the gas introducing metal tube 11 of the gas blowing nozzle 10 shown in FIG. For the metal pipe 11 for gas introduction, a pipe made of stainless steel, ordinary steel, heat resistant steel, or the like can be used. The dimensions of the gas introducing metal tube 11 are preferably such that the inner diameter is 1 to 4 mm and the wall thickness is about 1 to 2 mm. When the inner diameter is less than 1 mm, it is difficult to supply a gas sufficient for stirring the molten metal. If the inner diameter exceeds 4 mm, the molten metal may flow into the gas introducing metal tube 11 to cause clogging. One or a plurality of gas introducing metal tubes 11 are provided. When providing a plurality, it is preferable to set the center-to-center distance between the gas introducing metal tubes to about 10 to 70 mm.

本実施形態のガス導入用金属管11では、管の外表面にのみアルミニウムを含有する合金層14を有する。しかし、これに限定されることなく、合金層が管の外表面だけでなく内表面に形成されていても問題がない。また、管の外表面の合金層は、ガス導入用金属管の全長に形成されてもよく、また溶融金属に接する側から管長の途中までの一部に形成されるようにしてもよい。   The metal pipe 11 for gas introduction of this embodiment has the alloy layer 14 containing aluminum only on the outer surface of the pipe. However, the present invention is not limited to this, and there is no problem even if the alloy layer is formed not only on the outer surface of the tube but also on the inner surface. Further, the alloy layer on the outer surface of the pipe may be formed over the entire length of the gas introducing metal pipe, or may be formed in a part from the side in contact with the molten metal to the middle of the pipe length.

アルミニウムを含有する合金層14の厚さは、50〜200μmであることが好ましく、さらに好ましくは100〜200μmである。以下合金層の厚さの範囲を限定する理由について説明する。厚さが50μm未満では、炭素含有耐火物12からガス導入用金属管11への浸炭を十分に抑制することができない。厚さが200μmを超えると、機械的衝撃に対して脆くなり、炭素含有耐火物12への取付け時等に合金層14に亀裂が生じるおそれがある。   The thickness of the alloy layer 14 containing aluminum is preferably 50 to 200 μm, more preferably 100 to 200 μm. The reason for limiting the thickness range of the alloy layer will be described below. If the thickness is less than 50 μm, carburization from the carbon-containing refractory 12 to the gas introducing metal tube 11 cannot be sufficiently suppressed. If the thickness exceeds 200 μm, the alloy layer 14 becomes brittle with respect to mechanical impact, and the alloy layer 14 may crack when attached to the carbon-containing refractory 12.

また、合金層14のアルミニウム濃度は、最表層部でおおよそ30〜40重量%であることが好ましい。合金層14は、アルミニウム濃度が厚さ方向に減少する濃度勾配を有する。合金層14の厚さは、アルミニウム濃度が高い表面から、ガス導入用金属管11の素管のアルミニウム濃度に対して濃度上昇が認められる深さまでをいう。このような合金層14の厚さは、ガス導入用金属管11の断面を、たとえばX線マイクロアナライザーなどでライン分析することで測定することができる。   Moreover, it is preferable that the aluminum concentration of the alloy layer 14 is about 30 to 40 weight% in the outermost layer part. The alloy layer 14 has a concentration gradient in which the aluminum concentration decreases in the thickness direction. The thickness of the alloy layer 14 is from the surface where the aluminum concentration is high to the depth at which the concentration increase is recognized with respect to the aluminum concentration of the base tube of the gas introducing metal tube 11. The thickness of such an alloy layer 14 can be measured by performing line analysis on the cross section of the gas introducing metal tube 11 with, for example, an X-ray microanalyzer.

ガス導入用金属管11のアルミニウムを含有する合金層14は、カロライズ処理で形成されることが好ましい。カロライズ処理には、公知の方法を用いることができる。たとえば、Fe−Al合金粉およびNHCl粉などの調合剤で素管を覆うようにして容器へ入れ、炉で900〜1050℃に加熱することによって、合金層14が形成される。カロライズ処理で形成される合金層14は、ガス導入用金属管11の素地との密着性および耐摩耗性に優れるので、剥離や損耗を生じにくい。 The alloy layer 14 containing aluminum in the metal pipe 11 for gas introduction is preferably formed by calorizing treatment. A known method can be used for the calorizing treatment. For example, the alloy layer 14 is formed by putting it in a container so as to cover the raw tube with a preparation such as Fe—Al alloy powder and NH 4 Cl powder and heating to 900 to 1050 ° C. in a furnace. Since the alloy layer 14 formed by the calorizing process is excellent in adhesion to the base of the metal pipe 11 for gas introduction and wear resistance, it is difficult to cause peeling or wear.

炭素含有耐火物12には、MgO−C系、Al−C系、Al−SiC−C系、MgO−CaO−C系、MgO−Al−C系などの耐火物が用いられる。これらの系以外であっても、耐熱スポーリング性、溶融金属やスラグに対する耐食性、耐摩耗性に優れる炭素含有耐火物を用いることができる。 The carbon-containing refractory 12 includes refractories such as MgO—C, Al 2 O 3 —C, Al 2 O 3 —SiC—C, MgO—CaO—C, and MgO—Al 2 O 3 —C. Things are used. Even if it is except these systems, the carbon containing refractory material which is excellent in heat spalling resistance, corrosion resistance with respect to molten metal and slag, and abrasion resistance can be used.

炭素含有耐火物は、たとえば次のようにして製造される。耐火性骨材に炭素質原料を加え、必要に応じて金属粉末やその他公知の添加物を添加し、フェノール樹脂、ピッチ、タール等の炭素結合を形成する結合材を1〜15重量%、好ましくは3〜8重量%を加えて混錬し、成形する。成形後、100〜500℃、好ましくは150〜400℃で熱処理をして不焼成れんがとする。または、成形後、500〜1500℃、好ましくは800〜1300℃の還元雰囲気で焼成する焼成れんがとしてもよい。炭素含有耐火物12の形状は、装着される炉または取鍋などの底部の構造により適宜定められるが、円柱形状、角柱形状、円錐台形状または角柱台形状などが用いられる。   The carbon-containing refractory is manufactured as follows, for example. Add carbonaceous raw material to refractory aggregate, add metal powder and other known additives as necessary, 1-15 wt% of binders forming carbon bonds such as phenol resin, pitch, tar, etc., preferably Is kneaded by adding 3 to 8% by weight. After molding, heat treatment is performed at 100 to 500 ° C., preferably 150 to 400 ° C., to form unfired bricks. Alternatively, after forming, a fired brick may be fired in a reducing atmosphere of 500 to 1500 ° C., preferably 800 to 1300 ° C. The shape of the carbon-containing refractory 12 is appropriately determined depending on the structure of the bottom of a furnace or a ladle to be mounted, and a cylindrical shape, a prism shape, a truncated cone shape, a prismatic shape, or the like is used.

ガス導入用金属管11が接続される風箱13は、サージタンクの役目をする金属製の箱である。金属素材には、ステンレス鋼、普通鋼、耐熱鋼などを用いることができる。風箱13を覆うキャスタブル耐火物16は、炭素を含まないものであってもよく、たとえばマグネシア質系の耐火物などを用いることができる。   The wind box 13 to which the gas introducing metal pipe 11 is connected is a metal box that serves as a surge tank. As the metal material, stainless steel, ordinary steel, heat resistant steel, or the like can be used. The castable refractory 16 covering the wind box 13 may not contain carbon, and for example, a magnesia-based refractory can be used.

以下本発明の実施例について説明する。
図3は、実施例として用いたガス吹込みノズル10を示す。図3では、実施例のガス吹込みノズル10を溶融金属に接する側から見た状態を示す。ガス導入用金属管11には、カロライズ処理を施した内径が1.5mm、外径が3.5mmのステンレス鋼管を用いた。カロライズ処理で形成されたアルミニウム含有合金層の厚さは、150μmであった。またカロライズ処理で形成された合金層のアルミニウム濃度は30%であった。ガス吹込みノズル10には、7本のガス導入用金属管11を、互いの中心間距離Lが50mmとなるように配設した。炭素含有耐火物12として、炭素分の黒鉛を10重量%含有するMgO−Cれんがを用いた。炭素含有耐火物12の形状は、角柱台形状とし、その長さを890mmとした。
Examples of the present invention will be described below.
FIG. 3 shows a gas blowing nozzle 10 used as an example. In FIG. 3, the state which looked at the gas blowing nozzle 10 of the Example from the side which contact | connects a molten metal is shown. As the metal pipe 11 for gas introduction, a stainless steel pipe having an inner diameter of 1.5 mm and an outer diameter of 3.5 mm subjected to calorizing treatment was used. The thickness of the aluminum-containing alloy layer formed by calorizing treatment was 150 μm. The aluminum concentration of the alloy layer formed by the calorizing treatment was 30%. In the gas blowing nozzle 10, seven gas introducing metal tubes 11 were arranged so that the distance L between the centers was 50 mm. As the carbon-containing refractory 12, MgO-C brick containing 10% by weight of carbon graphite was used. The shape of the carbon-containing refractory 12 was a prismatic trapezoidal shape, and its length was 890 mm.

比較例として用いたガス吹込みノズルは、外形および炭素含有耐火物が実施例のガス吹込みノズルと同じである。ガス導入用金属管は、寸法および材質が実施例と同じであるが、カロライズ処理が施されることなく、アルミニウム含有合金層を有しない管である。ガス導入用金属管にカロライズ処理を施さない代わりに、ガス導入用金属管と炭素含有耐火物との間に、内径が6mm、外径が10mmの耐火性焼結体を設けた。耐火性焼結体の材質はマグネシア質であり、耐火性焼結体とガス導入用金属管との隙間をマグネシアモルタルで充填して固定した。   The gas blowing nozzle used as a comparative example has the same external shape and carbon-containing refractory as the gas blowing nozzle of the example. The metal pipe for gas introduction has the same dimensions and material as those of the embodiment, but is not subjected to calorizing treatment and does not have an aluminum-containing alloy layer. Instead of subjecting the gas introducing metal tube to calorizing treatment, a refractory sintered body having an inner diameter of 6 mm and an outer diameter of 10 mm was provided between the gas introducing metal tube and the carbon-containing refractory. The material of the refractory sintered body is magnesia, and the gap between the refractory sintered body and the metal pipe for gas introduction was filled with magnesia mortar and fixed.

実施例および比較例のガス吹込みノズルを、容量が150トンの電気炉の炉底に装着し、ガスを吹込みながらステンレス溶銑の精錬を行った。吹込みに使用したガスは窒素ガスであり、その流量は150NL/minである。454チャージ(以下、chで表す)の精錬を行ったのち、実施例および比較例の各ガス吹込みノズルについて、長さ方向の損耗量を測定し、耐用寿命を比較した。   The gas blowing nozzles of the examples and comparative examples were attached to the furnace bottom of an electric furnace having a capacity of 150 tons, and the hot metal was refined while blowing gas. The gas used for blowing is nitrogen gas, and its flow rate is 150 NL / min. After refining 454 charge (hereinafter referred to as “ch”), the wear amount in the length direction was measured for each gas blowing nozzle of the example and the comparative example, and the service life was compared.

損耗量の測定結果を表2に示す。454ch当りの損耗量は、実施例が150mm、比較例が200mmであった。実施例の損耗速度0.33mm/chで、比較例の損耗量200mmに達するには、606chを要することになる。すなわち、比較例のガス吹込みノズルでは、454chで200mm損耗して耐用寿命に達するが、実施例のガス吹込みノズルでは、200mmの損耗に達するまでに、606chのガス吹込み精錬を行うことが可能である。このことから、アルミニウム含有合金層を有するガス導入用金属管を用いることで、30%強の耐用寿命の延長を実現し得ることが判る。   Table 2 shows the measurement results of the amount of wear. The amount of wear per 454 ch was 150 mm in the example and 200 mm in the comparative example. In order to reach the wear amount of 200 mm in the comparative example at the wear rate of 0.33 mm / ch in the example, 606 ch is required. That is, the gas blowing nozzle of the comparative example wears out by 200 mm at 454 ch and reaches the service life, but the gas blowing nozzle of the embodiment can perform the gas blowing refining of 606 ch before reaching 200 mm of wear. Is possible. From this, it can be seen that by using a metal pipe for gas introduction having an aluminum-containing alloy layer, it is possible to achieve a service life extension of more than 30%.

Figure 2011026643
Figure 2011026643

5,10 ガス吹込みノズル
6,11 ガス導入用金属管
7,12 炭素含有耐火物
14 合金層
5,10 Gas blowing nozzle 6,11 Metal pipe for gas introduction 7,12 Carbon-containing refractory 14 Alloy layer

Claims (3)

溶融金属にガスを吹込むためのガス導入用金属管を炭素含有耐火物で外囲して形成されるガス吹込みノズルにおいて、
ガス導入用金属管は、外表面にアルミニウムを含有する合金層を有することを特徴とするガス吹込みノズル。
In a gas injection nozzle formed by surrounding a metal pipe for gas introduction for injecting gas into molten metal with a carbon-containing refractory,
The gas injection nozzle characterized in that the metal pipe for gas introduction has an alloy layer containing aluminum on the outer surface.
前記合金層の厚さは、50〜200μmであることを特徴とする請求項1記載のガス吹込みノズル。   The gas blowing nozzle according to claim 1, wherein the alloy layer has a thickness of 50 to 200 μm. 前記合金層は、カロライズ処理で形成されることを特徴とする請求項1または2記載のガス吹込みノズル。   The gas blowing nozzle according to claim 1, wherein the alloy layer is formed by calorizing treatment.
JP2009171846A 2009-07-23 2009-07-23 Gas injection nozzle Active JP5489568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171846A JP5489568B2 (en) 2009-07-23 2009-07-23 Gas injection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171846A JP5489568B2 (en) 2009-07-23 2009-07-23 Gas injection nozzle

Publications (2)

Publication Number Publication Date
JP2011026643A true JP2011026643A (en) 2011-02-10
JP5489568B2 JP5489568B2 (en) 2014-05-14

Family

ID=43635711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171846A Active JP5489568B2 (en) 2009-07-23 2009-07-23 Gas injection nozzle

Country Status (1)

Country Link
JP (1) JP5489568B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020203471A1 (en) * 2019-04-05 2020-10-08
JP2021110483A (en) * 2020-01-08 2021-08-02 品川リフラクトリーズ株式会社 Gas blowing plug for molten metal stirring

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066447U (en) * 1992-06-29 1994-01-28 川崎製鉄株式会社 Injection lance
JPH09314314A (en) * 1996-05-31 1997-12-09 Nisshin Steel Co Ltd Nozzle device for pouring molten metal in molten metal vessel and method for pouring molten metal
JPH107479A (en) * 1996-06-24 1998-01-13 Nippon Steel Corp Refractory for metal smelting and casting
JPH10245282A (en) * 1997-03-04 1998-09-14 Kawasaki Refract Co Ltd Carbon-containing refractory
JPH10306308A (en) * 1997-04-30 1998-11-17 Nkk Corp Carbon-containing refractory for tuyere in molten metal refining furnace
JPH11278948A (en) * 1998-03-30 1999-10-12 Harima Ceramic Co Ltd Repairing material by firing
JP2000212634A (en) * 1999-01-21 2000-08-02 Asahi Glass Co Ltd Gas blowing nozzle for refining furnace
JP2001199774A (en) * 2000-01-13 2001-07-24 Kawasaki Steel Corp Method for wet spray application of amorphous refractory
JP2002167264A (en) * 2000-11-28 2002-06-11 Kurosaki Harima Corp Basic refractory containing carbon
JP2002277174A (en) * 2001-01-10 2002-09-25 Nippon Steel Corp Method for heating molten metal container

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066447U (en) * 1992-06-29 1994-01-28 川崎製鉄株式会社 Injection lance
JPH09314314A (en) * 1996-05-31 1997-12-09 Nisshin Steel Co Ltd Nozzle device for pouring molten metal in molten metal vessel and method for pouring molten metal
JPH107479A (en) * 1996-06-24 1998-01-13 Nippon Steel Corp Refractory for metal smelting and casting
JPH10245282A (en) * 1997-03-04 1998-09-14 Kawasaki Refract Co Ltd Carbon-containing refractory
JPH10306308A (en) * 1997-04-30 1998-11-17 Nkk Corp Carbon-containing refractory for tuyere in molten metal refining furnace
JPH11278948A (en) * 1998-03-30 1999-10-12 Harima Ceramic Co Ltd Repairing material by firing
JP2000212634A (en) * 1999-01-21 2000-08-02 Asahi Glass Co Ltd Gas blowing nozzle for refining furnace
JP2001199774A (en) * 2000-01-13 2001-07-24 Kawasaki Steel Corp Method for wet spray application of amorphous refractory
JP2002167264A (en) * 2000-11-28 2002-06-11 Kurosaki Harima Corp Basic refractory containing carbon
JP2002277174A (en) * 2001-01-10 2002-09-25 Nippon Steel Corp Method for heating molten metal container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020203471A1 (en) * 2019-04-05 2020-10-08
WO2020203471A1 (en) * 2019-04-05 2020-10-08 Jfeスチール株式会社 Refining vessel for high temperature melt
JP7140272B2 (en) 2019-04-05 2022-09-21 Jfeスチール株式会社 Refining vessels for hot melts
US11976340B2 (en) 2019-04-05 2024-05-07 Jfe Steel Corporation Refining vessel for high-temperature melt
JP2021110483A (en) * 2020-01-08 2021-08-02 品川リフラクトリーズ株式会社 Gas blowing plug for molten metal stirring

Also Published As

Publication number Publication date
JP5489568B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP2008151425A (en) Repair method of magnesia carbon brick
JP6974115B2 (en) Refractory for gas blowing nozzle
JP3593101B2 (en) Carbonaceous refractory and method for producing the same
US9109838B2 (en) Gas blowing nozzle
JP5489568B2 (en) Gas injection nozzle
US20220003500A1 (en) Gas injection nozzle refractory and gas injection nozzle
JP6429190B2 (en) Electric furnace for melting steelmaking slag
TWI738262B (en) Refining vessel for high temperature melt
US20050110202A1 (en) Injection lance
JP2018204820A (en) Graphite crucible for non-ferrous metal melting
JP2016148102A (en) Tuyere refractory for gas blowing plug
JP2003231912A (en) Gas blow nozzle
JP2000212634A (en) Gas blowing nozzle for refining furnace
JPS6159373B2 (en)
JP2017095783A (en) Refining container for making iron
JP2006021972A (en) Magnesia-carbon brick
JP3662094B2 (en) Alumina-plug for carbonaceous gas injection
CN103045807B (en) Vacuum circulation degassing insert tube
CN213747885U (en) Carbon condensation furnace lining of large and medium submerged arc furnace
JPS62158562A (en) Nozzle for low-temperature casting of molten steel
JP6996529B2 (en) Refining vessel for high temperature melts with gas blowing nozzle
JP2953293B2 (en) Gas injection tuyere structure for steelmaking furnace
JP2010070822A (en) Immersion tube for simple refining apparatus
CN115246742A (en) Long nozzle for high-oxygen steel continuous casting
JP2008013796A (en) Immersion tube for treating molten metal and manufacturing method thereof, and vacuum-degassing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5489568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250