WO2011010613A1 - Method for supplying acetylene - Google Patents

Method for supplying acetylene Download PDF

Info

Publication number
WO2011010613A1
WO2011010613A1 PCT/JP2010/062080 JP2010062080W WO2011010613A1 WO 2011010613 A1 WO2011010613 A1 WO 2011010613A1 JP 2010062080 W JP2010062080 W JP 2010062080W WO 2011010613 A1 WO2011010613 A1 WO 2011010613A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetylene
gas
moisture
hydride
purity
Prior art date
Application number
PCT/JP2010/062080
Other languages
French (fr)
Japanese (ja)
Inventor
隆一郎 伊崎
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Publication of WO2011010613A1 publication Critical patent/WO2011010613A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10HPRODUCTION OF ACETYLENE BY WET METHODS
    • C10H11/00Acetylene gas generators with submersion of the carbide in water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique

Definitions

  • the present invention relates to a method for supplying acetylene, and more particularly to a method for supplying acetylene for supplying manufactured high-purity acetylene to a user.
  • Acetylene is used as a carbon source for these substances in processes for producing carbon nanotubes (CNT), carbon nanohorns (CNF), and silicon carbide (SiC) single crystals.
  • the acetylene used for this purpose is required to be highly pure with very few impurities.
  • various purification techniques and purification techniques have been conventionally used (see, for example, Patent Documents 1 to 4).
  • the method described in each patent document is mainly configured by a process of removing a solvent and a process of removing moisture.
  • a method is used in which degassing is carried out for a long time in the state of dissolved acetylene to remove impurities mainly composed of air components.
  • acetylene gas there is a problem that practicality is limited due to low gas purification efficiency and extremely high cost.
  • the amount of the high-purity acetylene gas obtained is extremely small, there is also a problem that it is difficult to supply to the use destination while maintaining high purity.
  • an object of the present invention is to provide a method for supplying acetylene, which can efficiently supply high-purity acetylene while maintaining a high-purity state at the use destination.
  • the moisture removal step of removing moisture contained in the gas by adsorbing it to the first dry adsorbent, and the gas after the moisture removal step being included in the gas by contacting the second dry adsorbent After obtaining high-purity acetylene by an acetylene production method comprising a hydride-removing step for removing hydride-based impurities, the obtained high-purity acetylene is supplied to the user at a pressure below atmospheric pressure
  • a method for supplying acetylene is provided.
  • the acetylene supply method of the present invention controls the amount of water supplied to the calcium carbide according to the amount of acetylene supplied to the acetylene use destination, and controls the acetylene gas generation step, water removal step, and hydride. It is characterized in that the inside of the system in the removal step is controlled to atmospheric pressure or lower.
  • the first dry adsorbent used in the water removal step is one of activated carbon and molecular sieves 3A or a mixture of activated carbon and molecular sieves 3A, and is used in the hydride removal step.
  • the second dry adsorbent is characterized by being one kind or a mixture of two or more kinds of activated alumina and molecular sieves 4A, 5A, 13X.
  • acetylene was obtained by a dry method that facilitates high purity, and impurities contained in the generated gas were separately purified and removed in the order of moisture and hydride impurities.
  • High purity acetylene can be efficiently supplied to the user.
  • high-purity acetylene can be supplied to the user more efficiently.
  • the present embodiment shows an example of an acetylene production and supply device for carrying out the acetylene supply method of the present invention, and includes a calcium carbide tank 11 filled with calcium carbide, and water is supplied to the calcium carbide tank 11.
  • a moisture supply device 12 that performs the adsorption and removal of moisture in the gas generated in the calcium carbide tank 11 by the first dry-type adsorbent, and a hydride in the gas by the second dry-type adsorbent.
  • Hydride removal purifier 14 for adsorbing and removing, acetylene supply line 15 for supplying purified high-purity acetylene to the consuming device used, first pressure gauge 16 for measuring the pressure of calcium carbide tank 11, and supply gas
  • the second pressure gauge 17 for measuring the pressure of the pressure and the surplus pressure discharge line 18 for discharging the surplus pressure are provided.
  • the procedure for supplying high-purity acetylene to the consumer using the acetylene production and supply apparatus having such a configuration will be described.
  • water liquid water or gaseous water vapor is supplied from the water supply device 12 to the calcium carbide tank 11, and the moisture is applied to the calcium carbide in the calcium carbide tank 11 to mainly contain acetylene.
  • An acetylene gas generation step for generating (crude acetylene gas) is performed.
  • the generated crude acetylene gas contains unreacted moisture and hydride impurities such as phosphine, hydrogen sulfide, and ammonia as reaction byproducts.
  • the crude acetylene gas derived from the calcium carbide tank 11 is introduced into the moisture removal purifier 13 to perform a moisture removal step.
  • a first dry adsorbent capable of removing moisture contained in the crude acetylene gas is used.
  • activated carbon or molecular sieves 3A which is an adsorbent that hardly adsorbs acetylene and can adsorb moisture, is optimal. You may use what filled only the activated carbon or only the molecular sieve 3A in the cylinder.
  • Activated carbon and molecular sieves 3A can be stacked and filled into the cylinder, or activated carbon and molecular sieves 3A can be mixed and filled into the cylinder.
  • the crude acetylene gas from which most of the contained water has been removed in the moisture removal step is introduced into the hydride removal purifier 14 and the hydride removal step is performed.
  • a second dry adsorbent that can remove hydride impurities such as phosphine, hydrogen sulfide, and ammonia contained in the crude acetylene gas is used.
  • the second dry adsorbent activated alumina, molecular sieves 4A, molecular sieves 5A, and molecular sieves 13X, which are adsorbents that hardly adsorb acetylene and can adsorb hydrides, are optimal.
  • a plurality of types can be filled in a cylinder and used.
  • the second dry adsorbent after removing moisture in the moisture removal step using the first dry adsorbent without simultaneously removing moisture and hydride, the second dry adsorbent was used.
  • the hydride is removed in the hydride removal step.
  • moisture content at the time of removing the hydride in crude acetylene gas is excluded, and adsorption removal of the hydride by a 2nd dry-type adsorption agent can be performed efficiently.
  • moisture and hydride can be simultaneously adsorbed and removed by using an appropriate adsorbent.
  • moisture and hydride are mixed, the hydride removal efficiency in the adsorbent decreases, and the hydride removal characteristics break through in a short time.
  • the treatment conditions of the moisture removal step are set so that the moisture concentration in the crude acetylene gas supplied from the moisture removal step to the hydride removal step is preferably 100 ppm or less, more preferably 10 ppm or less. Set. This makes it possible to reduce the concentration of hydrides other than acetylene to 0.1 ppm or less in the hydride removal step.
  • the high-purity acetylene which has been purified in high purity by removing moisture in the moisture removal step and hydride in the hydride removal step, is supplied to the consuming device through the acetylene supply line 15.
  • High-purity acetylene is supplied to the consuming device at a pressure below the atmospheric pressure in a state where it is sucked directly or indirectly through another device by a suction means such as a fan or a pump provided in the consuming device. It is consumed as a raw material for synthesizing nanomaterials (CNT, CNF) or as a carbon source in SiC semiconductor epitaxial growth.
  • the generation state of the crude acetylene gas and the supply state of the high purity acetylene are detected and controlled by the first pressure gauge 16 and the second pressure gauge 17. That is, when the measurement pressure of the first pressure gauge 16 decreases, the amount of moisture supplied from the moisture supply device 12 to the calcium carbide tank 11 is increased, and the amount of generation of crude acetylene gas is increased. When the measurement pressure of the first pressure gauge 16 rises, the amount of moisture supplied to the calcium carbide tank 11 is reduced to reduce the amount of generated crude acetylene gas. Further, when the measurement pressure of the second pressure gauge 17 decreases, the amount of water supplied from the water supply device 12 to the calcium carbide tank 11 is increased. When the measurement pressure of the second pressure gauge 17 rises, excess high-purity acetylene is extracted from the excess pressure release line 18 to keep the inside of the system below atmospheric pressure.
  • the amount of water supplied to the calcium carbide tank 11 is increased or decreased based on the measured pressures of the first pressure gauge 16 and the second pressure gauge 17, or surplus high-purity acetylene is removed from the surplus pressure release line 18 to the outside of the system.
  • the amount of acetylene generated can be accurately controlled.
  • the inside of the system of the acetylene production and supply apparatus including the acetylene supply line 15 can be maintained at a pressure below atmospheric pressure, and the high-purity acetylene is prevented from deteriorating and the desired amount of high-purity acetylene is efficiently supplied to the consumption apparatus Can be supplied.
  • the pressure in the system may be set according to the use state and acceptance state of the high-purity acetylene in the consuming device, and it is usually set to atmospheric pressure.
  • the method and means for causing moisture to act on the calcium carbide in the calcium carbide tank 11 are selected according to the size and shape of the calcium carbide tank 11, the amount and shape of calcium carbide in the tank, the amount of generation of crude acetylene gas, etc. can do.
  • liquid water can be supplied from the water supply device 12 to the calcium carbide tank 11 and dropped onto the calcium carbide.
  • the gaseous water vapor generated by the water supply device 12 can also be supplied to the calcium carbide tank 11. It is also possible to supply water in a gas-liquid mixed state into the calcium carbide tank 11.
  • the amount of water supplied to the calcium carbide tank 11 is preferably such that a large amount of water is not entrained in the crude acetylene gas, and as described above, the amount of moisture in the crude acetylene gas in the moisture removal step. It is desirable to set so that it can be easily reduced to 100 ppm or less.
  • the acetylene supplied by the acetylene supply method of the present invention is generated by a dry method that facilitates high purity, and impurities contained in the generated gas are separately purified and removed in the order of moisture and hydride impurities. high.
  • the high-purity acetylene gas can be easily handled because the high-purity acetylene is supplied to the user with the low-pressure gas. Therefore, the high purity acetylene can be efficiently supplied to the user by implementing the present invention near the user who consumes the high purity acetylene.
  • SYMBOLS 11 Calcium carbide tank, 12 ... Water supply apparatus, 13 ... Water removal refiner, 14 ... Hydride removal purifier, 15 ... Acetylene supply line, 16 ... First pressure gauge, 17 ... second pressure gauge, 18 ... excess pressure release line

Abstract

A method for supplying acetylene is provided for the purpose of supplying high-purity acetylene efficiently to a user. The method is characterized by supplying high-purity acetylene at a pressure up to atmospheric pressure to an acetylene user, said high-purity acetylene being produced by a process which comprises: an acetylene gas production step of reacting calcium carbide with water to produce a gas comprising acetylene as the main component; a water-removal step of removing water from the gas produced in the acetylene gas production step by bringing the gas into contact with a first dry adsorbent and thereby causing the water contained in the gas to be adsorbed on the first dry adsorbent; and a hydride-removal step of bringing the gas which has undergone the water-removal step into contact with a second dry adsorbent to remove hydride-type impurities contained in the gas.

Description

アセチレンの供給方法Acetylene supply method
 本発明は、アセチレンの供給方法に関し、詳しくは、製造した高純度のアセチレンを使用先に供給するアセチレンの供給方法に関する。
 本願は、2009年7月21日に、日本に出願された特願2009-170101号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for supplying acetylene, and more particularly to a method for supplying acetylene for supplying manufactured high-purity acetylene to a user.
This application claims priority on July 21, 2009 based on Japanese Patent Application No. 2009-170101 filed in Japan, the contents of which are incorporated herein by reference.
 アセチレンは、カーボンナノチューブ(CNT)、カーボンナノホーン(CNF)、シリコンカーバイド(SiC)単結晶を製造するプロセスにおいて、これらの物質の炭素源として利用されている。この用途に使用するアセチレンは、不純物の極めて少ない、高純度であることが要求されている。このような高純度のアセチレンを製造、供給する方法として、従来から各種の精製技術、高純度化技術が用いられている(例えば、特許文献1~4参照。)。 Acetylene is used as a carbon source for these substances in processes for producing carbon nanotubes (CNT), carbon nanohorns (CNF), and silicon carbide (SiC) single crystals. The acetylene used for this purpose is required to be highly pure with very few impurities. As a method for producing and supplying such high-purity acetylene, various purification techniques and purification techniques have been conventionally used (see, for example, Patent Documents 1 to 4).
特開昭62-19539号公報JP-A-62-19539 特開昭62-45543号公報JP 62-45543 A 特開平2-256626号公報JP-A-2-256626 特開2004-148257号公報JP 2004-148257 A
 各特許文献に記載された方法は、溶剤を除去する工程と、水分を除去する工程とにより主に構成されている。特に、高純度のアセチレンを得る場合、溶解アセチレンの状態で脱ガスを長時間実施し、空気成分を主とする不純物を除去する方法が用いられている。しかしながら、99.9999容量%以上のアセチレンガスを得る場合、ガスの精製効率が低く、極めて高コストなために実用性に限界があるといった課題があった。
 さらに得られる高純度アセチレンガスが極少量であるため、高純度を維持したままでの使用先への供給が困難であるという課題もあった。
The method described in each patent document is mainly configured by a process of removing a solvent and a process of removing moisture. In particular, when obtaining high-purity acetylene, a method is used in which degassing is carried out for a long time in the state of dissolved acetylene to remove impurities mainly composed of air components. However, in the case of obtaining 99.9999% by volume or more of acetylene gas, there is a problem that practicality is limited due to low gas purification efficiency and extremely high cost.
Furthermore, since the amount of the high-purity acetylene gas obtained is extremely small, there is also a problem that it is difficult to supply to the use destination while maintaining high purity.
 そこで本発明は、高純度のアセチレンを効率よく、かつ使用先に高純度状態を保ったまま供給することができるアセチレンの供給方法を提供することを目的としている。 Therefore, an object of the present invention is to provide a method for supplying acetylene, which can efficiently supply high-purity acetylene while maintaining a high-purity state at the use destination.
 上記目的を達成するため、炭化カルシウムに水分を作用させてアセチレンを主成分とするガスを発生させるアセチレンガス発生工程と、該アセチレンガス発生工程で発生したガスを第一の乾式吸着材に接触させることによりガス中に含まれる水分を第一の乾式吸着材に吸着させて除去する水分除去工程と、該水分除去工程を終えたガスを第二の乾式吸着材に接触させることによりガス中に含まれる水素化物系不純物を除去する水素化物除去工程とを具備するアセチレンの製造方法によって高純度アセチレンを得た後、得られた高純度アセチレンを大気圧以下の圧力で使用先に供給することを特徴とするアセチレンの供給方法を提供する。 In order to achieve the above object, an acetylene gas generation step for generating a gas mainly composed of acetylene by causing moisture to act on calcium carbide, and a gas generated in the acetylene gas generation step are brought into contact with the first dry adsorbent The moisture removal step of removing moisture contained in the gas by adsorbing it to the first dry adsorbent, and the gas after the moisture removal step being included in the gas by contacting the second dry adsorbent After obtaining high-purity acetylene by an acetylene production method comprising a hydride-removing step for removing hydride-based impurities, the obtained high-purity acetylene is supplied to the user at a pressure below atmospheric pressure A method for supplying acetylene is provided.
 また、本発明のアセチレンの供給方法は、前記アセチレン使用先へのアセチレン供給量に応じて前記炭化カルシウムに作用させる水分の供給量を制御するとともに、前記アセチレンガス発生工程、水分除去工程及び水素化物除去工程の系内を大気圧以下に制御することを特徴としている。 The acetylene supply method of the present invention controls the amount of water supplied to the calcium carbide according to the amount of acetylene supplied to the acetylene use destination, and controls the acetylene gas generation step, water removal step, and hydride. It is characterized in that the inside of the system in the removal step is controlled to atmospheric pressure or lower.
 さらに、前記水分除去工程で使用する前記第一の乾式吸着材が、活性炭及びモレキュラシーブス3Aのいずれか一方又は活性炭とモレキュラシーブス3Aとの混合物であることを特徴とし、前記水素化物除去工程で使用する前記第二の乾式吸着材が、活性アルミナ及びモレキュラシーブス4A、5A、13Xのいずれか一種又は二種以上の混合物であることを特徴としている。 Further, the first dry adsorbent used in the water removal step is one of activated carbon and molecular sieves 3A or a mixture of activated carbon and molecular sieves 3A, and is used in the hydride removal step. The second dry adsorbent is characterized by being one kind or a mixture of two or more kinds of activated alumina and molecular sieves 4A, 5A, 13X.
 本発明のアセチレンの供給方法によれば、アセチレンを高純度化し易い乾式法により発生させ、発生したガス中に含まれる不純物を水分、水素化物系不純物の順で別々に精製除去することにより得た高純度のアセチレンを使用先に効率よく供給することができる。
 とくに、使用先近傍でアセチレンを製造すると、より効率よく高純度アセチレンを使用先に供給できる。
According to the acetylene supply method of the present invention, acetylene was obtained by a dry method that facilitates high purity, and impurities contained in the generated gas were separately purified and removed in the order of moisture and hydride impurities. High purity acetylene can be efficiently supplied to the user.
In particular, when acetylene is produced in the vicinity of the user, high-purity acetylene can be supplied to the user more efficiently.
本発明のアセチレンの製造方法の一形態例を示すブロック図である。It is a block diagram which shows one example of the manufacturing method of the acetylene of this invention.
 本形態例は、本発明のアセチレンの供給方法を実施するためのアセチレン製造供給装置の一例を示すものであって、炭化カルシウムを充填した炭化カルシウム槽11と、該炭化カルシウム槽11に水分を供給する水分供給装置12と、炭化カルシウム槽11で発生したガス中の水分を第一の乾式吸着剤によって吸着除去する水分除去精製器13と、前記ガス中の水素化物を第二の乾式吸着剤によって吸着除去する水素化物除去精製器14と、精製後の高純度アセチレンを使用先の消費装置に供給するアセチレン供給ライン15と、炭化カルシウム槽11の圧力を測定する第一圧力計16と、供給ガスの圧力を測定する第二圧力計17と、余剰圧力を放出する余剰圧力放出ライン18とを備えている。 The present embodiment shows an example of an acetylene production and supply device for carrying out the acetylene supply method of the present invention, and includes a calcium carbide tank 11 filled with calcium carbide, and water is supplied to the calcium carbide tank 11. A moisture supply device 12 that performs the adsorption and removal of moisture in the gas generated in the calcium carbide tank 11 by the first dry-type adsorbent, and a hydride in the gas by the second dry-type adsorbent. Hydride removal purifier 14 for adsorbing and removing, acetylene supply line 15 for supplying purified high-purity acetylene to the consuming device used, first pressure gauge 16 for measuring the pressure of calcium carbide tank 11, and supply gas The second pressure gauge 17 for measuring the pressure of the pressure and the surplus pressure discharge line 18 for discharging the surplus pressure are provided.
 このような構成を有するアセチレン製造供給装置を利用して高純度アセチレンを消費装置に供給する手順を説明する。まず、水分供給装置12から炭化カルシウム槽11に、水分として、液体状態の水や気体状態の水蒸気を供給し、炭化カルシウム槽11内の炭化カルシウムに水分を作用させてアセチレンを主成分とするガス(粗アセチレンガス)を発生させるアセチレンガス発生工程が行われる。発生した粗アセチレンガスには、未反応の水分が含まれるとともに、反応副生成物であるホスフィン、硫化水素、アンモニアなどの水素化物系不純物が含まれている。 The procedure for supplying high-purity acetylene to the consumer using the acetylene production and supply apparatus having such a configuration will be described. First, as water, liquid water or gaseous water vapor is supplied from the water supply device 12 to the calcium carbide tank 11, and the moisture is applied to the calcium carbide in the calcium carbide tank 11 to mainly contain acetylene. An acetylene gas generation step for generating (crude acetylene gas) is performed. The generated crude acetylene gas contains unreacted moisture and hydride impurities such as phosphine, hydrogen sulfide, and ammonia as reaction byproducts.
 炭化カルシウム槽11から導出した粗アセチレンガスは、水分除去精製器13に導入されて水分除去工程が行われる。この水分除去工程では、粗アセチレンガス中に含まれている水分を除去することができる第一の乾式吸着剤が用いられる。この第一の乾式吸着剤としては、アセチレンをほとんど吸着せず、水分を吸着可能な吸着剤である活性炭又はモレキュラシーブス3Aが最適である。活性炭のみ、またはモレキュラシーブス3Aのみを筒内に充填したものを用いてもよい。活性炭とモレキュラシーブス3Aとを積層して筒内に充填したり、活性炭とモレキュラシーブス3Aとを混合して筒内に充填したりしたものを用いることもできる。 The crude acetylene gas derived from the calcium carbide tank 11 is introduced into the moisture removal purifier 13 to perform a moisture removal step. In this moisture removal step, a first dry adsorbent capable of removing moisture contained in the crude acetylene gas is used. As this first dry adsorbent, activated carbon or molecular sieves 3A, which is an adsorbent that hardly adsorbs acetylene and can adsorb moisture, is optimal. You may use what filled only the activated carbon or only the molecular sieve 3A in the cylinder. Activated carbon and molecular sieves 3A can be stacked and filled into the cylinder, or activated carbon and molecular sieves 3A can be mixed and filled into the cylinder.
 水分除去工程で含有水分のほとんどが除去された粗アセチレンガスは、水素化物除去精製器14に導入されて水素化物除去工程が行われる。この水素化物除去工程では、粗アセチレンガス中に含まれているホスフィン、硫化水素、アンモニアなどの水素化物系不純物を除去することができる第二の乾式吸着剤が用いられる。この第二の乾式吸着剤としては、アセチレンをほとんど吸着せず、水素化物を吸着可能な吸着剤である活性アルミナ、モレキュラシーブス4A、モレキュラシーブス5A、モレキュラシーブス13Xが最適であり、これらを単独で、あるいは、複数種を筒内に充填して使用することができる。 The crude acetylene gas from which most of the contained water has been removed in the moisture removal step is introduced into the hydride removal purifier 14 and the hydride removal step is performed. In this hydride removal step, a second dry adsorbent that can remove hydride impurities such as phosphine, hydrogen sulfide, and ammonia contained in the crude acetylene gas is used. As the second dry adsorbent, activated alumina, molecular sieves 4A, molecular sieves 5A, and molecular sieves 13X, which are adsorbents that hardly adsorb acetylene and can adsorb hydrides, are optimal. Alternatively, a plurality of types can be filled in a cylinder and used.
 このように、本発明においては、水分と水素化物とを同時に吸着除去することなく、第一の乾式吸着剤を用いた水分除去工程で水分を除去した後、第二の乾式吸着剤を用いた水素化物除去工程で水素化物を除去する。これにより、粗アセチレンガス中の水素化物を除去する際の水分の影響を排除して、第二の乾式吸着剤による水素化物の吸着除去を効率よく行うことができる。
 例えば、適当な吸着剤を使用することで水分と水素化物とを同時に吸着除去することも可能である。しかしながら、水分と水素化物とが混在していると、吸着剤における水素化物の吸着除去効率が低下することに加え、水素化物の除去特性が短時間で破過してしまう。
 これら吸着剤のダメージを考慮すると、水分除去工程から水素化物除去工程に供給される粗アセチレンガス中の水分濃度を好ましくは100ppm以下、より好ましくは10ppm以下になるように水分除去工程の処理条件を設定する。これにより、水素化物除去工程において、アセチレン以外の水素化物の濃度を0.1ppm以下に低減することが可能となる。
Thus, in the present invention, after removing moisture in the moisture removal step using the first dry adsorbent without simultaneously removing moisture and hydride, the second dry adsorbent was used. The hydride is removed in the hydride removal step. Thereby, the influence of the water | moisture content at the time of removing the hydride in crude acetylene gas is excluded, and adsorption removal of the hydride by a 2nd dry-type adsorption agent can be performed efficiently.
For example, moisture and hydride can be simultaneously adsorbed and removed by using an appropriate adsorbent. However, if moisture and hydride are mixed, the hydride removal efficiency in the adsorbent decreases, and the hydride removal characteristics break through in a short time.
Considering the damage of these adsorbents, the treatment conditions of the moisture removal step are set so that the moisture concentration in the crude acetylene gas supplied from the moisture removal step to the hydride removal step is preferably 100 ppm or less, more preferably 10 ppm or less. Set. This makes it possible to reduce the concentration of hydrides other than acetylene to 0.1 ppm or less in the hydride removal step.
 上述したように、水分除去工程で水分が、水素化物除去工程で水素化物がそれぞれ除去されて高純度に精製された高純度アセチレンは、前記アセチレン供給ライン15を通って消費装置に供給される。高純度アセチレンは、消費装置に設けられたファンやポンプなどの吸引手段によって直接又は他の機器を介して間接的に吸引された状態で、大気圧以下の圧力で消費装置に供給されて直ちにカーボンナノマテリアル(CNT,CNF)の合成原料として、あるいは、SiC半導体エピタキシャル成長における炭素源として消費される。 As described above, the high-purity acetylene, which has been purified in high purity by removing moisture in the moisture removal step and hydride in the hydride removal step, is supplied to the consuming device through the acetylene supply line 15. High-purity acetylene is supplied to the consuming device at a pressure below the atmospheric pressure in a state where it is sucked directly or indirectly through another device by a suction means such as a fan or a pump provided in the consuming device. It is consumed as a raw material for synthesizing nanomaterials (CNT, CNF) or as a carbon source in SiC semiconductor epitaxial growth.
 粗アセチレンガスの発生状態及び高純度アセチレンの供給状態は、第一圧力計16及び第二圧力計17で検出されて制御される。すなわち、第一圧力計16の測定圧力が低下したときには、水分供給装置12から炭化カルシウム槽11への水分の供給量を増加させ、粗アセチレンガスの発生量を増加させる。第一圧力計16の測定圧力が上昇したときには、炭化カルシウム槽11への水分の供給量を減少させて粗アセチレンガスの発生量を減少させる。また、第二圧力計17の測定圧力が低下したときには、水分供給装置12から炭化カルシウム槽11への水分の供給量を増加させる。第二圧力計17の測定圧力が上昇したときには、余剰圧力放出ライン18から余剰の高純度アセチレンを系外に抜き出して系内を大気圧以下に保つようにする。 The generation state of the crude acetylene gas and the supply state of the high purity acetylene are detected and controlled by the first pressure gauge 16 and the second pressure gauge 17. That is, when the measurement pressure of the first pressure gauge 16 decreases, the amount of moisture supplied from the moisture supply device 12 to the calcium carbide tank 11 is increased, and the amount of generation of crude acetylene gas is increased. When the measurement pressure of the first pressure gauge 16 rises, the amount of moisture supplied to the calcium carbide tank 11 is reduced to reduce the amount of generated crude acetylene gas. Further, when the measurement pressure of the second pressure gauge 17 decreases, the amount of water supplied from the water supply device 12 to the calcium carbide tank 11 is increased. When the measurement pressure of the second pressure gauge 17 rises, excess high-purity acetylene is extracted from the excess pressure release line 18 to keep the inside of the system below atmospheric pressure.
 このように第一圧力計16及び第二圧力計17の測定圧力に基づいて炭化カルシウム槽11への水分の供給量を増減させたり、余剰の高純度アセチレンを余剰圧力放出ライン18から系外に抜き出したりすることにより、アセチレンの発生量を的確に制御することができる。同時に、アセチレン供給ライン15を含むアセチレン製造供給装置の系内を大気圧以下の圧力に保つことができ、高純度アセチレンが劣化することを防止して消費装置へ所望量の高純度アセチレンを効率よく供給することができる。 As described above, the amount of water supplied to the calcium carbide tank 11 is increased or decreased based on the measured pressures of the first pressure gauge 16 and the second pressure gauge 17, or surplus high-purity acetylene is removed from the surplus pressure release line 18 to the outside of the system. By extracting the acetylene, the amount of acetylene generated can be accurately controlled. At the same time, the inside of the system of the acetylene production and supply apparatus including the acetylene supply line 15 can be maintained at a pressure below atmospheric pressure, and the high-purity acetylene is prevented from deteriorating and the desired amount of high-purity acetylene is efficiently supplied to the consumption apparatus Can be supplied.
 なお、系内の圧力は、消費装置における高純度アセチレンの使用状態、受け入れ状態に応じて設定すればよく、通常は大気圧に設定しておけばよい。また、炭化カルシウム槽11内の炭化カルシウムに水分を作用させる方法や手段は、炭化カルシウム槽11の大きさや形状、槽内の炭化カルシウムの量や形状、粗アセチレンガスの発生量などに応じて選択することができる。例えば、水分供給装置12から液体状態の水を炭化カルシウム槽11に供給して炭化カルシウムに滴下させることもできる。水分供給装置12で発生させた気体状態の水蒸気を炭化カルシウム槽11に供給することもできる。気液混合状態の水を炭化カルシウム槽11内に供給することもできる。いずれの場合も、炭化カルシウム槽11への水分供給量は、粗アセチレンガス中に大量の水分が同伴されないようにすることが好ましく、前述のように、水分除去工程で粗アセチレンガス中の水分量を容易に100ppm以下に低減できるように設定することが望ましい。 The pressure in the system may be set according to the use state and acceptance state of the high-purity acetylene in the consuming device, and it is usually set to atmospheric pressure. Further, the method and means for causing moisture to act on the calcium carbide in the calcium carbide tank 11 are selected according to the size and shape of the calcium carbide tank 11, the amount and shape of calcium carbide in the tank, the amount of generation of crude acetylene gas, etc. can do. For example, liquid water can be supplied from the water supply device 12 to the calcium carbide tank 11 and dropped onto the calcium carbide. The gaseous water vapor generated by the water supply device 12 can also be supplied to the calcium carbide tank 11. It is also possible to supply water in a gas-liquid mixed state into the calcium carbide tank 11. In any case, the amount of water supplied to the calcium carbide tank 11 is preferably such that a large amount of water is not entrained in the crude acetylene gas, and as described above, the amount of moisture in the crude acetylene gas in the moisture removal step. It is desirable to set so that it can be easily reduced to 100 ppm or less.
 本発明のアセチレンの供給方法で供給するアセチレンは、高純度化し易い乾式法により発生させ、発生したガス中に含まれる不純物を水分、水素化物系不純物の順で別々に精製除去するため、純度が高い。
 本発明のアセチレンの供給方法によれば、上記高純度のアセチレンを低圧ガスのまま使用先へ供給するので、高純度なアセチレンガスを容易に取り扱うことができる。したがって、特に、高純度アセチレンを消費する使用先の近傍で本発明を実施することにより、使用先への高純度アセチレンの供給を効率よく行うことができる。
The acetylene supplied by the acetylene supply method of the present invention is generated by a dry method that facilitates high purity, and impurities contained in the generated gas are separately purified and removed in the order of moisture and hydride impurities. high.
According to the method for supplying acetylene of the present invention, the high-purity acetylene gas can be easily handled because the high-purity acetylene is supplied to the user with the low-pressure gas. Therefore, the high purity acetylene can be efficiently supplied to the user by implementing the present invention near the user who consumes the high purity acetylene.
11…炭化カルシウム槽、12…水分供給装置、13…水分除去精製器、
14…水素化物除去精製器、15…アセチレン供給ライン、16…第一圧力計、
17…第二圧力計、18…余剰圧力放出ライン
DESCRIPTION OF SYMBOLS 11 ... Calcium carbide tank, 12 ... Water supply apparatus, 13 ... Water removal refiner,
14 ... Hydride removal purifier, 15 ... Acetylene supply line, 16 ... First pressure gauge,
17 ... second pressure gauge, 18 ... excess pressure release line

Claims (4)

  1.  炭化カルシウムに水分を作用させてアセチレンを主成分とするガスを発生させるアセチレンガス発生工程と、該アセチレンガス発生工程で発生したガスを第一の乾式吸着材に接触させることによりガス中に含まれる水分を第一の乾式吸着材に吸着させて除去する水分除去工程と、該水分除去工程を終えたガスを第二の乾式吸着材に接触させることによりガス中に含まれる水素化物系不純物を除去する水素化物除去工程とを具備するアセチレンの製造方法によって高純度アセチレンを得た後、得られた高純度アセチレンを大気圧以下の圧力で使用先に供給することを特徴とするアセチレンの供給方法。 An acetylene gas generating step for generating a gas mainly composed of acetylene by causing moisture to act on calcium carbide, and the gas generated in the acetylene gas generating step is contained in the gas by contacting the first dry adsorbent. A moisture removal process for removing moisture by adsorbing to the first dry adsorbent, and removing the hydride impurities contained in the gas by bringing the gas after the moisture removal process into contact with the second dry adsorbent A method for supplying acetylene, comprising: obtaining high-purity acetylene by a method for producing acetylene comprising a hydride removing step, and then supplying the obtained high-purity acetylene to a user at a pressure equal to or lower than atmospheric pressure.
  2.  前記アセチレン使用先へのアセチレン供給量に応じて前記炭化カルシウムに作用させる水分の供給量を制御するとともに、前記アセチレンガス発生工程、水分除去工程及び水素化物除去工程の系内を大気圧以下に制御することを特徴とする請求項1記載のアセチレンの供給方法。 Controls the amount of moisture supplied to the calcium carbide in accordance with the amount of acetylene supplied to the acetylene user, and controls the system in the acetylene gas generation step, moisture removal step and hydride removal step to below atmospheric pressure. The method for supplying acetylene according to claim 1, wherein:
  3.  前記第一の乾式吸着材が、活性炭及びモレキュラシーブス3Aのいずれか一方又は活性炭とモレキュラシーブス3Aとの混合物であることを特徴とする請求項1又は2記載のアセチレンの供給方法。 The method for supplying acetylene according to claim 1 or 2, wherein the first dry adsorbent is any one of activated carbon and molecular sieves 3A or a mixture of activated carbon and molecular sieves 3A.
  4.  前記第二の乾式吸着材が、活性アルミナ及びモレキュラシーブス4A、5A、13Xのいずれか一種又は二種以上の混合物であることを特徴とする請求項1乃至3のいずれか1項記載のアセチレンの供給方法。 The acetylene according to any one of claims 1 to 3, wherein the second dry adsorbent is any one of activated alumina and molecular sieves 4A, 5A, and 13X, or a mixture of two or more thereof. Supply method.
PCT/JP2010/062080 2009-07-21 2010-07-16 Method for supplying acetylene WO2011010613A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-170101 2009-07-21
JP2009170101A JP5583932B2 (en) 2009-07-21 2009-07-21 Method for producing acetylene

Publications (1)

Publication Number Publication Date
WO2011010613A1 true WO2011010613A1 (en) 2011-01-27

Family

ID=43499086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062080 WO2011010613A1 (en) 2009-07-21 2010-07-16 Method for supplying acetylene

Country Status (3)

Country Link
JP (1) JP5583932B2 (en)
TW (1) TWI495500B (en)
WO (1) WO2011010613A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130369A (en) * 2011-12-05 2013-06-05 天辰化工有限公司 Method of reusing sodium hypochlorite waste water generated by acetylene lustration
CN105969424A (en) * 2016-07-07 2016-09-28 中盐吉兰泰盐化集团有限公司 System for producing acetylene gas by using recycled calcium carbide dust

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360179A (en) * 2011-07-21 2012-02-22 新疆天业(集团)有限公司 Method for controlling in-out materials in process of producing acetylene by dry method
CN113731167B (en) * 2021-09-02 2023-03-21 昆明理工大学 Preparation method of modified carbide slag, product and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245543A (en) * 1985-08-22 1987-02-27 Toyo Soda Mfg Co Ltd Production of lower unsaturated hydrocarbon
JPH02256626A (en) * 1988-08-25 1990-10-17 Taiyo Sanso Co Ltd Production of high-purity acetylene gas
JP2004148257A (en) * 2002-10-31 2004-05-27 Nichigo Acetylene Kk Portable supply apparatus for ultra-high purity acetylene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768828A (en) * 1980-10-17 1982-04-27 Fuji Photo Film Co Ltd Diffusion transfer photography film unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245543A (en) * 1985-08-22 1987-02-27 Toyo Soda Mfg Co Ltd Production of lower unsaturated hydrocarbon
JPH02256626A (en) * 1988-08-25 1990-10-17 Taiyo Sanso Co Ltd Production of high-purity acetylene gas
JP2004148257A (en) * 2002-10-31 2004-05-27 Nichigo Acetylene Kk Portable supply apparatus for ultra-high purity acetylene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130369A (en) * 2011-12-05 2013-06-05 天辰化工有限公司 Method of reusing sodium hypochlorite waste water generated by acetylene lustration
CN103130369B (en) * 2011-12-05 2014-07-02 天辰化工有限公司 Method of reusing sodium hypochlorite waste water generated by acetylene lustration
CN105969424A (en) * 2016-07-07 2016-09-28 中盐吉兰泰盐化集团有限公司 System for producing acetylene gas by using recycled calcium carbide dust

Also Published As

Publication number Publication date
JP2011026205A (en) 2011-02-10
JP5583932B2 (en) 2014-09-03
TW201111028A (en) 2011-04-01
TWI495500B (en) 2015-08-11

Similar Documents

Publication Publication Date Title
US11021809B2 (en) Method of producing a synthetic diamond
WO2011045880A1 (en) Hydrogen gas recovery system and hydrogen gas separation and recovery method
JP5122700B1 (en) Monosilane purification method
WO2011010613A1 (en) Method for supplying acetylene
WO2008060544A2 (en) Method and apparatus for the recovery and re-use of process gases
RU2007143482A (en) GAS CLEANING METHOD
JP5824318B2 (en) Apparatus and method for producing purified hydrogen gas by pressure swing adsorption treatment
JP2008303089A (en) Process of generating low purity nitrogen gas
CN207227001U (en) Utilize MOCVD tail gas co-producing high-purity hydrogen and the device of high-purity ammon
JP6667382B2 (en) Hydrogen gas production method and hydrogen gas production device
CN110015647B (en) Method for extracting nitrogen from hydrogen absorption gas generated in tail gas extraction and reutilization in MOCVD (metal organic chemical vapor deposition) process
JP7072168B2 (en) Hydrogen recycling system and hydrogen recycling method
JPWO2015011826A1 (en) Hydrogen recovery method
JP6101958B2 (en) Ammonia and hydrogen recovery and reuse methods
JP2004148257A (en) Portable supply apparatus for ultra-high purity acetylene
JP4187569B2 (en) Hydrogen production equipment
JP2009249571A (en) Method for eliminating hydrogen sulfide contained in biogas
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP6640660B2 (en) Hydrogen gas production method and hydrogen gas production device
JP2013194004A (en) Method for purifying dissolved acetylene
JP2005145816A (en) Purification method and apparatus for volatile metal hydride, and purified volatile metal hydride product
JP2007277028A (en) Method of producing high purity gaseous nitrogen
JP6667381B2 (en) Hydrogen gas production method and hydrogen gas production device
JP2587334B2 (en) Method of separating CO gas not containing CH4
JP2013194005A (en) Method and apparatus for purifying dissolved acetylene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10802233

Country of ref document: EP

Kind code of ref document: A1