JPH0532344B2 - - Google Patents

Info

Publication number
JPH0532344B2
JPH0532344B2 JP60271369A JP27136985A JPH0532344B2 JP H0532344 B2 JPH0532344 B2 JP H0532344B2 JP 60271369 A JP60271369 A JP 60271369A JP 27136985 A JP27136985 A JP 27136985A JP H0532344 B2 JPH0532344 B2 JP H0532344B2
Authority
JP
Japan
Prior art keywords
bricks
graphite
carbon
weight
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60271369A
Other languages
Japanese (ja)
Other versions
JPS62132767A (en
Inventor
Tsuneo Kitai
Toshuki Hokii
Shin Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60271369A priority Critical patent/JPS62132767A/en
Publication of JPS62132767A publication Critical patent/JPS62132767A/en
Publication of JPH0532344B2 publication Critical patent/JPH0532344B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は溶銑、溶鋼処理容器の内張材であつ
て、特に溶銑、溶鋼の温度低下を抑制する炭素含
有耐火物に関する。 〔従来の技術〕 従来から溶銑、溶鋼の処理容器の内張材として
は蝋石、粘土、高アルミナ及びジルコン質の耐火
物が使用され安定した容器寿命が得られていた。 近年、高級鋼への指向あるいは省エネ化から脱
珪、脱燐、脱硫処理を行ういわゆる溶銑予備処理
が実施されるようになると、溶銑あるいは溶鋼中
にCaO系フラツクスが多量に添加されるためスラ
グの浸透、化学的な溶損が大きくなり、前記の耐
火物では耐用性が著しく低下するようになつてき
た。 そこでスラグに濡れ難くかつ耐熱スポーリング
性に優れたAl2O3−SiC−C煉瓦あるいはMgO−
C煉瓦等の黒鉛含有耐火物が使用されるようにな
り、その結果耐用性はかなり向上してきた。しか
しながら前記の黒鉛耐火物は熱伝導率が高く内張
材として使用すると溶銑、溶鋼の温度低下を招
き、また鉄皮の損傷を惹起する欠点があつた。 〔発明が解決しようとする問題点〕 このため黒鉛含有煉瓦の長所を保持させたまま
で上記の欠点を解消する方法として特開昭58−
117813号公報に見られるようにレンガ背面と鉄皮
との間に断熱材を入れたり、また特開昭58−
41777号公報のように稼働面側に黒鉛含有煉瓦を
背面側には黒鉛を添加していない熱伝導率の低い
煉瓦を張合せた二層構造の煉瓦が提案されてい
る。 しかし前者については使用中背面が断熱される
ことにより、必要以上に煉瓦の温度が上昇するた
め溶損の早まることが逸れ得ない。後者について
は、使用中に黒鉛含有煉瓦が溶損されると黒鉛無
添加煉瓦が露出し、溶損が急速に高まり処理容器
の安定稼働が妨げられるといつた問題点が出てき
た。 〔問題点を解決するための手段〕 本発明者等は、溶銑の温度低下を抑制し、鉄皮
変形の防止が可能な低熱伝導性を有し、かつ黒鉛
含有煉瓦のような耐スラグ浸透防止能、耐熱スポ
ール性に優れた耐火物について種々検討を重ねた
結果、本発明を完成させるに至つた。 すなわち本発明は3〜20重量%の無定形炭素
と、残部が珪石、蝋石、カイアナイト、アンダル
サイトのうち少くとも一種以上と、高アルミナ原
料、炭化珪素及び有機質結合剤とからなる炭素含
有耐火物である。 〔作用〕 ピツチコークス、石油コークス等の無定形炭素
原料は、鱗状黒鉛等の黒鉛原料と共に従来不焼成
カーボン含有煉瓦のカーボン原料として使用され
ていたが、無定形炭素は熱処理によつて収縮する
特性があり、第1図に示すように高アルミナ原料
中に添加して煉瓦とした場合、加熱冷却後の線変
化いわゆる残存線変化率が負となる。この煉瓦を
内張すると煉瓦の収縮により目地開きを生じ目地
にスラグ地金が侵入して目地溶損を生起し、炉寿
命を低下させる欠点があることから一般には使用
されなかつた。 本発明は珪石、蝋石、カイアナイト、アンダル
サイトに無定形炭素を最適範囲で併用することに
より残存線変化率を制御し、容積安定性に優れか
つ熱伝導性を著しく低下させた耐火物を得んとす
るものである。 本発明で使用する無定形炭素としては、石炭ピ
ツチを熱分解して得られるピツチコークス、石油
精製の際減圧残油から生成される石油コークス及
びカーボンブラツク無煙炭等である。前記無定形
炭素は粒度0.1mm以下で、かつ成分は固形炭素で
85%以上が望ましい。その理由はピツチコーク
ス、石油コークスは気孔率が高く0.1mm以上の粗
粒として使用すると煉瓦の気孔率が高くなり機械
的強度が低下する。また固形炭素が85%未満のも
のは、揮発分が多く使用中に揮発分が消失し、気
孔率の増大を招き強度低下を生起するからであ
る。 前記の無定形炭素を3〜20重量%に限定する理
由は、3重量%未満ではスラグ浸透防止効果が得
られず20重量%を超えると煉瓦の機械的強度が低
下し、耐摩耗性が小さくなるためである。 珪石、蝋石、カイアナイト、アンダルサイトの
うち少くとも一種以上配合する理由は、これら原
料の熱膨脹特性、すなわち大きな残存膨脹性を利
用し、無定形炭素含有煉瓦の残存収縮性を抑制す
るためであつて第2図に示すように添加する原料
によつて異なるが、添加量を調整することによ
り、適当な残存膨脹性を付与することができ内張
り煉瓦の目地開きを抑制するものである。 骨材としての高アルミナ原料としては電融アル
ミナ、焼結アルミナ、ボーキサイト、礬土頁岩、
シリマナイト、合成ムライト、シヤモツト等が使
用できる。添加する有機結合剤はノボラツク型及
び/又はレゾール型のフエノール樹脂、フラン樹
脂あるいはタールピツチ等が適している。 炭化珪素は無定形炭素の酸化防止材として用い
られ、好ましくは1〜15重量%であつて、1%以
下では酸化防止効果が得られず、15重量%以上で
は溶銑、溶鋼に対する耐食性が低下する。他に金
属Al、金属Si粉、ガラス粉などが酸化防止材と
して前記の炭化珪素と併用可能である。 〔実施例〕 以下実施例について説明する。 第1表に示す配合割合で本発明品、比較品及び
従来品のそれぞれの配合物を混合混練した後、フ
リクシヨンプレスにより並形形状に成形した。そ
の後200℃の乾燥炉に20時間通過させ供試体No.1
〜10を作成し、常法により物性を測定した。その
結果第1表から明らかなように本発明品は従来品
の鱗状黒鉛を添加したものに比して、熱伝導率が
著しく小さくなり、かつ耐食性についても7〜15
%向上した。
[Industrial Field of Application] The present invention relates to a lining material for hot metal and molten steel processing vessels, and particularly to a carbon-containing refractory that suppresses the temperature drop of hot metal and molten steel. [Prior Art] Rouseite, clay, high alumina, and zircon refractories have traditionally been used as lining materials for processing containers for hot metal and molten steel to provide stable container life. In recent years, with the trend toward high-grade steel or energy saving, so-called hot metal pretreatment, which involves desiliconization, dephosphorization, and desulfurization, has been carried out.As a result, a large amount of CaO-based flux is added to the hot metal or molten steel, resulting in the formation of slag. Penetration and chemical erosion have increased, and the durability of the above-mentioned refractories has been significantly reduced. Therefore, Al 2 O 3 -SiC-C bricks or MgO- which are difficult to get wet with slag and have excellent heat spalling resistance
Graphite-containing refractories such as C bricks have come into use, and as a result their durability has improved considerably. However, the above graphite refractories have a high thermal conductivity, and when used as a lining material, they have the drawback of lowering the temperature of hot metal and molten steel and causing damage to the iron skin. [Problems to be Solved by the Invention] For this reason, Japanese Patent Application Laid-Open No. 1983-1999 was proposed as a method for solving the above-mentioned drawbacks while retaining the advantages of graphite-containing bricks.
As seen in Publication No. 117813, insulation material was inserted between the back of the brick and the iron shell, and
As in Publication No. 41777, a two-layer structure of bricks has been proposed in which graphite-containing bricks are laminated on the operating side and bricks with low thermal conductivity without added graphite are laminated on the back side. However, in the case of the former, when the back side is insulated during use, the temperature of the brick increases more than necessary, which can lead to premature melting and loss. Regarding the latter, a problem has arisen in that when the graphite-containing brick is eroded during use, the graphite-free brick is exposed, and the erosion increases rapidly, impeding stable operation of the processing vessel. [Means for Solving the Problems] The present inventors have proposed a method that suppresses the temperature drop of hot metal, has low thermal conductivity that can prevent shell deformation, and is resistant to slag penetration, such as graphite-containing bricks. As a result of various studies on refractories with excellent heat and spall resistance, the present invention was completed. That is, the present invention provides a carbon-containing refractory comprising 3 to 20% by weight of amorphous carbon, the balance being at least one of silica, silica, kyanite, and andalusite, a high alumina raw material, silicon carbide, and an organic binder. It is. [Function] Amorphous carbon raw materials such as pitch coke and petroleum coke have traditionally been used as carbon raw materials for unfired carbon-containing bricks, along with graphite raw materials such as scaly graphite, but amorphous carbon has the characteristic of shrinking when heat treated. As shown in FIG. 1, when it is added to a high alumina raw material to make a brick, the line change after heating and cooling, so-called residual line change rate, becomes negative. When lined with these bricks, the shrinkage of the bricks causes the joints to open and slag ingots enter the joints, causing joint melting and damage, which shortens the life of the furnace, so it is not generally used. The present invention controls the rate of residual linear change by combining silica, rouseki, kyanite, and andalusite with amorphous carbon in an optimal range, thereby obtaining a refractory with excellent volume stability and significantly reduced thermal conductivity. That is. Examples of the amorphous carbon used in the present invention include pitch coke obtained by thermally decomposing coal pitch, petroleum coke produced from vacuum residue during petroleum refining, and carbon black anthracite. The amorphous carbon has a particle size of 0.1 mm or less and is composed of solid carbon.
85% or more is desirable. The reason for this is that pitch coke and petroleum coke have high porosity, and when used as coarse particles of 0.1 mm or more, the porosity of bricks increases and the mechanical strength decreases. In addition, if the solid carbon content is less than 85%, the volatile content is large and the volatile content disappears during use, leading to an increase in porosity and a decrease in strength. The reason why the amorphous carbon is limited to 3 to 20% by weight is that if it is less than 3% by weight, the effect of preventing slag penetration cannot be obtained, and if it exceeds 20% by weight, the mechanical strength of the brick will decrease and the abrasion resistance will be low. This is to become. The reason for blending at least one of silica, Rouseki, kyanite, and andalusite is to utilize the thermal expansion characteristics of these raw materials, that is, the large residual expansion, and to suppress the residual shrinkage of the amorphous carbon-containing brick. As shown in FIG. 2, it varies depending on the raw materials added, but by adjusting the amount added, an appropriate residual expansion property can be imparted and joint opening of the lining brick can be suppressed. High alumina raw materials for aggregate include fused alumina, sintered alumina, bauxite, shale,
Sillimanite, synthetic mullite, siyamoto, etc. can be used. Suitable organic binders to be added include novolac type and/or resol type phenolic resins, furan resins, tarpitch, and the like. Silicon carbide is used as an oxidation inhibitor for amorphous carbon, and is preferably 1 to 15% by weight. If it is less than 1%, no antioxidant effect can be obtained, and if it is more than 15% by weight, corrosion resistance against hot metal and molten steel will decrease. . In addition, metal Al, metal Si powder, glass powder, etc. can be used in combination with the silicon carbide as an antioxidant. [Example] Examples will be described below. After mixing and kneading the inventive product, the comparative product, and the conventional product at the compounding ratios shown in Table 1, they were molded into a regular shape using a friction press. After that, test specimen No. 1 was passed through a drying oven at 200℃ for 20 hours.
-10 were prepared and their physical properties were measured using conventional methods. As a result, as is clear from Table 1, the thermal conductivity of the product of the present invention is significantly lower than that of the conventional product with the addition of scaly graphite, and the corrosion resistance is also 7 to 15.
% improved.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明品の供試体No.1を混銑車の溶銑部位に内
張りしたところ鱗状黒鉛を含有した従来品No.10に
比して溶銑温度の低下並びに鉄皮温度は1/2に減
少し、耐用性は10%程度向上した。その溶銑温度
の低下と鉄皮温度上昇による損傷防止と高耐用性
を両立させた工業的利益は大きい。
When specimen No. 1 of the invention product was lined in the hot metal area of a pig iron mixing car, the hot metal temperature decreased and the iron skin temperature was reduced to 1/2 compared to the conventional product No. 10 containing scaly graphite, resulting in a long service life. The performance improved by about 10%. The industrial benefits of achieving both lower molten metal temperature, higher durability, and prevention of damage caused by higher skin temperature are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭化珪素を7重量%と一定にし、ボー
キサイトとピツチコークス量を変化させた煉瓦を
1500℃で3時間コークスブリーズ中で熱処理した
後の残存線変化率を示す図、第2図は炭化珪素を
7重量%、ピツチコークスを10重量%と、一定に
し、これにカイアナイト、蝋石、珪石及びアンダ
ルサイトの添加量を変化させた煉瓦(残部骨材は
ボーキサイト)を1500℃で3時間コークスブリー
ズ中で熱処理した後の残存線変化率を示す図であ
る。
Figure 1 shows bricks with silicon carbide constant at 7% by weight and varying amounts of bauxite and pitch coke.
Figure 2 shows the residual linear change rate after heat treatment in a coke breeze at 1500°C for 3 hours. Silicon carbide is kept constant at 7% by weight, pitch coke is kept at 10% by weight, and kyanite, Rouseki, silica and FIG. 3 is a diagram showing the residual linear change rate after heat treating bricks with varying amounts of andalusite added (the remainder of the aggregate being bauxite) at 1500° C. for 3 hours in a coke breeze.

Claims (1)

【特許請求の範囲】[Claims] 1 3〜20重量%の無定形炭素と、残部が珪石、
蝋石、カイアナイト、アンダルサイトのうち少く
とも一種以上と高アルミナ原料、炭化珪素及び有
機質結合剤とからなる炭素含有耐火物。
1 3 to 20% by weight of amorphous carbon, the balance being silica,
A carbon-containing refractory comprising at least one of Rouseki, Kyanite, and Andalusite, a high alumina raw material, silicon carbide, and an organic binder.
JP60271369A 1985-12-04 1985-12-04 Carbon-containing refractories Granted JPS62132767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60271369A JPS62132767A (en) 1985-12-04 1985-12-04 Carbon-containing refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60271369A JPS62132767A (en) 1985-12-04 1985-12-04 Carbon-containing refractories

Publications (2)

Publication Number Publication Date
JPS62132767A JPS62132767A (en) 1987-06-16
JPH0532344B2 true JPH0532344B2 (en) 1993-05-14

Family

ID=17499106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60271369A Granted JPS62132767A (en) 1985-12-04 1985-12-04 Carbon-containing refractories

Country Status (1)

Country Link
JP (1) JPS62132767A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5709007B2 (en) * 2011-11-09 2015-04-30 東京窯業株式会社 Heat storage body for heat storage type burner and method for manufacturing heat storage body for heat storage type burner

Also Published As

Publication number Publication date
JPS62132767A (en) 1987-06-16

Similar Documents

Publication Publication Date Title
CN102838360A (en) Composite fireproof material and preparation method thereof
JP3615400B2 (en) Unfired carbon-containing refractories and molten metal containers
US5318933A (en) Carbon-containing carbon bonded refractories with improved physical properties
US4497901A (en) Forsterite-carbon refractory
Thethwayo et al. A review of carbon-based refractory materials and their applications
US4431745A (en) Carbon-bonded magnesia carbon bricks
JPH0118030B2 (en)
JP2971642B2 (en) Slide valve plate brick
JPH0532344B2 (en)
JP6315037B2 (en) Lined refractories for continuous casting tundish
JPS62158561A (en) Nozzle for low-temperature casting of molten steel
EP0094342B1 (en) Combination electrodes for the electric steel production with protective jacket of temperature resistant materials on its metal shaft
JP2006021972A (en) Magnesia-carbon brick
JP4695354B2 (en) Carbon-containing refractory brick
JPH03295847A (en) Carbon-containing refractory
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JPH0412065A (en) Double structure refractory
JPH08259339A (en) Monolithic refractory for lining torpedo car
JP4471254B2 (en) Magnesia-carbon brick
JPS6033782B2 (en) Refractories for hot metal pretreatment
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPS5834424B2 (en) hot metal processing container
JP2023102168A (en) Method for producing unburned bricks for molten iron vessel
JPH04317478A (en) Carbonaceous refractory for treating molten light metal and its production
JP3201679B2 (en) High spalling resistant magnesia carbon brick and its manufacturing method