JP2011025577A - Molding apparatus and temperature control method for molding apparatus - Google Patents

Molding apparatus and temperature control method for molding apparatus Download PDF

Info

Publication number
JP2011025577A
JP2011025577A JP2009174955A JP2009174955A JP2011025577A JP 2011025577 A JP2011025577 A JP 2011025577A JP 2009174955 A JP2009174955 A JP 2009174955A JP 2009174955 A JP2009174955 A JP 2009174955A JP 2011025577 A JP2011025577 A JP 2011025577A
Authority
JP
Japan
Prior art keywords
temperature
fluid
hot plate
molding apparatus
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009174955A
Other languages
Japanese (ja)
Other versions
JP5546176B2 (en
Inventor
Masao Matsuura
雅郎 松浦
Daisuke Mori
大輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiki Seisakusho KK
Original Assignee
Meiki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiki Seisakusho KK filed Critical Meiki Seisakusho KK
Priority to JP2009174955A priority Critical patent/JP5546176B2/en
Publication of JP2011025577A publication Critical patent/JP2011025577A/en
Application granted granted Critical
Publication of JP5546176B2 publication Critical patent/JP5546176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding apparatus which improves energy saving because the feed amount of heat medium or others fed to a member such as a hot plate can be reduced in an optimal timing and a temperature control method for the molding apparatus. <P>SOLUTION: The molding apparatus 11 in which temperature of the members 14 for heating or cooling a molded materials P is controlled by fluid flowing through the inside paths 15 thereof includes a first temperature sensor 25 arranged on a feeding side for feeding the fluid to the members 14, a second temperature sensor 29 arranged on a discharging side for discharging the fluid from the members 14, and a control unit 31 for issuing a command for reducing the feeding amount of the fluid when the detected value becomes a predetermined value or less by comparing the detected values of the first temperature sensor 25 and the second temperature sensor 29. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱板等の成形材を加熱または冷却する部材がその内部通路を流通する熱媒等の流体によって温度制御される成形装置および成形装置の温度制御方法に関するものである。   The present invention relates to a molding apparatus in which a member for heating or cooling a molding material such as a hot plate is temperature-controlled by a fluid such as a heat medium that circulates in an internal passage, and a temperature control method for the molding apparatus.

熱板等の成形材を加熱または冷却する部材がその熱板等の内部通路を流通する熱媒等の流体によって温度制御される成形装置としてはホットプレス装置が挙げられ、特許文献1に記載されたものが知られている。特許文献1では、熱媒を熱板内に屈曲した熱媒通路に循環させ、ホットプレスの熱板温度をプログラム制御する方法において、保持工程等においては、ポンプの吐出量を昇温工程のポンプ吐出量よりも少なくなるようにポンプの吐出量を温度制御プログラムに応じて変化させるようにしている。しかし特許文献1では、昇温工程から保持工程の切換えに際して温度制御プログラムに応じてポンプ吐出量を変化させることは記載されているもののどのようなタイミングまたは方法によりポンプの吐出量を変化させるか詳細な記載がされていなかった。   As a molding apparatus in which the temperature of a member that heats or cools a molding material such as a hot plate is controlled by a fluid such as a heat medium that circulates in the internal passage of the hot plate or the like, a hot press apparatus can be cited. Is known. In Patent Document 1, in a method in which a heating medium is circulated through a heating medium passage bent in a heating plate and the hot plate temperature of a hot press is controlled by a program, in a holding process or the like, the discharge amount of the pump is set to a pump in a heating process. The pump discharge amount is changed according to the temperature control program so as to be smaller than the discharge amount. However, in Patent Document 1, although it is described that the pump discharge amount is changed according to the temperature control program when switching from the temperature raising step to the holding step, the timing or method of changing the pump discharge amount is described in detail. There was no description.

またホットプレス装置の熱板の温度制御に関しては、特許文献2に記載されたものも知られている。特許文献2では、入口側マニホールド内の熱媒と出口側マニホールド内の熱媒と熱板とのうちの任意の二の温度を検出し、それらを予め設定した重みに基づいて加重平均して求めた温度値が熱板の温度設定パターンに一致するようにフィードバック制御している。しかし特許文献2では、熱媒の温度制御に関する記載はあるものの、熱媒の流量制御に関する記載はなく、省エネルギー化に直結されるものではなかった。   As for temperature control of a hot plate of a hot press apparatus, one described in Patent Document 2 is also known. In Patent Document 2, any two temperatures of the heat medium in the inlet side manifold, the heat medium in the outlet side manifold and the heat plate are detected, and they are obtained by weighted averaging based on preset weights. Feedback control is performed so that the measured temperature value matches the temperature setting pattern of the hot plate. However, in Patent Document 2, although there is a description regarding the temperature control of the heating medium, there is no description regarding the flow control of the heating medium, and it is not directly linked to energy saving.

特開2001−353741号公報(請求項1、0009、図2)JP 2001-353741 A (Claim 1, 0009, FIG. 2) 特開2003−154500号公報(請求項2、図1、図2)JP 2003-154500 A (Claim 2, FIG. 1, FIG. 2)

本発明では上記の問題を鑑みて、最適のタイミングで熱板等の部材に送られる熱媒等の液体の供給量を減少させることができ、省エネルギー化を進めることができる成形装置および成形装置の温度制御方法を提供することを目的とする。   In the present invention, in view of the above problems, a supply amount of a liquid such as a heat medium sent to a member such as a hot plate at an optimal timing can be reduced, and energy saving can be promoted. An object is to provide a temperature control method.

本発明の請求項1に記載の成形装置は、成形材を加熱または冷却する部材がその内部通路を流通する流体によって温度制御される成形装置において、前記部材へ向けて流体を送る供給側に設けられる第1の温度センサと、前記部材から流体を排出する排出側に設けられる第2の温度センサと、前記第1の温度センサと第2の温度センサの検出値を比較し検出値が一定以内となったことを用いて流体の供給量を減少させる指令を発する制御装置が備えられたことを特徴とする。従って最適のタイミングで流体の流量を低減でき、省エネルギー化を図ることができる。   The molding apparatus according to claim 1 of the present invention is a molding apparatus in which a temperature of a member for heating or cooling a molding material is controlled by a fluid flowing through the internal passage, and is provided on a supply side for feeding fluid toward the member. The detected values of the first temperature sensor and the second temperature sensor provided on the discharge side for discharging the fluid from the member, and the detected values of the first temperature sensor and the second temperature sensor are compared with each other. And a control device that issues a command to reduce the supply amount of the fluid by using the above. Accordingly, the flow rate of the fluid can be reduced at the optimum timing, and energy saving can be achieved.

本発明の請求項2に記載の成形装置は、請求項1において、前記部材はホットプレス装置の熱板であり、前記熱板の内部通路を流通する流体は熱媒油であって、前記熱媒油の供給量を変更可能なポンプが備えられたことを特徴とする。従って前記ポンプの消費電力を削減することにより省エネルギー化を図ることができる。   A molding apparatus according to a second aspect of the present invention is the molding apparatus according to the first aspect, wherein the member is a hot plate of a hot press apparatus, a fluid flowing through an internal passage of the hot plate is a heat transfer oil, and the heat A pump capable of changing the supply amount of the medium oil is provided. Therefore, energy saving can be achieved by reducing the power consumption of the pump.

本発明の請求項3に記載の成形装置の温度制御方法は、成形材を加熱または冷却する部材がその内部通路を流通する流体によって温度制御される成形装置の温度制御方法において、前記部材へ送られる流体の設定温度または前記部材の供給側において直接的または間接的に測定された流体の検出温度の少なくとも一方から直接的または間接的に導き出される温度Aと、前記部材の排出側の流体の温度を直接的または間接的に測定された検出温度から直接的または間接的に導き出される温度Bとを比較し、前記温度Aと前記温度Bの差が一定以内となったことを用いて前記流体の供給量を減少させることを特徴とする。従って請求項1と同様に最適のタイミングで流体の流量を低減でき、省エネルギー化を図ることができる。   The temperature control method for a molding apparatus according to claim 3 of the present invention is the temperature control method for a molding apparatus in which a member for heating or cooling a molding material is temperature controlled by a fluid flowing through the internal passage. The temperature A derived directly or indirectly from at least one of the set temperature of the fluid to be detected or the detected temperature of the fluid directly or indirectly measured on the supply side of the member, and the temperature of the fluid on the discharge side of the member Is compared with the temperature B directly or indirectly derived from the detected temperature measured directly or indirectly, and the difference between the temperature A and the temperature B is within a certain range. The supply amount is reduced. Therefore, similarly to the first aspect, the flow rate of the fluid can be reduced at the optimum timing, and energy saving can be achieved.

本発明の請求項4に記載の成形装置の温度制御方法は、請求項3において、前記部材はホットプレス装置の熱板であり、前記熱板の内部通路を流通する流体は熱媒油であって、ポンプからの吐出量を減少させることにより前記熱媒油の供給量を減少させることを特徴とする。従って前記ポンプの消費電力を削減することにより省エネルギー化を図ることができる。   According to a fourth aspect of the present invention, there is provided the temperature control method for a molding apparatus according to the third aspect, wherein the member is a hot plate of a hot press device, and a fluid flowing through an internal passage of the hot plate is a heat transfer oil. The supply amount of the heat transfer oil is reduced by reducing the discharge amount from the pump. Therefore, energy saving can be achieved by reducing the power consumption of the pump.

本発明の成形装置は、成形材を加熱または冷却する部材がその内部通路を流通する流体によって温度制御される成形装置において、前記部材へ向けて流体を送る供給側に設けられる第1の温度センサと、前記部材から流体を排出する排出側に設けられる第2の温度センサと、前記第1の温度センサと第2の温度センサの検出値を比較し検出値が一定以内となったことを用いて流体の供給量を減少させる指令を発する制御装置が備えられているので、最適のタイミングで流体の流量を低減でき、省エネルギー化を図ることができる。また本発明の成形装置の温度制御方法も同様の効果を有する。   The molding apparatus of the present invention is a molding apparatus in which a member for heating or cooling a molding material is temperature-controlled by a fluid flowing through an internal passage thereof, and is a first temperature sensor provided on a supply side for sending fluid toward the member And the second temperature sensor provided on the discharge side for discharging the fluid from the member, and the detection values of the first temperature sensor and the second temperature sensor are compared and the detection value is within a certain range. Since the control device that issues a command to reduce the supply amount of the fluid is provided, the flow rate of the fluid can be reduced at the optimum timing, and energy saving can be achieved. The temperature control method for the molding apparatus of the present invention has the same effect.

図1は、本実施形態のホットプレス装置の熱板の温度制御装置のブロック図である。FIG. 1 is a block diagram of a temperature control device for a hot plate of the hot press device of this embodiment. 図2は、本実施形態のホットプレス装置の供給側温度、排出側温度、および熱板温度を示す図である。FIG. 2 is a diagram showing the supply side temperature, the discharge side temperature, and the hot plate temperature of the hot press apparatus of this embodiment. 図3は、本実施形態のホットプレス装置の熱板の温度制御を示すグラフである。FIG. 3 is a graph showing temperature control of the hot plate of the hot press apparatus of this embodiment.

本発明の実施形態のホットプレス装置11について説明する。図1に示されるように、ホットプレス装置11は、上側の固定盤12と下側の可動盤13の間に複数の熱板14が配設されている。成形材Pを加熱または冷却する部材である熱板14は両面が平滑に形成された矩形の所定板厚の金属板であり、内部に流体である熱媒(熱媒油)が流通される屈曲した内部通路15が形成されている。また熱板14には熱板14の温度を測定する温度センサである熱電対16が取付けられている。ホットプレス装置11の可動盤13の下側には型締シリンダ(図示せず)が配設され、型締シリンダの上昇により各熱板14上に載置された成形材Pが加圧されるようになっている。なお図1では上部の熱板14のみに熱電対16が描かれているが、通常、熱電対は各熱板14に取付けられている。   A hot press apparatus 11 according to an embodiment of the present invention will be described. As shown in FIG. 1, the hot press device 11 includes a plurality of hot plates 14 disposed between an upper fixed platen 12 and a lower movable platen 13. The hot plate 14 which is a member for heating or cooling the molding material P is a rectangular metal plate having a predetermined plate thickness with both surfaces formed smoothly, and a bend in which a heat medium (heat medium oil) as a fluid is circulated. An internal passage 15 is formed. A thermocouple 16 that is a temperature sensor for measuring the temperature of the hot plate 14 is attached to the hot plate 14. A mold clamping cylinder (not shown) is disposed below the movable platen 13 of the hot press device 11, and the molding material P placed on each hot plate 14 is pressurized by raising the mold clamping cylinder. It is like that. In FIG. 1, the thermocouple 16 is drawn only on the upper hot plate 14, but the thermocouple is usually attached to each hot plate 14.

次にホットプレス装置11の熱板14へ熱媒油を供給する熱媒供給機構17の概略を説明する。熱媒供給機構17の主管路には、熱媒油供給用のポンプ18が設けられている。そしてポンプ18のモータ19は、制御装置31の一部であるインバータ装置によって回転数が可変に制御可能となっている。ポンプ18の上流側には温度制御機構であるヒータ装置20が設けられている。ヒータ装置20は、複数のカートリッジヒータが埋め込まれた部材の周囲を熱媒油が通過して前記熱媒油が加熱されるようになっている。そして前記ヒータ装置20で加熱された熱媒油は、管路21を介してホットプレス装置11の熱板14の供給側の側方に配設された供給側マニホールドパイプ22へ送られる。供給側マニホールドパイプ22は、各熱板14へ向けて熱媒油を分配して送るための中空状のマニホールドパイプであり、供給側マニホールドパイプ22(IN側マニホールド)と各熱板14の内部通路15の供給側開口23との間は、耐熱ホース24でそれぞれ連結されている。また供給側マニホールドパイプ22には、熱板14に向けて熱媒油を送る供給側の第1の温度センサである熱電対25が配設されている。なお前記第1の温度センサは、供給側の前記供給側マニホールドパイプ22の他、管路21、耐熱ホース24、および熱板14の供給側開口23近傍に設けられたものでもよい。   Next, an outline of the heat medium supply mechanism 17 that supplies heat medium oil to the hot plate 14 of the hot press apparatus 11 will be described. A heat medium oil supply pump 18 is provided in the main pipeline of the heat medium supply mechanism 17. The motor 19 of the pump 18 can be variably controlled by an inverter device that is a part of the control device 31. A heater device 20 as a temperature control mechanism is provided on the upstream side of the pump 18. In the heater device 20, the heat transfer oil passes through a member in which a plurality of cartridge heaters are embedded, and the heat transfer oil is heated. The heat transfer oil heated by the heater device 20 is sent to a supply side manifold pipe 22 disposed on the side of the supply side of the hot plate 14 of the hot press device 11 through a pipe 21. The supply-side manifold pipe 22 is a hollow manifold pipe for distributing and sending the heat transfer oil toward the respective hot plates 14, and the supply-side manifold pipe 22 (IN-side manifold) and the internal passages of the respective hot plates 14. The 15 supply-side openings 23 are connected to each other by a heat-resistant hose 24. The supply-side manifold pipe 22 is provided with a thermocouple 25 that is a supply-side first temperature sensor that sends heat transfer oil toward the hot platen 14. The first temperature sensor may be provided in the vicinity of the supply side opening 23 of the conduit 21, the heat resistant hose 24, and the hot plate 14 in addition to the supply side manifold pipe 22 on the supply side.

またホットプレス装置11の熱板14の排出側の側方には、排出側マニホールドパイプ26(OUT側マニホールド)が設けられている。排出側マニホールドパイプ26は、各熱板14からの熱媒を集合させるための中空状のマニホールドパイプであり、排出側マニホールドパイプ26と各熱板14の内部通路15の排出側開口27との間は、耐熱ホース28でそれぞれ連結されている。また排出側マニホールドパイプ26には、熱板14から熱媒油を排出する側の第2の温度センサである熱電対29が配設されている。なお前記第2の温度センサは、排出側の前記排出側マニホールドパイプ26の他、後述する、熱板の排出側開口27近傍、耐熱ホース28、および後述する管路30等に設けられたものでもよい。なお前記の供給側の温度センサおよび排出側の温度センサは、マニホールドパイプ等の金属部の温度を検出することにより熱媒油の温度を間接的に検出する熱電対の他、マニホールドパイプ等の通路内にあって熱媒油に当接しての温度を直接的に検出する温度センサであってもよい。   A discharge side manifold pipe 26 (OUT side manifold) is provided on the side of the hot press device 11 on the discharge side of the hot plate 14. The discharge side manifold pipe 26 is a hollow manifold pipe for collecting the heat medium from each hot plate 14, and is between the discharge side manifold pipe 26 and the discharge side opening 27 of the internal passage 15 of each hot plate 14. Are connected by heat-resistant hoses 28, respectively. The discharge side manifold pipe 26 is provided with a thermocouple 29 which is a second temperature sensor on the side where the heat transfer oil is discharged from the hot plate 14. The second temperature sensor may be provided in the vicinity of the discharge side opening 27 of the hot plate, the heat resistant hose 28, the pipe line 30 described later, and the like, in addition to the discharge side manifold pipe 26 on the discharge side. Good. The supply-side temperature sensor and the discharge-side temperature sensor include a thermocouple that indirectly detects the temperature of the heat transfer oil by detecting the temperature of a metal part such as a manifold pipe, and a passage such as a manifold pipe. It may be a temperature sensor that directly detects the temperature in contact with the heat transfer oil.

排出側マニホールドパイプ26とヒータ装置20の間は、管路30で接続され、熱媒油はポンプ18から管路21、供給側マニホールドパイプ22、耐熱ホース24、熱板14、耐熱ホース28、排出側マニホールドパイプ26、管路30、およびヒータ装置20を通過して再びポンプ18へ循環されるように主管路が設けられている。またホットプレス装置11の熱媒供給機構17には制御装置31が設けられている。制御装置31は、ホットプレス装置11の作動に関するシーケンス制御の他、熱板14の温度制御全般を行うコントローラである。また制御装置31には、インバータ装置が含まれ、周波数を変更することによりポンプ18のモータ19の回転数が制御される。なおインバータ装置は、比較的安価なモータ19の回転数制御装置であって、熱媒供給機構17のポンプ18の傍に配置されることが一般的である。また制御装置31へは、熱板14の熱電対16、供給側の熱電対25、および排出側の熱電対29に接続され、前記熱電対16,25,29からの検出温度が入力される。また温度制御機構のヒータ装置20にも接続され、ヒータ装置20のカートリッジヒータのオンオフ制御を行う。   The discharge side manifold pipe 26 and the heater device 20 are connected by a pipe line 30, and the heat transfer oil is discharged from the pump 18 to the pipe line 21, the supply side manifold pipe 22, the heat resistant hose 24, the hot plate 14, the heat resistant hose 28, and the discharge. A main pipeline is provided so as to pass through the side manifold pipe 26, the pipeline 30, and the heater device 20 and be circulated again to the pump 18. The heating medium supply mechanism 17 of the hot press device 11 is provided with a control device 31. The control device 31 is a controller that performs overall temperature control of the hot plate 14 in addition to sequence control related to the operation of the hot press device 11. The control device 31 includes an inverter device, and the number of rotations of the motor 19 of the pump 18 is controlled by changing the frequency. The inverter device is a relatively inexpensive rotational speed control device for the motor 19, and is generally arranged near the pump 18 of the heat medium supply mechanism 17. The controller 31 is connected to the thermocouple 16 of the hot plate 14, the supply-side thermocouple 25, and the discharge-side thermocouple 29, and the detected temperatures from the thermocouples 16, 25, and 29 are input. It is also connected to the heater device 20 of the temperature control mechanism, and performs on / off control of the cartridge heater of the heater device 20.

なお図1に記載された熱媒供給機構17は、発明に関する最小限の機構を説明したものであって、実際には他の装置が含まれる。一例としては温度制御機構としてヒータ装置20の他、クーラ装置が設けられたものや、与圧やガス排出用等の機構のためタンクが設けられたもの、ポンプ18が複数設けられたもの等であってもよく、それらの間に各種の開閉バルブや流量や圧力を制御するバルブが配設されていることが一般的である。またポンプ18については吐出量を可変にできるものであればよく、インバータによる制御の他、サーボモータを使用したものでもよい。またポンプ回転用のモータの回転数が一定であっても斜板の角度を変更することにより吐出量を制御するものでもよい。更には吐出量の小さいポンプを複数設け、そのうちの少なくとも一つを停止または作動させることにより、吐出量を制御してもよい。   Note that the heat medium supply mechanism 17 shown in FIG. 1 is a description of the minimum mechanism related to the invention, and actually includes other devices. For example, in addition to the heater device 20 as a temperature control mechanism, a cooler device is provided, a tank is provided for a mechanism such as pressurization or gas discharge, or a plurality of pumps 18 are provided. In general, various on-off valves and valves for controlling the flow rate and pressure are disposed between them. The pump 18 only needs to be capable of varying the discharge amount, and may be one that uses a servo motor in addition to control by an inverter. Further, even if the rotation speed of the pump rotating motor is constant, the discharge amount may be controlled by changing the angle of the swash plate. Furthermore, the discharge amount may be controlled by providing a plurality of pumps having a small discharge amount and stopping or operating at least one of them.

次にホットプレス装置11の温度制御方法について説明する。まず図示しない操作盤から昇温工程の時間および昇温完了時の設定温度が入力されると、温度設定パターン(毎分当たりの昇温率)が演算・決定される。また保持工程の時間および設定温度が入力され、降温工程についても昇温工程と同様に設定入力される。なお実際には昇温工程、保持工程、降温工程ともに一段に限定されずに、降温工程の後に冷却工程(保持工程)が存在する場合もある。   Next, a temperature control method of the hot press apparatus 11 will be described. First, when a temperature raising process time and a set temperature at the completion of temperature raising are input from an operation panel (not shown), a temperature setting pattern (a temperature rising rate per minute) is calculated and determined. The holding process time and the set temperature are input, and the temperature lowering process is also set and input in the same manner as the temperature increasing process. Actually, the temperature raising step, the holding step, and the temperature lowering step are not limited to one stage, and there may be a cooling step (holding step) after the temperature lowering step.

ホットプレス装置11の各熱板14上に実際に成形材Pである積層成形物を載置し、図示しない型締シリンダを作動させ、熱板14間で成形材Pを加圧する。そして熱媒供給機構17のポンプ18からヒータ装置20によって加熱された熱媒油を各熱板14内の内部通路15に供給する。昇温工程では、ポンプから吐出され熱板14に供給される熱媒油の供給量は、ポンプ吐出能力の100%(またはそれに近い制御値)で行われる。またこの際に制御装置31では、前記の予め設定した温度設定パターンの指令値と、熱電対16,25,29から送られた検出温度をそれぞれ加重平均した値によるフィードバック値とを比較しつつ、ヒータ装置20のPID制御を行う。(または熱板温度のみを検出してクローズドループ制御を行うようにしてもよい。)   On each hot plate 14 of the hot press apparatus 11, a laminated molded product that is actually the molding material P is placed, a clamping cylinder (not shown) is operated, and the molding material P is pressurized between the hot plates 14. Then, the heat medium oil heated by the heater device 20 is supplied from the pump 18 of the heat medium supply mechanism 17 to the internal passage 15 in each hot plate 14. In the temperature raising step, the supply amount of the heat transfer oil discharged from the pump and supplied to the hot plate 14 is performed at 100% of the pump discharge capacity (or a control value close thereto). At this time, the control device 31 compares the command value of the preset temperature setting pattern with a feedback value obtained by weighted average of the detected temperatures sent from the thermocouples 16, 25, and 29. PID control of the heater device 20 is performed. (Alternatively, closed-loop control may be performed by detecting only the hot plate temperature.)

図2および図3に示されるように、昇温工程の当初は第1の温度センサである熱電対25の温度(供給される熱媒油の温度にほぼ一致)、熱板の熱電対16の温度、および第2の温度センサである熱電対29の温度は、それぞれ温度差が大きいが、昇温工程が進捗して後半になり、昇温完了時の設定温度に近づくにつれて、前記の温度差は小さくなってくる。そして第1の温度センサである熱電対25の検出温度と、第2の温度センサである熱電対29の検出温度の差が一定以内(本実施形態では図3において縦線aで示されるように1℃以内)になったことを用いて、制御装置31は、インバータ制御により周波数を制御してモータ19の回転数を減少させ、ポンプ18の吐出量を減少させる。(本実施形態ではポンプ18の吐出量の減少させるタイミングは、当初に設定した保持工程の開始時間と必ずしもまったく一致するわけではない。)   As shown in FIG. 2 and FIG. 3, at the beginning of the temperature raising step, the temperature of the thermocouple 25 that is the first temperature sensor (substantially matches the temperature of the supplied heat transfer oil), the thermocouple 16 of the hot plate The temperature and the temperature of the thermocouple 29, which is the second temperature sensor, have a large temperature difference. However, as the temperature rise process proceeds to the latter half and approaches the set temperature at the completion of the temperature rise, the temperature difference Is getting smaller. The difference between the detected temperature of the thermocouple 25, which is the first temperature sensor, and the detected temperature of the thermocouple 29, which is the second temperature sensor, is within a certain range (in this embodiment, as indicated by the vertical line a in FIG. 3). The control device 31 controls the frequency by inverter control to reduce the rotation speed of the motor 19 and reduce the discharge amount of the pump 18. (In this embodiment, the timing at which the discharge amount of the pump 18 is reduced does not necessarily coincide with the initially set holding process start time.)

そして保持工程の間、ポンプ18の吐出量を減少させた状態で、熱板14へ熱媒油を供給する。しかし図3において実線と破線で示されるように、ポンプ18の吐出量を減少させた場合(実線)と、吐出量を一定に保った場合(破線)と比較しても、吐出量を減少させても保持工程における熱板14の温度制御の安定性に遜色は無かった。そしてポンプ18のモータ19の回転数を低減できたことにより電力消費量を削減し省エネルギー化を図ることが可能となった。なお2段目以降の保持工程や冷却工程を行う場合についても、同様に第1の温度センサである熱電対25の検出温度と、第2の温度センサである熱電対29の検出温度の差が一定以内になった段階で、ポンプ18のモータ19の回転数をインバータ制御により低減させて、熱板14への熱媒油の供給量を減少させ、省エネルギー化を図ることが可能である。   During the holding process, the heat transfer oil is supplied to the hot plate 14 with the discharge amount of the pump 18 reduced. However, as shown by a solid line and a broken line in FIG. 3, the discharge amount is reduced even when the discharge amount of the pump 18 is decreased (solid line) and when the discharge amount is kept constant (broken line). However, the stability of the temperature control of the hot plate 14 in the holding process was not inferior. And since the rotation speed of the motor 19 of the pump 18 could be reduced, it became possible to reduce power consumption and to save energy. Similarly, in the case of performing the holding process and the cooling process in the second and subsequent stages, the difference between the detected temperature of the thermocouple 25 that is the first temperature sensor and the detected temperature of the thermocouple 29 that is the second temperature sensor is the same. At a stage within a certain range, it is possible to reduce the number of rotations of the motor 19 of the pump 18 by inverter control, to reduce the amount of heat transfer oil supplied to the hot plate 14, and to save energy.

本実施形態では、保持工程での熱板14への熱媒油の供給量は、ポンプ18の最大吐出能力である240L/minから160L/minへ、66.7%に低下させている。この最大吐出量に対する減少率は、熱板14の形状や大きさ、保持工程における熱板14の設定温度、成形材Pの種類、熱媒油の種類によって相違するが、ポンプ18の最大吐出能力の40〜95%に低下させることが可能である。また保持工程の途中であっても前記第1の温度センサと第2の温度センサの検出値の差が再び増加した場合は、ポンプ18の吐出量を一旦増加させ、前記差が所定内となったら再度、ポンプ18の吐出量を減少させるようにしてもよい。   In the present embodiment, the supply amount of the heat transfer oil to the hot plate 14 in the holding process is reduced to 66.7% from 240 L / min which is the maximum discharge capacity of the pump 18 to 160 L / min. The reduction rate with respect to the maximum discharge amount differs depending on the shape and size of the hot plate 14, the set temperature of the hot plate 14 in the holding process, the type of the molding material P, and the type of the heat transfer oil, but the maximum discharge capacity of the pump 18 It is possible to reduce it to 40 to 95%. Further, if the difference between the detected values of the first temperature sensor and the second temperature sensor increases again even during the holding process, the discharge amount of the pump 18 is temporarily increased, and the difference becomes within a predetermined range. Then, the discharge amount of the pump 18 may be decreased again.

また本実施形態では第1の温度センサである熱電対25の検出温度と、第2の温度センサである熱電対29の検出温度のみを比較し、両者の差が一定以内(タイミングとしては所定の温度差になった時点や所定の温度差から最初に下回った時点を含む)となったことにより、熱媒油の供給量を減少させている。しかし制御に用いる供給側の温度Aは、成形材Pを加熱または冷却する部材である熱板14へ送られる流体の設定温度または前記部材の供給側において直接的または間接的に測定された流体の検出温度の少なくとも一方から直接的または間接的に導き出される温度であればよい。具体的には、供給側の温度Aは、制御装置31により設定される設定温度のみ、或いは前記設定温度と第1の温度センサの検出温度の両方を用いて演算された温度であってもよく、更には熱板温度を加えたものでもよい。また排出側の温度Bは、前記部材の排出側の流体の温度を直接的または間接的に測定された検出温度から直接的または間接的に導き出される温度であればよい。具体的には、排出側の温度Bは、排出側の流体の温度を第2の温度センサにより直接的または間接的に測定した温度に、熱板温度を加えたものなどでもよい。   In the present embodiment, only the detected temperature of the thermocouple 25, which is the first temperature sensor, is compared with the detected temperature of the thermocouple 29, which is the second temperature sensor, and the difference between the two is within a certain range (the timing is a predetermined value). The supply amount of the heat transfer oil is reduced by the fact that the temperature difference and the time when the temperature difference is first lower than the predetermined temperature difference are included. However, the temperature A on the supply side used for control is the set temperature of the fluid sent to the hot plate 14 which is a member for heating or cooling the molding material P or the fluid measured directly or indirectly on the supply side of the member. Any temperature that is derived directly or indirectly from at least one of the detected temperatures may be used. Specifically, the temperature A on the supply side may be only the set temperature set by the control device 31 or a temperature calculated using both the set temperature and the detected temperature of the first temperature sensor. Further, a heat plate temperature may be added. Further, the discharge-side temperature B may be a temperature derived directly or indirectly from the detected temperature obtained by directly or indirectly measuring the temperature of the discharge-side fluid of the member. Specifically, the discharge-side temperature B may be a temperature obtained by directly or indirectly measuring the temperature of the discharge-side fluid with a second temperature sensor and adding a hot plate temperature.

更に熱媒油の供給量を減少させる条件としては、前記温度Aと前記温度Bの差が一定以内になったことに加え、熱板14の温度が予め設定された保持工程の設定温度と一定以内になっていることをアンド条件として加えたものでもよい。その場合、前記温度Aと前記温度Bの差が一定以内になり、後で熱板14の温度が保持工程の設定温度となったことにより熱媒油等の供給量を減少させたとしても、本発明の第1の温度センサと第2の温度センサの検出値を比較し検出値が一定以内となったことを用いて熱媒油等の供給量を減少させることに該当することは言うまでもない。   Further, as a condition for reducing the supply amount of the heat transfer oil, in addition to the difference between the temperature A and the temperature B being within a certain range, the temperature of the hot plate 14 is constant with the preset temperature of the holding process. It may be added as an AND condition. In that case, even if the difference between the temperature A and the temperature B is within a certain range, and the temperature of the hot plate 14 later becomes the set temperature in the holding process, the supply amount of the heat medium oil or the like is reduced. It goes without saying that this corresponds to reducing the supply amount of the heat transfer oil or the like by comparing the detected values of the first temperature sensor and the second temperature sensor of the present invention and using the detected value within a certain range. .

本実施形態に用いられる成形材Pを加熱または冷却する部材である熱板14の内部通路15を流通する流体は、熱媒油であって、耐熱温度が高いシリコン油や鉱物油等が用いられる。しかし本発明において流体は熱媒油に限定されず、別の液体を用いてもよい。また熱板の内部にヒータを組み込んで熱媒油を加熱するものや、加熱は熱板内部のヒータによって行い、冷却は熱板の内部通路に流通する液体により行うものでもよい。その場合は、冷却工程において冷却用の流体の供給量制御が行われる。   The fluid that circulates in the internal passage 15 of the hot plate 14 that is a member that heats or cools the molding material P used in the present embodiment is a heat transfer oil, such as silicon oil or mineral oil having a high heat resistance temperature. . However, in the present invention, the fluid is not limited to the heat transfer oil, and another liquid may be used. Further, a heater may be incorporated in the hot plate to heat the heat transfer oil, or heating may be performed by a heater in the hot plate, and cooling may be performed by a liquid flowing in an internal passage of the hot plate. In that case, the supply amount of the cooling fluid is controlled in the cooling process.

本発明の成形装置は、ホットプレス装置の他、所定の設定温度に昇温または降温後に温度を維持することが必要となる種々の成形用のプレス型、射出成形機(ダイカストを含む)の成形型、および射出成形機や押出機の加熱筒等、熱媒を使用する成形装置に用いることが可能である。射出成形機の場合は、成形型が、成形材を加熱または冷却する部材に該当する。そして熱硬化性樹脂成形時に所定温度まで金型温度を昇温させた後に保持する際や、熱可塑性樹脂成形時に所定温度まで金型温度を冷却させた後に保持する際に使用することができる。その場合、成形型へ向けての供給側(温調器内の温度調節機構から金型の媒体入口の間)に第1の温度センサを設け、排出側(金型の媒体出口から温調器内の温度調節機構の間)に第2の温度センサを設け、その検出温度の差が一定以内になったことにより、保持時の流量を減少させる。また熱硬化樹脂成形用の加熱筒が成形材を加熱または冷却する部材である場合についても、加熱筒が所定温度に到達したことを、供給側と排出側の温度センサの検出温度差から求め、加熱筒の内部通路を流通する水等の液体の流量を減少させるようにしてもよい。更には成形立上時の昇温工程から維持温度に保持する際や、材料交換により維持温度を変更する際にも、成形型や射出成形機の加熱筒や押出機への熱媒または冷媒の供給流量を、第1の温度センサと第2の温度センサの差を検出して減少させることが可能である。   The molding apparatus of the present invention is not only a hot press apparatus, but also various molding press molds and injection molding machines (including die casting) that require maintaining the temperature after raising or lowering to a predetermined set temperature. It can be used for a mold and a molding apparatus using a heat medium such as a heating cylinder of an injection molding machine or an extruder. In the case of an injection molding machine, the molding die corresponds to a member that heats or cools the molding material. It can be used when the mold temperature is raised to a predetermined temperature during the thermosetting resin molding and then held, or when the mold temperature is cooled to the predetermined temperature during the thermoplastic resin molding and held. In that case, a first temperature sensor is provided on the supply side (between the temperature control mechanism in the temperature controller and the medium inlet of the mold) toward the mold, and the discharge side (the temperature controller from the medium outlet of the mold) is provided. A second temperature sensor is provided between the temperature adjusting mechanisms in the inside, and the flow rate at the time of holding is reduced by the difference between the detected temperatures being within a certain range. Also, when the heating cylinder for thermosetting resin molding is a member that heats or cools the molding material, the heating cylinder has reached a predetermined temperature from the detected temperature difference of the temperature sensor on the supply side and the discharge side, You may make it reduce the flow volume of liquids, such as water which distribute | circulates the internal channel | path of a heating cylinder. Furthermore, when maintaining the temperature from the temperature rising process at the start of molding to the maintenance temperature, or when changing the maintenance temperature by exchanging materials, the heating medium or refrigerant to the heating cylinder or extruder of the mold or the injection molding machine is used. The supply flow rate can be reduced by detecting the difference between the first temperature sensor and the second temperature sensor.


11 ホットプレス装置(成形装置)

14 熱板(成形材を加熱または冷却する部材)

15 内部通路

16,25,29 熱電対(温度センサ)

17 熱媒供給機構

18 ポンプ

19 モータ

22 供給側マニホールドパイプ

26 排出側マニホールドパイプ

31 制御装置

11 Hot press equipment (molding equipment)

14 Hot plate (member for heating or cooling the molding material)

15 Internal passage

16, 25, 29 Thermocouple (temperature sensor)

17 Heating medium supply mechanism

18 Pump

19 Motor

22 Supply side manifold pipe

26 Discharge side manifold pipe

31 Control device

Claims (4)

成形材を加熱または冷却する部材がその内部通路を流通する流体によって温度制御される成形装置において、
前記部材へ向けて流体を送る供給側に設けられる第1の温度センサと、
前記部材から流体を排出する排出側に設けられる第2の温度センサと、
前記第1の温度センサと第2の温度センサの検出値を比較し検出値が一定以内となったことを用いて流体の供給量を減少させる指令を発する制御装置が備えられたことを特徴とする成形装置。
In a molding apparatus in which a member for heating or cooling a molding material is temperature-controlled by a fluid flowing through the internal passage,
A first temperature sensor provided on a supply side for sending fluid toward the member;
A second temperature sensor provided on the discharge side for discharging the fluid from the member;
A control device is provided that compares the detection values of the first temperature sensor and the second temperature sensor and issues a command to reduce the supply amount of the fluid by using that the detection value is within a certain range. Forming equipment.
前記部材はホットプレス装置の熱板であり、前記熱板の内部通路を流通する流体は熱媒油であって、前記熱媒油の供給量を変更可能なポンプが備えられたことを特徴とする請求項1に記載の成形装置。 The member is a hot plate of a hot press apparatus, the fluid flowing through the internal passage of the hot plate is a heat transfer oil, and a pump capable of changing the supply amount of the heat transfer oil is provided. The molding apparatus according to claim 1. 成形材を加熱または冷却する部材がその内部通路を流通する流体によって温度制御される成形装置の温度制御方法において、
前記部材へ送られる流体の設定温度または前記部材の供給側において直接的または間接的に測定された流体の検出温度の少なくとも一方から直接的または間接的に導き出される温度Aと、
前記部材の排出側の流体の温度を直接的または間接的に測定された検出温度から直接的または間接的に導き出される温度Bとを比較し、
前記温度Aと前記温度Bの差が一定以内となったことを用いて前記流体の供給量を減少させることを特徴とする成形装置の温度制御方法。
In a temperature control method of a molding apparatus in which a member for heating or cooling a molding material is temperature-controlled by a fluid flowing through the internal passage,
A temperature A derived directly or indirectly from at least one of a set temperature of the fluid sent to the member or a detected temperature of the fluid measured directly or indirectly on the supply side of the member;
Comparing the temperature of the fluid on the discharge side of the member with a temperature B derived directly or indirectly from a detected temperature measured directly or indirectly;
A temperature control method for a molding apparatus, characterized in that a supply amount of the fluid is reduced using a difference between the temperature A and the temperature B being within a certain range.
前記部材はホットプレス装置の熱板であり、前記熱板の内部通路を流通する流体は熱媒油であって、ポンプからの吐出量を減少させることにより前記熱媒油の供給量を減少させることを特徴とする請求項3に記載の成形装置の温度制御方法。
The member is a hot plate of a hot press device, and the fluid flowing through the internal passage of the hot plate is heat transfer oil, and the supply amount of the heat transfer oil is reduced by reducing the discharge amount from the pump. The temperature control method for a molding apparatus according to claim 3.
JP2009174955A 2009-07-28 2009-07-28 Hot press apparatus and temperature control method for hot press apparatus Active JP5546176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174955A JP5546176B2 (en) 2009-07-28 2009-07-28 Hot press apparatus and temperature control method for hot press apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174955A JP5546176B2 (en) 2009-07-28 2009-07-28 Hot press apparatus and temperature control method for hot press apparatus

Publications (2)

Publication Number Publication Date
JP2011025577A true JP2011025577A (en) 2011-02-10
JP5546176B2 JP5546176B2 (en) 2014-07-09

Family

ID=43634898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174955A Active JP5546176B2 (en) 2009-07-28 2009-07-28 Hot press apparatus and temperature control method for hot press apparatus

Country Status (1)

Country Link
JP (1) JP5546176B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180863A1 (en) * 2013-05-06 2014-11-13 Dieffenbacher GmbH Maschinen- und Anlagenbau Method for operating a press and press for producing material panels from biomass
CN114454481A (en) * 2020-10-22 2022-05-10 精工爱普生株式会社 Three-dimensional molding device and injection molding device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103660363B (en) * 2013-12-06 2015-11-18 简厚诚 Energy-conservation hot press

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467321A (en) * 1987-09-08 1989-03-14 Japan Steel Works Ltd Control method and device for mold temperature
JPH04122613A (en) * 1990-09-14 1992-04-23 Kawata Mfg Co Ltd Temperature controlling device of resin molding machine
JPH05154880A (en) * 1991-12-06 1993-06-22 Hitachi Ltd Metal mold and method for molding plastic lens
JPH0985387A (en) * 1995-09-20 1997-03-31 Toyota Motor Corp Method for cooling die
JP2001353741A (en) * 2000-06-16 2001-12-25 Meiki Co Ltd Method for controlling temperature of hot plate of hot press
JP2003154500A (en) * 2001-11-20 2003-05-27 Meiki Co Ltd Method for controlling temperature of hot press

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467321A (en) * 1987-09-08 1989-03-14 Japan Steel Works Ltd Control method and device for mold temperature
JPH04122613A (en) * 1990-09-14 1992-04-23 Kawata Mfg Co Ltd Temperature controlling device of resin molding machine
JPH05154880A (en) * 1991-12-06 1993-06-22 Hitachi Ltd Metal mold and method for molding plastic lens
JPH0985387A (en) * 1995-09-20 1997-03-31 Toyota Motor Corp Method for cooling die
JP2001353741A (en) * 2000-06-16 2001-12-25 Meiki Co Ltd Method for controlling temperature of hot plate of hot press
JP2003154500A (en) * 2001-11-20 2003-05-27 Meiki Co Ltd Method for controlling temperature of hot press

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180863A1 (en) * 2013-05-06 2014-11-13 Dieffenbacher GmbH Maschinen- und Anlagenbau Method for operating a press and press for producing material panels from biomass
CN105189066A (en) * 2013-05-06 2015-12-23 迪芬巴赫机械工程有限公司 Method for operating a press and press for producing material panels from biomass
CN114454481A (en) * 2020-10-22 2022-05-10 精工爱普生株式会社 Three-dimensional molding device and injection molding device
CN114454481B (en) * 2020-10-22 2023-11-28 精工爱普生株式会社 Three-dimensional molding device and injection molding device

Also Published As

Publication number Publication date
JP5546176B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
KR100848865B1 (en) Heating and cooling system and heating and cooling method of mold for thermal press or injection molding
WO2009084762A1 (en) Apparatus for quick heating and cooling a injection mold and method of controlling temperature of the injection mold
JP4549733B2 (en) Mold temperature adjusting device and adjusting method
JP2011025577A (en) Molding apparatus and temperature control method for molding apparatus
KR101713680B1 (en) Injection molding machine mold cooling system in which cooling efficiency of the mold is improved by the double-pipe
KR101329555B1 (en) Extrusion molding apparatus and control method thereof
WO2010053091A1 (en) Heating/cooling switching device and mold heating/cooling system using same
KR101330525B1 (en) Temperature adjusting apparatus for mold and the method thereof
JP2008105271A (en) Mold heating/cooling system using superheated steam
WO2008017140A1 (en) Molding system having thermal-management system, amongst other things
JP2006159643A5 (en)
JP2016030393A (en) Device and method for mold temperature adjustment
JP6037462B2 (en) Heating system
JP5235132B2 (en) Mold temperature controller
JP6619990B2 (en) Pressure control device
RU2656620C2 (en) Wood material board hot-pressing device and operation process for such a device
JP4994916B2 (en) Injection molding machine and injection molding method
CN103991195A (en) Injection mold efficient in temperature adjusting
CN103991197A (en) Efficient temperature adjusting method of injection mold
JP2015166135A (en) rubber injection molding machine
KR101710405B1 (en) Mold cooling system of an injection molding machine equipped with a reduction unit of the flow velocity
KR100698965B1 (en) Thermal Control Device of Mold
JP6488120B2 (en) Injection molding machine
EP2308662B1 (en) Heating unit for heating press plates of vulcanizing press machine and method for heating press plates of vulcanizing press machine
JP2003527252A (en) Method and apparatus for controlling the temperature of a mold of an injection molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5546176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250