JP2008013796A - Immersion tube for treating molten metal and manufacturing method thereof, and vacuum-degassing method - Google Patents

Immersion tube for treating molten metal and manufacturing method thereof, and vacuum-degassing method Download PDF

Info

Publication number
JP2008013796A
JP2008013796A JP2006184276A JP2006184276A JP2008013796A JP 2008013796 A JP2008013796 A JP 2008013796A JP 2006184276 A JP2006184276 A JP 2006184276A JP 2006184276 A JP2006184276 A JP 2006184276A JP 2008013796 A JP2008013796 A JP 2008013796A
Authority
JP
Japan
Prior art keywords
refractory
dip tube
iron plate
molten metal
cylindrical iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006184276A
Other languages
Japanese (ja)
Other versions
JP4676927B2 (en
Inventor
Katsumi Uchinokura
克巳 内之倉
Hiroaki Ito
宏明 伊藤
Kenji Takahashi
研二 高橋
Hiroto Fukushima
浩人 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006184276A priority Critical patent/JP4676927B2/en
Publication of JP2008013796A publication Critical patent/JP2008013796A/en
Application granted granted Critical
Publication of JP4676927B2 publication Critical patent/JP4676927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an immersion tube and manufacturing method thereof, and a vacuum-degassing method with which regarding to the immersion tube for treating molten metal fitted to a vacuum vessel in the degassing vessel for degassing apparatus performing the degassing treatment in molten metal, the durability thereof is improved and the service life can drastically be prolonged. <P>SOLUTION: The immersion tube for treating molten metal and the manufacturing method thereof, are performed as the followings, that is, a core metal 8 of the immersion tube 5, is a double tube-shape of an inside cylindrical iron plate 8a and an outside cylindrical iron plate 8b and on the inner and the outer circumferences and the bottom part, to the bottom part, to refractory brick 9 or a monolithic refractory 10 is disposed, and in a gap part 11 between the outside cylindrical iron plate 8b and the inside cylindrical iron plate 8a, the monolithic refractory 13 for filling up is filled up, and the monolithic refractory 13 for filling up is filled up and the monolithic refractory 13 for filling up, is ≤30% apparent porosity and ≥5MPa bending strength and a gas introducing tube 14 for flowing cooling gas into the gap part 11 of the core metal 8 is peculiarly disposed . Then, the monolithic refractory 13 for filling up, the refractory as the raw material of that having ≤2mm the maximum grain diameter is used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶融金属の脱ガス処理を行う脱ガス装置の真空槽に取り付けられる溶融金属処理用浸漬管及びその製造方法並びにその浸漬管を用いた真空脱ガス方法に関するものである。   The present invention relates to a molten metal processing dip tube attached to a vacuum tank of a degassing apparatus for degassing a molten metal, a manufacturing method thereof, and a vacuum degassing method using the dip tube.

金属材料の高純度化や高級化にともない、その精錬工程で溶融金属から不純物ガスを除去するために真空脱ガス処理が行われる。RH真空脱ガス装置及びDH真空脱ガス装置が代表的である。これら真空脱ガス装置においては、真空槽の下部に浸漬管が設けられ、浸漬管の下端開口部を溶融金属中に浸漬した後に真空槽内を減圧し、溶融金属を真空槽中に吸い上げて窒素や水素などのガス成分を除去するものである。DH脱ガス装置では浸漬管を1本、RH脱ガス装置では浸漬管を2本配置する。   As the metal material is highly purified and upgraded, vacuum degassing is performed in order to remove the impurity gas from the molten metal in the refining process. RH vacuum degassing apparatus and DH vacuum degassing apparatus are typical. In these vacuum degassing apparatuses, a dip tube is provided at the lower part of the vacuum chamber, and after the lower end opening of the dip tube is immersed in the molten metal, the vacuum chamber is depressurized, and the molten metal is sucked into the vacuum chamber to be nitrogen. And gas components such as hydrogen are removed. In the DH degasser, one dip tube is arranged, and in the RH degasser, two dip tubes are arranged.

RH真空脱ガス装置を適用した溶鋼の真空脱ガスについて、図6に基づいて説明する。   The vacuum degassing of the molten steel to which the RH vacuum degassing apparatus is applied will be described with reference to FIG.

RH真空脱ガス装置の真空槽3の下部には、2本の浸漬管5が配設される。一方が上昇浸漬管5a、他方が下降浸漬管5bである。これら浸漬管5を取鍋1内の溶鋼2に浸漬し、次いで真空槽3の上部に設けられる排気ダクト4から真空槽3のガスを吸引して真空槽内を減圧する。真空槽内が減圧されることによって、取鍋内の溶鋼2が真空槽内に吸い上げられる。   Two dip tubes 5 are disposed below the vacuum chamber 3 of the RH vacuum degassing apparatus. One is an ascending dip tube 5a and the other is a descending dip tube 5b. These dip tubes 5 are immersed in the molten steel 2 in the pan 1, and then the gas in the vacuum chamber 3 is sucked from the exhaust duct 4 provided in the upper portion of the vacuum chamber 3 to reduce the pressure in the vacuum chamber. By reducing the pressure in the vacuum chamber, the molten steel 2 in the ladle is sucked into the vacuum chamber.

上昇浸漬管5aの内周部には不活性ガス吹き込みノズル6が設けられており、上昇浸漬管5a内の溶鋼に不活性ガスが吹き込まれる。その結果、上昇浸漬管5a内の溶鋼の比重が下降浸漬管5b内の溶鋼と比較して相対的に減少するので、上昇浸漬管内の溶鋼が上昇し、下降浸漬管内の溶鋼が下降を開始する。その結果、取鍋1内の溶鋼が上昇浸漬管5aから真空槽3内へそして下降浸漬管5bを通して取鍋1内へと循環するようになる。真空槽内の溶鋼表面は減圧雰囲気に接触するので、ここで溶鋼中のガス成分が減圧雰囲気中に移動し、脱ガスが行われる。溶鋼が循環する間に真空槽内で脱ガスが行われ、取鍋内の溶鋼中のガス成分が除去される。   An inert gas blowing nozzle 6 is provided in the inner peripheral portion of the ascending dip tube 5a, and the inert gas is blown into the molten steel in the ascending dip tube 5a. As a result, since the specific gravity of the molten steel in the ascending dip tube 5a is relatively decreased as compared with the molten steel in the descending dip tube 5b, the molten steel in the ascending dip tube rises and the molten steel in the descending dip tube begins to descend. . As a result, the molten steel in the ladle 1 circulates from the ascending dip tube 5a into the vacuum chamber 3 and through the descending dip tube 5b into the ladle 1. Since the surface of the molten steel in the vacuum chamber is in contact with the reduced-pressure atmosphere, the gas component in the molten steel moves to the reduced-pressure atmosphere here, and degassing is performed. While the molten steel circulates, degassing is performed in the vacuum chamber, and the gas component in the molten steel in the ladle is removed.

図4、5には、従来の浸漬管5の構造を模式的に断面図で示す。浸漬管を上昇浸漬管として用いる場合には、浸漬管の内周側に不活性ガスの吹き込みノズルが配置されるが、ここでは不活性ガスの吹き込みノズルは図示を省略している。浸漬管の肉厚中央部には芯金8と呼ばれる金属製の円筒を配置する。芯金8の内周側について、図4では耐火れんが9を配置し、図5では不定形耐火物10bを配置している。芯金の外周側については、図4、5ともに不定形耐火物10aを配置している。これら耐火物は、芯金8に設置された耐火物受け金物やスタッドによって保持されている。芯金8は浸漬管5を構成する耐火物を安定して保持し、真空槽内に外気が侵入するのを防ぐ重要な役割を担っており、芯金8の変形は極力防止しなければならない。   4 and 5 schematically show cross-sectional views of the structure of the conventional dip tube 5. When the dip tube is used as an ascending dip tube, an inert gas blowing nozzle is disposed on the inner peripheral side of the dip tube, but the inert gas blowing nozzle is not shown here. A metal cylinder called a cored bar 8 is disposed in the center of the dip tube. On the inner peripheral side of the cored bar 8, a refractory brick 9 is disposed in FIG. 4, and an irregular refractory 10b is disposed in FIG. About the outer peripheral side of a metal core, the amorphous refractory 10a is arrange | positioned in FIG. These refractories are held by a refractory receiver or a stud installed on the core 8. The cored bar 8 stably holds the refractory constituting the dip tube 5 and plays an important role in preventing the outside air from entering the vacuum chamber, and deformation of the cored bar 8 must be prevented as much as possible. .

溶鋼の真空精錬を行うときは、上昇浸漬管5aと下降浸漬管5bはともに溶鋼2に浸漬され、浸漬管5の内周側を溶鋼が流通し、浸漬管5の外周側はその大部分が取鍋内の溶鋼と接している。従って真空脱ガスの操業中は、上昇浸漬管下降浸漬管ともに高温にさらされている。一方、真空脱ガスが終了すると、真空槽は溶鋼と接触しなくなるので、これらの浸漬管は冷却される。   When performing vacuum refining of molten steel, both the ascending dip tube 5a and the descending dip tube 5b are immersed in the molten steel 2, and the molten steel circulates on the inner peripheral side of the dip tube 5, and most of the outer peripheral side of the dip tube 5 is on the outer peripheral side. It is in contact with the molten steel in the ladle. Therefore, during the operation of vacuum degassing, both the ascending dip tube and the descending dip tube are exposed to high temperatures. On the other hand, when the vacuum degassing is finished, the vacuum tank is not in contact with the molten steel, so that these dip tubes are cooled.

このようにして上昇浸漬管と下降浸漬管との加熱と冷却が繰り返される結果として、浸漬管5の内部に埋設された芯金8は膨張と収縮に起因する熱応力を受けるため、図4、5に示すように、芯金8はその下方先端部がラッパ状に変形する。芯金の変形は、周囲の耐火物に亀裂7を生じさせ、亀裂7に溶鋼やスラグが浸入することにより侵食されて次第に拡大していき、耐火物の剥離を招く。即ち、芯金8の変形は、浸漬管5の耐用性が悪化する原因になり、芯金8の変形を防止する技術が種々検討されてきた。   As a result of repeated heating and cooling of the ascending dip tube and the descending dip tube in this manner, the cored bar 8 embedded in the dip tube 5 is subjected to thermal stress caused by expansion and contraction. As shown in FIG. 5, the lower end of the cored bar 8 is deformed into a trumpet shape. The deformation of the metal core causes a crack 7 in the surrounding refractory, and when the molten steel or slag enters the crack 7 erodes and gradually expands, causing the refractory to peel off. That is, the deformation of the cored bar 8 causes the durability of the dip tube 5 to deteriorate, and various techniques for preventing the deformation of the cored bar 8 have been studied.

特許文献1には、浸漬管の芯金として第1芯金とその外側に第2芯金を配設し、第1芯金と第2芯金との隙間に充填用不定形耐火物を充填したものが開示されている。充填用不定形耐火物には、成形用不定形耐火物と同材料のものあるいは異材料のものが使用されている。具体的にはAl23を89〜90質量%及びMgOを7〜8質量%含有する不定形耐火物、Al23を90〜95質量%含有する不定形耐火物が使用されている。このように二重構造の芯金を採用し、その隙間に充填用不定形耐火物を充填することによって補強効果を高め、浸漬管の耐用性を向上し、寿命を大幅に延長できるとしている。 In Patent Document 1, a first cored bar as a cored bar of a dip tube and a second cored bar are disposed outside the cored bar, and a filling refractory for filling is filled in a gap between the first cored bar and the second cored bar. Has been disclosed. The filling refractory is made of the same or different material as the forming refractory. Specifically monolithic refractory containing 7-8 wt% of Al 2 O 3 of 89-90% by weight and MgO is monolithic refractories have been used to contain Al 2 O 3 90-95 wt% . By adopting a double cored bar in this way and filling the gap with an irregular refractory for filling, the reinforcing effect is enhanced, the durability of the dip tube is improved, and the life can be greatly extended.

特許文献2、3には、外側円筒鉄板、内側円筒鉄板及び底板からなり、内部に冷却ガスを流す芯金を内蔵し、その周囲を耐火物で覆った構造の浸漬管が開示されている。特許文献2に記載のものは、外周円筒鉄板と内周円筒鉄板との間隙部に金属板を介挿し、介挿金属板への輻射伝熱及び介挿金属板からの対流伝熱により冷却を向上させるとしている。特許文献3に記載のものは、外側円筒鉄板及び/又は内側円筒鉄板の冷却ガスの流路側の側面に、鉛直方向に伸延したフィンを複数個設けることにより、芯金の伝熱面積が広がり、その冷却能力が高まるとしている。   Patent Documents 2 and 3 disclose a dip tube having a structure including an outer cylindrical iron plate, an inner cylindrical iron plate, and a bottom plate, in which a core metal for flowing a cooling gas is incorporated, and the periphery thereof is covered with a refractory. The thing of patent document 2 inserts a metal plate in the clearance gap between an outer peripheral cylindrical iron plate and an inner peripheral cylindrical iron plate, and cools by the radiant heat transfer to the interposer metal plate, and the convective heat transfer from the interposer metal plate. Trying to improve. The one described in Patent Document 3 is provided with a plurality of fins extending in the vertical direction on the side surface of the outer cylindrical iron plate and / or the inner cylindrical iron plate on the flow path side of the cooling gas. The cooling capacity is said to increase.

RH真空脱ガス処理を行う品種の中には、溶鋼中の窒素濃度を極めて低いレベルとすべき品種がある。一方、RH真空脱ガスにおいて、真空槽中の溶融金属に大気が浸入すると、大気中の窒素が溶融金属中に移行し、溶融金属中の窒素濃度が増大することとなる。RH真空脱ガス装置の浸漬管においては、耐火物を経由して大気圧の外気が減圧された真空槽内に浸入する経路がある。浸漬管は芯金の外周側耐火物と内周側耐火物とが、芯金下方の底部耐火物で連結されているため、これら耐火物を経由して空気が真空槽内に浸入する。   Among the varieties that perform RH vacuum degassing, there are varieties that should have a very low nitrogen concentration in the molten steel. On the other hand, in the RH vacuum degassing, when the atmosphere enters the molten metal in the vacuum chamber, the nitrogen in the atmosphere moves into the molten metal, and the nitrogen concentration in the molten metal increases. In the dip tube of the RH vacuum degassing apparatus, there is a path through which the outside air at atmospheric pressure enters the vacuum tank through the refractory. In the dip tube, the outer peripheral side refractory and the inner peripheral side refractory of the core metal are connected by the bottom refractory below the core metal, so that air enters the vacuum chamber via these refractories.

特許文献4には、芯金の外周面に芯金を周回するガス溜まりを耐火物に埋設させて設け、このガス溜まりから不活性ガスを耐火物中に吹き出す浸漬管が開示されている。また特許文献5には、芯金の外側かつ溶鋼湯面より下方に位置させた円弧状の複数通気性耐火物に窒素ガスを供給する浸漬管が開示されている。これにより、浸漬管の浸漬耐火物を経路とした空気の溶鋼中への侵入を阻止することができるとしている。   Patent Document 4 discloses a dip tube in which a gas reservoir that circulates a metal core is embedded in the refractory on the outer peripheral surface of the metal core, and an inert gas is blown into the refractory from the gas reservoir. Patent Document 5 discloses a dip tube that supplies nitrogen gas to an arc-shaped plural breathable refractory material that is positioned outside the core metal and below the molten steel surface. Thereby, it is supposed that the penetration | invasion into the molten steel of the air which made the path | route the immersion refractory of a dip tube can be prevented.

特開2005−325392号公報JP 2005-325392 A 特開昭61−253318号公報JP-A-61-253318 特開2004−256881号公報Japanese Patent Application Laid-Open No. 2004-256881 実開昭62−136556号公報Japanese Utility Model Publication No. 62-136556 特開2005−200696号公報Japanese Patent Laying-Open No. 2005-200696

特許文献1に記載の方法では、二重構造の芯金の隙間に充填用不定形耐火物を充填することにより、確かに浸漬管の寿命が延びるものの、充填用不定形耐火物が十分でないため、完全に芯金の変形を抑えることができず、その変形に伴う浸漬管の亀裂や剥離を防止できない。   In the method described in Patent Document 1, filling the amorphous refractory for filling in the gap between the cores of the double structure certainly increases the life of the dip tube, but the amorphous refractory for filling is not sufficient. The deformation of the metal core cannot be completely suppressed, and the dip tube cannot be cracked or peeled off due to the deformation.

特許文献2、3に記載の方法では、芯金の冷却能を付与させたものであるが、芯金自体の構造体強度が十分ではなく、芯金の変形を防止することができず、芯金の変形に伴い耐火物に亀裂が発生し、激しい場合は剥離に至り、浸漬管の耐用性を十分に向上させることができない。   In the methods described in Patent Documents 2 and 3, the core bar is cooled, but the structure strength of the core metal itself is not sufficient, and the core metal cannot be prevented from being deformed. Cracks occur in the refractory with the deformation of the gold, and when it is severe, it leads to peeling, and the durability of the dip tube cannot be sufficiently improved.

本発明は、溶融金属の脱ガス処理を行う脱ガス装置の真空槽に取り付けられる溶融金属処理用浸漬管について、耐用性を向上させ、寿命を大幅に延長することのできる浸漬管及びその製造方法並びに真空脱ガス方法を提供することを目的とする。   The present invention relates to a dip tube for molten metal treatment that is attached to a vacuum tank of a degassing device that performs degassing treatment of molten metal, and the dip tube that can improve the durability and greatly extend the life, and a method for manufacturing the dip tube An object of the present invention is to provide a vacuum degassing method.

即ち、本発明の要旨とするところは以下のとおりである。
(1)溶融金属の脱ガス処理を行う脱ガス装置の真空槽に取り付けられる溶融金属処理用浸漬管5であって、浸漬管5の芯金8は内側円筒鉄板8aと外側円筒鉄板8bの二重管形状であり、芯金8の内外周及び底部に耐火れんが9若しくは不定形耐火物10を配置し、芯金8の外側円筒鉄板8bと内側円筒鉄板8aの間隙部11に不定形耐火物を充填し(以下「充填不定形耐火物13」という。)、充填不定形耐火物13は見掛け気孔率が30%以下であり、充填不定形耐火物13の曲げ強度が5MPa以上であり、芯金8の間隙部11に冷却ガスを流すためのガス導入管14を配設したことを特徴とする溶融金属処理用浸漬管。
(2)充填不定形耐火物13の原料として最大粒径2mm以下の耐火物を用いてなることを特徴とする上記(1)に記載の溶融金属処理用浸漬管。
(3)RH真空脱ガス装置の浸漬管であることを特徴とする上記(1)又は(2)に記載の溶融金属処理用浸漬管。
(4)溶融金属の脱ガス処理を行う脱ガス装置の真空槽に取り付けられる溶融金属処理用浸漬管の製造方法であって、浸漬管5の芯金8は内側円筒鉄板8aと外側円筒鉄板8bの二重管形状であり、芯金8の内外周及び底部に耐火れんが9若しくは不定形耐火物10を配置し、芯金8の外側円筒鉄板8bと内側円筒鉄板8aの間隙部11に最大粒径2mm以下の不定形耐火物を充填し(以下「充填不定形耐火物13」という。)、充填不定形耐火物13の見掛け気孔率を30%以下とし、充填不定形耐火物13の曲げ強度が5MPa以上であり、芯金8の間隙部11に冷却ガスを流すためのガス導入管14を配設したことを特徴とする溶融金属処理用浸漬管の製造方法。
(5)浸漬管5がRH真空脱ガス装置の浸漬管であることを特徴とする上記(4)に記載の溶融金属処理用浸漬管の製造方法。
(6)RH真空脱ガス装置を用いた真空脱ガス方法であって、上記(3)に記載の溶融金属処理用浸漬管を用い、ガス導入管14から芯金8の間隙部11に不活性ガスを供給しつつ真空脱ガスを行うことを特徴とする真空脱ガス方法。
That is, the gist of the present invention is as follows.
(1) Molten metal processing dip tube 5 attached to a vacuum tank of a degassing apparatus for degassing molten metal, and the core metal 8 of the dip tube 5 includes an inner cylindrical iron plate 8a and an outer cylindrical iron plate 8b. A refractory brick 9 or an irregular refractory 10 is arranged on the inner and outer periphery and bottom of the cored bar 8, and an irregular refractory is formed in the gap 11 between the outer cylindrical iron plate 8b and the inner cylindrical iron plate 8a of the cored bar 8. (Hereinafter referred to as “filled amorphous refractory 13”), the filled amorphous refractory 13 has an apparent porosity of 30% or less, the bending amorphous refractory 13 has a bending strength of 5 MPa or more, and a core. A molten metal processing dip tube in which a gas introduction tube 14 for flowing a cooling gas through the gap 11 of the gold 8 is provided.
(2) The dip tube for molten metal treatment as described in (1) above, wherein a refractory having a maximum particle size of 2 mm or less is used as a raw material for the filled amorphous refractory 13.
(3) The dip tube for molten metal treatment according to the above (1) or (2), which is a dip tube of an RH vacuum degassing apparatus.
(4) A method of manufacturing a dip tube for molten metal treatment that is attached to a vacuum tank of a degassing device that performs degassing treatment of molten metal, wherein the cored bar 8 of the dip tube 5 includes an inner cylindrical iron plate 8a and an outer cylindrical iron plate 8b. The refractory brick 9 or the irregular refractory 10 is disposed on the inner and outer circumferences and bottom of the cored bar 8, and the largest grain is formed in the gap 11 between the outer cylindrical iron plate 8b and the inner cylindrical iron plate 8a of the cored bar 8. Filled with an amorphous refractory with a diameter of 2 mm or less (hereinafter referred to as “filled amorphous refractory 13”), the apparent porosity of the filled amorphous refractory 13 is 30% or less, and the bending strength of the filled amorphous refractory 13 A method for manufacturing a dip tube for treating molten metal, characterized in that a gas introduction tube 14 for flowing a cooling gas through the gap 11 of the core 8 is provided.
(5) The method for manufacturing a dip tube for molten metal treatment as described in (4) above, wherein the dip tube 5 is a dip tube of an RH vacuum degassing apparatus.
(6) A vacuum degassing method using an RH vacuum degassing apparatus, which uses the dip tube for molten metal treatment described in (3) above, and is inert from the gas introduction tube 14 to the gap 11 of the metal core 8. A vacuum degassing method comprising performing vacuum degassing while supplying a gas.

本発明は、溶融金属の脱ガス処理を行う脱ガス装置の真空槽に取り付けられる溶融金属処理用浸漬管について、浸漬管の芯金を二重管形状とし、芯金の外側円筒鉄板と内側円筒鉄板の間隙部に、見掛け気孔率が30%以下、曲げ強度が5MPa以上の不定形耐火物を充填し、芯金の間隙部に冷却ガスを流すことより、耐用性を向上させ、寿命を大幅に延長することができる。しかも、浸漬管耐火物内を通って真空槽内へ空気が侵入するのを防ぐ。   The present invention relates to a dip tube for molten metal treatment that is attached to a vacuum tank of a degassing apparatus that performs degassing treatment of molten metal, and the dip tube has a double-pipe core metal, and an outer cylindrical iron plate and an inner cylinder of the core metal Filling the gaps in the iron plate with an irregular refractory with an apparent porosity of 30% or less and a bending strength of 5 MPa or more, and flowing cooling gas through the gaps in the cored bar improves the durability and greatly increases the service life. Can be extended to Moreover, air is prevented from entering the vacuum chamber through the dip tube refractory.

図1、2に本発明の浸漬管の例を模式的に断面図で示す。   An example of the dip tube of the present invention is schematically shown in cross-sectional views in FIGS.

RH真空脱ガス装置に用いられる浸漬管、DH真空脱ガス装置に用いられる浸漬管のいずれも、基本的な構造は同じである。図6に示すように、RH真空脱ガス装置の上昇浸漬管5aについては、浸漬管内周から不活性ガスを吹き込むための不活性ガス吹き込みノズル6が配置されている。ただし図1、2には不活性ガス吹き込みノズルを図示しない。以下、RH真空脱ガス装置の上昇浸漬管、下降浸漬管、DH真空脱ガス装置の浸漬管を区別せずに説明する。   Both the dip tube used in the RH vacuum degassing apparatus and the dip tube used in the DH vacuum degassing apparatus have the same basic structure. As shown in FIG. 6, with respect to the rising dip tube 5a of the RH vacuum degassing apparatus, an inert gas blowing nozzle 6 for blowing an inert gas from the inner periphery of the dip tube is arranged. However, an inert gas blowing nozzle is not shown in FIGS. Hereinafter, the ascending dip tube, the descending dip tube of the RH vacuum degassing apparatus, and the dip tube of the DH vacuum degassing apparatus will be described without distinction.

本発明の浸漬管5は、その上部に配置したフランジ12において真空槽3と結合される。芯金8を構成する内側円筒鉄板8aと外側円筒鉄板8bはともにフランジ12に接合され、両者は二重管形状をなす。芯金8の内外周及び底部に耐火れんが9若しくは不定形耐火物10を配置する。図1の例では、芯金8の内周側に耐火れんが9を配置し、芯金の外周に外周側不定形耐火物10a、底部に底部不定形耐火物10cを配置している。図2の例では、芯金の内外周及び底部のいずれも不定形耐火物10を配置している。   The dip tube 5 of the present invention is coupled to the vacuum chamber 3 at a flange 12 disposed on the top thereof. The inner cylindrical iron plate 8a and the outer cylindrical iron plate 8b constituting the cored bar 8 are both joined to the flange 12, and both form a double tube shape. Refractory bricks 9 or amorphous refractories 10 are arranged on the inner and outer circumferences and bottom of the cored bar 8. In the example of FIG. 1, a refractory brick 9 is disposed on the inner peripheral side of the cored bar 8, an outer peripheral side indefinite refractory 10 a is disposed on the outer periphery of the cored bar, and a bottom indeterminate refractory 10 c is disposed on the bottom. In the example of FIG. 2, the irregular refractory 10 is disposed on both the inner and outer circumferences and the bottom of the cored bar.

芯金8となる内側円筒鉄板8aと外側円筒鉄板8bは、いずれも耐熱性に優れた金属(例えば炭素鋼、ステンレス鋼など)を使用するのが好ましい。これら円筒鉄板の厚みは浸漬管の直径により決定されるが、10〜20mmの厚みのものが使用される。また必要に応じて耐火物を保持するためにスタッドやれんが押さえ金物を溶接にて取り付けたものを使用する。   It is preferable to use a metal (for example, carbon steel, stainless steel, etc.) excellent in heat resistance for both the inner cylindrical iron plate 8a and the outer cylindrical iron plate 8b serving as the cored bar 8. The thickness of these cylindrical iron plates is determined by the diameter of the dip tube, but a thickness of 10 to 20 mm is used. In addition, a stud or brick holding metal is attached by welding to hold the refractory as necessary.

内側円筒鉄板8aと外側円筒鉄板8bとの間の間隙部11は、芯金の構造体強度をより高めるために広くすることが好ましい。一方、浸漬管5の全体肉厚には制約があり、また芯金の外周側耐火物及び内周側耐火物の肉厚はそれぞれ使用時の溶損に対応して必要な肉厚を確保する必要がある。そのため、内側円筒鉄板8aと外側円筒鉄板8bとの間隙も制約を受け、具体的には10〜40mmの範囲にすることが好ましい。   The gap 11 between the inner cylindrical iron plate 8a and the outer cylindrical iron plate 8b is preferably widened to further increase the strength of the core metal structure. On the other hand, the total thickness of the dip tube 5 is limited, and the outer refractory and inner refractory thicknesses of the core metal ensure the necessary thickness corresponding to the melting damage during use. There is a need. For this reason, the gap between the inner cylindrical iron plate 8a and the outer cylindrical iron plate 8b is also restricted, and specifically, it is preferably in the range of 10 to 40 mm.

芯金8の構造体強度をより高めるために、浸漬管5の下端側について、外側円筒鉄板8bと内側円筒鉄板8aの端部同士を鋼部材で溶接により互いに固定することも可能である。鋼部材としては丸鋼を用いることができる。   In order to further increase the strength of the structure of the cored bar 8, the ends of the outer cylindrical iron plate 8b and the inner cylindrical iron plate 8a can be fixed to each other by welding with a steel member on the lower end side of the dip tube 5. Round steel can be used as the steel member.

本発明では、芯金の外側円筒鉄板8bと内側円筒鉄板8aの間隙部11に不定形耐火物を充填する。この不定形耐火物を「充填不定形耐火物13」という。   In the present invention, an irregular refractory is filled in the gap 11 between the outer cylindrical iron plate 8b and the inner cylindrical iron plate 8a, which is a core metal. This amorphous refractory is referred to as “filled amorphous refractory 13”.

特許文献1に記載のものは、浸漬管の芯金として第1芯金とその外側に第2芯金を配設し、第1芯金と第2芯金との隙間に充填用不定形耐火物を充填しているものの、芯金の変形を完全に防止できず、浸漬管の耐用性を十分に向上させることができなかった。特に、亀裂への溶鋼差しやスラグ浸潤が大きい問題であった。   The thing of patent document 1 arrange | positions the 1st metal core as a metal core of a dip tube, and the 2nd metal core on the outer side, and fills the clearance gap between a 1st metal core and a 2nd metal core, and is an irregular-shaped fireproof for filling. Although the material was filled, the deformation of the core metal could not be completely prevented, and the durability of the dip tube could not be sufficiently improved. In particular, molten steel and slag infiltration into cracks were major problems.

不定形耐火物として、通常は最大粒径が2mmを超える粒度分布の耐火物が用いられる。特許文献1に記載のものは使用する不定形耐火物の粒度分布を指定していない。特許文献1に記載のものが通常用いられる粒径分布の不定形耐火物を第1芯金と第2芯金との隙間に充填したとすると、充填した耐火物の見掛け気孔率が40%程度と高い見掛け気孔率になっていたものと考えられる。特許文献1に記載の浸漬管の寿命が十分に延びなかった理由は、このように充填不定形耐火物の見掛け気孔率が高すぎるためであることが明らかになった。   As the amorphous refractory, a refractory having a particle size distribution in which the maximum particle size is more than 2 mm is usually used. The thing of patent document 1 does not designate the particle size distribution of the amorphous refractory to be used. When an irregular refractory having a particle size distribution generally used in Patent Document 1 is filled in the gap between the first core and the second core, the apparent porosity of the filled refractory is about 40%. It is considered that the apparent porosity was high. It was clarified that the reason why the life of the dip tube described in Patent Document 1 was not sufficiently extended was that the apparent porosity of the filled amorphous refractory was too high.

そこで本発明においては、充填不定形耐火物13の見掛け気孔率を30%以下と緻密な構造の耐火物としたところ、芯金8の構造体としての強度を向上することができ、浸漬管5の寿命を向上する上で大きな効果を発揮することができた。充填不定形耐火物13の見掛け気孔率は、JIS R 2205(耐火れんがの見掛け気孔率、吸水率及び比重の測定方法)に規定されている方法で測定した。   Therefore, in the present invention, when the apparent porosity of the filled amorphous refractory 13 is 30% or less and the refractory has a dense structure, the strength of the cored bar 8 as a structure can be improved, and the dip tube 5 It was possible to exert a great effect on improving the life of the product. The apparent porosity of the filled amorphous refractory 13 was measured by the method prescribed in JIS R 2205 (Measurement method of apparent porosity, water absorption rate and specific gravity of refractory bricks).

二重管形状であって間隙部11の間隔が10〜40mm程度の狭い間隔であり、このような隙間に不定形耐火物を充填して見掛け気孔率30%以下を確保するためには、使用する不定形耐火物の最大粒径を2mm以下とすることが有効である。   In order to ensure an apparent porosity of 30% or less by filling an irregular refractory into such a gap, the gap 11 is a narrow gap of about 10 to 40 mm. It is effective to set the maximum particle size of the irregular refractory to 2 mm or less.

また、芯金8の構造体強度を確保する上では、充填不定形耐火物13の曲げ強度を5MPa以上とすることが必要であることを明らかにした。充填不定形耐火物13の曲げ強度測定は、40×40×160mmの型枠内に充填不定形耐火物を施工したものを試験片とした。そしてこの試験片をJIS R2553(キャスタブル耐火物の曲げ試験方法)に規定されている三点曲げ試験方法により測定した。   Further, it has been clarified that the bending strength of the filled amorphous refractory 13 needs to be 5 MPa or more in order to ensure the structure strength of the cored bar 8. The bending strength measurement of the filled amorphous refractory 13 was performed by applying a filled amorphous refractory in a 40 × 40 × 160 mm mold. The test piece was measured by a three-point bending test method defined in JIS R2553 (castable refractory bending test method).

通常に使用される不定形耐火物(最大粒径が2mmを超える)を芯金の間隙部11に充填して成形したときの曲げ強度は、せいぜい3〜4MPa程度である。見掛け気孔率が30%を超え、充填不定形耐火物13の緻密さが不十分だからである。曲げ強度を5MPa以上とするためには、最大粒径が2mm以下の不定形耐火物を用い、見掛け気孔率が30%以下になるように緻密に充填すればよい。   The bending strength when the irregularly shaped refractory (usually larger than 2 mm) that is normally used is filled into the gap 11 of the cored bar and molded is at most about 3 to 4 MPa. This is because the apparent porosity exceeds 30% and the denseness of the filled amorphous refractory 13 is insufficient. In order to set the bending strength to 5 MPa or more, an irregular refractory having a maximum particle size of 2 mm or less may be used, and it may be densely packed so that the apparent porosity is 30% or less.

充填不定形耐火物13を施工するに際しては、最大粒径2mm以下の耐火物原料を任意の水で混練し、混練物を施工する。施工方法は特に限定はしないが、流し込み工法やスタンプ工法により施工することができる。耐火物原料は特に限定されないが、アルミナ、マグネシア、スピネルなどの原料から構成されており、アルミナを80〜90質量%含有する不定形耐火物を使用することができる。   When constructing the filled amorphous refractory 13, a refractory material having a maximum particle size of 2 mm or less is kneaded with arbitrary water to construct the kneaded product. Although the construction method is not particularly limited, it can be constructed by a casting method or a stamp method. Although the refractory raw material is not particularly limited, it is composed of raw materials such as alumina, magnesia, and spinel, and an amorphous refractory containing 80 to 90% by mass of alumina can be used.

本発明の浸漬管5はさらに、芯金8の間隙部11に冷却ガスを流すためのガス導入管14を配設し、ガス導入管14から芯金の間隙部11に不活性ガスを供給しつつ真空脱ガスを行うことを特徴とする。ガス導入管14は、フランジ近くから浸漬管に配設し、内側円筒鉄板8aと外側円筒鉄板8bとの間隙に不活性ガスを供給する。   The dip tube 5 of the present invention further includes a gas introduction tube 14 for flowing a cooling gas in the gap 11 of the core 8, and supplies an inert gas from the gas introduction tube 14 to the gap 11 of the core. The vacuum degassing is performed. The gas introduction pipe 14 is disposed in the dip pipe from near the flange, and supplies an inert gas to the gap between the inner cylindrical iron plate 8a and the outer cylindrical iron plate 8b.

特許文献2、3に記載の浸漬管も、芯金を構成する外側円筒鉄板と内側円筒鉄板との間に冷却ガスを流す。しかし特許文献2、3に記載のものは、外側円筒鉄板と内側円筒鉄板との間に不定形耐火物を充填していないので、芯金構造体としての強度を十分に確保することができず、そのため芯金を冷却しているにもかかわらず、芯金の変形を防止することができず、芯金の変形に伴い耐火物に亀裂が発生し、激しい場合は剥離に至り、浸漬管の耐用性を十分に向上させることができなかった。   The dip tubes described in Patent Documents 2 and 3 also flow cooling gas between the outer cylindrical iron plate and the inner cylindrical iron plate that constitute the core metal. However, since the thing of patent documents 2 and 3 does not fill the amorphous refractory between the outer cylindrical iron plate and the inner cylindrical iron plate, the strength as a core metal structure cannot be secured sufficiently. Therefore, even though the cored bar is cooled, deformation of the cored bar cannot be prevented, and cracking occurs in the refractory with the deformation of the cored bar. The durability could not be improved sufficiently.

そもそも、二重管構造の芯金の間隙部に冷却用のガスを流す場合において、間隙部を不定形耐火物で充填したのでは、冷却するに十分な量のガスを流すことが不可能であると考えられていた。本発明のように充填不定形耐火物の見掛け気孔率が30%以下となるように緻密に充填した場合にはなおさらである。ところが、見掛け気孔率が30%以下であっても充填不定形耐火物中に気孔は存在する。また浸漬管を溶融金属の脱ガスに使用することによって受ける加熱冷却により、図3(b)に示すように、外側及び内側円筒鉄板と充填不定形耐火物との間には隙間16が生じる。さらに図3(c)に示すように、充填不定形耐火物13中に亀裂15が発生することもある。これら気孔や隙間16、亀裂15を介して、芯金の上端付近から二重管構造の間隙部11に吹き込んだ不活性ガスは、充填不定形耐火物13の間をガス流れ17として移動し、芯金8の下端から浸漬管の底部を構成する耐火物中に伝搬し、最終的に浸漬管の外に放出されることがわかった。そして、二重管構造の芯金の間隙部11に冷却用のガスを流すことによって、浸漬管の寿命が改善されることが確認され、そのことから冷却ガスによる冷却効果が確かに効いていることが明らかである。   In the first place, when the cooling gas is made to flow through the gap between the cores of the double tube structure, if the gap is filled with an irregular refractory, it is impossible to flow a sufficient amount of gas for cooling. It was thought to be. This is especially true when the filled amorphous refractory is packed densely so that the apparent porosity of the filled amorphous refractory is 30% or less. However, even if the apparent porosity is 30% or less, there are pores in the filled amorphous refractory. In addition, as shown in FIG. 3 (b), a gap 16 is formed between the outer and inner cylindrical iron plates and the filled amorphous refractory material by heating and cooling that is received by using the dip tube for degassing the molten metal. Further, as shown in FIG. 3C, a crack 15 may occur in the filled amorphous refractory 13. The inert gas blown into the gap 11 of the double tube structure from the vicinity of the upper end of the core metal through these pores, gaps 16 and cracks 15 moves as a gas flow 17 between the filled amorphous refractory 13, It was found that it propagated from the lower end of the cored bar 8 into the refractory constituting the bottom of the dip tube and was finally discharged out of the dip tube. Then, it is confirmed that the life of the dip tube is improved by flowing a cooling gas through the gap 11 of the cored bar having a double tube structure, and the cooling effect by the cooling gas is surely effective. It is clear.

本発明は上記知見に基づいてなされたものであり、二重管構造の芯金8の間隙部11に不定形耐火物を充填した上でさらに内部空間に不活性ガスを流し、不定形耐火物充填による芯金構造体強度の向上と、ガスを流すことによる冷却効果で真空脱ガス処理中の芯金の温度を低下させることの相乗効果により、芯金の変形防止効果を飛躍的に向上することができ、浸漬管の耐用性を大幅に向上することに成功した。   The present invention has been made on the basis of the above knowledge, and after filling the gap 11 of the double-bar structure cored bar 11 with an amorphous refractory, an inert gas is further allowed to flow into the internal space, thereby forming an amorphous refractory. By improving the strength of the cored bar structure by filling and reducing the temperature of the cored bar during vacuum degassing due to the cooling effect by flowing gas, the deformation prevention effect of the cored bar is dramatically improved. And succeeded in greatly improving the durability of the dip tube.

従来、特許文献1に記載のように二重管構造の芯金の内部空間に不定形耐火物を充填したのみでは、耐溶損性や耐浸潤性が十分でなく、浸漬管の耐用性を十分に向上させることができない。特に、亀裂への溶鋼差しやスラグ浸潤が大きい問題であった。これに対し、本発明で二重管構造の芯金の内部空間に冷却用のガスを流した結果として、気孔や亀裂への溶鋼やスラグの浸入を防止することができるという効果をも発揮する。   Conventionally, as described in Patent Document 1, just filling the internal space of a double-pipe cored bar with an indeterminate refractory does not provide sufficient resistance to erosion and infiltration, and sufficient dip tube durability. Cannot be improved. In particular, molten steel and slag infiltration into cracks were major problems. On the other hand, as a result of flowing the cooling gas into the inner space of the double-bar structure core metal in the present invention, the effect of preventing the intrusion of the molten steel and slag into the pores and cracks is also exhibited. .

使用する不活性ガスとしては、Arガスを用いると好ましい。また不活性ガスの流量は、使用する不定形耐火物の見掛け気孔率や浸漬管の形状により決定され、特に限定するものではない。芯金の直径が1070mm、内側円筒鉄板と外側円筒鉄板との間隙が16mm程度のRH真空脱ガス装置の浸漬管の場合、流量を0.5〜3Nm3/min程度とすることができる。 As an inert gas to be used, it is preferable to use Ar gas. Further, the flow rate of the inert gas is determined by the apparent porosity of the amorphous refractory used and the shape of the dip tube, and is not particularly limited. In the case of the dip tube of the RH vacuum degassing apparatus in which the diameter of the core metal is 1070 mm and the gap between the inner cylindrical iron plate and the outer cylindrical iron plate is about 16 mm, the flow rate can be set to about 0.5 to 3 Nm 3 / min.

ガス導入管14から芯金8の間隙部11に導入された不活性ガスは、芯金8の下端部から浸漬管の底部耐火物中に導入される。そのため、浸漬管5の芯金外周側耐火物の大気接触部から大気が浸入したとしても、底部耐火物中に充満した不活性ガスによって行く手を阻まれ、芯金の内周側耐火物まで到達することができない。そのため、大気中の窒素が減圧部の溶鋼にまで到達しないので、真空脱ガス中における溶鋼の吸窒を防止することができる。特許文献4、5に記載のような、真空脱ガス処理中の吸窒防止のための特別な機構を設ける必要がないので、安価に極低窒素鋼を溶製することが可能となる。   The inert gas introduced from the gas introduction pipe 14 into the gap 11 of the cored bar 8 is introduced from the lower end of the cored bar 8 into the bottom refractory of the dip pipe. Therefore, even if air enters from the atmosphere contact portion of the refractory on the outer periphery side of the core metal of the dip tube 5, it is blocked by the inert gas filled in the bottom refractory and reaches the refractory on the inner periphery side of the core metal Can not do it. For this reason, since nitrogen in the atmosphere does not reach the molten steel in the decompression section, it is possible to prevent the molten steel from being absorbed during vacuum degassing. Since it is not necessary to provide a special mechanism for preventing nitrogen absorption during the vacuum degassing process as described in Patent Documents 4 and 5, it is possible to melt ultra-low nitrogen steel at low cost.

本発明の浸漬管5は、RH真空脱ガス装置の浸漬管である場合に効果を発揮することができる。現在、溶鋼の真空脱ガス装置としてRH真空脱ガス装置は最も多く使用されているからである。   The dip tube 5 of the present invention can exhibit an effect when it is a dip tube of an RH vacuum degassing apparatus. This is because the RH vacuum degassing apparatus is most frequently used as a vacuum degassing apparatus for molten steel.

本発明の溶融金属の脱ガス処理を行う脱ガス装置の真空槽に取り付けられる溶融金属処理用浸漬管の製造方法は、浸漬管5の芯金8は内側円筒鉄板8aと外側円筒鉄板8bの二重管形状であり、芯金8の内外周及び底部に耐火れんが9若しくは不定形耐火物10を配置し、芯金8の外側円筒鉄板8bと内側円筒鉄板8aの間隙部11に最大粒径2mm以下の不定形耐火物を充填し、充填不定形耐火物13の見掛け気孔率を30%以下とし、充填不定形耐火物13の曲げ強度が5MPa以上とし、芯金8の間隙部11に冷却ガスを流すためのガス導入管14を配設することにより、上述のとおりの効果を発揮することができる。   The manufacturing method of the dip tube for molten metal processing attached to the vacuum tank of the degassing apparatus for degassing the molten metal according to the present invention is such that the core metal 8 of the dip tube 5 is composed of an inner cylindrical iron plate 8a and an outer cylindrical iron plate 8b. It has a heavy pipe shape, and refractory bricks 9 or amorphous refractories 10 are arranged on the inner and outer circumferences and bottom of the cored bar 8, and the maximum particle size is 2 mm in the gap 11 between the outer cylindrical iron plate 8b and the inner cylindrical iron plate 8a of the cored bar 8. The following amorphous refractory is filled, the apparent porosity of the filled amorphous refractory 13 is 30% or less, the bending strength of the filled amorphous refractory 13 is 5 MPa or more, and a cooling gas is provided in the gap 11 of the core metal 8. By providing the gas introduction pipe 14 for flowing the gas, the effects as described above can be exhibited.

ここにおいても、RH真空脱ガス装置の浸漬管である場合に効果を発揮することができる。   Also in this case, the effect can be exhibited in the case of a dip tube of an RH vacuum degassing apparatus.

本発明のRH真空脱ガス装置を用いた真空脱ガス方法においては、上記本発明の溶融金属処理用浸漬管5を用い、ガス導入管14から芯金の間隙部11に不活性ガスを供給しつつ真空脱ガスを行うことにより、浸漬管5の寿命を大幅に向上するとともに、真空脱ガス処理中における大気からの窒素浸入を防止し、極低窒素鋼の溶製を可能にする。   In the vacuum degassing method using the RH vacuum degassing apparatus of the present invention, an inert gas is supplied from the gas introduction pipe 14 to the gap 11 of the metal core using the molten metal processing dip pipe 5 of the present invention. While performing vacuum degassing, the life of the dip tube 5 is significantly improved, and nitrogen intrusion from the atmosphere during the vacuum degassing treatment is prevented, and extremely low nitrogen steel can be melted.

300トンの溶鋼を真空脱ガス処理するためのRH真空脱ガス装置の浸漬管において、図1に示す形状の浸漬管5を用い、本発明を適用した。浸漬管の外径は1370mm、内径は750mm、長さは750mmである。芯金8の直径は1070mm、長さは520mmである。   In the dip tube of the RH vacuum degassing apparatus for vacuum degassing treatment of 300 tons of molten steel, the present invention was applied using the dip tube 5 having the shape shown in FIG. The outer diameter of the dip tube is 1370 mm, the inner diameter is 750 mm, and the length is 750 mm. The core 8 has a diameter of 1070 mm and a length of 520 mm.

芯金8を二重管構造とした本発明例及び比較例では、外側円筒鉄板8b及び内側円筒鉄板8aの厚みを12mm、両者の間隙を16mmとした。従来例は、厚み12mmの単管構造の芯金とした。芯金の内周側耐火物としてマグネシア−カーボンれんがを用い、芯金の外周及び底部の耐火物としてアルミナ−スピネル不定形耐火物を施工した。   In the present invention example and the comparative example in which the core metal 8 has a double tube structure, the thickness of the outer cylindrical iron plate 8b and the inner cylindrical iron plate 8a is 12 mm, and the gap between them is 16 mm. In the conventional example, the cored bar has a single tube structure with a thickness of 12 mm. A magnesia-carbon brick was used as the inner peripheral side refractory of the core metal, and an alumina-spinel amorphous refractory was applied as the outer peripheral and bottom refractories of the core metal.

本発明例及び比較例では、二重管構造の芯金の間隙部11に不定形耐火物を充填した。充填不定形耐火物13の化学成分、最大粒径を表1に示す。施工方法としては、振動流し込み工法を採用した。充填後の不定形耐火物の物性を測定するために、16×16×16mm型枠内に施工し、これを試料とした。見掛け気孔率をJIS R 2205(耐火れんがの見掛け気孔率、吸水率及び比重の測定方法)によって測定し、曲げ強度をJIS R2553(キャスタブル耐火物の曲げ試験方法)に規定されている三点曲げ試験方法により測定した。使用時の温度における物性を調査するために、1500℃×3hr焼成後の物性を測定した。   In the present invention example and the comparative example, the gap portion 11 of the core metal having a double tube structure was filled with an irregular refractory. Table 1 shows the chemical composition and maximum particle size of the filled amorphous refractory 13. As the construction method, the vibration casting method was adopted. In order to measure the physical properties of the amorphous refractory after filling, it was constructed in a 16 × 16 × 16 mm mold and used as a sample. The apparent porosity is measured according to JIS R 2205 (Measurement method of apparent porosity, water absorption and specific gravity of refractory bricks), and the bending strength is specified in JIS R2553 (bend test method of castable refractories). Measured by the method. In order to investigate the physical properties at the temperature during use, the physical properties after firing at 1500 ° C. × 3 hours were measured.

測定結果を表1に示す。本発明例1〜4は、いずれも充填不定形耐火物13として最大粒径2mm以下の耐火物を使用したため、見掛け気孔率は30%以下であり、曲げ強度も5MPa以上であった。比較例1、2は、充填不定形耐火物原料として最大粒径が2mmを超える耐火物を使用したため、見掛け気孔率が30%を超え、曲げ強度も5MPaに満たなかった。比較例3は最大粒径10.0mmの不定形耐火物を原料としたため、芯金の間隙部内に充填することができなかった。   The measurement results are shown in Table 1. In each of Invention Examples 1 to 4, since a refractory having a maximum particle size of 2 mm or less was used as the filled amorphous refractory 13, the apparent porosity was 30% or less, and the bending strength was 5 MPa or more. In Comparative Examples 1 and 2, since a refractory having a maximum particle size of more than 2 mm was used as the filled amorphous refractory material, the apparent porosity exceeded 30% and the bending strength was less than 5 MPa. In Comparative Example 3, since the raw material was an irregular refractory having a maximum particle size of 10.0 mm, it could not be filled in the gap portion of the cored bar.

Figure 2008013796
Figure 2008013796

本発明例及び比較例では、浸漬管5のフランジ12付近にガス導入管14を配設し、芯金の間隙部11にArガスを流した。Arガス流量を3Nm3/minとした。 In the present invention example and the comparative example, the gas introduction tube 14 was disposed near the flange 12 of the dip tube 5, and Ar gas was allowed to flow through the gap 11 of the cored bar. The Ar gas flow rate was 3 Nm 3 / min.

表1の本発明例1〜4、比較例1、2、従来例1に示す浸漬管を用い、RH真空脱ガス装置によって溶鋼の真空脱ガス処理を行った。何らかの理由で浸漬管の寿命が到来するまでの使用ヒート数をカウントした。各実施例の浸漬管の寿命、及び寿命に至った理由を表1に示す。   Using the dip tubes shown in Examples 1 to 4 of the present invention, Comparative Examples 1 and 2 and Conventional Example 1 in Table 1, the vacuum degassing treatment of the molten steel was performed by an RH vacuum degassing apparatus. The number of heats used until the end of the life of the dip tube for some reason was counted. Table 1 shows the life of the dip tube of each example and the reason for reaching the life.

本発明例1〜4は、いずれも浸漬管寿命が150チャージを超え、良好な寿命を実現することができた。寿命要因はいずれも浸漬管外周の耐火物自然溶損によるものであった。   In each of Invention Examples 1 to 4, the dip tube life exceeded 150 charges, and a good life could be realized. The lifetime factors were all due to spontaneous melting of the refractory around the dip tube.

比較例1、2及び従来例1は、浸漬管の下端部で耐火物が剥離し、70チャージ以下の短い寿命であった。いずれも、芯金の変形が見られた。   In Comparative Examples 1 and 2 and Conventional Example 1, the refractory was peeled off at the lower end of the dip tube and had a short life of 70 charges or less. In both cases, deformation of the metal core was observed.

本発明の浸漬管を示す断面図である。It is sectional drawing which shows the dip tube of this invention. 本発明の浸漬管を示す断面図である。It is sectional drawing which shows the dip tube of this invention. 芯金の間隙部の充填不定形耐火物の状況を示す図であり、(a)は充填直後の状況、(b)は内側・外側円筒鉄板と充填不定形耐火物との間に隙間が生じた状況、(c)は充填不定形耐火物に亀裂が生じた状況を示す図である。It is a figure which shows the condition of the filling irregular shape refractory of the clearance gap part of a metal core, (a) is the condition immediately after filling, (b) is a clearance gap produced between an inner and an outer cylindrical iron plate, and a filling irregular shape refractory. (C) is a figure which shows the condition where the crack was produced in the filling amorphous refractory. 浸漬管を構成する耐火物に亀裂が生じた状況を示す断面図である。It is sectional drawing which shows the condition where the crack produced in the refractory which comprises a dip tube. 浸漬管を構成する耐火物に亀裂が生じた状況を示す断面図である。It is sectional drawing which shows the condition where the crack produced in the refractory which comprises a dip tube. RH真空脱ガス装置の全体を示す概略断面図である。It is a schematic sectional drawing which shows the whole RH vacuum degassing apparatus.

符号の説明Explanation of symbols

1 取鍋
2 溶鋼
3 真空槽
4 排気ダクト
5 浸漬管
5a 上昇浸漬管
5b 下降浸漬管
6 不活性ガス吹き込みノズル
7 亀裂
8 芯金
8a 内側円筒鉄板
8b 外側円筒鉄板
9 耐火れんが
10 不定形耐火物
10a 外周側不定形耐火物
10b 内周側不定形耐火物
10c 底部不定形耐火物
11 間隙部
12 フランジ
13 充填不定形耐火物
14 ガス導入管
15 亀裂
16 隙間
17 ガス流れ
DESCRIPTION OF SYMBOLS 1 Ladle 2 Molten steel 3 Vacuum tank 4 Exhaust duct 5 Immersion pipe 5a Ascending dip pipe 5b Descent dip pipe 6 Inert gas blowing nozzle 7 Crack 8 Core metal 8a Inner cylindrical iron plate 8b Outer cylindrical iron plate 9 Fireproof brick 10 Amorphous refractory 10a Peripheral side irregular refractory 10b Inner peripheral side irregular refractory 10c Bottom irregular refractory 11 Crevice 12 Flange 13 Filled irregular refractory 14 Gas introduction pipe 15 Crack 16 Crevice 17 Gas flow

Claims (6)

溶融金属の脱ガス処理を行う脱ガス装置の真空槽に取り付けられる溶融金属処理用浸漬管であって、浸漬管の芯金は内側円筒鉄板と外側円筒鉄板の二重管形状であり、芯金の内外周及び底部に耐火れんが若しくは不定形耐火物を配置し、芯金の外側円筒鉄板と内側円筒鉄板の間隙部に不定形耐火物を充填し(以下「充填不定形耐火物」という。)、該充填不定形耐火物は見掛け気孔率が30%以下であり、該充填不定形耐火物の曲げ強度が5MPa以上であり、芯金の間隙部に冷却ガスを流すためのガス導入管を配設したことを特徴とする溶融金属処理用浸漬管。   A dip tube for molten metal treatment that is attached to a vacuum tank of a degassing device for degassing molten metal, and the core metal of the dip tube has a double tube shape of an inner cylindrical iron plate and an outer cylindrical iron plate, Refractory bricks or amorphous refractories are arranged on the inner and outer circumferences and bottom of the steel plate, and an irregular refractory is filled in the gap between the outer cylindrical iron plate and the inner cylindrical iron plate of the core metal (hereinafter referred to as “filled amorphous refractory”). The filled amorphous refractory has an apparent porosity of 30% or less, the filled amorphous refractory has a bending strength of 5 MPa or more, and a gas introduction pipe for flowing a cooling gas through the gap of the cored bar is provided. A dip tube for molten metal treatment characterized by being provided. 前記充填不定形耐火物の原料として最大粒径2mm以下の耐火物を用いてなることを特徴とする請求項1に記載の溶融金属処理用浸漬管。   The dip tube for molten metal treatment according to claim 1, wherein a refractory having a maximum particle size of 2 mm or less is used as a raw material for the filled amorphous refractory. RH真空脱ガス装置の浸漬管であることを特徴とする請求項1又は2に記載の溶融金属処理用浸漬管。   The dip tube for molten metal treatment according to claim 1 or 2, wherein the dip tube is a dip tube of an RH vacuum degassing apparatus. 溶融金属の脱ガス処理を行う脱ガス装置の真空槽に取り付けられる溶融金属処理用浸漬管の製造方法であって、浸漬管の芯金は内側円筒鉄板と外側円筒鉄板の二重管形状であり、芯金の内外周及び底部に耐火れんが若しくは不定形耐火物を配置し、芯金の外側円筒鉄板と内側円筒鉄板の間隙部に最大粒径2mm以下の不定形耐火物を充填し(以下「充填不定形耐火物」という。)、該充填不定形耐火物の見掛け気孔率を30%以下とし、該充填不定形耐火物の曲げ強度が5MPa以上であり、芯金の間隙部に冷却ガスを流すためのガス導入管を配設したことを特徴とする溶融金属処理用浸漬管の製造方法。   A method for manufacturing a dip tube for molten metal treatment that is attached to a vacuum tank of a degassing device for degassing molten metal, wherein the core metal of the dip tube has a double tube shape of an inner cylindrical iron plate and an outer cylindrical iron plate , Refractory bricks or amorphous refractories are placed on the inner and outer circumferences and bottom of the core metal, and the gap between the outer cylindrical iron plate and the inner cylindrical iron plate of the core metal is filled with an irregular refractory having a maximum particle size of 2 mm or less (hereinafter “ Filled amorphous refractory "), the apparent porosity of the filled amorphous refractory is 30% or less, the bending strength of the filled amorphous refractory is 5 MPa or more, and a cooling gas is introduced into the gap between the metal cores. A method for producing a dip tube for treating molten metal, characterized in that a gas introduction tube for flowing is provided. 前記浸漬管がRH真空脱ガス装置の浸漬管であることを特徴とする請求項4に記載の溶融金属処理用浸漬管の製造方法。   The said dip tube is a dip tube of RH vacuum degassing apparatus, The manufacturing method of the dip tube for molten metal processing of Claim 4 characterized by the above-mentioned. RH真空脱ガス装置を用いた真空脱ガス方法であって、請求項3に記載の溶融金属処理用浸漬管を用い、ガス導入管から芯金の間隙部に不活性ガスを供給しつつ真空脱ガスを行うことを特徴とする真空脱ガス方法。   A vacuum degassing method using an RH vacuum degassing apparatus, wherein a vacuum degassing is performed while supplying an inert gas from a gas introduction pipe to a gap portion of a metal core using the molten metal processing dip pipe according to claim 3. A vacuum degassing method comprising performing a gas.
JP2006184276A 2006-07-04 2006-07-04 Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method Active JP4676927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184276A JP4676927B2 (en) 2006-07-04 2006-07-04 Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184276A JP4676927B2 (en) 2006-07-04 2006-07-04 Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method

Publications (2)

Publication Number Publication Date
JP2008013796A true JP2008013796A (en) 2008-01-24
JP4676927B2 JP4676927B2 (en) 2011-04-27

Family

ID=39071105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184276A Active JP4676927B2 (en) 2006-07-04 2006-07-04 Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method

Country Status (1)

Country Link
JP (1) JP4676927B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185194A (en) * 2012-03-07 2013-09-19 Tokyo Yogyo Co Ltd Immersion tube for vacuum degassing apparatus
CN114737026A (en) * 2022-05-07 2022-07-12 广东韶钢松山股份有限公司 Method for prolonging service life of RH dip pipe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253318A (en) * 1985-05-04 1986-11-11 Nippon Steel Corp Method for cooling immersion pipe
JPH01164751U (en) * 1988-05-02 1989-11-17
JPH01164752U (en) * 1988-05-02 1989-11-17
JPH0429649U (en) * 1990-07-04 1992-03-10
JPH09118912A (en) * 1995-10-24 1997-05-06 Kurosaki Refract Co Ltd Sub-merged nozzle for vacuum degassing apparatus
JP2005272933A (en) * 2004-03-24 2005-10-06 Kurosaki Harima Corp Immersion tube for vacuum-degassing apparatus
JP2005325392A (en) * 2004-05-13 2005-11-24 Jfe Steel Kk Dip tube for degassing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253318A (en) * 1985-05-04 1986-11-11 Nippon Steel Corp Method for cooling immersion pipe
JPH01164751U (en) * 1988-05-02 1989-11-17
JPH01164752U (en) * 1988-05-02 1989-11-17
JPH0429649U (en) * 1990-07-04 1992-03-10
JPH09118912A (en) * 1995-10-24 1997-05-06 Kurosaki Refract Co Ltd Sub-merged nozzle for vacuum degassing apparatus
JP2005272933A (en) * 2004-03-24 2005-10-06 Kurosaki Harima Corp Immersion tube for vacuum-degassing apparatus
JP2005325392A (en) * 2004-05-13 2005-11-24 Jfe Steel Kk Dip tube for degassing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185194A (en) * 2012-03-07 2013-09-19 Tokyo Yogyo Co Ltd Immersion tube for vacuum degassing apparatus
CN114737026A (en) * 2022-05-07 2022-07-12 广东韶钢松山股份有限公司 Method for prolonging service life of RH dip pipe

Also Published As

Publication number Publication date
JP4676927B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
KR101631400B1 (en) Molten steel container
JP2020100511A (en) Method of producing magnesia-carbon brick
JP6254203B2 (en) Refractory for converter bottom blowing tuyeres
JP4676927B2 (en) Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method
JP2011105986A (en) Refractory-lining structure of vessel for iron-making
JP5462601B2 (en) Immersion tube for vacuum degassing furnace
JP5707918B2 (en) Steel container
KR100874397B1 (en) Fire plug for injecting gas into the molten metal
US20050110202A1 (en) Injection lance
JP5354495B2 (en) Immersion nozzle for continuous casting of steel
JP2011099840A (en) Continuous temperature measurement probe for ladle
JP5483848B2 (en) Dipping pipe for simple refining equipment
JP4496843B2 (en) Degassing equipment dip tube
JP5877123B2 (en) Degassing equipment dip tube
JP5489568B2 (en) Gas injection nozzle
JP2020200530A (en) Brick for vacuum degassing apparatus and rh immersion tube using the same
JP4487824B2 (en) Bottom-blown tuyere used in refining vessels
KR102133088B1 (en) Rh degassing appatarus
JP4733420B2 (en) Immersion tube for vacuum degassing equipment
JP2000104110A (en) Heat-insulating structure of molten metal vessel
JP6453802B2 (en) Dip tube
JP4648506B2 (en) Refractories for continuous casting
JP2012031507A (en) Immersion tube for vacuum degassing apparatus
JP3874388B2 (en) Circulation tube for vacuum degassing equipment
JP2005193281A (en) Upper nozzle with interior ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4676927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350