JPS61253318A - Method for cooling immersion pipe - Google Patents

Method for cooling immersion pipe

Info

Publication number
JPS61253318A
JPS61253318A JP9577985A JP9577985A JPS61253318A JP S61253318 A JPS61253318 A JP S61253318A JP 9577985 A JP9577985 A JP 9577985A JP 9577985 A JP9577985 A JP 9577985A JP S61253318 A JPS61253318 A JP S61253318A
Authority
JP
Japan
Prior art keywords
cooling
core metal
plate
gap
iron plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9577985A
Other languages
Japanese (ja)
Other versions
JPH0629454B2 (en
Inventor
Kazunori Nagai
永井 和範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9577985A priority Critical patent/JPH0629454B2/en
Publication of JPS61253318A publication Critical patent/JPS61253318A/en
Publication of JPH0629454B2 publication Critical patent/JPH0629454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To enhance the cooling power of a cooling fluid and to prolong the life of the mandrel of an immersion pipe by arranging metallic plates in the gap in the mandrel having a double-walled cylindrical structure and by feeding the cooling fluid. CONSTITUTION:Metallic plates such as steel plates 9 are arranged among parts of a cooling air feeding pipe 10 in the gap between the outer and inner cylindrical iron plates 7, 8 of the mandrel 4 of an immersion pipe 3 for a molten pig iron degassing equipment or the like. Cooling air absorbs heat from the surfaces of the iron plates 7, 8 and the metallic plates 9 during passing through the air path and the air is exhausted from the exhaust port. By this cooling method, the temp. of the mandrel can be lowered to about 500-600 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶銑脱ガス処理設備等の浸漬管特に芯金を効
率的に冷却する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for efficiently cooling a immersion tube, particularly a core metal, in a hot metal degassing treatment facility or the like.

(従来の技術) 例えば、第8図の回分式の溶鋼真空脱ガス装置の浸漬管
3に示す如く、従来溶鉄の脱硫、脱ガス等の処理に用い
る浸漬管は芯金4の長手方向内外両面に耐火物5.6を
施工したものが一般的である。
(Prior Art) For example, as shown in the immersion tube 3 of a batch-type molten steel vacuum degassing apparatus in FIG. Refractories 5.6 and 5.6 are generally installed.

しかして浸漬管3の芯金4は周囲の耐火物5゜6を固定
し構造体として安定させる事がその主な役割である。
The main role of the core metal 4 of the immersion tube 3 is to fix the surrounding refractory material 5.6 and stabilize the structure.

ところで回分式の溶鋼真空脱ガス装置lの処理チャージ
数と芯金4の温度の関係は、1例として第9図に示すと
おシ、処理チャージ数の増加に伴い芯金4の温度は次第
に上昇する。しかも周囲の耐火物5.6の溶損が進行す
るに伴い処理時と非処理時において温度が上下振幅を繰
り返す様になる0 また、芯金4の温度上昇に伴う芯金4の線膨張は、周囲
の耐火物の線膨張よシも大きく、がっ、耐火物溶損の進
行に伴い発生する処理時と非処理時の温度振幅は、芯金
4と耐火物5及び6の線膨張差による耐火物施工境界の
亀裂発生 、スラグ・溶鋼の浸透による損耗の著しい進
行を招き浸漬管耐火物寿命の律速となっていた。
By the way, the relationship between the number of processed charges and the temperature of the core metal 4 in the batch-type molten steel vacuum degassing apparatus l is shown as an example in FIG. 9. As the number of processed charges increases, the temperature of the core metal 4 gradually increases. do. Moreover, as the melting loss of the surrounding refractories 5.6 progresses, the temperature begins to repeat vertical swings between the treatment and non-treatment states.In addition, as the temperature of the core metal 4 increases, the linear expansion of the core metal 4 increases. , the linear expansion of the surrounding refractories is also large, and the temperature amplitude during treatment and non-treatment, which occurs as the refractory erosion progresses, is due to the linear expansion difference between the core metal 4 and the refractories 5 and 6. This caused cracks to occur at the boundaries of the refractory construction, which caused significant wear and tear due to penetration of slag and molten steel, and became a limiting factor in the lifespan of the immersion pipe refractories.

一方、第10図〔機械工学便覧(機械材料編)改訂5版
、1968年日本機械学会刊より〕に示す如く普通鋼の
場合、500℃を越えると著しく機械的強度の低下が起
こるため上述した芯金4の線膨張の他に非処理時に芯金
4に掛る自重によるクリープも耐火物寿命悪化の一つの
要因として考えられる〇 この様に温度の上昇による芯金4の延びは浸漬管耐火物
5及び6の施工境界における亀裂発生を招き当該部位よ
シ溶鋼及びスラグが浸入するため局部的な耐火物5及び
6の溶損の進行を助長し、均等な耐火物5及び6の溶損
によって浸漬管寿命が終了する前に新たな浸漬管3に交
換する必要が生じ溶銑・溶鋼等の処理コストの増大及び
耐火物5及び6の補修時間増による処理時間の低下を招
いていた。
On the other hand, as shown in Figure 10 [from Mechanical Engineering Handbook (Mechanical Materials Edition) Revised 5th Edition, published by the Japan Society of Mechanical Engineers, 1968], in the case of ordinary steel, the mechanical strength significantly decreases when the temperature exceeds 500°C. In addition to the linear expansion of the core metal 4, creep due to its own weight applied to the core metal 4 when not treated is also considered to be one of the factors that deteriorates the life of the refractory. In this way, the elongation of the core metal 4 due to a rise in temperature is Cracks occur at the construction boundaries of refractories 5 and 6, and molten steel and slag infiltrate into the area, which promotes localized erosion of refractories 5 and 6. It is necessary to replace the immersion tube 3 with a new one before the life of the immersion tube ends, resulting in an increase in processing costs for hot metal, molten steel, etc., and a decrease in processing time due to an increase in the time required to repair the refractories 5 and 6.

上述したような問題点を解決し、かつ浸漬管芯金4の熱
膨張抑制を狙った冷却方法については、従来よシ検討さ
れており、例えば、本発明者等の提案による特開昭58
−96813号公報に示す如く、芯金4をジャケット構
造、あるいは冷却管の接合体とし、若しくは既存の芯金
の周囲に冷却管を巻き該冷却管、あるいはジャケット内
に気水混合流体を送シこみ、該冷却管、ジャケット内部
で蒸発させ芯金を冷却する方法、あるいは特開昭59−
1617号公報のように内部円筒鉄板及び外部円筒鉄板
の二重円筒構造よシなる芯金の二重円筒間隙に内部円筒
鉄板と外部円筒鉄板に当接するよう一定間隔で冷媒供給
支管を配置し、芯金4を効率的に、かつ均一に冷却する
浸漬管の構造がある。
Cooling methods aimed at solving the above-mentioned problems and suppressing the thermal expansion of the immersion tube core metal 4 have been studied in the past.
As shown in Japanese Patent Publication No. 96813, the core metal 4 has a jacket structure or a joint of cooling pipes, or a cooling pipe is wrapped around an existing core metal and a steam/water mixed fluid is sent into the cooling pipe or jacket. A method of cooling the core metal by evaporation inside the cooling pipe, jacket, or JP-A-59-
Refrigerant supply branch pipes are arranged at regular intervals in the double cylindrical gap of the core metal, which has a double cylindrical structure of an inner cylindrical iron plate and an outer cylindrical iron plate, so as to come into contact with the inner cylindrical iron plate and the outer cylindrical iron plate, as in Publication No. 1617, There is a dipping tube structure that cools the core bar 4 efficiently and uniformly.

しかし、この方法でも冷却面が芯金表面に限られ芯金表
面での対流伝熱による冷却のみである0しかも芯金4が
浸漬管3の耐火物補強用の構造体であるため、厚板材の
使用が必須であり、芯金表面に対流伝熱促進用の突起物
、あるいは冷却面積を増やすためのフィン等の取付は加
工が構造上あるいはコスト面から困難である。
However, even with this method, the cooling surface is limited to the surface of the core metal, and cooling is performed only by convection heat transfer on the surface of the core metal.Moreover, since the core metal 4 is a structure for reinforcing the refractory material of the immersion tube 3, the thick plate However, it is difficult to attach protrusions to promote convection heat transfer or fins to increase the cooling area on the surface of the core metal due to structural or cost considerations.

(発明が解決しようとする問題点) 本発明は、前述した如き従来法の欠点である浸漬管芯金
の冷却不足による熱膨張に起因した耐火物寿命の低下あ
るいは芯金が厚板浦である理由から伝熱促進を図る突起
物、フィン等の取シ付は加工が困難で、且つ、製造コス
トが高い等の理由から効果的な抜熱冷却ができないとい
う問題点を容易に解決した浸漬管の冷却方法を提供する
ことにある。
(Problems to be Solved by the Invention) The present invention solves the drawbacks of the conventional method as described above, such as a reduction in the life of the refractory due to thermal expansion due to insufficient cooling of the core metal of the immersion tube, or a problem in which the core metal is thick. This is an immersion tube that easily solves the problem that mounting protrusions, fins, etc. that promote heat transfer is difficult to process, and that effective heat removal cooling is not possible due to high manufacturing costs. The objective is to provide a cooling method for

(問題点を解決するための手段) 本発明は外周円筒鉄板と内周円筒鉄板とからな 。(Means for solving problems) The present invention includes an outer cylindrical iron plate and an inner cylindrical iron plate.

る浸漬管芯金の間隙部にガス流体を供給して冷却する方
法において、該間隙部に金属板を介挿したことを特徴と
する浸漬管の冷却方法にある。
A method for cooling an immersion tube by supplying a gas fluid to a gap in a core metal of the immersion tube, which is characterized in that a metal plate is inserted into the gap.

以下1本発明による浸漬管の冷却方法について図に示す
一実施例に基づいて述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for cooling a immersion tube according to the present invention will be described below based on an embodiment shown in the drawings.

第1図は本発明による冷却方法の一実施例を示す浸漬管
の断・面図で、二重円筒構造よりなる浸漬管芯金4の外
部円筒鉄板7と内部円筒鉄板8との間隙に鋼板9を装入
し、空気冷却する浸漬管3の正面断面図である。
FIG. 1 is a cross-sectional view of an immersion tube showing an embodiment of the cooling method according to the present invention, in which a steel plate is provided in the gap between the outer cylindrical iron plate 7 and the inner cylindrical iron plate 8 of the immersion tube core 4 having a double cylindrical structure. FIG. 3 is a front sectional view of the immersion tube 3 into which the immersion tube 9 is charged and air-cooled.

第2図(a)は第1図の芯金4部の水平断面図で、例え
ば鋼板、銅板等の金属板あるいは輻射率の高い固形板等
(以下総称して金属板9とする)を外部円筒鉄板7と内
部円筒鉄板8との間隙で、かつ冷却空気供給管10の間
に介挿する。
FIG. 2(a) is a horizontal cross-sectional view of the core metal 4 shown in FIG. It is inserted in the gap between the cylindrical iron plate 7 and the inner cylindrical iron plate 8 and between the cooling air supply pipe 10.

装入した金属板9は芯金4の構造体でないため薄い金属
板でよく、しかも芯金4、あるいは冷却空気供給管10
に固定する必要がなく、二重円筒構造の間隙に介挿する
だけでよい。
The loaded metal plate 9 is not a structure of the core metal 4, so it can be a thin metal plate, and moreover, it is not a structure of the core metal 4 or the cooling air supply pipe 10.
There is no need to fix it to the cylindrical structure, just insert it into the gap in the double cylindrical structure.

第2図(b)は第1図の芯金4部の垂直断面図で、冷却
空気供給管10から吐出された冷却空気は1、芯金内冷
却空気流路11を通過中に、外部円筒鉄板7と内部円筒
鉄板8、および装入金属板9の表面から対流伝熱によシ
熱量をうぽい排気口12より排出される。
FIG. 2(b) is a vertical cross-sectional view of the four parts of the core metal shown in FIG. Heat is transferred from the surfaces of the iron plate 7, the inner cylindrical iron plate 8, and the charged metal plate 9 by convection heat transfer, and is discharged from the exhaust port 12.

金属板9を装入した場合の外部円筒鉄板7、内部円筒鉄
板8よりなる芯金4の冷却メカニズムを従来法との比軟
で第3図(a)、(b)に示す・第3図(a)は二重円
筒構造よシなる芯金において、従来法の空気冷却を行っ
た場合の外部円筒鉄板7、内部円筒鉄板8、および冷却
空気の温度分布の模式図であシ、芯金4は芯金表面で冷
却空気への対流伝熱により熱量Qoが抜熱される。
The cooling mechanism of the core metal 4 consisting of the outer cylindrical iron plate 7 and the inner cylindrical iron plate 8 when the metal plate 9 is charged is shown in FIGS. 3(a) and 3(b) in comparison with the conventional method. (a) is a schematic diagram of the temperature distribution of the outer cylindrical iron plate 7, the inner cylindrical iron plate 8, and the cooling air when air cooling is performed using the conventional method in a core metal having a double cylindrical structure. 4, the amount of heat Qo is removed by convection heat transfer to the cooling air on the surface of the core metal.

第3図(b)は二重円筒構造よシなる芯金において、本
発明による冷却方法を適用した空気冷却の場合の外部円
筒鉄板7、内部円筒鉄板8、介挿金属板9および冷却空
気の温度分布の模式図であシ、高温の芯金4から介挿金
属板9へ輻射伝熱によシ熱量Q2が伝熱され、その熱量
Q2は、介挿金属板9面で冷却空気へ対流伝熱により抜
熱される。もちろん芯金表面でも冷却空気へ対流伝熱に
よシ熱量Q1が抜熱されているので、芯金表面では冷却
空気への直接の対流伝熱と介挿金属板9への輻射伝熱の
両方で抜熱され、従来法の抜熱量Qoに比べてより大き
な熱量(Q1+Q2)を抜熱できる。
FIG. 3(b) shows the outer cylindrical iron plate 7, the inner cylindrical iron plate 8, the interposed metal plate 9, and the cooling air in the case of air cooling to which the cooling method according to the present invention is applied in a core metal having a double cylindrical structure. This is a schematic diagram of temperature distribution. A quantity of heat Q2 is transferred from the high-temperature core metal 4 to the interposed metal plate 9 by radiation heat transfer, and the heat quantity Q2 is transferred by convection to the cooling air on the surface of the interposed metal plate 9. Heat is removed by heat transfer. Of course, the amount of heat Q1 is also removed from the core metal surface by convection heat transfer to the cooling air, so on the core metal surface, both direct convection heat transfer to the cooling air and radiant heat transfer to the interposed metal plate 9 occur. A larger amount of heat (Q1+Q2) can be removed compared to the amount of heat removed Qo in the conventional method.

なお、外部円筒鉄板7、内部円筒鉄板8からなる二重円
筒構造の芯金4の間隙への介挿金属板9の設置方法は、
単に冷却空気供給管10の間に切板を装入するだけでも
よいが、冷却空気流をさまたげないためには、介挿金属
板9が芯金4に接触しない方が、望ましく、第4,5図
に示す様に部分的に突起13を設はスペーサーとするか
、あるいは−抜熱効果を上げる等の方法、第6図に示す
様に金属板9をしゃばら状にする方法、あるいは第7図
に示す様に外部円筒鉄板7、内部円筒鉄板8および冷却
空気供給管10により囲まれた冷却空気流路11の対角
線の方向に鋼板9を冷却空気供給管IOを巻きながら装
入する方法等によっても良い。また、冷却用として本性
では空気を用いたがAr、N2等のガス流体を用いても
良く、さらに芯金の間隙に装入する固体は金属板9に限
らず固体ならいかなるものでもよく、好ましくは輻射率
の大きいものがよい。
The method for installing the insertion metal plate 9 in the gap between the core metal 4 having a double cylindrical structure consisting of the outer cylindrical iron plate 7 and the inner cylindrical iron plate 8 is as follows.
It is possible to simply insert a cutting plate between the cooling air supply pipes 10, but in order not to obstruct the cooling air flow, it is preferable that the inserted metal plate 9 does not come into contact with the core metal 4. As shown in Fig. 5, the protrusions 13 are partially provided as spacers, or the heat removal effect is increased, as shown in Fig. 6, the metal plate 9 is made into a bulky shape, or as shown in Fig. As shown in Fig. 7, a steel plate 9 is inserted in the diagonal direction of a cooling air flow path 11 surrounded by an outer cylindrical iron plate 7, an inner cylindrical iron plate 8, and a cooling air supply pipe 10 while winding the cooling air supply pipe IO. etc. may also be used. Although air is used for cooling, gaseous fluids such as Ar and N2 may also be used.Furthermore, the solid to be charged into the gap between the core metals is not limited to the metal plate 9, but any solid material may be used, and it is preferable. should have a high emissivity.

(実施例〕 以下、本発明の浸漬管冷却方法の一実施例について述べ
る。
(Example) An example of the immersion tube cooling method of the present invention will be described below.

実施例1 処理能力80 Q Ton/chの回分式溶鋼真空脱ガ
ス処理設備の浸漬管芯金の空気冷却に本発明の冷却方法
を適用して行った。
Example 1 The cooling method of the present invention was applied to air cooling of a immersion tube core in a batch type molten steel vacuum degassing facility with a processing capacity of 80 Q Ton/ch.

冷却空気には、圧縮空気を800 Nm3/Hr使用し
、冷却空気供給管の取付ピッチは200mm、冷却空気
供給管はIOAのsep鋼管を20本取シ付け。
Compressed air of 800 Nm3/Hr is used for the cooling air, the installation pitch of the cooling air supply pipes is 200mm, and 20 IOA SEP steel pipes are installed as the cooling air supply pipes.

第1図に示す様に二重円筒構造芯金の間隙に、厚さ0.
2 mmの鋼板を装入した。
As shown in Fig. 1, a thickness of 0.0 mm is placed in the gap between the double cylindrical core metals.
A 2 mm steel plate was charged.

この場合、芯金温度は非冷却時がLooo−1,200
℃程度であシ、従来の冷却方法では700〜800’C
程度であったものが、本発明の適用により500〜60
0℃程度までに低下させることができ、従来500〜6
00回程度の浸漬管寿命であったものが、650〜70
0回程度の寿命まで延長することが可能となった0 実施例2 実施例1において装入鋼板に対流伝熱を促進するため高
さ8 mm程度の突起13を20mmピッチでもうけ、
二重円筒構造芯金の間隙に装入した。
In this case, the core metal temperature is Looo-1,200 when not cooled.
It is around 700-800'C with conventional cooling methods.
By applying the present invention, the number of
It can be lowered to about 0℃, compared to conventional 500~6℃.
The lifespan of the immersion tube was 650-70 times.
Example 2 In Example 1, protrusions 13 with a height of approximately 8 mm were provided at a pitch of 20 mm to promote convection heat transfer on the charged steel plate.
It was inserted into the gap between the double cylindrical core metal.

(第4図に鋼板の模式図を示す。) この場合、装入鋼板表面での対流伝熱による抜熱が実施
例1に比べて更に大きくなり、すなわち芯金表面からの
抜熱が大きくなり、芯金温度が′450〜550℃程度
までに低下した。
(Figure 4 shows a schematic diagram of the steel plate.) In this case, the heat removal due to convection heat transfer on the surface of the charged steel plate becomes even greater than in Example 1, that is, the heat removal from the core metal surface increases. , the core metal temperature decreased to about 450 to 550°C.

浸漬管寿命は650〜700回程度と実施例1と大差な
かったが、芯金の冷却能がアップした事により、冷却用
の圧縮空気を200 Nm3/Hrに下げても充分な冷
却能が得られるため、圧縮空気のコスト切下げが可能と
なった。
The life of the immersion tube was about 650 to 700 times, which was not much different from Example 1, but due to the improved cooling capacity of the core metal, sufficient cooling capacity was obtained even if the compressed air for cooling was lowered to 200 Nm3/Hr. This has made it possible to reduce the cost of compressed air.

(発明の効果) 以上述べたように二重円筒構造よりなる芯金の空気冷却
において、芯金の間隙に鋼板等の固体物を装入する事に
よシ芯金表面から装入鋼板あるいは固体物への輻射伝熱
を生ぜしめ冷却空気にょシ装入鋼板固体物等の表面から
の対流伝熱を行う事により冷却能がアップし、大幅な浸
漬管芯金寿命のアップおよび冷却空気のコスト切下げが
可能となった。
(Effects of the Invention) As described above, in air cooling of a core metal having a double cylindrical structure, by charging a solid object such as a steel plate into the gap between the core metals, it is possible to Cooling air is generated by radiant heat transfer to the object. Cooling capacity is increased by convection heat transfer from the surface of the charged steel sheet solid object, etc., significantly extending the life of the core metal of the immersion tube and reducing the cost of cooling air. devaluation became possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す浸漬管の断面図O 第2図(a)、(b)はそれぞれ第1図の水平断面図の
B −B’の部分断面図、および芯全部の垂直断面図。 第3図(ωは従来法の空気冷却を行った場合の芯金と冷
却空気の温度分布の模式図。 第3図(b)は第3図(a)に本発明を適用した場合の
芯金と冷却空気の温度分布の模式図。 第4図は対流伝熱促進のため突起をもうけた装入鋼板の
模式図。 第5図はスペーサーとしての突起をもうけた装入鋼板の
模式図。 第6図はしゃばら状の鋼板を装入した場合の芯金部の一
部水平断面図。 第7図は冷却空気流路の対角線の方向に鋼板を冷却空気
供給管に巻きながら装入した場合の芯金部の一部水平断
面図。 第8図(a)は回分式の溶鋼真空脱ガス装置の正面断面
図。 第8図(b)は第8図(a)の矢視A −A’断面図。 第9図は回分式の溶鋼真空脱ガス装置の処理チ、  ヤ
ージ数と芯金の温度の関係を示すグラフ。 第10図は普通鋼の機械的強度と温度との関係を示した
グラフである。 1・・・真空脱ガス装置  2・・・真空槽3・・・浸
漬管      4・・・芯 金5.6・・・耐火物 
    7・・・外部円筒鉄板8・・・内部円筒鉄板 
  9・・・金属板10・・・空気供給管    11
・・・空気流路tm 第2図 (V 第3図 (a) 第5図           第4図 第6図 第7VB 1^ 第9図 μm1 チャーンJ#(鴨す
FIG. 1 is a cross-sectional view of a dip tube showing an embodiment of the present invention. vertical cross section. Figure 3 (ω is a schematic diagram of the temperature distribution of the core metal and cooling air when air cooling is performed using the conventional method. Figure 3 (b) is a diagram of the core when the present invention is applied to Figure 3 (a). A schematic diagram of the temperature distribution of gold and cooling air. Figure 4 is a schematic diagram of a charged steel plate with protrusions to promote convective heat transfer. Figure 5 is a schematic diagram of a charged steel plate with protrusions as spacers. Fig. 6 is a partial horizontal cross-sectional view of the core metal part when a steel plate with a shabby shape is charged. Fig. 7 is a partial horizontal sectional view of the core metal part when a steel plate with a shabby shape is charged. Fig. 7 shows a case where the steel plate is charged while being wound around the cooling air supply pipe in the diagonal direction of the cooling air flow path. FIG. 8(a) is a front sectional view of a batch-type molten steel vacuum degassing apparatus. FIG. 8(b) is a partial horizontal sectional view of the core metal part in the case of FIG. 8(a). A' sectional view. Figure 9 is a graph showing the relationship between the processing number and the number of yarns in a batch-type molten steel vacuum degassing equipment and the temperature of the core metal. Figure 10 is a graph showing the relationship between the mechanical strength of ordinary steel and temperature. 1... Vacuum degassing device 2... Vacuum tank 3... Immersion tube 4... Core metal 5.6... Refractory material
7... External cylindrical iron plate 8... Internal cylindrical iron plate
9...Metal plate 10...Air supply pipe 11
... Air flow path tm Fig. 2 (V Fig. 3 (a) Fig. 5 Fig. 4 Fig. 6 Fig. 7 VB 1^ Fig. 9 μm1 Churn J # (Duck

Claims (1)

【特許請求の範囲】[Claims] 外周円筒鉄板と内周円筒鉄板とからなる浸漬管芯金の間
隙部にガス流体を供給して冷却する方法において、該間
隙部に金属板を介挿したことを特徴とする浸漬管の冷却
方法。
A method for cooling an immersion tube by supplying a gas fluid to the gap between an outer cylindrical iron plate and an inner cylindrical iron plate, the method comprising inserting a metal plate into the gap. .
JP9577985A 1985-05-04 1985-05-04 Immersion tube cooling method Expired - Lifetime JPH0629454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9577985A JPH0629454B2 (en) 1985-05-04 1985-05-04 Immersion tube cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9577985A JPH0629454B2 (en) 1985-05-04 1985-05-04 Immersion tube cooling method

Publications (2)

Publication Number Publication Date
JPS61253318A true JPS61253318A (en) 1986-11-11
JPH0629454B2 JPH0629454B2 (en) 1994-04-20

Family

ID=14146964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9577985A Expired - Lifetime JPH0629454B2 (en) 1985-05-04 1985-05-04 Immersion tube cooling method

Country Status (1)

Country Link
JP (1) JPH0629454B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210414A (en) * 1990-12-10 1992-07-31 Sumitomo Metal Ind Ltd Method for cooling immersion tube in refining apparatus
WO2007021207A1 (en) * 2005-08-16 2007-02-22 Zaklady Magnezytowe 'ropczyce' S.A. Snorkels for vacuum degassing of steel
JP2008013796A (en) * 2006-07-04 2008-01-24 Nippon Steel Corp Immersion tube for treating molten metal and manufacturing method thereof, and vacuum-degassing method
US9038867B2 (en) 2011-05-11 2015-05-26 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling
US9644246B2 (en) 2011-05-11 2017-05-09 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210414A (en) * 1990-12-10 1992-07-31 Sumitomo Metal Ind Ltd Method for cooling immersion tube in refining apparatus
WO2007021207A1 (en) * 2005-08-16 2007-02-22 Zaklady Magnezytowe 'ropczyce' S.A. Snorkels for vacuum degassing of steel
JP2008013796A (en) * 2006-07-04 2008-01-24 Nippon Steel Corp Immersion tube for treating molten metal and manufacturing method thereof, and vacuum-degassing method
US9038867B2 (en) 2011-05-11 2015-05-26 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling
US9644246B2 (en) 2011-05-11 2017-05-09 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling

Also Published As

Publication number Publication date
JPH0629454B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
KR100367467B1 (en) Water-cooling panel for furnace wall and furnace cover of arc furnace
US3849587A (en) Cooling devices for protecting refractory linings of furnaces
US3829595A (en) Electric direct-arc furnace
RU2423529C2 (en) Procedure for fabrication of hearth-cooling plate of metallurgical furnace and produced hearth-cooling plate
MXPA01001888A (en) Heat exchange pipe with extruded fins.
JPS61253318A (en) Method for cooling immersion pipe
US4132852A (en) Cooled roof of electric furnace
EP0051622B1 (en) Method of forming furnace cooling elements
JPH02116635A (en) Refractory-covered lid of heating vessel
JPH11223464A (en) Electric furnace
RU2122034C1 (en) Dispensing pan for embedding into furnace
US4561639A (en) Cooling plate for metallurgical furnaces
US2673083A (en) Cooling apparatus for blast furnace hearths
EP2960608A1 (en) Method for cooling housing of melting unit and melting unit
JPH02129314A (en) Method for cooling connecting part in vacuum refining vessel
KR101555140B1 (en) Method and apparatus for repairing a cooling pipes in blast furnace
JP3633519B2 (en) Stave cooler for metallurgical furnace and its mounting method
EP3540350B1 (en) Water cooled box for a metal making furnace
JP2000292072A (en) Furnace wall of arc furnace and water-cooled panel for furnace cover
JPH09296205A (en) Cooling plate for furnace wall in blast furnace
JPS59190327A (en) Method for keeping hot slab hot
GB1564278A (en) Electric arc furnace roof cooling system
JPH10183233A (en) Heat insulating skid pipe
JP6201970B2 (en) Refining furnace core temperature control method
WO2019163607A1 (en) Operating method for metal refining furnace