JPH0629454B2 - Immersion tube cooling method - Google Patents

Immersion tube cooling method

Info

Publication number
JPH0629454B2
JPH0629454B2 JP9577985A JP9577985A JPH0629454B2 JP H0629454 B2 JPH0629454 B2 JP H0629454B2 JP 9577985 A JP9577985 A JP 9577985A JP 9577985 A JP9577985 A JP 9577985A JP H0629454 B2 JPH0629454 B2 JP H0629454B2
Authority
JP
Japan
Prior art keywords
cooling
plate
iron plate
cylindrical iron
core metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9577985A
Other languages
Japanese (ja)
Other versions
JPS61253318A (en
Inventor
和範 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9577985A priority Critical patent/JPH0629454B2/en
Publication of JPS61253318A publication Critical patent/JPS61253318A/en
Publication of JPH0629454B2 publication Critical patent/JPH0629454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶鋼脱ガス処理設備等の浸漬管特に芯金を効
率的に冷却する方法に関する。
TECHNICAL FIELD The present invention relates to a method for efficiently cooling a dip pipe such as a molten steel degassing facility, especially a core metal.

(従来の技術) 例えば、第8図の回分式の溶鋼真空脱ガス装置の浸漬管
3に示す如く、従来溶鉄の脱硫、脱ガス等の処理に用い
る浸漬管は芯金4の長手方向内外両面に耐火物5,6を
施工したものが一般的である。
(Prior Art) For example, as shown in the immersion pipe 3 of the batch type molten steel vacuum degassing apparatus of FIG. 8, the immersion pipe conventionally used for the treatment of desulfurization and degassing of molten iron is the inner and outer surfaces of the core metal 4 in the longitudinal direction. It is general that refractories 5 and 6 are applied to the above.

しかして浸漬管3の芯金4は周囲の耐火物5,6を固定
し構造体として安定させる事がその主な役割である。
However, the core metal 4 of the dip tube 3 is to fix the surrounding refractories 5 and 6 and stabilize it as a structure.

ところで回分式の溶鋼真空脱ガス装置1の処理チャージ
数と芯金4の温度の関係は、1例として第9図に示すと
おり、処理チャージ数の増加に伴い芯金4の温度は次第
に上昇する。しかも周囲の耐火物5,6の溶損が進行す
るに伴い処理時と非処理時において温度が上下振幅を繰
り返す様になる。
By the way, as for the relationship between the number of processing charges of the batch type molten steel vacuum degassing apparatus 1 and the temperature of the core metal 4, as shown in FIG. 9 as an example, the temperature of the core metal 4 gradually rises as the number of processing charges increases. . Moreover, as melting damage of the surrounding refractories 5 and 6 progresses, the temperature repeats a vertical amplitude during processing and during non-processing.

また、芯金4の温度上昇に伴う芯金4の線膨張は、周囲
の耐火物の線膨張よりも大きく、かつ、耐火物溶損の進
行に伴い発生する処理時と非処理時の温度振幅は、芯金
4と耐火物5及び6の線膨張差による耐火物施工境界の
亀裂発生、スラグ・溶鋼の浸透による損耗の著しい進行
を招き浸漬管耐火物寿命の律速となっていた。
Further, the linear expansion of the cored bar 4 due to the temperature rise of the cored bar 4 is larger than the linear expansion of the surrounding refractory material, and the temperature amplitude during the treatment and the non-treatment which occurs with the progress of the melting loss of the refractory material. Was the rate-determining factor for the life of the refractory of the immersion pipe, which caused cracks in the refractory construction boundary due to the difference in linear expansion between the core metal 4 and the refractories 5 and 6, and significantly promoted wear due to permeation of slag / molten steel.

一方、第10図〔機械工学便覧(機械材料編)改訂5
版、1968年日本機械学会刊より〕に示す如く普通鋼の場
合、500℃を越えると著しく機械的強度の低下が起こる
ため上述した芯金4の線膨張の他に非処理時に芯金4に
掛る自重によるクリープも耐非物寿命悪化の一つの要因
として考えられる。
On the other hand, Fig. 10 [Mechanical Engineering Handbook (Mechanical Materials) Revision 5
Edition, published by the Japan Society of Mechanical Engineers in 1968], in the case of ordinary steel, when the temperature exceeds 500 ° C, the mechanical strength remarkably decreases. Creep due to the applied weight is also considered to be one of the causes of the deterioration of non-object life.

この様に温度の上昇による芯金4の延びは浸漬管耐火物
5及び6の施工境界における亀裂発生を招き当該部位よ
り溶鋼及びスラグが浸入するため局部的な耐火物5及び
6の溶損の進行を助長し、均等な耐火物5及び6の溶損
によって浸漬管寿命が終了する前に新たな浸漬管3に交
換する必要が生じ溶鋼等の処理コストの増大及び耐火物
5及び6の補修時間増による処理時間の低下を招いてい
た。
In this way, the extension of the cored bar 4 due to the rise in temperature causes cracks to occur at the construction boundaries of the immersion pipe refractories 5 and 6, and molten steel and slag infiltrate from the relevant part, so that local melting loss of the refractories 5 and 6 is caused. It is necessary to replace the new immersion pipe 3 with a new one before the end of the immersion pipe life due to uniform melting of the refractory substances 5 and 6, which increases the treatment cost of molten steel and repairs the refractory substances 5 and 6. The increase in time leads to a decrease in processing time.

上述したような問題点を解決し、かつ浸漬管芯金4の熱
膨張抑制を狙った冷却方法については、従来より検討さ
れており、例えば、本発明者等の提案による特開昭58-9
6813号公報に示す如く、芯金4をジャケット構造、ある
いは冷却管の接合体とし、若しくは既存の芯金の周囲に
冷却管を巻き該冷却管、あるいはジャケット内に気水混
合流体を送りこみ、該冷却管、ジャケット内部で蒸発さ
せ芯金を冷却する方法、あるいは特開昭59−1617号公
報のように内部円筒鉄板及び外部円筒鉄板の二重円筒構
造よりなる芯金の二重円筒間隙に内部円筒鉄板と外部円
筒鉄板に当接するよう一定間隔で冷媒供給支管を配置
し、芯金4を効率的に、かつ均一に冷却する浸漬管の構
造がある。
A cooling method aimed at solving the above-mentioned problems and suppressing the thermal expansion of the immersion pipe cored bar 4 has been studied in the past. For example, JP-A-58-9 proposed by the present inventors.
As shown in Japanese Patent No. 6813, the cored bar 4 has a jacket structure or a joined body of cooling pipes, or a cooling pipe is wound around an existing cored bar, and a gas-water mixed fluid is sent into the cooling pipe or the jacket. A method of evaporating inside the cooling pipe or jacket to cool the core bar, or a double cylinder gap of the core bar having a double cylindrical structure of an inner cylindrical iron plate and an outer cylindrical iron plate as disclosed in JP-A-59-1617. There is a structure of an immersion pipe in which a coolant supply branch pipe is arranged at a constant interval so as to abut the inner cylindrical iron plate and the outer cylindrical iron plate, and the core metal 4 is cooled efficiently and uniformly.

しかし、この方法でも冷却面が芯金表面に限られ芯金表
面での対流伝熱による冷却のみである。しかも芯金4が
浸漬管3の耐火物補強用の構造体であるため、厚板材の
使用が必須であり、芯金表面に対流伝熱促進用の突起
物、あるいは冷却面積を増やすためのフイン等の取付け
加工が構造上あるいはコスト面から困難である。
However, even in this method, the cooling surface is limited to the surface of the cored bar, and only cooling by convective heat transfer on the surface of the cored bar is performed. Moreover, since the core metal 4 is a structure for reinforcing the refractory material of the dipping pipe 3, it is necessary to use a thick plate material, and a projection for promoting convective heat transfer on the surface of the core metal or a fin for increasing the cooling area. It is difficult to attach such a structure because of its structure or cost.

(発明が解決しようとする問題点) 本発明は、前述した如き従来法の欠点である浸漬管芯金
の冷却不足による熱膨張に起因した耐火物寿命の低下あ
るいは芯金が厚板材である理由から伝熱促進を図る突起
物、フイン等の取り付け加工が困難で、且つ、製造コス
トが高い等の理由から効果的な抜熱冷却ができないとい
う問題点を容易に解決した浸漬管の冷却方法を提供する
ことにある。
(Problems to be Solved by the Invention) The present invention is the reason why the refractory life is shortened due to thermal expansion due to insufficient cooling of the immersion pipe core bar, which is a drawback of the conventional method as described above, or the core bar is a thick plate material. Therefore, a cooling method of an immersion pipe that easily solves the problem that it is difficult to attach protrusions, fins, etc. for promoting heat transfer, and effective heat removal cooling cannot be performed due to high manufacturing cost, etc. To provide.

(問題点を解決するめの手段) 本発明は外周円筒鉄板と内周円筒鉄板とからなる浸漬管
芯金の間隙部にガス流体を供給して冷却する方法におい
て、該間隙部に金属板を介挿したことを特徴とする浸漬
管の冷却方法にある。
(Means for Solving Problems) The present invention provides a method of supplying a gas fluid to a gap of a submerged pipe core bar composed of an outer peripheral cylindrical iron plate and an inner peripheral cylindrical iron plate for cooling, in which a metal plate is interposed in the gap. It is a method for cooling an immersion pipe, which is characterized by being inserted.

以下、本発明による浸漬管の冷却方法について図に示す
一実施例に基づいて述べる。
Hereinafter, a method for cooling a dip tube according to the present invention will be described based on an embodiment shown in the drawings.

第1図は本発明による冷却方法の一実施例を示す浸漬管
の断面図で、二重円筒構造よりなる浸漬管芯金4の外部
円筒鉄板7と内部円筒鉄板8との間隙に鋼板9を装入
し、空気冷却する浸漬管3の正面断面図である。
FIG. 1 is a sectional view of an immersion pipe showing an embodiment of the cooling method according to the present invention, in which a steel plate 9 is placed in the gap between the outer cylindrical iron plate 7 and the inner cylindrical iron plate 8 of the immersion pipe core metal 4 having a double cylindrical structure. It is a front sectional view of the immersion pipe 3 which is charged and cooled by air.

第2図(a)は第1図の芯金4部の水平断面図で、例えば
鋼板、銅板等の金属板あるいは輻射率の高い固形板等
(以下総称して金属板9とする)を外部円筒鉄板7と内
部円筒鉄板8との間隙で、かつ冷却空気供給管10の間
の介挿する。
FIG. 2 (a) is a horizontal cross-sectional view of the cored bar 4 in FIG. 1. For example, a metal plate such as a steel plate or a copper plate or a solid plate having a high emissivity (hereinafter collectively referred to as a metal plate 9) is externally arranged. It is inserted in the gap between the cylindrical iron plate 7 and the inner cylindrical iron plate 8 and between the cooling air supply pipes 10.

装入した金属板9は芯金4の構造体でないため薄い金属
板でよく、しかも芯金4、あるいは冷却空気供給管10
に固定する必要がなく、二重円筒構造の間隙に介挿する
だけでよい。
Since the charged metal plate 9 is not a structure of the cored bar 4, it may be a thin metal plate, and the cored bar 4 or the cooling air supply pipe 10 may be used.
It is not necessary to fix it to the base, and it is sufficient to insert it in the gap of the double cylindrical structure.

第2図(b)は第1図の芯金4部の垂直断面図で、冷却空
気供給管10から吐出された冷却空気は、芯金内冷却空
気流路11を通過中に、外部円筒鉄板7と内部円筒鉄板
8、および装入金属板9の表面から対流伝熱により熱量
をうばい排気口12より排出される。
2 (b) is a vertical cross-sectional view of the core metal 4 portion of FIG. 1, in which the cooling air discharged from the cooling air supply pipe 10 passes through the core metal internal cooling air flow passage 11 and the external cylindrical iron plate. Heat is discharged from the exhaust port 12 by convective heat transfer from the surfaces of the internal cylindrical iron plate 7 and the inner cylindrical iron plate 8 and the charged metal plate 9.

金属板9を装入した場合の外部円筒鉄板7、内部円筒鉄
板8よりなる芯金4の冷却メカニズムを従来法との比較
で第3図(a),(b)に示す。
The cooling mechanism of the cored bar 4 composed of the outer cylindrical iron plate 7 and the inner cylindrical iron plate 8 when the metal plate 9 is charged is shown in FIGS. 3 (a) and 3 (b) in comparison with the conventional method.

第3図(a)は二重円筒構造よりなる芯金において、従来
法の空気冷却を行った場合の外部円筒鉄板7、内部円筒
鉄板8、および冷却空気の温度分布の模式図であり、芯
金4は芯金表面で冷却空気への対流伝熱により熱量Q0
が抜熱される。
FIG. 3 (a) is a schematic view of the temperature distribution of the outer cylindrical iron plate 7, the inner cylindrical iron plate 8 and the cooling air when air cooling is performed by the conventional method in a cored bar having a double cylindrical structure. The gold 4 has a heat quantity Q 0 on the surface of the core metal due to convective heat transfer to the cooling air.
Is removed from the heat.

第3図(b)は二重円筒構造よりなる芯金において、本発
明による冷却方法を適用した空気冷却の場合の外部円筒
鉄板7、内部円筒鉄板8、介挿金属板9および冷却空気
の温度分布の模式図であり、高温の芯金4から介挿金属
板9へ輻射伝熱により熱量Q2が伝熱され、その熱量Q2
は、介挿金属板9面で冷却空気へ対流伝熱により抜熱さ
れる。もちろん芯金表面でも冷却空気へ対流伝熱により
熱量Q1が抜熱されているので、芯金表面では冷却空気
への直接の対流伝熱と介挿金属板9への輻射伝熱の両方
で抜熱され、従来法の抜熱量Q0に比べてより大きな熱
量(Q1+Q2)を抜熱できる。
FIG. 3 (b) shows the temperature of the outer cylindrical iron plate 7, the inner cylindrical iron plate 8, the inserted metal plate 9 and the cooling air in the case of air cooling to which the cooling method according to the present invention is applied in the cored bar having the double cylindrical structure. FIG. 4 is a schematic diagram of distribution, in which a heat quantity Q 2 is transferred from the high-temperature core metal 4 to the inserted metal plate 9 by radiant heat transfer, and the heat quantity Q 2
Is removed by convective heat transfer to the cooling air on the surface of the inserted metal plate 9. Of course, even on the surface of the core metal, the heat quantity Q 1 is removed by convective heat transfer to the cooling air. Therefore, on the surface of the core metal, both direct convective heat transfer to the cooling air and radiant heat transfer to the inserted metal plate 9 are performed. The heat is removed, and a larger amount of heat (Q 1 + Q 2 ) can be removed as compared with the amount of heat Q 0 of the conventional method.

なお、外部円筒鉄板7、内部円筒鉄板8からなる二重円
筒構造の芯金4の間隙への介挿金属板9の設置方法は、
単に冷却空気供給管10の間に切板を装入するだけでも
よいが、冷却空気流をさまたげないためには、介挿金属
板9が芯金4に接触しない方が、望ましく、第4,5図
に示す様に部分的に突起13を設けスペーサーとする
か、あるいは抜熱効果を上げる等の方法、第6図に示す
様に金属板9をじゃばら状にする方法、あるいは第7図
に示す様に外部円筒鉄板7、内部円筒鉄板8および冷却
空気供給管10により囲まれた冷却空気流路11の対角
線の方向に鋼板9を冷却空気供給管10を巻きながら装
入する方法等によつても良い。また、冷却用として本法
では空気を用いたがAr,N2等のガス流体を用いても良
く、さらに芯金の間隙に装入する固体は金属板9に限ら
ず固体ならいかなるものでもよく、好ましくは輻射率の
大きいものがよい。
In addition, the installation method of the insertion metal plate 9 in the gap of the cored bar 4 of the double cylindrical structure composed of the outer cylindrical iron plate 7 and the inner cylindrical iron plate 8 is as follows.
A cutting plate may be simply inserted between the cooling air supply pipes 10, but in order to prevent the cooling air flow from being interrupted, it is preferable that the inserted metal plate 9 does not come into contact with the core metal 4. As shown in FIG. 5, a protrusion 13 is partially provided as a spacer, or a method of improving the heat removal effect, a method of forming a metal plate 9 in a bellows shape as shown in FIG. As shown in the figure, a method of charging the steel plate 9 in the direction of the diagonal line of the cooling air flow passage 11 surrounded by the outer cylindrical iron plate 7, the inner cylindrical iron plate 8 and the cooling air supply pipe 10 while winding the cooling air supply pipe 10 is used. You can get it. Although air was used in this method for cooling, a gas fluid such as Ar or N 2 may be used, and the solid charged in the gap of the cored bar is not limited to the metal plate 9 and may be any solid. The one having a high emissivity is preferable.

(実施例) 以下、本発明の浸漬管冷却方法の一実施例について述べ
る。
(Example) Hereinafter, one example of the immersion pipe cooling method of the present invention will be described.

実施例1 処理能力300Ton/ch の回分式溶鋼真空脱ガス処理設備の
浸漬管芯金の空気冷却に本発明の冷却方法を適用して行
った。
Example 1 The cooling method of the present invention was applied to the air cooling of a submerged pipe core metal of a batch type molten steel vacuum degassing treatment facility having a treatment capacity of 300 Ton / ch.

冷却空気には、圧縮空気を300Nm3/Hr 使用し、冷却空気
供給管の取付ピッチは200mm、冷却空気供給管は10A
のSGP鋼管を20本取り付け、第1図に示す様に二重
円筒構造芯金の間隙に、厚さ0.2mmの鋼板を装入した。
Compressed air is used as the cooling air at 300 Nm 3 / Hr, the mounting pitch of the cooling air supply pipe is 200 mm, and the cooling air supply pipe is 10 A.
20 SGP steel pipes were attached, and as shown in FIG. 1, a steel plate having a thickness of 0.2 mm was placed in the gap between the cores having a double cylindrical structure.

この場合、芯金温度は非冷却時が1,000〜1,200℃程度で
あり、従来の冷却方法では 700〜800℃程度であったも
のが、本発明の適用により 500〜 600℃程度までに低下
させることができ、従来 500〜 600回程度の浸漬管寿命
であったものが、 650〜 700回程度の寿命まで延長する
ことが可能となった。
In this case, the core metal temperature is about 1,000 to 1,200 ° C when not cooled, and is about 700 to 800 ° C in the conventional cooling method, but can be lowered to about 500 to 600 ° C by applying the present invention. It was possible to extend the life of the immersion pipe from about 500 to 600 times to about 650 to 700 times.

実施例2 実施例1において装入鋼板に対流伝熱を促進するため高
さ3mm程度の突起13を20mmピッチでもうけ、二重円
筒構造芯金の間隙に装入した。
Example 2 In Example 1, protrusions 13 having a height of about 3 mm were provided at a pitch of 20 mm on the charged steel plate to promote convective heat transfer, and the protrusions 13 were charged into the gap of the double cylindrical structure cored bar.

(第4図に鋼板の模式図を示す。) この場合、装入鋼板表面での対流伝熱により抜熱が実施
例1に比べて更に大きくなり、すなわち芯金表面からの
抜熱が大きくなり、芯金温度が450〜550℃程度までに低
下した。
(Fig. 4 shows a schematic view of the steel plate.) In this case, heat removal from the surface of the charged steel plate is further increased as compared with Example 1 due to convective heat transfer, that is, heat removal from the surface of the core metal is increased. , The core metal temperature dropped to about 450-550 ℃.

浸漬管寿命は 650〜700回程度と実施例1と大差なかっ
たが、芯金の冷却能がアップした事により、冷却用の圧
縮空気を200Nm3/Hrに下げても充分な冷却能が得られる
ため、圧縮空気のコスト切下げが可能となった。
The immersion tube life was about 650 to 700 times, which was not much different from that of Example 1, but due to the improved cooling capacity of the core metal, sufficient cooling capacity was obtained even if the compressed air for cooling was reduced to 200 Nm 3 / Hr. Therefore, the cost of compressed air can be reduced.

(発明の効果) 以上述べたように二重円筒構造よりなる芯金の空気冷却
において、芯金の間隙に鋼板等の固体物を装入する事に
より芯金表面から装入鋼板あるいは固体物への輻射伝熱
を生ぜしめ冷却空気により装入鋼板固体物等の表面から
の対流伝熱を行う事により冷却能がアップし、大幅な浸
漬管芯金寿命のアップおよび冷却空気のコスト切下げが
可能となった。
(Effects of the Invention) As described above, in air cooling of a cored bar having a double-cylindrical structure, by charging a solid material such as a steel plate into the gap of the cored bar, the surface of the cored bar is changed into a charged steel plate or a solid material. Radiant heat transfer to the cooling steel, and convection heat transfer from the surface of the charged steel plate solids, etc. by cooling air improves the cooling capacity, greatly extending the life of the immersion pipe core and reducing the cost of cooling air. Became.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す浸漬管の断面図。 第2図(a),(b)はそれぞれ第1図の水平断面図のB−
B′の部分断面図、および芯金部の垂直断面図。 第3図(a)は従来法の空気冷却を行った場合の芯金と冷
却空気の温度分布の模式図。 第3図(b)は第3図(a)に本発明を適用した場合の芯金と
冷却空気の温度分布の模式図。 第4図は対流伝熱促進のため突起をもうけた装入鋼板の
模式図。 第5図はスペーサーとしての突起をもうけた装入鋼板の
模式図。 第6図はじゃばら状の鋼板を装入した場合の芯金部の一
部水平断面図。 第7図は冷却空気流路の対角線の方向に鋼板を冷却空気
供給管に巻きながら装入した場合の芯金部の一部水平断
面図。 第8図(a)は回分式の溶鋼真空脱ガス装置の正面断面
図。 第8図(b)は第8図(a)の矢視A−A′断面図。 第9図は回分式の溶鋼真空脱ガス装置の処理チャージ数
と芯金の温度の関係を示すグラフ。 第10図は普通鋼の機械的強度と温度との関係を示した
グラフである。 1……真空脱ガス装置、2……真空槽 3……浸漬管、4……芯金 5,6……耐火物、7……外部円筒鉄板 8……内部円筒鉄板、9……金属板 10……空気供給管、11……空気流路
FIG. 1 is a sectional view of an immersion pipe showing an embodiment of the present invention. 2 (a) and 2 (b) are respectively B- of the horizontal sectional view of FIG.
The partial sectional view of B ', and the vertical sectional view of a core metal part. FIG. 3 (a) is a schematic diagram of the temperature distribution of the core metal and cooling air when air cooling is performed by the conventional method. FIG. 3 (b) is a schematic view of the temperature distribution of the core metal and the cooling air when the present invention is applied to FIG. 3 (a). FIG. 4 is a schematic diagram of a charged steel plate provided with protrusions for promoting convective heat transfer. FIG. 5 is a schematic view of a charging steel plate provided with protrusions as spacers. FIG. 6 is a partial horizontal cross-sectional view of the cored bar when a bellows-shaped steel plate is inserted. FIG. 7 is a partial horizontal cross-sectional view of a cored bar when a steel plate is inserted while being wound around a cooling air supply pipe in a diagonal direction of a cooling air flow path. FIG. 8 (a) is a front sectional view of a batch type molten steel vacuum degassing apparatus. FIG. 8 (b) is a sectional view taken along the line AA ′ of FIG. 8 (a). FIG. 9 is a graph showing the relationship between the number of processing charges of the batch type molten steel vacuum degassing apparatus and the temperature of the core metal. FIG. 10 is a graph showing the relationship between the mechanical strength of ordinary steel and temperature. 1 ... Vacuum degassing device, 2 ... vacuum tank 3 ... immersion tube, 4 ... core metal 5,6 ... refractory, 7 ... external cylindrical iron plate 8 ... internal cylindrical iron plate, 9 ... metal plate 10 ... Air supply pipe, 11 ... Air flow path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶鋼に浸漬され耐火物で被服された外周円
筒鉄板と内周円筒鉄板とからなる浸漬管芯金の間隙部に
ガス流体を供給して冷却する方法において、該間隙部に
金属板を介挿したことを特徴とする浸漬管の冷却方法。
1. A method of supplying a gas fluid to a gap of a dipping pipe core bar composed of an outer peripheral cylindrical iron plate and an inner peripheral cylindrical iron plate immersed in molten steel and covered with a refractory to cool the metal. A cooling method for an immersion pipe, characterized in that a plate is inserted.
JP9577985A 1985-05-04 1985-05-04 Immersion tube cooling method Expired - Lifetime JPH0629454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9577985A JPH0629454B2 (en) 1985-05-04 1985-05-04 Immersion tube cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9577985A JPH0629454B2 (en) 1985-05-04 1985-05-04 Immersion tube cooling method

Publications (2)

Publication Number Publication Date
JPS61253318A JPS61253318A (en) 1986-11-11
JPH0629454B2 true JPH0629454B2 (en) 1994-04-20

Family

ID=14146964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9577985A Expired - Lifetime JPH0629454B2 (en) 1985-05-04 1985-05-04 Immersion tube cooling method

Country Status (1)

Country Link
JP (1) JPH0629454B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2674316B2 (en) * 1990-12-10 1997-11-12 住友金属工業株式会社 Cooling method for dip tube in refining equipment
PL204157B1 (en) * 2005-08-16 2009-12-31 Zak & Lstrok Ady Magnezytowe R Connector pipes of the device for the vacuum degassing of steel
JP4676927B2 (en) * 2006-07-04 2011-04-27 新日本製鐵株式会社 Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method
US9038867B2 (en) 2011-05-11 2015-05-26 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling
US9644246B2 (en) 2011-05-11 2017-05-09 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling

Also Published As

Publication number Publication date
JPS61253318A (en) 1986-11-11

Similar Documents

Publication Publication Date Title
US3652070A (en) Cooling assembly for blast furnace shells
US4620507A (en) Stave cooler
EP1466021B1 (en) Cooling plate for a metallurgical furnace and method for manufacturing such a cooling plate
US4508323A (en) Runner for molten metal
JPH0629454B2 (en) Immersion tube cooling method
US4736789A (en) Apparatus and method for continuous casting of metallic strands at exceptionally high speeds using an oscillating mold assembly
JPH11223464A (en) Electric furnace
US4572269A (en) Method of manufacturing cooling plates for use in metallurgical furnaces and a cooling plate
JP2875413B2 (en) Molten metal container
JP2003279265A (en) Water-cooled panel for electric furnace
US2867871A (en) Hot-top for ingot mold
US1636013A (en) Permanent hot-top mold
JPH0643167Y2 (en) Immersion pipe for molten steel degassing equipment
CA1040694A (en) Roof for arc furnace
JPH09296205A (en) Cooling plate for furnace wall in blast furnace
SU600214A1 (en) Aluminium electrolyzer
EP0042995B1 (en) Apparatus and method for continuous casting of metallic strands at exceptionally high speeds using oscillating mold assembly
JPS5829546A (en) Production of large sized steel ingot having no segregation
JPS58501134A (en) Cooling plate for metallurgical furnace
JPH0941026A (en) Immersion tube for vacuum degassing apparatus
KR100851188B1 (en) method for prolonging of blast furnace stave campaign life
JPH0953110A (en) Immersion tube
JPH0675746B2 (en) Water-cooled ceiling lid for ladle
JPH047519Y2 (en)
GR3007462T3 (en)