JP2011026205A - Method for producing acetylene - Google Patents

Method for producing acetylene Download PDF

Info

Publication number
JP2011026205A
JP2011026205A JP2009170101A JP2009170101A JP2011026205A JP 2011026205 A JP2011026205 A JP 2011026205A JP 2009170101 A JP2009170101 A JP 2009170101A JP 2009170101 A JP2009170101 A JP 2009170101A JP 2011026205 A JP2011026205 A JP 2011026205A
Authority
JP
Japan
Prior art keywords
acetylene
gas
moisture
hydride
calcium carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009170101A
Other languages
Japanese (ja)
Other versions
JP5583932B2 (en
Inventor
Ryuichiro Isaki
隆一郎 伊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009170101A priority Critical patent/JP5583932B2/en
Priority to PCT/JP2010/062080 priority patent/WO2011010613A1/en
Priority to TW099123764A priority patent/TWI495500B/en
Publication of JP2011026205A publication Critical patent/JP2011026205A/en
Application granted granted Critical
Publication of JP5583932B2 publication Critical patent/JP5583932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10HPRODUCTION OF ACETYLENE BY WET METHODS
    • C10H11/00Acetylene gas generators with submersion of the carbide in water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing acetylene efficiently producing highly pure acetylene and supplying a user with acetylene kept in a highly pure state. <P>SOLUTION: The method for producing highly pure acetylene includes an acetylene gas generation process of generating a gas comprising acetylene as a main component by reacting calcium carbide with water, a moisture removal process of removing moisture contained in the gas generated in the acetylene gas generation process by bringing the gas into contact with a first dry adsorbent to allow the same to adsorb the moisture, and a hydride removal process of removing hydride impurities contained in the gas by bringing the gas having been treated in the moisture removal process into contact with a second dry adsorbent. The highly pure acetylene produced by the process of producing highly pure acetylene is supplied to an acetylene user at pressure not higher than the atmospheric pressure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、アセチレンの製造方法に関し、詳しくは、高純度のアセチレンを製造して使用先に供給するアセチレンの製造方法に関する。   The present invention relates to a method for producing acetylene, and more particularly, to a method for producing acetylene, which produces high-purity acetylene and supplies it to a user.

アセチレンは、カーボンナノチューブ(CNT)、カーボンナノホーン(CNF)、シリコンカーバイド(SiC)単結晶を製造するプロセスにおいて、これらの物質中の炭素源として利用されており、これらの用途に使用するアセチレンには、不純物の極めて少ない高純度なアセチレンが要求されている。このような高純度のアセチレンを製造、供給する方法として、従来から各種の精製技術、高純度化技術が用いられている(例えば、特許文献1〜4参照。)。   Acetylene is used as a carbon source in these materials in the process of producing carbon nanotube (CNT), carbon nanohorn (CNF), and silicon carbide (SiC) single crystals, and acetylene used in these applications includes Therefore, there is a demand for high-purity acetylene with very few impurities. As a method for producing and supplying such high-purity acetylene, various purification techniques and purification techniques have been conventionally used (see, for example, Patent Documents 1 to 4).

特開昭62−19539号公報Japanese Patent Laid-Open No. 62-19539 特開昭62−45543号公報JP 62-45543 A 特開平2−256626号公報JP-A-2-256626 特開2004−148257号公報JP 2004-148257 A

各特許文献に記載された方法は、主に、溶剤を除去する工程と水分を除去する工程とにより構成されている。特に、高純度のアセチレンを得る場合、溶解アセチレンの状態で脱ガスを長時間実施し、空気成分を主とする不純物を除去する方法が用いられている。しかしながら、99.9999容量%以上のアセチレンガスを得る場合、極少量の取り扱いに限定されることや、ガスの精製効率が低く、極めて高コストなために実用性に限界があるといった課題があった。   The method described in each patent document mainly includes a process for removing a solvent and a process for removing moisture. In particular, when obtaining high-purity acetylene, a method is used in which degassing is carried out for a long time in the state of dissolved acetylene to remove impurities mainly composed of air components. However, when obtaining acetylene gas of 99.9999% by volume or more, there are problems that it is limited to handling a very small amount, and that gas purification efficiency is low and the practicality is limited due to extremely high cost. .

そこで本発明は、高純度のアセチレンを効率よく製造するとともに使用先に高純度状態を保ったまま供給することができるアセチレンの製造方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a method for producing acetylene, which can efficiently produce high-purity acetylene and supply it to a user while maintaining a high-purity state.

上記目的を達成するため、本発明のアセチレンの製造方法は、炭化カルシウムに液体の水や水蒸気といった水分を作用させてアセチレンを主成分とするガスを発生させるアセチレンガス発生工程と、該アセチレンガス発生工程で発生したガスを第一の乾式吸着材に接触させることによりガス中に含まれる水分を第一の乾式吸着材に吸着させて除去する水分除去工程と、該水分除去工程を終えたガスを第二の乾式吸着材に接触させることによりガス中に含まれる水素化物系不純物を除去する水素化物除去工程とを含む高純度アセチレン製造工程で製造した高純度アセチレンを大気圧以下の圧力でアセチレン使用先に供給することを特徴としている。   In order to achieve the above object, the method for producing acetylene of the present invention includes an acetylene gas generation step of generating a gas mainly composed of acetylene by causing water such as liquid water or water vapor to act on calcium carbide, and the generation of the acetylene gas. A moisture removal step of contacting the gas generated in the process with the first dry-type adsorbent to adsorb and remove moisture contained in the gas to the first dry-type adsorbent, and the gas after the moisture removal step High-purity acetylene produced in a high-purity acetylene production process including a hydride removal process that removes hydride impurities contained in the gas by contacting with the second dry adsorbent is used at a pressure below atmospheric pressure. It is characterized by being supplied first.

また、本発明の高純度アセチレンの製造方法は、前記アセチレン使用先へのアセチレン供給量に応じて前記炭化カルシウムに作用させる水分の供給量を制御するとともに、前記アセチレンガス発生工程、水分除去工程及び水素化物除去工程の系内を大気圧以下に制御することを特徴としている。   Further, the method for producing high-purity acetylene of the present invention controls the amount of water supplied to the calcium carbide according to the amount of acetylene supplied to the acetylene use destination, and also includes the acetylene gas generation step, the water removal step, and It is characterized in that the inside of the system of the hydride removing process is controlled to be at atmospheric pressure or lower.

さらに、前記水分除去工程で使用する前記第一の乾式吸着材が、活性炭及びモレキュラシーブス3Aのいずれか一方又は活性炭とモレキュラシーブス3Aとの混合物であることを特徴とし、前記水素化物除去工程で使用する前記第二の乾式吸着材が、活性アルミナ及びモレキュラシーブス4A、5A、13Xのいずれか一種又は二種以上の混合物であることを特徴としている。   Further, the first dry adsorbent used in the water removal step is any one of activated carbon and molecular sieves 3A or a mixture of activated carbon and molecular sieves 3A, and is used in the hydride removal step. The second dry adsorbent is characterized by being one kind or a mixture of two or more kinds of activated alumina and molecular sieves 4A, 5A, 13X.

本発明のアセチレンの製造方法によれば、アセチレンを高純度化し易い乾式法により発生させ、発生したガス中に含まれる不純物を水分、水素化物系不純物の順で精製除去することにより、高純度のアセチレンを得ることができ、さらに、得られたアセチレンを低圧ガスのまま使用先へ供給することにより、高純度なアセチレンガスを容易に取り扱うことができる。したがって、高純度アセチレンを消費する使用先の近傍で本発明を実施することにより、使用先への高純度アセチレンの供給を効率よく行うことができる。   According to the method for producing acetylene of the present invention, acetylene is generated by a dry process that facilitates high purity, and impurities contained in the generated gas are purified and removed in the order of moisture and hydride impurities, thereby obtaining high purity. Acetylene can be obtained, and furthermore, high purity acetylene gas can be easily handled by supplying the obtained acetylene to the user at low pressure gas. Therefore, by implementing the present invention in the vicinity of the use destination that consumes high-purity acetylene, it is possible to efficiently supply the high-purity acetylene to the use destination.

本発明のアセチレンの製造方法の一形態例を示すブロック図である。It is a block diagram which shows one example of the manufacturing method of the acetylene of this invention.

本形態例は、本発明のアセチレンの製造方法を実施するためのアセチレン製造供給装置の一例を示すものであって、炭化カルシウムを充填した炭化カルシウム槽11と、該炭化カルシウム槽11に水分を供給する水分供給装置12と、炭化カルシウム槽11で発生したガス中の水分を第一の乾式吸着剤によって吸着除去する水分除去精製器13と、前記ガス中の水素化物を第二の乾式吸着剤によって吸着除去する水素化物除去精製器14と、精製後の高純度アセチレンを使用先の消費装置に供給するアセチレン供給ライン15と、炭化カルシウム槽11の圧力を測定する第一圧力計16と、供給ガスの圧力を測定する第二圧力計17と、余剰圧力を放出する余剰圧力放出ライン18とを備えている。   The present embodiment shows an example of an acetylene production and supply device for carrying out the acetylene production method of the present invention, and a calcium carbide tank 11 filled with calcium carbide and supplying moisture to the calcium carbide tank 11 A moisture supply device 12 that performs the adsorption and removal of moisture in the gas generated in the calcium carbide tank 11 by the first dry-type adsorbent, and a hydride in the gas by the second dry-type adsorbent. Hydride removal purifier 14 for adsorbing and removing, acetylene supply line 15 for supplying purified high-purity acetylene to the consuming device used, first pressure gauge 16 for measuring the pressure of calcium carbide tank 11, and supply gas The second pressure gauge 17 for measuring the pressure of the pressure and the surplus pressure discharge line 18 for discharging the surplus pressure are provided.

このような構成を有するアセチレン製造供給装置を利用して高純度アセチレンを消費装置に供給する手順を説明する。まず、水分供給装置12から炭化カルシウム槽11に、水分として、液体状態の水や気体状態の水蒸気を供給し、炭化カルシウム槽11内の炭化カルシウムに水分を作用させてアセチレンを主成分とするガス(粗アセチレンガス)を発生させるアセチレンガス発生工程が行われる。発生した粗アセチレンガスには、未反応の水分が含まれるとともに、反応副生成物であるホスフィン、硫化水素、アンモニアなどの水素化物系不純物が含まれている。   A procedure for supplying high-purity acetylene to a consuming device using the acetylene production and supply device having such a configuration will be described. First, as water, liquid water or gaseous water vapor is supplied from the water supply device 12 to the calcium carbide tank 11, and the moisture is applied to the calcium carbide in the calcium carbide tank 11 to mainly contain acetylene. An acetylene gas generation step for generating (crude acetylene gas) is performed. The generated crude acetylene gas contains unreacted moisture and hydride impurities such as phosphine, hydrogen sulfide, and ammonia as reaction byproducts.

炭化カルシウム槽11から導出した粗アセチレンガスは、水分除去精製器13に導入されて水分除去工程が行われる。この水分除去工程では、粗アセチレンガス中に含まれている水分を除去することができる第一の乾式吸着剤が用いられる。この第一の乾式吸着剤としては、アセチレンをほとんど吸着せず、水分を吸着可能な吸着剤である活性炭又はモレキュラシーブス3Aが最適であり、活性炭のみ、あるいは、モレキュラシーブス3Aのみを筒内に充填したものを用いてもよく、活性炭とモレキュラシーブス3Aとを積層して筒内に充填したり、活性炭とモレキュラシーブス3Aとを混合して筒内に充填したりしたものを用いることができる。   The crude acetylene gas derived from the calcium carbide tank 11 is introduced into the moisture removal purifier 13 to perform a moisture removal step. In this moisture removal step, a first dry adsorbent capable of removing moisture contained in the crude acetylene gas is used. As this first dry adsorbent, activated carbon or molecular sieve 3A, which is an adsorbent that hardly adsorbs acetylene and can adsorb moisture, is optimal, and only activated carbon or only molecular sieve 3A is filled in the cylinder. The activated carbon and the molecular sieves 3A may be stacked and filled into the cylinder, or the activated carbon and the molecular sieves 3A may be mixed and filled into the cylinder.

水分除去工程で含有水分のほとんどが除去された粗アセチレンガスは、水素化物除去精製器14に導入されて水素化物除去工程が行われる。この水素化物除去工程では、粗アセチレンガス中に含まれているホスフィン、硫化水素、アンモニアなどの水素化物系不純物を除去することができる第二の乾式吸着剤が用いられる。この第二の乾式吸着剤としては、アセチレンをほとんど吸着せず、水素化物を吸着可能な吸着剤である活性アルミナ、モレキュラシーブス4A、モレキュラシーブス5A、モレキュラシーブス13Xが最適であり、これらを単独で、あるいは、複数種を筒内に充填して使用することができる。   The crude acetylene gas from which most of the contained moisture has been removed in the moisture removal step is introduced into the hydride removal purifier 14 and the hydride removal step is performed. In this hydride removal step, a second dry adsorbent that can remove hydride impurities such as phosphine, hydrogen sulfide, and ammonia contained in the crude acetylene gas is used. As the second dry adsorbent, activated alumina, molecular sieves 4A, molecular sieves 5A, and molecular sieves 13X, which are adsorbents that hardly adsorb acetylene and can adsorb hydrides, are optimal. Alternatively, a plurality of types can be filled in a cylinder and used.

このように、水分と水素化物とを同時に吸着除去することなく、第一の乾式吸着剤を用いた水分除去工程で水分を除去した後、第二の乾式吸着剤を用いた水素化物除去工程で水素化物を除去するようにしたことにより、粗アセチレンガス中の水素化物を除去する際の水分の影響を排除して、第二の乾式吸着剤による水素化物の吸着除去を効率よく行うことができる。例えば、適当な吸着剤を使用することで水分と水素化物とを同時に吸着除去することも可能であるが、水分と水素化物とが混在していると、吸着剤における水素化物の吸着除去効率が低下することに加え、短時間で水素化物の除去特性が破過してしまう。具体的には、水分除去工程から水素化物除去工程に供給される粗アセチレンガス中の水分濃度が100ppm以下、望ましくは10ppmになるように水分除去工程の処理条件を設定することにより、水素化物除去工程において、アセチレン以外の水素化物の濃度を0.1ppm以下に低減することが可能となる。   Thus, after removing moisture in the moisture removal process using the first dry adsorbent without simultaneously removing moisture and hydride, in the hydride removal process using the second dry adsorbent. By removing the hydride, it is possible to eliminate the influence of moisture when removing the hydride in the crude acetylene gas and efficiently perform the adsorption removal of the hydride by the second dry adsorbent. . For example, it is possible to adsorb and remove moisture and hydride at the same time by using an appropriate adsorbent. However, if moisture and hydride are mixed, the adsorption and removal efficiency of hydride in the adsorbent is improved. In addition to the decrease, the hydride removal characteristics break through in a short time. Specifically, the hydride removal is performed by setting the treatment conditions of the moisture removal step so that the moisture concentration in the crude acetylene gas supplied from the moisture removal step to the hydride removal step is 100 ppm or less, preferably 10 ppm. In the process, the concentration of hydride other than acetylene can be reduced to 0.1 ppm or less.

上述のような高純度アセチレン製造工程により、水分除去工程で水分が、水素化物除去工程で水素化物がそれぞれ除去されて高純度に精製された高純度アセチレンは、前記アセチレン供給ライン15を通って消費装置に供給される。高純度アセチレンは、消費装置に設けられたファンやポンプなどの吸引手段によって直接又は他の機器を介して間接的に吸引された状態で、大気圧以下の圧力で消費装置に供給されて直ちにカーボンナノマテリアル(CNT,CNF)の合成原料として、あるいは、SiC半導体エピタキシャル成長における炭素源として消費される。   The high-purity acetylene, which has been purified in high purity by removing water in the moisture removal step and hydride in the hydride removal step by the high-purity acetylene production process as described above, is consumed through the acetylene supply line 15. Supplied to the device. High-purity acetylene is supplied to the consuming device at a pressure below the atmospheric pressure in a state where it is sucked directly or indirectly through another device by a suction means such as a fan or a pump provided in the consuming device. It is consumed as a raw material for synthesizing nanomaterials (CNT, CNF) or as a carbon source in SiC semiconductor epitaxial growth.

このときの粗アセチレンガスの発生状態及び高純度アセチレンの供給状態は、第一圧力計16及び第二圧力計17で検出されて制御される。すなわち、第一圧力計16の測定圧力が低下したときには水分供給装置12から炭化カルシウム槽11への水分の供給量を増加させて粗アセチレンガスの発生量を増加し、第一圧力計16の測定圧力が上昇したときには炭化カルシウム槽11への水分の供給量を減少させて粗アセチレンガスの発生量を減少させる。また、第二圧力計17の測定圧力が低下したときには水分供給装置12から炭化カルシウム槽11への水分の供給量を増加させ、第二圧力計17の測定圧力が上昇したときには余剰圧力放出ライン18から余剰の高純度アセチレンを系外に抜き出して系内を大気圧以下に保つようにする。   At this time, the generation state of the crude acetylene gas and the supply state of the high purity acetylene are detected and controlled by the first pressure gauge 16 and the second pressure gauge 17. That is, when the measurement pressure of the first pressure gauge 16 is lowered, the amount of crude acetylene gas generated is increased by increasing the amount of moisture supplied from the moisture supply device 12 to the calcium carbide tank 11, and the measurement of the first pressure gauge 16. When the pressure rises, the amount of moisture supplied to the calcium carbide tank 11 is reduced to reduce the amount of crude acetylene gas generated. Further, when the measurement pressure of the second pressure gauge 17 decreases, the amount of water supplied from the moisture supply device 12 to the calcium carbide tank 11 is increased, and when the measurement pressure of the second pressure gauge 17 increases, the surplus pressure release line 18. Excess high-purity acetylene is extracted from the system to keep the system at atmospheric pressure or lower.

このように第一圧力計16及び第二圧力計17の測定圧力に基づいて炭化カルシウム槽11への水分の供給量を増減させたり、余剰の高純度アセチレンを余剰圧力放出ライン18から系外に抜き出したりすることにより、アセチレンの発生量を的確に制御することができるとともに、アセチレン供給ライン15を含むアセチレン製造供給装置の系内を大気圧以下の圧力に保つことができ、高純度アセチレンが劣化することを防止して消費装置へ所望量の高純度アセチレンを効率よく供給することができる。   As described above, the amount of water supplied to the calcium carbide tank 11 is increased or decreased based on the measured pressures of the first pressure gauge 16 and the second pressure gauge 17, or surplus high-purity acetylene is removed from the surplus pressure release line 18 to the outside of the system. By extracting the acetylene, the amount of acetylene generated can be accurately controlled, and the system of the acetylene production and supply apparatus including the acetylene supply line 15 can be maintained at a pressure lower than atmospheric pressure, resulting in deterioration of high purity acetylene. Thus, a desired amount of high-purity acetylene can be efficiently supplied to the consuming device.

なお、系内の圧力は、消費装置における高純度アセチレンの使用状態、受け入れ状態に応じて設定すればよく、通常は大気圧に設定しておけばよい。また、炭化カルシウム槽11内の炭化カルシウムに水分を作用させる方法や手段は、炭化カルシウム槽11の大きさや形状、槽内の炭化カルシウムの量や形状、粗アセチレンガスの発生量などに応じて選択することができる。例えば、水分供給装置12から液体状態の水を炭化カルシウム槽11に供給して炭化カルシウムに滴下させることもでき、水分供給装置12で発生させた気体状態の水蒸気を炭化カルシウム槽11に供給することもでき、気液混合状態の水を炭化カルシウム槽11内に供給することもできる。いずれの場合も、炭化カルシウム槽11への水分供給量は、粗アセチレンガス中に大量の水分が同伴されないようにすることが好ましく、前述のように、水分除去工程で粗アセチレンガス中の水分量を容易に100ppm以下に低減できるように設定することが望ましい。   The pressure in the system may be set according to the use state and acceptance state of the high-purity acetylene in the consuming device, and usually it may be set to atmospheric pressure. Further, the method and means for causing moisture to act on the calcium carbide in the calcium carbide tank 11 are selected according to the size and shape of the calcium carbide tank 11, the amount and shape of calcium carbide in the tank, the amount of generation of crude acetylene gas, etc. can do. For example, liquid water can be supplied from the water supply device 12 to the calcium carbide tank 11 and dripped onto the calcium carbide, and gaseous water vapor generated by the water supply device 12 can be supplied to the calcium carbide tank 11. It is also possible to supply water in a gas-liquid mixed state into the calcium carbide tank 11. In any case, the amount of water supplied to the calcium carbide tank 11 is preferably such that a large amount of water is not entrained in the crude acetylene gas, and as described above, the amount of moisture in the crude acetylene gas in the moisture removal step. It is desirable to set so that it can be easily reduced to 100 ppm or less.

11…炭化カルシウム槽、12…水分供給装置、13…水分除去精製器、14…水素化物除去精製器、15…アセチレン供給ライン、16…第一圧力計、17…第二圧力計、18…余剰圧力放出ライン   DESCRIPTION OF SYMBOLS 11 ... Calcium carbide tank, 12 ... Water supply apparatus, 13 ... Water removal refiner, 14 ... Hydride removal refiner, 15 ... Acetylene supply line, 16 ... First pressure gauge, 17 ... Second pressure gauge, 18 ... Surplus Pressure release line

Claims (4)

炭化カルシウムに水分を作用させてアセチレンを主成分とするガスを発生させるアセチレンガス発生工程と、該アセチレンガス発生工程で発生したガスを第一の乾式吸着材に接触させることによりガス中に含まれる水分を第一の乾式吸着材に吸着させて除去する水分除去工程と、該水分除去工程を終えたガスを第二の乾式吸着材に接触させることによりガス中に含まれる水素化物系不純物を除去する水素化物除去工程とを含む高純度アセチレン製造工程で製造した高純度アセチレンを大気圧以下の圧力でアセチレン使用先に供給することを特徴とする高純度アセチレンの製造方法。   An acetylene gas generating step for generating a gas mainly composed of acetylene by causing moisture to act on calcium carbide, and the gas generated in the acetylene gas generating step is contained in the gas by contacting the first dry adsorbent. A moisture removal process for removing moisture by adsorbing to the first dry adsorbent, and removing the hydride impurities contained in the gas by bringing the gas after the moisture removal process into contact with the second dry adsorbent A method for producing high-purity acetylene, comprising: supplying high-purity acetylene produced in a high-purity acetylene production process including a hydride removing process to an acetylene use destination at a pressure equal to or lower than atmospheric pressure. 前記アセチレン使用先へのアセチレン供給量に応じて前記炭化カルシウムに作用させる水分の供給量を制御するとともに、前記アセチレンガス発生工程、水分除去工程及び水素化物除去工程の系内を大気圧以下に制御することを特徴とする請求項1記載のアセチレンの製造方法。   Controls the amount of moisture supplied to the calcium carbide in accordance with the amount of acetylene supplied to the acetylene user, and controls the system in the acetylene gas generation step, moisture removal step and hydride removal step to below atmospheric pressure. The method for producing acetylene according to claim 1, wherein: 前記第一の乾式吸着材が、活性炭及びモレキュラシーブス3Aのいずれか一方又は活性炭とモレキュラシーブス3Aとの混合物であることを特徴とする請求項1又は2記載のアセチレンの製造方法。   The method for producing acetylene according to claim 1 or 2, wherein the first dry adsorbent is any one of activated carbon and molecular sieves 3A or a mixture of activated carbon and molecular sieves 3A. 前記第二の乾式吸着材が、活性アルミナ及びモレキュラシーブス4A、5A、13Xのいずれか一種又は二種以上の混合物であることを特徴とする請求項1乃至3のいずれか1項記載のアセチレンの製造方法。   The acetylene according to any one of claims 1 to 3, wherein the second dry adsorbent is any one of activated alumina and molecular sieves 4A, 5A, and 13X, or a mixture of two or more thereof. Production method.
JP2009170101A 2009-07-21 2009-07-21 Method for producing acetylene Active JP5583932B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009170101A JP5583932B2 (en) 2009-07-21 2009-07-21 Method for producing acetylene
PCT/JP2010/062080 WO2011010613A1 (en) 2009-07-21 2010-07-16 Method for supplying acetylene
TW099123764A TWI495500B (en) 2009-07-21 2010-07-20 Supplying method for acetylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009170101A JP5583932B2 (en) 2009-07-21 2009-07-21 Method for producing acetylene

Publications (2)

Publication Number Publication Date
JP2011026205A true JP2011026205A (en) 2011-02-10
JP5583932B2 JP5583932B2 (en) 2014-09-03

Family

ID=43499086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009170101A Active JP5583932B2 (en) 2009-07-21 2009-07-21 Method for producing acetylene

Country Status (3)

Country Link
JP (1) JP5583932B2 (en)
TW (1) TWI495500B (en)
WO (1) WO2011010613A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360179A (en) * 2011-07-21 2012-02-22 新疆天业(集团)有限公司 Method for controlling in-out materials in process of producing acetylene by dry method
CN113731167A (en) * 2021-09-02 2021-12-03 昆明理工大学 Preparation method of modified carbide slag, product and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130369B (en) * 2011-12-05 2014-07-02 天辰化工有限公司 Method of reusing sodium hypochlorite waste water generated by acetylene lustration
CN105969424A (en) * 2016-07-07 2016-09-28 中盐吉兰泰盐化集团有限公司 System for producing acetylene gas by using recycled calcium carbide dust

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245543A (en) * 1985-08-22 1987-02-27 Toyo Soda Mfg Co Ltd Production of lower unsaturated hydrocarbon
JPH02256626A (en) * 1988-08-25 1990-10-17 Taiyo Sanso Co Ltd Production of high-purity acetylene gas
JP2004148257A (en) * 2002-10-31 2004-05-27 Nichigo Acetylene Kk Portable supply apparatus for ultra-high purity acetylene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768828A (en) * 1980-10-17 1982-04-27 Fuji Photo Film Co Ltd Diffusion transfer photography film unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245543A (en) * 1985-08-22 1987-02-27 Toyo Soda Mfg Co Ltd Production of lower unsaturated hydrocarbon
JPH02256626A (en) * 1988-08-25 1990-10-17 Taiyo Sanso Co Ltd Production of high-purity acetylene gas
JP2004148257A (en) * 2002-10-31 2004-05-27 Nichigo Acetylene Kk Portable supply apparatus for ultra-high purity acetylene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360179A (en) * 2011-07-21 2012-02-22 新疆天业(集团)有限公司 Method for controlling in-out materials in process of producing acetylene by dry method
CN113731167A (en) * 2021-09-02 2021-12-03 昆明理工大学 Preparation method of modified carbide slag, product and application thereof

Also Published As

Publication number Publication date
JP5583932B2 (en) 2014-09-03
TW201111028A (en) 2011-04-01
WO2011010613A1 (en) 2011-01-27
TWI495500B (en) 2015-08-11

Similar Documents

Publication Publication Date Title
JP2011084422A (en) System for recovering hydrogen gas and method for separating and recovering hydrogen gas
JP5033829B2 (en) Digestion gas deoxygenation method and apparatus
JP5122700B1 (en) Monosilane purification method
JP6103337B2 (en) Method for recovering ammonia and method for reusing ammonia using the same
JP5583932B2 (en) Method for producing acetylene
JP2008525779A5 (en)
TWI486305B (en) Recycle of hydrogen
JP5824318B2 (en) Apparatus and method for producing purified hydrogen gas by pressure swing adsorption treatment
RU2007143482A (en) GAS CLEANING METHOD
WO2015059919A1 (en) Method for manufacturing polycrystalline silicon
CN207227001U (en) Utilize MOCVD tail gas co-producing high-purity hydrogen and the device of high-purity ammon
WO2019235169A1 (en) Hydrogen recycle system and hydrogen recycle method
JP2012516278A (en) Provision of gas used to form carbon nanomaterials
JP6101958B2 (en) Ammonia and hydrogen recovery and reuse methods
CN109843800B (en) Method for manufacturing polycrystalline silicon
JP4314015B2 (en) Portable ultra-high purity acetylene feeder
JP2015000842A (en) Recovery method of ammonia and reuse method of ammonia using the same
JP2011148670A (en) High-pressure and high-purity nitrogen gas feeding method and feeding method
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP2013194004A (en) Method for purifying dissolved acetylene
JP2000036480A (en) Recycle device and recycle method therefor
JP6103344B2 (en) Ammonia recovery and reuse
JP6667381B2 (en) Hydrogen gas production method and hydrogen gas production device
JP2005342562A (en) Method and apparatus for purification of hydrogen
WO2020066536A1 (en) Apparatus for producing carbon monoxide gas and method for producing carbon monoxide gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5583932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250