JP6974115B2 - Refractory for gas blowing nozzle - Google Patents

Refractory for gas blowing nozzle Download PDF

Info

Publication number
JP6974115B2
JP6974115B2 JP2017207680A JP2017207680A JP6974115B2 JP 6974115 B2 JP6974115 B2 JP 6974115B2 JP 2017207680 A JP2017207680 A JP 2017207680A JP 2017207680 A JP2017207680 A JP 2017207680A JP 6974115 B2 JP6974115 B2 JP 6974115B2
Authority
JP
Japan
Prior art keywords
refractory
gas blowing
metal
central
blowing nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017207680A
Other languages
Japanese (ja)
Other versions
JP2019077934A (en
Inventor
聖司 細原
淳志 鳥越
亮磨 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
JFE Steel Corp
Original Assignee
Shinagawa Refractories Co Ltd
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd, JFE Steel Corp filed Critical Shinagawa Refractories Co Ltd
Priority to JP2017207680A priority Critical patent/JP6974115B2/en
Publication of JP2019077934A publication Critical patent/JP2019077934A/en
Application granted granted Critical
Publication of JP6974115B2 publication Critical patent/JP6974115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、転炉や電気炉などにおいて、精錬効率や合金歩留まりの向上を目的として炉底などから溶湯内にガスを吹込むためのガス吹込みノズル用の耐火物であって、炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹込みノズル用耐火物に関する。 The present invention is a refractory for a gas blowing nozzle for blowing gas into a molten metal from a furnace bottom or the like for the purpose of improving refractory efficiency and alloy yield in a converter or an electric furnace, and is a carbon-containing refractory. The present invention relates to a refractory material for a gas blowing nozzle in which one or more metal thin tubes for gas blowing are embedded.

転炉や電気炉などでは、精錬効率や合金歩留まりの向上を目的として、炉底から撹拌ガス(通常、窒素やArなどの不活性ガス)や精錬ガスを溶湯内に吹込む、いわゆる底吹きが行われる。この底吹きの方式としては、(1)内管から脱炭を目的とした酸素を、外管から溶鋼接触部位の冷却を目的とした炭化水素ガス(プロパンなど)をそれぞれ吹込む二重管方式、(2)金属管と煉瓦の隙間にスリット状の開孔を設け、その開孔から不活性ガスを吹込む方式(スリット方式)、(3)炭素含有煉瓦に複数本(数本〜数百本)の金属細管を埋設し、煉瓦の底部からガス導入管とガス溜まりを介して不活性ガスを金属細管に供給し、この金属細管から不活性ガスを吹込む方式、などがある。 In converters and electric furnaces, so-called bottom blowing is used in which agitated gas (usually an inert gas such as nitrogen or Ar) or refining gas is blown into the molten metal from the bottom of the furnace for the purpose of improving refining efficiency and alloy yield. Will be done. As this bottom blowing method, (1) a double pipe method in which oxygen for the purpose of decarburization is blown from the inner pipe and hydrocarbon gas (propane, etc.) for the purpose of cooling the molten steel contact part is blown from the outer pipe. , (2) A slit-shaped opening is provided in the gap between the metal pipe and the brick, and an inert gas is blown through the opening (slit method). There is a method of burying the metal thin tube of the book), supplying the inert gas from the bottom of the brick to the metal thin tube through the gas introduction pipe and the gas reservoir, and blowing the inert gas from the metal thin tube.

これらのうち(1)、(2)の方式では、羽口用煉瓦を予め定法により製造し、二重管やスリットを形成する金属管の設置部分を加工したり、2分割ないし4分割とすることで金属管を設置する空間を形成し、施工時にはガスを吹込む金属管を予めセットし、その周囲に羽口用煉瓦を施工するのが一般的である。
一方、(3)の方式で用いられるガス吹込み用プラグ(ノズル)は、マルチプル・ホール・プラグ(以下、MHPという)と呼ばれる。例えば、特許文献1(特開昭59−31810号公報)では、このMHPでは1〜20倍のガス流量(0.01〜0.20Nm/min)が制御可能とされている。このため、MHPは二重管方式やスリット方式に比べて採用が容易である。
Of these, in the methods (1) and (2), bricks for tuyere are manufactured in advance by a conventional method, and the installation part of the double pipe or the metal pipe forming the slit is processed or divided into two or four. By doing so, it is common to form a space for installing the metal pipe, set the metal pipe to which gas is blown in advance at the time of construction, and construct the tuyere brick around it.
On the other hand, the gas blowing plug (nozzle) used in the method (3) is called a multiple hole plug (hereinafter referred to as MHP). For example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 59-31810), it is defined that the gas flow rate (0.01 to 0.20 Nm 3 / min) can be controlled 1 to 20 times with this MHP. Therefore, MHP is easier to adopt than the double pipe method or the slit method.

MHPは、ガス溜まりに接続された複数本の金属細管がマグネシア−カーボン煉瓦などの炭素含有耐火物に埋め込まれた構造であるため、その製造は、二重管方式やスリット方式のノズルとは異なり、以下のような方法が採られる。
すなわち、マグネシア原料などの骨材に鱗状黒鉛などの炭素源、ピッチや金属種、フェノール樹脂などのバインダーを加えた原料を、分散性能の高いハイスピードミキサーなどの混練手段を用いて混練し、金属細管を埋設する炭素含有耐火物を構成すべき混練物を得る。そして、この混練物の上に金属細管を敷設しながら積層状に金属細管を埋設した上で、プレス機により所定の圧力で成形を行い、その後、所定の乾燥・焼成などの加熱処理を行う方法(金属細管は、その後、ガス溜まり用の部材に溶接で接合する)、或いは、予めガス溜まり用の部材に金属細管を溶接で接合しておき、その周囲の混練物を充填した上で、プレス機により所定の圧力で成形を行い、その後、所定の乾燥を行う方法、などによりMHPが製造される。
MHP has a structure in which multiple metal thin tubes connected to a gas reservoir are embedded in a carbon-containing refractory such as magnesia-carbon brick, so its manufacture is different from double tube type and slit type nozzles. , The following methods are adopted.
That is, a raw material obtained by adding a carbon source such as scaly graphite, a binder such as pitch, a metal species, and a phenol resin to an aggregate such as a magnesia raw material is kneaded using a kneading means such as a high-speed mixer having high dispersion performance to obtain a metal. Obtain a kneaded material that should constitute a carbon-containing refractory material in which a thin tube is embedded. Then, a method in which the metal thin tubes are embedded in a laminated manner while laying the metal thin tubes on the kneaded product, the metal thin tubes are formed at a predetermined pressure by a press machine, and then heat treatment such as predetermined drying and firing is performed. (The metal thin tube is then joined to the gas reservoir member by welding), or the metal thin tube is joined to the gas reservoir member by welding in advance, filled with the kneaded material around it, and then pressed. MHP is manufactured by a method of molding at a predetermined pressure by a machine and then performing a predetermined drying.

底吹きノズルは炉壁などの耐火物に比べて損傷量(損耗量)が大きく、炉寿命を左右する重要な部材であるため、従来、損傷抑制のための様々な提案がなされており、MHPについても、例えば、以下のような改善が提案されている。
特許文献2(特開昭63−24008号公報)では、MHPのガス吹込みノズル部分と周囲羽口を一体化させ、目地部からの先行溶損、磨耗の低減が図られている。しかし、この技術では効果が小さく、有効な対策とはなり得ない。
Since the bottom blowing nozzle has a larger amount of damage (amount of wear) than a refractory material such as a furnace wall and is an important member that affects the life of the furnace, various proposals for suppressing damage have been made in the past, and MHP. For example, the following improvements have been proposed.
In Patent Document 2 (Japanese Unexamined Patent Publication No. 63-24008), the gas blowing nozzle portion of the MHP and the peripheral tuyere are integrated to reduce pre-melting damage and wear from the joint portion. However, this technology has little effect and cannot be an effective countermeasure.

また、耐火物内に埋設した金属細管の浸炭による低融点化(金属細管の先行損傷)の対策として、以下のような提案がなされている。
特許文献3(特開2000−212634号公報)には、マグカーボンなどの炭素含有耐火物に埋設されたステンレス製の金属細管の浸炭を抑制するために、金属細管表面に溶射によって酸化物層を形成することが提案されている。しかし、転炉などのように長期間使用される精錬炉(例えば2ヶ月〜半年の使用期間)では、酸化物層の膜厚が十分ではなく、浸炭抑制効果が小さいという問題がある。
In addition, the following proposals have been made as measures to lower the melting point (preceding damage of the metal capillaries) by carburizing the metal capillaries embedded in the refractory.
In Patent Document 3 (Japanese Unexamined Patent Publication No. 2000-212634), an oxide layer is formed on the surface of a metal capillary tube by thermal spraying in order to suppress carburizing of a stainless steel capillary tube embedded in a carbon-containing refractory such as magcarbon. It has been proposed to form. However, in a smelting furnace that is used for a long period of time such as a converter (for example, a usage period of 2 months to 6 months), there is a problem that the thickness of the oxide layer is not sufficient and the effect of suppressing carburization is small.

また、特許文献4(特開2003−231912号公報)には、金属細管の浸炭を抑制するために、金属細管と炭素含有耐火物と間に耐火性焼結体を配設することが提案されている。しかし、この技術は、浸炭の抑制効果は認められるものの、多数本の金属細管を埋設するノズルでは、金属細管の間隔が狭いため耐火性焼結体を配設することが困難であり、実用化は難しい。 Further, Patent Document 4 (Japanese Unexamined Patent Publication No. 2003-231912) proposes to dispose a fire-resistant sintered body between the metal thin tube and the carbon-containing refractory in order to suppress carburizing of the metal thin tube. ing. However, although this technology has the effect of suppressing carburizing, it is difficult to dispose a refractory sintered body in a nozzle in which a large number of metal capillaries are embedded because the intervals between the metal capillaries are narrow, and this technology is put into practical use. Is difficult.

一方、炭素含有耐火物を一旦還元焼成した後、有機物を含浸する方法を採用したものとして、以下のような提案がある。
特許文献5(特開昭58−015072号公報)では、金属Al粉末を添加したマグカーボン煉瓦を500〜1000℃で焼成加熱し、その後、炭化収率25%以上の有機物を煉瓦気孔内に含浸させる処理を行い、熱間強度の向上とともに耐食性の向上を図っている。また、特許文献6(特許第3201678号公報)では、仮焼無煙炭を0.5〜10重量%添加したマグカーボン煉瓦を600〜1500℃にて還元焼成することで、弾性率の低減による耐熱スポール性の改善が図られるとしている。さらに、焼成後にタールを含浸してもよく、この含浸により気孔の密封、強度アップ、耐消化性の向上が図られるとしている。しかし、これらの技術では効果が少なく、有効な対策とはなり得ない。
On the other hand, the following proposals have been made as adopting a method of impregnating a carbon-containing refractory with an organic substance after reducing and firing it once.
In Patent Document 5 (Japanese Unexamined Patent Publication No. 58-015072), a magcarbon brick to which a metal Al powder is added is fired and heated at 500 to 1000 ° C., and then an organic substance having a carbonization yield of 25% or more is impregnated into the brick pores. The heat strength is improved and the corrosion resistance is improved. Further, in Patent Document 6 (Japanese Patent No. 3201678), a heat-resistant spall by reducing the elastic modulus by reducing and firing a magcarbon brick to which 0.5 to 10% by weight of calcined anthracite is added at 600 to 1500 ° C. It is said that sexuality will be improved. Further, tar may be impregnated after firing, and it is said that this impregnation can seal pores, increase strength, and improve digestibility. However, these technologies have little effect and cannot be effective countermeasures.

特開昭59−31810号公報Japanese Unexamined Patent Publication No. 59-31810 特開昭63−24008号公報Japanese Unexamined Patent Publication No. 63-24008 特開2000−212634号公報Japanese Unexamined Patent Publication No. 2000-21624 特開2003−231912号公報Japanese Unexamined Patent Publication No. 2003-231912 特開昭58−15072号公報Japanese Unexamined Patent Publication No. 58-15072 特許第3201678号公報Japanese Patent No. 3201678

以上のように、炭素含有耐火物に金属細管を埋設するタイプのガス吹きノズル(MHPなど)について、耐用性を高めるために耐火物材質や構造について種々検討がなされているが、十分な改善効果が得られていないのが現状である。
したがって本発明の目的は、以上のような従来技術の課題を解決し、炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹込みノズル用耐火物において、高い耐用性を有するガス吹込みノズル用耐火物を提供することにある。
As described above, various studies have been conducted on the refractory material and structure of the type of gas blowing nozzle (MHP, etc.) in which a metal thin tube is embedded in a carbon-containing refractory in order to improve its durability. Is not obtained at present.
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to have high durability in a refractory material for a gas blowing nozzle in which one or more metal thin tubes for gas blowing are embedded in a carbon-containing refractory material. It is an object of the present invention to provide a refractory material for a gas blowing nozzle having the above.

転炉や電気炉で用いられるMHPの損傷の原因については、これまで、金属細管から勢いよくガスが吹き込まれることから、ノズル稼働面近傍での溶鋼流による溶損、磨耗が主体と考えられてきた。特許文献2の対策はこの考え方に立つものである。また、浸炭などにより金属細管が先に消耗することで、損傷が大きくなるとの考え方もあり、特許文献3や特許文献4のような手法で金属細管への浸炭を防止してきた。一方、吹錬時は不活性ガスを勢いよく吹き込むために耐火物が冷却され、吹錬時と非吹錬時の間の温度差によってスポーリング損傷するのではないかという考え方、さらには、炭素含有耐火物は600℃付近で強度が最低になるので、その部分で稼働面に亀裂が入り、損傷するのではないか、などのような様々な考え方があり、結論が出ていなかった。その結果、十分な対策が行われず、上記のように必ずしも満足する耐用性が得られていないのが現状である。 As for the cause of damage to MHP used in converters and electric furnaces, it has been considered that the main cause of damage is melting and wear due to the molten steel flow near the nozzle operating surface because gas is blown vigorously from the metal capillaries. rice field. The measures in Patent Document 2 are based on this idea. Further, there is also an idea that the metal thin tube is consumed first due to carburizing or the like, and the damage is increased. Therefore, carburizing of the metal thin tube has been prevented by a method as in Patent Document 3 and Patent Document 4. On the other hand, during blowing, the refractory is cooled in order to blow the inert gas vigorously, and the temperature difference between the blowing and non-blowing may cause spalling damage, and further, carbon-containing refractory. Since the strength of the object becomes the lowest at around 600 ° C, there are various ways of thinking that the working surface may be cracked and damaged at that part, and no conclusion has been reached. As a result, sufficient measures have not been taken, and the current situation is that satisfactory durability has not always been obtained as described above.

そこで、本発明者らは、MHPの真の損傷原因を探るため、実炉で使用された使用後品(MHP)を回収し、ノズル稼働面近傍の耐火物組織について詳細に調査した。その結果、稼働面から深さ10〜20mm程度の耐火物内部で500〜600℃という非常に大きな温度変化が発生していることが判明し、さらにこの部位に稼働面と平行な亀裂を確認することができた。このような実炉使用後品の稼動面近傍の詳細な調査を重ねた結果から、MHPの損傷形態は、溶損や磨耗による損傷ではなく、稼働面近傍で生じている急激な温度勾配に起因した熱衝撃による損傷が主体であるとの結論が得られた。 Therefore, in order to find out the true cause of damage to the MHP, the present inventors recovered the after-use product (MHP) used in the actual furnace and investigated the refractory structure near the nozzle operating surface in detail. As a result, it was found that a very large temperature change of 500 to 600 ° C. occurred inside the refractory with a depth of about 10 to 20 mm from the working surface, and a crack parallel to the working surface was confirmed in this part. I was able to. From the results of repeated detailed investigations in the vicinity of the operating surface of the product after using the actual furnace, the damage form of the MHP is not due to damage due to melting or wear, but due to the rapid temperature gradient occurring near the operating surface. It was concluded that the damage caused by the thermal shock was the main cause.

そこで、本発明者らは、羽口用耐火物に発生する熱応力を小さくする材質改善について鋭意検討を重ねた結果、C含有量を高くした高熱伝導率(高熱伝導率により温度勾配が小さくなる)、低熱膨張率の耐火物が有効であることが判った。しかし、C含有量を高くすると耐摩耗性、耐溶損性の低下が著しくなり、摩耗や溶融金属による溶損によって寿命が著しく低下する。そこで、さらに検討を進めた結果、最も冷却されている金属細管周辺部(所定範囲の中心部)に高C含有量のMgO−C材を配し、その周囲(外周部)は通常のC含有量のMgO−C材とした構造とすることで、問題を解決できることを見出した。すなわち、外周部については通常のC含有量の耐火物(MgO−C材)とすることで耐摩耗性、耐溶損性の低下を抑えることができ、一方、金属細管周辺部については、C含有量を高くした高熱伝導率、低熱膨張率の耐火物(MgO−C材)とすることにより、熱衝撃による亀裂の発生を抑制できるとともに、高熱伝導率であるために金属細管を流れるガスにより冷却されることで、稼働面側にスラグや金属の凝固膜(いわゆるマッシュルーム)が形成され、この凝固膜により溶鋼から耐火物表面が遮断(保護)され、摩耗や溶損による損耗を抑制する効果が得られることを見出した。 Therefore, as a result of diligent studies on material improvement to reduce the thermal stress generated in the refractory for tuyere, the present inventors have high thermal conductivity with a high C content (the temperature gradient becomes smaller due to the high thermal conductivity). ), It was found that a refractory with a low coefficient of thermal expansion is effective. However, when the C content is increased, the wear resistance and the melt resistance are significantly lowered, and the life is significantly shortened due to the wear and the melt damage caused by the molten metal. Therefore, as a result of further studies, a high C content MgO-C material was placed around the most cooled metal capillary tube (center of a predetermined range), and the periphery (outer circumference) contained normal C. It was found that the problem can be solved by adopting a structure in which the amount of MgO-C material is used. That is, by using a refractory material (MgO-C material) having a normal C content for the outer peripheral portion, deterioration of wear resistance and erosion resistance can be suppressed, while the peripheral portion of the metal capillary tube contains C. By using a refractory material (MgO-C material) with a high amount of high thermal conductivity and low thermal expansion rate, it is possible to suppress the occurrence of cracks due to thermal shock, and because of the high thermal conductivity, it is cooled by the gas flowing through the metal slag tube. By doing so, a solidified film of slag or metal (so-called mushroom) is formed on the working surface side, and this solidified film blocks (protects) the refractory surface from the molten steel, and has the effect of suppressing wear due to wear and melting. I found that I could get it.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹込みノズル用耐火物において、
金属細管が埋設された中心部耐火物(a)と、該中心部耐火物(a)の外周を囲む外周部耐火物(b)とからなり、
ガス吹込みノズル用耐火物の平面において、埋設された全部の金属細管を包含する最小半径の仮想円(x)の半径をR(mm)としたとき、中心部耐火物(a)の外形は、仮想円(x)と同心であって半径がR+10mm〜R+150mmの円であり、
中心部耐火物(a)は、炭素含有量が30〜80質量%のMgO−C質れんがで構成され、外周部耐火物(b)は、炭素含有量が10〜25質量%のMgO−C質れんがで構成されることを特徴とするガス吹込みノズル用耐火物。
The present invention has been made based on such findings, and has the following gist.
[1] In a refractory for gas blowing nozzles in which one or more metal thin tubes for gas blowing are embedded in a carbon-containing refractory.
It is composed of a central refractory (a) in which a metal thin tube is embedded and an outer peripheral refractory (b) surrounding the outer periphery of the central refractory (a).
In the plane of the refractory for the gas blowing nozzle, when the radius of the virtual circle (x) with the minimum radius including all the embedded metal capillaries is R (mm), the outer shape of the central refractory (a) is , A circle concentric with the virtual circle (x) and having a radius of R + 10 mm to R + 150 mm.
The central refractory (a) is composed of MgO-C quality brick having a carbon content of 30 to 80% by mass, and the outer peripheral refractory (b) has an MgO-C having a carbon content of 10 to 25% by mass. A refractory material for gas blowing nozzles, which is characterized by being composed of quality bricks.

[2]上記[1]のガス吹込みノズル用耐火物において、ガス吹込みノズル用耐火物の平面において、中心部耐火物(a)の外形は、仮想円(x)と同心であって半径がR+40mm〜R+70mmの円であることを特徴とするガス吹込みノズル用耐火物。
[3]上記[1]又は[2]のガス吹込みノズル用耐火物において、中心部耐火物(a)は、炭素含有量が50〜70質量%のMgO−C質れんがで構成され、外周部耐火物(b)は、炭素含有量が15〜25質量%のMgO−C質れんがで構成されることを特徴とするガス吹き込みノズル用耐火物。
[4]上記[1]〜[3]のいずれかのガス吹込みノズル用耐火物を備えることを特徴とするガス吹込みノズル。
[2] In the above-mentioned [1] refractory for gas blowing nozzle, the outer shape of the central refractory (a) is concentric with the virtual circle (x) and has a radius in the plane of the refractory for gas blowing nozzle. A refractory material for a gas blowing nozzle, characterized in that is a circle of R + 40 mm to R + 70 mm.
[3] In the refractory material for the gas injection nozzle according to the above [1] or [2], the central refractory material (a) is composed of MgO-C material brick having a carbon content of 50 to 70% by mass, and has an outer periphery. The refractory part (b) is a refractory material for a gas blowing nozzle, which is composed of MgO-C material brick having a carbon content of 15 to 25% by mass.
[4] A gas blowing nozzle comprising a refractory material for the gas blowing nozzle according to any one of the above [1] to [3].

本発明のガス吹込みノズル用耐火物は、熱衝撃による亀裂の発生が抑制されるため高い耐用性を有する。このため、このガス吹込みノズル用耐火物を用いることにより、損傷速度が小さい高寿命のガス吹込みノズルを得ることができる。 The refractory material for a gas blowing nozzle of the present invention has high durability because the generation of cracks due to thermal shock is suppressed. Therefore, by using this refractory material for the gas blowing nozzle, it is possible to obtain a gas blowing nozzle having a low damage rate and a long life.

本発明のガス吹込みノズル用耐火物の一実施形態を示す平面図A plan view showing an embodiment of the refractory material for a gas blowing nozzle of the present invention.

本発明は、炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹込みノズル用耐火物であり、金属細管が埋設された中心部耐火物aと、この中心部耐火物aの外周を囲む外周部耐火物bとからなる。
上述のとおり、MHP羽口の損耗の主因は熱衝撃である。特に、MHP羽口の金属細管周辺部は、金属細管を流れるガスによって冷却されるため、熱応力も大きくなる。熱衝撃や熱応力を抑制するためには、MgO−C質れんがのC含有量を高くすることが有効であるが、一方で、C含有量を高くすると溶鋼に対して溶解しやすくなり、耐摩耗性、耐溶損性が低下することが知られている。この点に関して、本発明者らは、C含有量を高くした金属細管周辺部は、高熱伝導率であるために金属細管を流れるガスにより冷却され、その結果、稼働面側にスラグや金属の凝固膜(マッシュルーム)が形成され、この凝固膜により溶鋼から耐火物表面が保護され、摩耗や溶損による損耗を抑制する効果が得られることを見出した。このため本発明では、ガス吹込みノズル用耐火物を、金属細管が埋設された中心部耐火物aと、この中心部耐火物aの外周を囲む外周部耐火物bで構成し、中心部耐火物aを高C含有量のMgO−C質れんがで構成する。
The present invention is a refractory for a gas blowing nozzle in which one or more metal thin tubes for gas blowing are embedded in a carbon-containing refractory, a central refractory a in which the metal thin tubes are embedded, and a central refractory thereof. It is composed of an outer peripheral refractory b that surrounds the outer periphery of the object a.
As mentioned above, the main cause of wear of the MHP tuyere is thermal shock. In particular, since the peripheral portion of the metal capillary of the MHP tuyere is cooled by the gas flowing through the metal capillary, the thermal stress also increases. In order to suppress thermal shock and thermal stress, it is effective to increase the C content of MgO-C brick, but on the other hand, if the C content is increased, it becomes easier to melt in molten steel and it is resistant. It is known that wear resistance and erosion resistance are reduced. In this regard, the present inventors have found that the peripheral portion of the metal capillary tube having a high C content is cooled by the gas flowing through the metal capillary tube due to its high thermal conductivity, and as a result, slag and metal solidify on the working surface side. It has been found that a film (mushroom) is formed, and this solidified film protects the surface of the refractory from molten steel and has the effect of suppressing wear due to wear and melting. Therefore, in the present invention, the refractory material for the gas blowing nozzle is composed of a central refractory material a in which a metal thin tube is embedded and an outer peripheral refractory material b surrounding the outer periphery of the central refractory material a, and the central refractory material b. The object a is composed of MgO-C refractory brick with a high C content.

ここで、高C含有量のMgO−C質れんがで構成する中心部耐火物aは、上述したような効果を得るために、以下に示すような所定の大きさ(外形)にする必要がある。図1に示すように、ガス吹込みノズル用耐火物の平面(稼働面)において(すなわち平面として見た場合において)、埋設された全部の金属細管を包含する最小半径の仮想円xの半径をR(mm)としたとき、中心部耐火物aの外形は、仮想円xと同心であって半径がR+10mm〜R+150mmの円とする。すなわち、図1において、中心部耐火物aの外形をなす円は、半径がR+rであってr=10〜150mmである。中心部耐火物aの外形をなす円の半径がR+10mm未満では、金属細管が外周部耐火物bとの境界に近すぎるため、耐火物成型時に金属細管の変形等が生じるおそれがあり、一方、中心部耐火物aの外形をなす円の半径がR+150mmを超えると、中心部耐火物aの稼働面にいわゆるマッシュルームに覆われない部分が生じ、溶鋼との接触による損傷が生じる。
以上の観点からより好ましい条件としては、中心部耐火物aの外形を、仮想円xと同心であって半径がR+40mm〜R+70mmの円とすること、すなわち、図1において、中心部耐火物aの外形をなす円の半径がR+rであってr=40〜70mmであることが好ましい。
Here, the central refractory a made of MgO-C brick having a high C content needs to have a predetermined size (outer shape) as shown below in order to obtain the above-mentioned effects. .. As shown in FIG. 1, in the plane (operating surface) of the refractory refractory for the gas blowing nozzle (that is, when viewed as a plane), the radius of the minimum radius virtual circle x including all the embedded metal tubules is defined as the radius. When R (mm), the outer shape of the central refractory a is concentric with the virtual circle x and has a radius of R + 10 mm to R + 150 mm. That is, in FIG. 1, the circle forming the outer shape of the central refractory a has a radius of R + r and r = 10 to 150 mm. If the radius of the circle forming the outer shape of the central refractory a is less than R + 10 mm, the metal thin tube is too close to the boundary with the outer peripheral refractory b, so that the metal thin tube may be deformed during molding of the refractory. If the radius of the circle forming the outer shape of the central refractory a exceeds R + 150 mm, a portion not covered by the so-called mushroom is formed on the moving surface of the central refractory a, and damage is caused by contact with the molten steel.
From the above viewpoint, a more preferable condition is that the outer shape of the central refractory a is concentric with the virtual circle x and has a radius of R + 40 mm to R + 70 mm, that is, in FIG. 1, the central refractory a It is preferable that the radius of the circle forming the outer shape is R + r and r = 40 to 70 mm.

中心部耐火物aは、炭素含有量が30〜80質量%、好ましくは50〜70質量%のMgO−C質れんがで構成される。このMgO−C質れんがの炭素含有量が30質量%未満では耐熱衝撃性が十分ではなく、一方、80質量%を超えると溶鋼に対する耐食性が劣り、信頼性に欠ける。
一方、外周部耐火物bは、炭素含有量が10〜25質量%、好ましくは15〜25質量%のMgO−C質れんがで構成される。このMgO−C質れんがの炭素含有量が10質量%未満では、熱衝撃による損傷が大きくなり、一方、25質量%を超えると耐摩耗性や耐溶損性に劣るため、満足する耐用性が得られない。
The central refractory a is composed of MgO-C brick having a carbon content of 30 to 80% by mass, preferably 50 to 70% by mass. If the carbon content of this MgO-C brick is less than 30% by mass, the thermal impact resistance is not sufficient, while if it exceeds 80% by mass, the corrosion resistance to molten steel is inferior and the reliability is poor.
On the other hand, the outer peripheral refractory b is composed of MgO-C brick having a carbon content of 10 to 25% by mass, preferably 15 to 25% by mass. If the carbon content of this MgO-C brick is less than 10% by mass, the damage due to thermal shock becomes large, while if it exceeds 25% by mass, the wear resistance and erosion resistance are inferior, so that satisfactory durability is obtained. I can't.

金属細管の材質は特には限定されないが、融点が1300℃以上の金属材料を用いることが好ましい。例えば、鉄、クロム、コバルト、ニッケルの1種以上を含む金属材料(金属又は合金)が挙げられ、なかでも特に、ステンレス鋼(フェライト系、マルテンサイト系、オーステナイト系)、普通鋼、耐熱鋼などが一般的である。金属細管は、通常、内径が1〜4mm程度、管厚が1〜2mm程度である。金属管の内径が1mm未満では、炉内の溶融金属の撹拌に十分なガスの供給が困難となるおそれがあり、4mmを超えると金属細管内に溶融金属が流入して閉塞するおそれがある。
炭素含有耐火物内に埋設される金属細管の本数は特に制限はなく、必要とされるガス吹き流量や稼働部の面積によって適宜選択される。転炉などの高流量が必要とされるものでは、一般に60〜250本程度の金属細管が埋設される。また、電気炉や取鍋のようにガス吹き流量が小さい場合には、一般に1本〜数10本程度の金属細管が埋設される。
The material of the metal capillary is not particularly limited, but it is preferable to use a metal material having a melting point of 1300 ° C. or higher. Examples thereof include metal materials (metals or alloys) containing one or more of iron, chromium, cobalt and nickel, and in particular, stainless steel (ferrite-based, martensitic-based, austenitic-based), ordinary steel, heat-resistant steel and the like. Is common. The metal thin tube usually has an inner diameter of about 1 to 4 mm and a tube thickness of about 1 to 2 mm. If the inner diameter of the metal tube is less than 1 mm, it may be difficult to supply sufficient gas for stirring the molten metal in the furnace, and if it exceeds 4 mm, the molten metal may flow into the metal capillary and block it.
The number of metal capillaries embedded in the carbon-containing refractory is not particularly limited, and is appropriately selected depending on the required gas blowing flow rate and the area of the moving part. In a converter or the like that requires a high flow rate, about 60 to 250 metal thin tubes are generally embedded. Further, when the gas blowing flow rate is small as in an electric furnace or a ladle, generally one to several tens of metal thin tubes are embedded.

次に、本発明のガス吹き込みノズル用耐火物の製造方法について説明する。
炭素含有耐火物(中央部耐火物a、外周部耐火物b)の主たる原料は、骨材と炭素源であるが、その他の添加材料及びバインダーなどを含む場合がある。
炭素含有耐火物の骨材には、マグネシア、アルミナ、ドロマイト、ジルコニア、クロミア、スピネル(アルミナ−マグネシア、クロミア−マグネシア)などが適用できるが、本発明では、溶融金属や溶融スラグに対する耐食性の観点から主たる骨材としてマグネシアを用いる。
Next, a method for manufacturing a refractory for a gas blowing nozzle of the present invention will be described.
The main raw materials of the carbon-containing refractory (central refractory a, outer peripheral refractory b) are aggregate and carbon source, but may include other additive materials and binders.
Magnesia, alumina, dolomite, zirconia, chromia, spinel (alumina-magnesia, chromia-magnesia) and the like can be applied to the aggregate of the carbon-containing refractory, but in the present invention, from the viewpoint of corrosion resistance to molten metal and molten slag. Magnesia is used as the main aggregate.

また、炭素含有耐火物の炭素源は特には限定されず、鱗状黒鉛、膨張黒鉛、土壌黒鉛、仮焼無煙炭、石油系ピッチ、カーボンブラックなど一般的に使用されるものが適用可能である。炭素源の添加量は、上述した中心部耐火物aと外周部耐火物bの各炭素含有量に応じて決められる。
上述した骨材と炭素源以外の添加材料としては、例えば、金属Al、金属Si、Al−Mg合金などの金属種、SiC、BCなどの炭化物が挙げられ、これらを1種以上を含む場合がある。これら添加材料の配合量は、通常3.0質量%以下である。
炭素含有耐火物の原料は、一般にバインダーを含む。バインダーには、フェノール樹脂、液状ピッチなど、一般的に定形耐火物のバインダーとして適用できるものが使用できる。バインダーの配合量は、通常1〜5質量%(外掛け質量%)程度である。
The carbon source of the carbon-containing refractory is not particularly limited, and commonly used substances such as scaly graphite, expanded graphite, soil graphite, calcined anthracite, petroleum-based pitch, and carbon black can be applied. The amount of the carbon source added is determined according to the carbon content of the central refractory a and the outer peripheral refractory b described above.
The additive material other than the aggregate and a carbon source as described above include, for example, metal Al, metal Si, metal species such as Al-Mg alloy, SiC, B 4 C include carbides such, these one or more In some cases. The blending amount of these additive materials is usually 3.0% by mass or less.
The raw material for the carbon-containing refractory generally contains a binder. As the binder, a binder such as a phenol resin or a liquid pitch that can be generally applied as a binder for a standard refractory can be used. The blending amount of the binder is usually about 1 to 5% by mass (external mass%).

本発明のガス吹込みノズル用耐火物の製造には既知の製法が適用でき、その一例を以下に挙げるが、これに限定されるものではない。
まず、中心部耐火物a用と外周部耐火物b用の各耐火物原料をそれぞれ混合し、ミキサーで混練して混練物とする。金属細管を中心部耐火物a用の混練物内の所定の位置に配置した後、一軸プレスにて成形し、金属細管が埋設された中心部耐火物aを製作する。さらに、この中心部耐火物aの周囲に外周部耐火物b用の混練物を充填した上で、等方静圧成形(CIP成形)により一体化し、ガス吹込みノズル用耐火物となる母材を成形する。その後、その母材に定法により乾燥などの所定の加熱処理を施す。また、必要に応じて、外形を整えるための加工などを適宜行ってもよい。
A known manufacturing method can be applied to the manufacture of the refractory material for a gas blowing nozzle of the present invention, and an example thereof is given below, but the present invention is not limited thereto.
First, each refractory raw material for the central refractory a and the outer peripheral refractory b is mixed and kneaded with a mixer to obtain a kneaded product. After arranging the metal thin tube at a predetermined position in the kneaded material for the central refractory a, the metal thin tube is molded by a uniaxial press to manufacture the central refractory a in which the metal thin tube is embedded. Further, after filling the periphery of the central refractory a with a kneaded material for the outer peripheral refractory b, the base material is integrated by isotropic static pressure molding (CIP molding) to become a refractory for the gas blowing nozzle. To mold. After that, the base material is subjected to a predetermined heat treatment such as drying by a conventional method. Further, if necessary, processing for adjusting the outer shape may be performed as appropriate.

中心部耐火物aの加圧成形方法としては、成形枠内に初めに少量の混練物を充填して加圧後、金属細管を所定の位置に配置した上で、所定量の混練物を充填して加圧することを繰り返し行う多段加圧成形方式や、金属細管が加圧時の混練物の移動と共に移行するように金属細管両端の保持しつつ、全量の混練物とともに1回の加圧で成形する単回加圧成形方式などで行うことができる。
また、金属細管とガス溜まり部との接合は、中心部耐火物aの成形後、母材の成形後、或いは母材の加熱処理後のいずれかの段階で両者を溶接する方法、中心部耐火物aの成形時に、予めガス溜まり部の上面板を溶接した金属細管を中心部耐火物a用の混練物内に配置する方法などを適宜選択することができる。
As a pressure molding method for the central fireproof material a, a small amount of kneaded material is first filled in the molding frame, pressure is applied, a metal capillary tube is placed at a predetermined position, and then a predetermined amount of kneaded material is filled. A multi-stage pressure molding method that repeatedly pressurizes and pressurizes, and while holding both ends of the metal thin tube so that the metal thin tube moves with the movement of the kneaded material during pressurization, with one pressurization together with the total amount of kneaded material. It can be performed by a single pressure molding method or the like.
Further, the joining between the metal thin tube and the gas reservoir is a method of welding the two at any stage after the molding of the refractory material a in the center, the molding of the base metal, or the heat treatment of the base metal, and the fire resistance in the center. At the time of molding the object a, a method of arranging a metal thin tube to which the upper surface plate of the gas reservoir is welded in advance in the kneaded material for the central refractory a can be appropriately selected.

炭素含有耐火物の原料の混練方法には特に制限はなく、ハイスピードミキサー、タイヤミキサー(コナーミキサー)、アイリッヒミキサーなど、定形耐火物の混練設備として用いられる混練手段を用いればよい。
混練物の成形には、油圧式プレス、フリクションプレスなどの一軸成形機や等方静圧成形(CIP)など、耐火物の成形に使用される一般的なプレス機が使用できる。
成形した炭素含有耐火物は、乾燥温度180℃〜350℃、乾燥時間5〜30時間程度で乾燥させればよい。
The method of kneading the raw material of the carbon-containing refractory is not particularly limited, and a kneading means used as a kneading facility for a standard refractory such as a high-speed mixer, a tire mixer (Connor mixer), and an Erich mixer may be used.
For forming the kneaded product, a uniaxial forming machine such as a hydraulic press or a friction press, or a general pressing machine used for forming a refractory material such as isotropic static pressure forming (CIP) can be used.
The molded carbon-containing refractory may be dried at a drying temperature of 180 ° C. to 350 ° C. and a drying time of about 5 to 30 hours.

図1に示すように同心円状に81本の金属細管を配置したガス吹込みノズル用耐火物を表1〜表4に示す条件で製造した。
ガス吹込みノズル用耐火物の平面において、埋設された全部の金属細管を包含する最小半径の仮想円xの半径Rは50mmであり、r=8〜200mmの範囲で中心部耐火物aの半径R+rを変化させた。
炭素含有耐火物に埋設する金属細管としては、普通鋼又はステンレス鋼(SUS304)製の外径3.5mm、内径2.0mmのものを用いた。
各耐火物原料を表1〜表4に示す割合でそれぞれ混合し、ミキサーで混練した。金属細管を中心部耐火物a用の混練物内に配置して一軸プレスにて中心部耐火物aを成形した。さらに、その中心部耐火物aの周囲に外周部耐火物b用の混練物を充填した上で、CIP成形により母材を成形した。その後、その母材を定法により乾燥処理し、製品とした。
As shown in FIG. 1, a refractory material for a gas blowing nozzle in which 81 metal thin tubes were arranged concentrically was manufactured under the conditions shown in Tables 1 to 4.
In the plane of the refractory for the gas blowing nozzle, the radius R of the virtual circle x with the minimum radius including all the embedded metal capillaries is 50 mm, and the radius of the central refractory a in the range of r = 8 to 200 mm. R + r was changed.
As the metal thin tube to be embedded in the carbon-containing refractory, a tube made of ordinary steel or stainless steel (SUS304) having an outer diameter of 3.5 mm and an inner diameter of 2.0 mm was used.
Each refractory material was mixed at the ratios shown in Tables 1 to 4, and kneaded with a mixer. The metal thin tube was placed in the kneaded material for the central refractory a, and the central refractory a was formed by a uniaxial press. Further, a kneaded material for the outer peripheral refractory b was filled around the central refractory a, and then the base metal was formed by CIP molding. Then, the base material was dried by a conventional method to obtain a product.

製造された発明例と比較例のガス吹込みノズル用耐火物を250トン転炉の底吹き羽口周辺の炉底煉瓦に使用した。それぞれ2500〜2800ch使用後、れんがの残厚から損耗速度(mm/ch)を求め、比較例1の損耗速度を“1”とした損耗速度比(指数)を求めた。その結果を表1〜表4に示す。
表1〜表4に示されるように、本発明例のガス吹込みノズル用耐火物は、損耗速度が小さく、優れた耐用性を有していることが判る。また、本発明例のなかでも、中心部耐火物aのMgO−C質れんがの炭素含有量が50〜70質量%で、外周部耐火物bのMgO−C質れんがの炭素含有量が15〜25質量%のものは、特に優れた耐用性を有している。また、本発明例のなかでも、中心部耐火物aの半径がR+40mm〜R+70mmのものは、特に優れた耐用性を有している。
The manufactured refractories for gas blowing nozzles of the invention example and the comparative example were used for the bottom brick around the bottom blowing tuyere of the 250-ton converter. After using 2500 to 2800 channels respectively, the wear rate (mm / ch) was obtained from the residual thickness of the brick, and the wear rate ratio (index) with the wear rate of Comparative Example 1 as “1” was obtained. The results are shown in Tables 1 to 4.
As shown in Tables 1 to 4, it can be seen that the refractory material for the gas blowing nozzle of the present invention has a low wear rate and excellent durability. Further, among the examples of the present invention, the carbon content of the MgO-C material brick in the central refractory a is 50 to 70% by mass, and the carbon content of the MgO-C material brick in the outer peripheral refractory b is 15 to. Those with 25% by mass have particularly excellent durability. Further, among the examples of the present invention, those having a radius of the central refractory a of R + 40 mm to R + 70 mm have particularly excellent durability.

Figure 0006974115
Figure 0006974115

Figure 0006974115
Figure 0006974115

Figure 0006974115
Figure 0006974115

Figure 0006974115
Figure 0006974115

a 中心部耐火物
b 外周部耐火物
x 仮想円
a Central refractory b Outer perimeter refractory x virtual circle

Claims (4)

炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹込みノズル用耐火物において、
金属細管が埋設された中心部耐火物(a)と、該中心部耐火物(a)の外周を囲む外周部耐火物(b)とからなり、
ガス吹込みノズル用耐火物の平面において、埋設された全部の金属細管を包含する最小半径の仮想円(x)の半径をR(mm)としたとき、中心部耐火物(a)の外形は、仮想円(x)と同心であって半径がR+10mm〜R+150mmの円であり、
中心部耐火物(a)は、炭素含有量が30〜80質量%のMgO−C質れんがで構成され、外周部耐火物(b)は、炭素含有量が10〜25質量%のMgO−C質れんがで構成されることを特徴とするガス吹込みノズル用耐火物。
In a fireproof material for gas blowing nozzles in which one or more metal thin tubes for gas blowing are embedded in a carbon-containing fireproof material.
It is composed of a central refractory (a) in which a metal thin tube is embedded and an outer peripheral refractory (b) surrounding the outer periphery of the central refractory (a).
When the radius of the virtual circle (x) with the minimum radius including all the embedded metal capillaries is R (mm) on the plane of the refractory for the gas blowing nozzle, the outer shape of the central refractory (a) is , A circle that is concentric with the virtual circle (x) and has a radius of R + 10 mm to R + 150 mm.
The central refractory (a) is composed of MgO-C quality brick having a carbon content of 30 to 80% by mass, and the outer peripheral refractory (b) has an MgO-C having a carbon content of 10 to 25% by mass. A refractory material for gas blowing nozzles, which is characterized by being composed of quality bricks.
ガス吹込みノズル用耐火物の平面において、中心部耐火物(a)の外形は、仮想円(x)と同心であって半径がR+40mm〜R+70mmの円であることを特徴とする請求項1に記載のガス吹込みノズル用耐火物。 According to claim 1, the outer shape of the central refractory (a) is concentric with the virtual circle (x) and has a radius of R + 40 mm to R + 70 mm in the plane of the refractory for the gas blowing nozzle. The described refractory for gas blowing nozzles. 中心部耐火物(a)は、炭素含有量が50〜70質量%のMgO−C質れんがで構成され、外周部耐火物(b)は、炭素含有量が15〜25質量%のMgO−C質れんがで構成されることを特徴とする請求項1又は2に記載のガス吹き込みノズル用耐火物。 The central refractory (a) is composed of MgO-C quality brick having a carbon content of 50 to 70% by mass, and the outer peripheral refractory (b) is composed of MgO-C having a carbon content of 15 to 25% by mass. The refractory material for a gas blowing nozzle according to claim 1 or 2, wherein the refractory is composed of peptic bricks. 請求項1〜3のいずれかに記載のガス吹込みノズル用耐火物を備えることを特徴とするガス吹込みノズル。 A gas blowing nozzle comprising the refractory material for the gas blowing nozzle according to any one of claims 1 to 3.
JP2017207680A 2017-10-27 2017-10-27 Refractory for gas blowing nozzle Active JP6974115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017207680A JP6974115B2 (en) 2017-10-27 2017-10-27 Refractory for gas blowing nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017207680A JP6974115B2 (en) 2017-10-27 2017-10-27 Refractory for gas blowing nozzle

Publications (2)

Publication Number Publication Date
JP2019077934A JP2019077934A (en) 2019-05-23
JP6974115B2 true JP6974115B2 (en) 2021-12-01

Family

ID=66628663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017207680A Active JP6974115B2 (en) 2017-10-27 2017-10-27 Refractory for gas blowing nozzle

Country Status (1)

Country Link
JP (1) JP6974115B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020203471A1 (en) * 2019-04-05 2020-10-08

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821691B2 (en) 2018-09-21 2023-11-21 Jfe Steel Corporation Gas injection nozzle refractory and gas injection nozzle
EP3954789A4 (en) 2019-04-09 2022-05-18 JFE Steel Corporation Lance nozzle
JP6996529B2 (en) * 2019-04-19 2022-01-17 Jfeスチール株式会社 Refining vessel for high temperature melts with gas blowing nozzle
CN111774560B (en) * 2020-07-25 2022-03-11 莱芜钢铁集团银山型钢有限公司 LF refining ladle microporous ceramic rod breathable upper nozzle pocket brick and argon blowing control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020203471A1 (en) * 2019-04-05 2020-10-08
EP3929313A4 (en) * 2019-04-05 2022-05-04 JFE Steel Corporation Refining vessel for high temperature melt
JP7140272B2 (en) 2019-04-05 2022-09-21 Jfeスチール株式会社 Refining vessels for hot melts
US11976340B2 (en) 2019-04-05 2024-05-07 Jfe Steel Corporation Refining vessel for high-temperature melt

Also Published As

Publication number Publication date
JP2019077934A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP6974115B2 (en) Refractory for gas blowing nozzle
JPWO2008056655A1 (en) High durability sleeve brick
JP6710821B1 (en) Refractory for gas injection nozzle and gas injection nozzle
JP2015193511A (en) Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
JP7140272B2 (en) Refining vessels for hot melts
JP2017155256A (en) Refractory for converter bottom blowing tuyere
JP6996529B2 (en) Refining vessel for high temperature melts with gas blowing nozzle
JP6538584B2 (en) Method of manufacturing refractory for gas injection nozzle
JP7242437B2 (en) Bricks for vacuum degassing equipment and RH immersion pipes using the same
JP6567588B2 (en) High temperature melt refining vessel
JP2022060911A (en) Method of producing lf-ladle magnesia-carbon brick
JP5489568B2 (en) Gas injection nozzle
JP7256063B2 (en) Manufacturing method of tap sleeve
US20230028785A1 (en) Refractory product
JP6978677B2 (en) Refractory lining for secondary refractory equipment with decompression
JP2021059757A (en) Refractory for rh degassing circulation flow tube
JP2019143181A (en) Steel tapping port sleeve
JPH0332463A (en) Plate for sliding nozzle
JPH0532344B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211104

R150 Certificate of patent or registration of utility model

Ref document number: 6974115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150