JPH0953110A - Immersion tube - Google Patents

Immersion tube

Info

Publication number
JPH0953110A
JPH0953110A JP23338395A JP23338395A JPH0953110A JP H0953110 A JPH0953110 A JP H0953110A JP 23338395 A JP23338395 A JP 23338395A JP 23338395 A JP23338395 A JP 23338395A JP H0953110 A JPH0953110 A JP H0953110A
Authority
JP
Japan
Prior art keywords
core metal
metal
cooling
immersion pipe
lower core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23338395A
Other languages
Japanese (ja)
Inventor
Masateru Nakaho
真輝 仲保
Motoi Nishimura
基 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23338395A priority Critical patent/JPH0953110A/en
Publication of JPH0953110A publication Critical patent/JPH0953110A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an immersion tube improving the durability of the whole immersion tube by efficiently cooling a lower core metal part arranged at the lower part of the immersion tube while securing safety of the immersion tube. SOLUTION: In the immersion tube including a cooling core metal part 15 fitted to the lower part of a vacuum refining furnace and cooled with coolant and the lower core metal 16 arranged at the lower end of the cooling core metal 15 in a refractory, the lower core metal 16 is complexed with a high thermal conductive metal 28 and a low thermal conductive metal 29, and the high thermal conductive metal 28 is fitted so as to contact with the cooling core metal 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼の脱ガス処理
又は成分調整を行うDH、RH等の真空精錬炉に使用さ
れる浸漬管に関する。
TECHNICAL FIELD The present invention relates to a dip tube used in a vacuum refining furnace such as DH or RH for degassing molten steel or adjusting the composition thereof.

【0002】[0002]

【従来の技術】溶鋼の真空精錬を行うDH、RH等の真
空精錬炉においては、溶鋼を保持する取鍋の上方に真空
精錬炉を配置して、該真空精錬炉の下部に取り付けられ
た浸漬管により取鍋中にある溶鋼を真空精錬炉に吸い上
げて、真空雰囲気下で溶鋼を脱ガスしあるいは溶鋼成分
を調整する処理等が行われている。これを例えば、図1
に基づいて説明すると真空精錬炉11が溶鋼14を保持
する取鍋13の上方に配置され、真空精錬炉11の下部
に浸漬管12が取り付けられている。そして、浸漬管1
2は冷媒(冷却媒体)により冷却される冷却芯金15、
該冷却芯金15の下部に固定された冷却されていない鉄
製の下部芯金16、及び冷却芯金15と下部芯金16と
を囲繞してこれを保護する耐火物18、19よりなる。
そして、真空精錬処理に際しては、浸漬管12の下端部
を下降させて、浸漬管12の下部を取鍋13の溶鋼14
中に浸漬する。この時、浸漬管12の下部の外周、及び
内周の耐火物19、18は機械的な衝撃を直接的に受け
ると共に、溶鋼14との接触によって局部的に加熱さ
れ、急激かつ不均一な温度変化による熱的な衝撃を受け
る。また、真空処理が終了して浸漬管12が溶鋼14か
ら引き上げられる時には、浸漬管12の下部が急激に冷
やされて熱衝撃により損傷する。そしてこのような耐火
物の損耗、鉄製の下部芯金16の高温でのクリープ変形
等により、耐火物あるいは耐火物の目地に地金が差し込
んで浸漬管12が変形し、ついには下部芯金16が溶損
され浸漬管自体の寿命が短くなると共に、冷却芯金15
あるいは下部芯金16を再利用することができなくな
る。
2. Description of the Related Art In a vacuum refining furnace such as DH or RH for performing vacuum refining of molten steel, a vacuum refining furnace is arranged above a ladle holding molten steel, and a dip attached to the lower part of the vacuum refining furnace. The process of sucking the molten steel in a ladle into a vacuum refining furnace by a pipe, degassing the molten steel in a vacuum atmosphere, or adjusting the molten steel composition is performed. This is shown in FIG.
In the following description, the vacuum refining furnace 11 is arranged above the ladle 13 holding the molten steel 14, and the dip pipe 12 is attached to the lower part of the vacuum refining furnace 11. And the immersion pipe 1
2 is a cooling core 15 cooled by a refrigerant (cooling medium),
It consists of an uncooled iron lower core 16 fixed to the lower part of the cooling core 15, and refractories 18, 19 surrounding and protecting the cooling core 15 and the lower core 16.
In the vacuum refining process, the lower end of the dip tube 12 is lowered to lower the lower part of the dip tube 12 into the molten steel 14 of the ladle 13.
Soak in. At this time, the refractories 19 and 18 on the lower and outer circumferences of the dip tube 12 are directly subjected to mechanical shock and locally heated by the contact with the molten steel 14, resulting in a sudden and uneven temperature. Receive thermal shock from changes. Further, when the immersion pipe 12 is pulled up from the molten steel 14 after the vacuum treatment is completed, the lower part of the immersion pipe 12 is rapidly cooled and damaged by thermal shock. Due to such wear of the refractory material, creep deformation of the iron lower core metal 16 at high temperature, and the like, the immersion pipe 12 is deformed by inserting the metal into the refractory material or the joint of the refractory material, and finally the lower core metal 16 Is melted and the life of the immersion pipe itself is shortened, and the cooling core metal 15
Alternatively, the lower core metal 16 cannot be reused.

【0003】そのために、鉄製の下部芯金16の部分を
水、空気等による冷却媒体で冷却することにより、下部
芯金16のクリープ変形を抑制し構造材としての強度を
保持すると共に、耐火物自体の高温下での損耗を防止す
る方法が知られている。このような冷却機構を備えた芯
金の構造を示すものとして例えば、特公平3−5080
4号公報には、図7に示すような浸漬管の冷却芯金15
が開示されている。これを以下に説明すると、前記冷却
芯金15においては、冷却芯金15の上部に配置された
冷媒供給ヘッダー22に空気、及び水の混合物からなる
冷媒が冷媒供給口21から供給され、冷媒が内部円筒鉄
板26と外部円筒鉄板25との間に配置された冷媒供給
支管24を通って上から下に移動する。そして冷媒供給
支管24の下端から吐出する冷媒が芯金底板27に衝突
して反転上昇し、この間に周囲の熱を奪って加熱された
冷媒が外部円筒鉄板25の上部の冷媒放散口23から放
出されるようになっている。しかし、前述のように機械
的及び熱的な衝撃が加わりやすい浸漬管の下部は、耐火
物が損耗あるいは脱落して冷却芯金15まで溶鋼14が
侵入するような場合には冷媒が溶鋼14中に吹き込まれ
て、水蒸気爆発を生じたり、あるいは溶鋼成分を変動さ
せる等のトラブルが発生する。そこで、安全性及び品質
上の理由から冷媒による冷却を行わない非冷却型の鋼鉄
の円筒からなる下部芯金16aが溶接又はボルト、ナッ
トにより冷却芯金15の下部に固定されている。
Therefore, by cooling the portion of the lower iron core 16 made of iron with a cooling medium such as water or air, creep deformation of the lower iron core 16 is suppressed, the strength as a structural material is maintained, and a refractory material is used. A method of preventing wear of itself under high temperature is known. As a structure showing a cored bar having such a cooling mechanism, for example, Japanese Patent Publication No. 3-5080.
No. 4 publication discloses a cooling core metal 15 for an immersion pipe as shown in FIG.
Is disclosed. This will be described below. In the cooling core metal 15, in the cooling core metal 15, the refrigerant supply header 22 arranged above the cooling core metal 15 is supplied with the refrigerant composed of a mixture of air and water from the refrigerant supply port 21, and the refrigerant is It moves from top to bottom through the refrigerant supply branch pipe 24 arranged between the inner cylindrical iron plate 26 and the outer cylindrical iron plate 25. Then, the refrigerant discharged from the lower end of the refrigerant supply branch pipe 24 collides with the core metal bottom plate 27 and inverts and rises, during which the heated heat is taken away and the heated refrigerant is discharged from the refrigerant discharge port 23 above the outer cylindrical iron plate 25. It is supposed to be done. However, as described above, the lower part of the dip pipe, which is easily subjected to mechanical and thermal shocks, has a coolant inside the molten steel 14 when the refractory wears or falls off and the molten steel 14 enters the cooling core 15. When it is blown into the tank, troubles such as steam explosion or fluctuation of molten steel composition occur. Therefore, for safety and quality reasons, a lower core metal 16a made of an uncooled steel cylinder that is not cooled by a refrigerant is fixed to the lower part of the cooling core metal 15 by welding or bolts and nuts.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記の
ように冷却芯金15と非冷却型の下部芯金16aとを組
み合わせて用いる方法では、冷却芯金15に対応する部
分の浸漬管の耐用性はその冷却効果により向上するもの
の、下部芯金16aから冷却芯金15へ向かって移動す
る伝熱量が少ないために、非冷却型である下部芯金16
aの温度が冷却芯金15に較べて200〜300℃程度
高くなり、下部芯金16aに熱膨張、及び荷重によるク
リープ変形が生じて浸漬管の全体の寿命を減少させる問
題点がある。
However, in the method of using the cooling core metal 15 and the non-cooling type lower core metal 16a in combination as described above, the durability of the immersion pipe in the portion corresponding to the cooling core metal 15 is improved. Is improved by its cooling effect, but since the amount of heat transfer moving from the lower core metal 16a to the cooling core metal 15 is small, the lower core metal 16 of the non-cooling type is used.
The temperature of a becomes higher by about 200 to 300 ° C. than that of the cooling core 15, and thermal expansion of the lower core 16a and creep deformation due to load occur, which causes a problem that the life of the entire immersion pipe is reduced.

【0005】本発明はこのような事情に鑑みてなされた
もので、浸漬管の安全性を確保しながら、かつ浸漬管下
部に配置された下部芯金部分を効率的に冷却して浸漬管
全体の耐用性を向上させる浸漬管を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and while ensuring the safety of the dip tube, the lower part of the core metal arranged in the lower part of the dip tube is efficiently cooled to make the whole dip tube. It is an object of the present invention to provide a dip tube having improved durability.

【0006】[0006]

【課題を解決するための手段】前記目的に沿う請求項1
記載の浸漬管は、真空精錬炉の下部に取り付けられ、冷
却媒体により冷却される冷却芯金と該冷却芯金の下端に
配置される下部芯金とを耐火物中に内蔵する浸漬管にお
いて、前記下部芯金が高熱伝導性金属と低熱伝導性金属
とを複合させてなり、該高熱伝導性金属が前記冷却芯金
に接触するように取り付けられている。請求項2記載の
浸漬管は、請求項1記載の浸漬管において、前記下部芯
金の高熱伝導性金属が前記冷却芯金に対して突出して設
けられている。
According to the present invention, there is provided a semiconductor device comprising:
The immersion tube described is a submerged tube which is attached to a lower portion of a vacuum refining furnace and includes a cooling core bar cooled by a cooling medium and a lower core bar arranged at a lower end of the cooling core bar in a refractory material, The lower core metal is a composite of a high thermal conductivity metal and a low thermal conductivity metal, and the high thermal conductivity metal is attached so as to contact the cooling core metal. The immersion pipe according to a second aspect is the immersion pipe according to the first aspect, in which the high thermal conductive metal of the lower core metal is provided so as to protrude from the cooling core metal.

【0007】ここで、冷却媒体とは、空気、水等の気体
及び/又は液体からなる流動性の熱媒体をいう。下部芯
金とは、冷却媒体によって直接的に冷却されることのな
い、浸漬管としての構造的な強度を保持するための芯金
をいう。高熱伝導性金属とは、芯金の材料として一般に
用いられる鋼鉄、ステンレス等の低熱伝導性金属に較べ
て熱伝導率が少なくとも2倍以上大きいような金属又は
合金、例えば銅、銀、黄銅等をいう。前記熱伝導率が2
倍より小さい金属を鋼鉄、ステンレス等の低熱伝導性金
属と複合させて使用した場合には、両者の間に必要な温
度勾配が得られず伝熱量が不足するために、冷却芯金と
の接触による冷却の効果が充分に発揮しえない。また、
低熱伝導性金属とは、冷却芯金の材料として一般に用い
られる鋼鉄、ステンレス等の金属又は合金をいう。
Here, the cooling medium means a fluid heat medium composed of gas such as air and water and / or liquid. The lower core metal is a core metal for maintaining the structural strength as an immersion pipe, which is not directly cooled by a cooling medium. The high thermal conductivity metal is a metal or alloy having a thermal conductivity at least twice as high as that of a low thermal conductivity metal such as steel or stainless steel which is generally used as a material for the core metal, such as copper, silver or brass. Say. The thermal conductivity is 2
If a metal smaller than double the size is used in combination with a metal with low thermal conductivity such as steel or stainless steel, the required temperature gradient cannot be obtained between them and the heat transfer amount will be insufficient, so contact with the cooling core will occur. The cooling effect due to can not be fully exerted. Also,
The low thermal conductive metal refers to a metal or alloy such as steel or stainless steel that is generally used as a material for a cooling core metal.

【0008】[0008]

【作用】請求項1及び2記載の浸漬管においては、下部
芯金が高熱伝導性金属と低熱伝導性金属とを複合させて
なり、該高熱伝導性金属が前記冷却芯金に接触して取り
付けられているので、浸漬管下部の耐火物から下部芯金
に流入する熱量が、高熱伝導性金属を経由して、上部の
冷却芯金に効率的に伝導される。特に、請求項2記載の
浸漬管においては、下部芯金の高熱伝導性金属が冷却芯
金に対して突出して設けられているので、有効な伝熱面
の面積を大きくできる。
In the immersion pipe according to the present invention, the lower core metal is made of a composite of a high thermal conductivity metal and a low thermal conductivity metal, and the high thermal conductivity metal is attached in contact with the cooling core metal. Therefore, the amount of heat flowing from the refractory material in the lower part of the immersion pipe to the lower core metal is efficiently conducted to the upper cooling core metal via the high thermal conductive metal. Particularly, in the immersion pipe according to the second aspect, since the highly heat-conductive metal of the lower core metal is provided so as to protrude from the cooling core metal, the effective heat transfer surface area can be increased.

【0009】[0009]

【発明の効果】従って、請求項1及び2記載の浸漬管に
おいては、下部芯金に対応する部分の浸漬管の耐用性を
維持させると共に、浸漬管下部の芯金が損傷しても、冷
却媒体が溶鋼中に漏洩するようなことがなく、安全性を
確保しつつ、流動性の冷却媒体によって直接的に冷却さ
れることのない下部芯金の冷却を効率的に行って、下部
芯金及び全芯金を対照とした熱膨張、及び荷重によるク
リープ変形を防止して浸漬管の全体の寿命を向上させる
ことができる。特に、請求項2記載の浸漬管において
は、有効な伝熱面積が増加し浸漬管下部の冷却効果をさ
らに向上させることができる。
Therefore, in the immersion pipe according to the first and second aspects, the durability of the immersion pipe in the portion corresponding to the lower core metal is maintained, and even if the core metal in the lower part of the immersion pipe is damaged, it is cooled. The medium does not leak into the molten steel, while ensuring safety, it efficiently cools the lower core metal that is not directly cooled by the fluid cooling medium, Also, it is possible to prevent the thermal expansion and the creep deformation due to the load against the whole core metal as a control, and improve the entire life of the immersion pipe. Particularly, in the immersion pipe according to the second aspect, the effective heat transfer area is increased, and the cooling effect of the lower part of the immersion pipe can be further improved.

【0010】[0010]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに図1は真空精錬設備の説明
図、図2は本発明の第1の実施の形態に係る浸漬管の芯
金部分の側断面図、図3は同浸漬管の下部芯金の斜視
図、図4は本発明の第2の実施の形態に係る浸漬管の下
部芯金の斜視図、図5は浸漬管処理回数と下部芯金温度
との関係を示す図、図6は第2の実施の形態及び従来例
における浸漬管寿命の比較図である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to the attached drawings, an embodiment in which the present invention is embodied will be described to provide an understanding of the present invention. 1 is an explanatory view of the vacuum refining equipment, FIG. 2 is a side sectional view of a cored bar portion of the immersion pipe according to the first embodiment of the present invention, and FIG. 3 is a perspective view of a lower cored bar of the immersion pipe. FIG. 4 is a perspective view of a lower core metal of an immersion pipe according to a second embodiment of the present invention, FIG. 5 is a view showing a relationship between the number of immersion pipe treatments and a lower core metal temperature, and FIG. 6 is a second view. It is a comparison figure of the immersion pipe life in an embodiment and a conventional example.

【0011】本発明の第1の実施の形態に係る浸漬管1
2を適用する真空精錬設備10は、図1に示すように溶
鋼14を保持する取鍋13、取鍋13の上方に配置され
る真空精錬炉11、及び真空精錬炉11の下部に取り付
けられる浸漬管12よりなる。
Immersion tube 1 according to the first embodiment of the present invention
As shown in FIG. 1, the vacuum refining equipment 10 to which No. 2 is applied is a ladle 13 for holding molten steel 14, a vacuum refining furnace 11 arranged above the ladle 13, and a dip attached to the lower part of the vacuum refining furnace 11. It consists of a tube 12.

【0012】そして、前記取鍋13は、耐火物が内張り
された溶鋼容量約300トンの鋼鉄製容器であり、転炉
あるいは電気炉等で精錬処理された溶鋼14を保持す
る。なお、図1は説明の都合上、取鍋13、真空精錬炉
11の配列の概略を示すものであり、実際の寸法、及び
比率の大小関係を反映したものではない。前記真空精錬
炉11は、図示しない真空ポンプにより炉内を排気する
ことにより、浸漬管12を介して取鍋13内の溶鋼14
を炉内に吸い上げ、真空雰囲気下において溶鋼14の脱
ガス、成分調整等を行う装置である。
The ladle 13 is a steel container having a refractory lining and a molten steel capacity of about 300 tons, and holds the molten steel 14 that has been smelted in a converter or an electric furnace. For convenience of explanation, FIG. 1 shows an outline of the arrangement of the ladle 13 and the vacuum refining furnace 11, and does not reflect the actual size and the magnitude relation of the ratio. In the vacuum refining furnace 11, the molten steel 14 in the ladle 13 is inserted through the dip pipe 12 by exhausting the inside of the furnace by a vacuum pump (not shown).
Is a device for sucking into the furnace and degassing the molten steel 14 and adjusting the components in a vacuum atmosphere.

【0013】前記浸漬管12は、冷媒(冷却媒体)によ
り冷却される冷却芯金15、該冷却芯金15の下部に固
定された下部芯金16、及び冷却芯金15と下部芯金1
6とを囲繞する耐火物18、19よりなる略円筒状の管
である。さらに前記冷却芯金15は、冷却芯金15の上
部がフランジ20を介して真空精錬炉11の下部にボル
ト、ナット等の係止具により固定されている。図2に示
すように冷却芯金15は、冷媒供給ヘッダー22、冷媒
供給口21、内部円筒鉄板26、外部円筒鉄板25、冷
媒供給支管24、及び芯金底板27からなる。ここで、
冷却芯金15の上部の冷媒供給ヘッダー22に空気、及
び水の混合物からなる冷媒が冷媒供給口21から供給さ
れ、冷媒が内部円筒鉄板26と外部円筒鉄板25との間
に配置された冷媒供給支管24の中を通って上から下に
移動できるようになっている。そして冷媒供給支管24
の下端から吐出する冷媒が芯金底板27に衝突して、冷
媒供給支管24の外側面に沿って上昇し、外部円筒鉄板
25からの熱により加熱された冷媒が外部円筒鉄板25
の上部の冷媒放散口23から放出する構造になってい
る。
The immersion pipe 12 includes a cooling core metal 15 cooled by a refrigerant (cooling medium), a lower core metal 16 fixed to a lower portion of the cooling core metal 15, and a cooling core metal 15 and a lower core metal 1.
6 is a substantially cylindrical tube made of refractory materials 18 and 19 that surrounds 6 and 6. Further, the cooling mandrel 15 has an upper part of the cooling mandrel 15 fixed to a lower part of the vacuum refining furnace 11 via a flange 20 by a fastener such as a bolt and a nut. As shown in FIG. 2, the cooling core metal 15 includes a coolant supply header 22, a coolant supply port 21, an inner cylindrical iron plate 26, an outer cylindrical iron plate 25, a coolant supply branch pipe 24, and a core metal bottom plate 27. here,
The refrigerant supply header 22 above the cooling core 15 is supplied with a refrigerant composed of a mixture of air and water from the refrigerant supply port 21, and the refrigerant is supplied between the inner cylindrical iron plate 26 and the outer cylindrical iron plate 25. It can be moved from top to bottom through the branch pipe 24. And the refrigerant supply branch pipe 24
The refrigerant discharged from the lower end of the cylinder collides with the core metal bottom plate 27, rises along the outer surface of the refrigerant supply branch pipe 24, and the refrigerant heated by the heat from the outer cylindrical iron plate 25 becomes the outer cylindrical iron plate 25.
The structure is such that the refrigerant is discharged from the refrigerant discharge port 23 above.

【0014】前記下部芯金16はボルト、ナット等の機
械的な締結手段、又は溶接手段により冷却芯金15の下
部に接触して固定されている。そして、図2、図3に示
すように、下部芯金16は、高熱伝導性金属の一例であ
る銅(熱伝導率:0.94cal/cm・sec・de
g)のロッド28が、低熱伝導性金属の一例である鋼鉄
(熱伝導率:0.12cal/cm・sec・deg)
の円筒29の中に、その中心軸に平行に多数埋め込まれ
て形成される。銅のロッド28の上端部は突出部30と
なって鋼鉄の円筒29から外側に突出するようになって
おり、突出部30は前記冷却芯金15の芯金底板27を
貫通しており、冷却芯金15及び突出部30間の伝熱が
効率的に行えるようになっている。なお、冷却芯金15
との接触部において、銅のロッド28から冷却芯金15
への必要な量の伝熱量が確保できるような場合には、特
に突出部30を設けなくともよい。
The lower mandrel 16 is fixed in contact with the lower part of the cooling mandrel 15 by mechanical fastening means such as bolts and nuts, or welding means. Then, as shown in FIGS. 2 and 3, the lower core metal 16 is made of copper (heat conductivity: 0.94 cal / cm · sec · de), which is an example of a high thermal conductive metal.
The rod 28 of g) is steel (thermal conductivity: 0.12 cal / cm · sec · deg), which is an example of a low thermal conductive metal.
It is formed by being embedded in a number of cylinders 29 in parallel with the central axis thereof. The upper end of the copper rod 28 serves as a protrusion 30 and protrudes outward from the steel cylinder 29. The protrusion 30 penetrates the cored bar bottom plate 27 of the cooling cored bar 15 for cooling. The heat transfer between the core metal 15 and the protrusion 30 can be efficiently performed. In addition, the cooling core 15
At the contact portion with the cooling rod 15 from the copper rod 28
When it is possible to secure a necessary amount of heat transfer to, the protrusion 30 need not be provided.

【0015】冷却芯金15、及び下部芯金16の内側部
に配置される耐火物18はマグネシアクロム質等の耐火
れんがであり、これを各芯金15、16の内側部に沿っ
て必要に応じてモルタルを介して積層させることにより
浸漬管12の内側部分の耐火物ライニングが施工されて
いる。一方、各芯金15、16の外側部に配置される耐
火物19はアルミナ質、マグネシア質キャスタブル等か
らなる不定形耐火物であり、水等を加えて混合しスラリ
ー状あるいは練土状とした混合物を、冷却芯金15、及
び下部芯金16の周囲に配置した円筒状の型枠の中に必
要に応じて振動を加えながら流し込んで、これを硬化さ
せることにより冷却芯金15、及び下部芯金16の外側
部分の耐火物ライニングが形成されている。
The refractory material 18 disposed inside the cooling core metal 15 and the lower core metal 16 is a refractory brick such as a magnesia chrome material, which is required along the inner side of each core metal 15, 16. Correspondingly, the refractory lining of the inner portion of the dip pipe 12 is applied by laminating the mortar through the mortar. On the other hand, the refractory material 19 arranged on the outer side of each core metal 15 and 16 is an amorphous refractory material composed of alumina, magnesia castable, etc., and is mixed with water or the like to form a slurry or kneaded clay. The mixture is poured into a cylindrical form frame arranged around the cooling core metal 15 and the lower core metal 16 while applying vibration as needed, and the mixture is cured to cool the core metal 15 and the lower core metal 16. A refractory lining on the outer portion of the cored bar 16 is formed.

【0016】以上説明したような下部芯金16が組み込
まれてなる真空精錬設備10を用いて、実際の真空精錬
処理を行った結果を以下に述べる。図5は第1の実施の
形態に係る浸漬管12の下部芯金16(記号:●)、及
び従来例の鋼鉄の円筒からなる下部芯金16a(記号:
○)とにおける温度を真空精錬処理回数毎に測定して比
較したグラフであるが、特に約100回以降の真空精錬
処理では従来例に較べて下部芯金16の温度を約150
℃低減することができることを示している。また、前述
した冷却の効果に加えて、浸漬管12の下端の下部芯金
16が損傷したような場合にも、冷却媒体が存在しない
ので、漏洩した冷却媒体が溶鋼14中に吹き込まれて、
水蒸気爆発等の事故を発生させる恐れがなく、真空精錬
処理でのオペレータの心理的負担を軽減すると共に、耐
火物18、19を使用限度まで安全に使用することがで
きる。そして、本実施の形態においては冷却芯金15の
みならず、下部芯金16自体の機械的強度が保持され
て、耐火物18、19が下部芯金16によって確実に拘
束、支持されるようになり、図6に示すように従来例に
おいて550回程度であった浸漬管12の寿命を750
回に延長するという顕著な効果を得ることができた。な
お、記号(◎)は浸漬管寿命の各平均値を、線分の長さ
は寿命の範囲を示している。また、真空精錬処理中には
機械的衝撃あるいは耐火物18、19の損傷、及び熱負
荷により、耐火物18、19を支持する下部芯金16に
過大な応力がその都度発生する。そして、該応力に対抗
する下部芯金16の機械的強度は、芯金温度の上昇に伴
って急激に低下するので、必要な機械的強度を維持する
ために下部芯金16を冷却することが効果的であること
が以上の結果から分かる。
The results of the actual vacuum refining process using the vacuum refining equipment 10 in which the lower core metal 16 as described above is incorporated will be described below. FIG. 5 shows a lower core metal 16 (symbol: ●) of the immersion pipe 12 according to the first embodiment, and a lower metal core 16a (symbol: steel cylinder of a conventional example).
It is a graph in which the temperatures in () and () are measured and compared for each number of vacuum refining treatments. Particularly, in the vacuum refining treatment after about 100 times, the temperature of the lower core metal 16 is about 150 compared to the conventional example.
It shows that the temperature can be reduced by ° C. Further, in addition to the above-described cooling effect, since the cooling medium does not exist even when the lower core metal 16 at the lower end of the immersion pipe 12 is damaged, the leaked cooling medium is blown into the molten steel 14,
There is no risk of causing an accident such as a steam explosion, the psychological burden on the operator in the vacuum refining process is reduced, and the refractories 18 and 19 can be safely used up to the use limit. In addition, in the present embodiment, not only the cooling core metal 15 but also the lower core metal 16 itself is maintained in mechanical strength so that the refractory materials 18 and 19 are securely restrained and supported by the lower core metal 16. As shown in FIG. 6, the life of the immersion pipe 12 was 750 times, which was about 550 times in the conventional example.
It was possible to obtain a remarkable effect of extending the time. The symbol (⊚) indicates each average value of the life of the immersion tube, and the length of the line segment indicates the range of the life. Further, during the vacuum refining process, excessive stress is generated in the lower core metal 16 supporting the refractories 18 and 19 each time due to mechanical shock, damage to the refractories 18 and 19, and heat load. The mechanical strength of the lower core metal 16 against the stress sharply decreases as the core metal temperature rises. Therefore, it is possible to cool the lower core metal 16 to maintain the required mechanical strength. The above results show that it is effective.

【0017】続いて、本発明の第2の実施の形態に係る
浸漬管12について説明する。ここで、図4は円筒状を
なす下部芯金17の斜視図であり、高熱伝導性金属であ
る銅の円筒28aの外側、及び内側には鋼鉄の円筒29
aが密着して配置されている。そして、銅の円筒28a
の上端部が、冷却芯金15の下端部である芯金底板27
に接触するように固定されている。このとき鋼鉄の円筒
29aの上端部を冷却芯金15の下端部に溶接等の手段
により接合して芯金自体の構造的な強度を保持する。従
って、このような下部芯金17が組み込まれた浸漬管に
おいては、必要な構造的強度を有すると共に、鋼鉄の円
筒29aから銅の円筒28aに向かって熱が移動して、
さらにこの熱が下部芯金17の上端に露出する銅の円筒
28aの部分を介して、上部に配置された冷却芯金15
に移行する。このため浸漬管の周囲から下部芯金17に
流入する熱量の有効な伝熱面積が大きく取れ、鋼鉄の円
筒29aの部分を効率的に冷却することができる。な
お、図4における銅の円筒28aの側面である伝熱面に
凹凸を形成することにより、伝熱面積をさらに大きくす
るようなことも可能であり、この場合にも前記第1の実
施の形態と同様に浸漬管の寿命を延長する効果が得られ
ると共に、高熱伝導性金属と低熱伝導性金属間の密着強
度の向上が図られる。
Next, the dip tube 12 according to the second embodiment of the present invention will be described. Here, FIG. 4 is a perspective view of the lower core metal 17 having a cylindrical shape, and a steel cylinder 29 is provided on the outer side and the inner side of the copper cylinder 28a which is a high thermal conductive metal.
a is closely attached. And the copper cylinder 28a
The upper end of the cored bar bottom plate 27, which is the lower end of the cooling cored bar 15.
It is fixed so that it comes into contact with. At this time, the upper end of the steel cylinder 29a is joined to the lower end of the cooling mandrel 15 by means such as welding to maintain the structural strength of the mandrel itself. Therefore, in the dip tube in which such a lower core metal 17 is incorporated, while having the necessary structural strength, heat moves from the steel cylinder 29a to the copper cylinder 28a,
Further, this heat is passed through the portion of the copper cylinder 28a exposed at the upper end of the lower core metal 17 and the cooling core metal 15 arranged on the upper part.
Move to Therefore, a large effective heat transfer area for the amount of heat flowing into the lower core metal 17 from the periphery of the immersion pipe can be obtained, and the steel cylinder 29a can be efficiently cooled. It is also possible to further increase the heat transfer area by forming irregularities on the heat transfer surface, which is the side surface of the copper cylinder 28a in FIG. 4, and in this case as well, the first embodiment described above is used. Similarly to the above, the effect of extending the life of the immersion tube is obtained, and the adhesion strength between the high thermal conductivity metal and the low thermal conductivity metal is improved.

【0018】以上、本発明の実施の形態を説明したが、
本発明はこれらの実施の形態に限定されるものではな
く、要旨を逸脱しない条件の変更等は全て本発明の適用
範囲である。例えば、本実施の形態においては、高熱伝
導性金属の形状を、ロッド(棒状)あるいは円筒状とし
て、これを低熱伝導性金属の中に配置して下部芯金を形
成したが、前記棒状の高熱伝導性金属を角柱、板状等と
し、あるいは円筒状を形成する高熱伝導性金属を円筒の
周方向に複数分割し、これを低熱伝導性金属中に埋め込
むようにしてもよい。
The embodiment of the present invention has been described above.
The present invention is not limited to these embodiments, and changes in conditions and the like without departing from the spirit are all within the scope of application of the present invention. For example, in the present embodiment, the shape of the high thermal conductive metal is a rod (rod shape) or a cylindrical shape, and this is placed in the low thermal conductive metal to form the lower core metal. The conductive metal may have a prismatic shape, a plate shape, or the like, or the high heat conductive metal forming a cylinder may be divided into a plurality of pieces in the circumferential direction of the cylinder and embedded in the low heat conductive metal.

【図面の簡単な説明】[Brief description of drawings]

【図1】真空精錬設備の説明図である。FIG. 1 is an explanatory diagram of a vacuum refining facility.

【図2】本発明の第1の実施の形態に係る浸漬管の芯金
部分の側断面図である。
FIG. 2 is a side cross-sectional view of a cored bar portion of the immersion pipe according to the first embodiment of the present invention.

【図3】同浸漬管の下部芯金の斜視図である。FIG. 3 is a perspective view of a lower cored bar of the immersion tube.

【図4】本発明の第2の実施の形態に係る浸漬管の下部
芯金の斜視図である。
FIG. 4 is a perspective view of a lower core metal of an immersion pipe according to a second embodiment of the present invention.

【図5】浸漬管処理回数と下部芯金温度との関係を示す
図である。
FIG. 5 is a diagram showing the relationship between the number of immersion pipe treatments and the lower core metal temperature.

【図6】第2の実施の形態及び従来例における浸漬管寿
命の比較図である。
FIG. 6 is a comparison diagram of the immersion pipe life in the second embodiment and the conventional example.

【図7】従来例における芯金の説明図である。FIG. 7 is an explanatory diagram of a cored bar in a conventional example.

【符号の説明】[Explanation of symbols]

10 真空精錬設備 11 真空精錬炉 12 浸漬管 13 取鍋 13a 耐火物 14 溶鋼 15 冷却芯金 16 下部芯金 17 下部芯金 18 耐火物 18a 耐火物 19 耐火物 20 フランジ 21 冷媒供給口 22 冷媒供給ヘッダー 23 冷媒放散口 24 冷媒供給支管 25 外部円筒鉄
板 26 内部円筒鉄板 27 芯金底板 28 銅のロッド 28a 銅の円筒 29 鋼鉄の円筒 29a 鋼鉄の円
筒 30 突出部
10 Vacuum Refining Equipment 11 Vacuum Refining Furnace 12 Immersion Pipe 13 Ladle 13a Refractory Material 14 Molten Steel 15 Cooling Core Bar 16 Lower Core Bar 17 Lower Core Bar 18 Refractory 18a Refractory 19 Refractory 20 Flange 21 Refrigerant Supply Header 22 Refrigerant Supply Header 23 Refrigerant Discharge Port 24 Refrigerant Supply Branch Pipe 25 External Cylindrical Iron Plate 26 Internal Cylindrical Iron Plate 27 Core Bar Bottom Plate 28 Copper Rod 28a Copper Cylinder 29 Steel Cylinder 29a Steel Cylinder 30 Projection

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空精錬炉の下部に取り付けられ、冷却
媒体により冷却される冷却芯金と該冷却芯金の下端に配
置される下部芯金とを耐火物中に内蔵する浸漬管におい
て、 前記下部芯金が高熱伝導性金属と低熱伝導性金属とを複
合させてなり、該高熱伝導性金属が前記冷却芯金に接触
して取り付けられていることを特徴とする浸漬管。
1. A dip tube, which is attached to a lower portion of a vacuum refining furnace and has a refrigerating core bar cooled by a cooling medium and a lower core bar disposed at a lower end of the refrigerating core bar in a refractory, An immersion pipe, wherein the lower core metal is made of a composite of a high thermal conductivity metal and a low thermal conductivity metal, and the high thermal conductivity metal is attached in contact with the cooling core metal.
【請求項2】 前記下部芯金の高熱伝導性金属が、前記
冷却芯金に対して突出して設けられている請求項1記載
の浸漬管。
2. The immersion pipe according to claim 1, wherein the high thermal conductive metal of the lower core metal is provided so as to protrude from the cooling core metal.
JP23338395A 1995-08-18 1995-08-18 Immersion tube Withdrawn JPH0953110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23338395A JPH0953110A (en) 1995-08-18 1995-08-18 Immersion tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23338395A JPH0953110A (en) 1995-08-18 1995-08-18 Immersion tube

Publications (1)

Publication Number Publication Date
JPH0953110A true JPH0953110A (en) 1997-02-25

Family

ID=16954243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23338395A Withdrawn JPH0953110A (en) 1995-08-18 1995-08-18 Immersion tube

Country Status (1)

Country Link
JP (1) JPH0953110A (en)

Similar Documents

Publication Publication Date Title
US6404799B1 (en) Water-cooling panel for furnace wall and furnace cover of arc furnace
RU2259529C2 (en) Cooling device
US3829595A (en) Electric direct-arc furnace
TWI336353B (en)
US8834784B2 (en) Thin stave cooler and support frame system
US4583230A (en) Apparatus for induction heating of molten metal
EP0577834B1 (en) Plate brick cartridge for slide valve device and slide valve device using the cartridge
JPH11223464A (en) Electric furnace
JPH0953110A (en) Immersion tube
JP2725576B2 (en) Water-cooled refractory panels for blast furnace wall repair
JPH0629454B2 (en) Immersion tube cooling method
RU2283355C2 (en) Vacuum electric-arc lining-slag furnace
JP2000292072A (en) Furnace wall of arc furnace and water-cooled panel for furnace cover
JP2003279265A (en) Water-cooled panel for electric furnace
JPH0827505A (en) Water cooled refractory panel for repairing blast furnace wall
JPH09296205A (en) Cooling plate for furnace wall in blast furnace
JP3253250B2 (en) Cooling device for corner part and flat part of flash furnace and their arrangement structure
JPH0569598U (en) Refining furnace steel skin cooling structure
JPH11236611A (en) Stave for blast furnace
JPS58124193A (en) Method of setting up water-cooled pipe to meltage encasing vessel shell
KR100456036B1 (en) Cooling panel for a shaft furnace
JP4304944B2 (en) Molten metal container and method for cooling outer wall thereof
JPH11291024A (en) Method for repairing inner surface of ladle and repairing device thereof
JP2506623Y2 (en) Cooling structure of reaction shaft for flash smelting furnace
JPH07258716A (en) Method for extending service life of iron shell for converter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105