JP2011018823A - Wire bonding method, and laser welding apparatus for wire bonding - Google Patents

Wire bonding method, and laser welding apparatus for wire bonding Download PDF

Info

Publication number
JP2011018823A
JP2011018823A JP2009163454A JP2009163454A JP2011018823A JP 2011018823 A JP2011018823 A JP 2011018823A JP 2009163454 A JP2009163454 A JP 2009163454A JP 2009163454 A JP2009163454 A JP 2009163454A JP 2011018823 A JP2011018823 A JP 2011018823A
Authority
JP
Japan
Prior art keywords
wire
rectangular
bonding
terminal
wire bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009163454A
Other languages
Japanese (ja)
Inventor
Hidehiro Shimada
秀寛 島田
Wahin On
和斌 温
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyachi Technos Corp
Original Assignee
Miyachi Technos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyachi Technos Corp filed Critical Miyachi Technos Corp
Priority to JP2009163454A priority Critical patent/JP2011018823A/en
Publication of JP2011018823A publication Critical patent/JP2011018823A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/8521Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/85214Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve wide, shallow, and firm bonding between a Cu based bonding wire and a Cu based terminal.SOLUTION: In order to electrically connect each electrode pad 14 of a semiconductor chip 12 and each terminal corresponding to each electrode pad, that is, each terminal (each electrode pad 14, each lead 18), to each other on an X-Y stage 20, the tip of a rectangular Cu (or Cu alloy) bonding wire 22, having a rectangular cross-section, is bonded to each terminal (each electrode pad 14, each lead 18) by laser welding while using a green pulse laser beam SHG having a rectangular beam cross-section.

Description

本発明は、Cu(銅)系の端子にCu系のボンディングワイヤを接続するためのワイヤボンディング方法およびレーザ溶接装置に関する。   The present invention relates to a wire bonding method and a laser welding apparatus for connecting a Cu-based bonding wire to a Cu (copper) -based terminal.

ワイヤボンディングは、主に半導体チップ上の電極パッドをパッケージの外部引き出し端子(リード)に電気的に接続する工程で用いられており、ボンディングワイヤを1本ずつ扱うことから、半導体実装工程の中でも最も高い信頼性を要求されている。   Wire bonding is mainly used in the process of electrically connecting the electrode pads on the semiconductor chip to the external lead terminals (leads) of the package, and since the bonding wires are handled one by one, it is the most in the semiconductor mounting process. High reliability is required.

従来一般のワイヤボンディングでは、ボンディングワイヤの材料がAu(金)またはAl(アルミニウム)であり、Alワイヤをボンディングワイヤとする場合は熱圧着方式が用いられ、Alワイヤをボンディングワイヤとする場合は超音波方式が用いられてきた。   In the conventional general wire bonding, the material of the bonding wire is Au (gold) or Al (aluminum). When the Al wire is used as the bonding wire, the thermocompression bonding method is used, and when the Al wire is used as the bonding wire, it is super Sonic systems have been used.

しかしながら、近年、半導体チップにおいては、高集積化・高速化に伴って、配線および電極パッドの材料がこれまでのAlから比抵抗が低くてエレクトロマイグレーションの起こり難いCuに徐々に置き換わってきている。また、リードフレームの材料も、Fe-Ni合金系よりは電気伝導度および熱伝導率に優れたCu合金系の使用が増えてきている。このことから、Cu系の電極パッドとCu系のリードとをCuワイヤで結線できるワイヤボンディング法が求められている。   However, in recent years, in semiconductor chips, with higher integration and higher speed, materials for wiring and electrode pads have gradually been replaced with Cu, which has a lower specific resistance and hardly causes electromigration. Also, the use of a Cu alloy system, which is superior in electric conductivity and thermal conductivity as compared with an Fe—Ni alloy system, is increasing for lead frame materials. For this reason, a wire bonding method that can connect a Cu-based electrode pad and a Cu-based lead with a Cu wire is required.

この点、熱圧着ワイヤボンディング法および超音波ワイヤボンディング法は、どちらもCuワイヤに対しては十分な接合強度が得られず、接合表面の酸化が進みやすいという難点がある。   In this respect, both the thermocompression bonding wire bonding method and the ultrasonic wire bonding method have a drawback that sufficient bonding strength cannot be obtained with respect to the Cu wire, and oxidation of the bonding surface is likely to proceed.

本出願人は、上記のようなワイヤボンディングの技術的課題を解決するために、特許文献1において、YAG高調波のパルスレーザ光を用いてCuワイヤをCu系の電極パッドあるいはCu系のリードにレーザ溶接で接合するレーザワイヤボンディング法を提案している。   In order to solve the technical problem of wire bonding as described above, the applicant of the present invention disclosed in Patent Document 1 that a Cu wire is used as a Cu-based electrode pad or a Cu-based lead by using a YAG harmonic pulse laser beam. A laser wire bonding method for joining by laser welding is proposed.

このレーザワイヤボンディング法は、CuワイヤをCu系の被接合物または端子(電極パッド、外部引き出し用端子、導体パターン等)の上に重ね、可変のパルス幅を有するYAG高調波のパルスレーザ光をCuワイヤに上方から照射して、該YAG高調波パルスレーザ光のエネルギーによってCuワイヤおよびCu系端子を溶融させ、両者をスポット溶接で接合する。Cu系の金属はYAG高調波をよく吸収するので、スポット溶接の溶融接合が良好に行われ、酸化し難い強固なCu接合が得られる。   In this laser wire bonding method, a Cu wire is superimposed on a Cu-based object or terminal (electrode pad, external lead terminal, conductor pattern, etc.), and YAG harmonic pulse laser light having a variable pulse width is applied. The Cu wire is irradiated from above, the Cu wire and the Cu-based terminal are melted by the energy of the YAG harmonic pulse laser beam, and both are joined by spot welding. Since Cu-based metals absorb YAG harmonics well, spot welding can be performed well, and a strong Cu joint that is difficult to oxidize can be obtained.

特開2006−66794JP 2006-66794 A

しかしながら、本出願人が特許文献1で開示したレーザワイヤボンディング法は、上記のように酸化し難い強固なCu接合が得られるものの、Cu系ボンディングワイヤの幅寸法および厚みに比して、溶接部の接合面積が小さすぎることと、溶け込みが深すぎることが問題となっている。   However, although the laser wire bonding method disclosed in Patent Document 1 by the present applicant can obtain a strong Cu bond that is difficult to oxidize as described above, compared with the width dimension and thickness of the Cu-based bonding wire, The problem is that the bonding area is too small and the penetration is too deep.

たとえば、幅寸法が0.4mm、厚み寸法が0.05mmのCuワイヤに対して、上記特許文献1のレーザワイヤボンディング法を適用すると、スポット溶接部の口径は0.1mm程度でありながら、溶け込みの深さが0.3mm以上に達してしまう。接合部自体の物理的な接合強度が大きくても、接合部の面積が小さければ、ボンディングワイヤとしての接合強度や電気伝導特性は低下する。また、溶接の溶け込みが深すぎると、端子部材を傷めることもある。   For example, when the laser wire bonding method disclosed in Patent Document 1 is applied to a Cu wire having a width dimension of 0.4 mm and a thickness dimension of 0.05 mm, the spot welded portion has a diameter of about 0.1 mm, but melts. Will reach 0.3 mm or more. Even if the physical joint strength of the joint itself is large, if the area of the joint is small, the joint strength and electrical conduction characteristics as a bonding wire are lowered. Moreover, if the penetration of welding is too deep, the terminal member may be damaged.

この点に関しては、熱圧着ワイヤボンディング法や超音波ワイヤボンディング法の方が、接触界面全体の拡散接合または固相接合により広くて浅い接合部を得ることができる。もっとも、上記のようにCuワイヤの場合は接合強度が不十分になることが難点になっている。   With respect to this point, the thermocompression bonding wire bonding method and the ultrasonic wire bonding method can obtain a wide and shallow joint by diffusion bonding or solid phase bonding of the entire contact interface. However, in the case of a Cu wire as described above, it is difficult to have insufficient bonding strength.

要するに、ボンディングワイヤおよび端子部材の全部がCu系の金属からなるワイヤボンディングにおいては、熱圧着ワイヤボンディング法や超音波ワイヤボンディング法と同等な広くて浅い接合部を実現できるレーザワイヤボンディング法が求められている。   In short, in wire bonding in which all of the bonding wires and terminal members are made of Cu-based metal, there is a need for a laser wire bonding method capable of realizing a wide and shallow joint equivalent to the thermocompression wire bonding method and the ultrasonic wire bonding method. ing.

本発明は、上記のような従来技術の問題点を解決するものであり、Cu系のボンディングワイヤとCu系の端子との間に広くて浅くて強固な接合を得ることができるワイヤボンディング方法を提供する。   The present invention solves the problems of the prior art as described above, and provides a wire bonding method capable of obtaining a wide, shallow and strong bond between a Cu-based bonding wire and a Cu-based terminal. provide.

また、本発明は、本発明のワイヤボンディング方法を実施するのに適したレーザ溶接装置を提供する。   The present invention also provides a laser welding apparatus suitable for carrying out the wire bonding method of the present invention.

本発明のワイヤボンディング方法は、CuまたはCu合金からなる母材とめっき層とを有する端子の上に、CuまたはCu合金からなる平角型のボンディングワイヤを重ね、ビーム断面が矩形状のYAG高調波パルスレーザ光を前記ボンディングワイヤに照射して、前記ボンディングワイヤを前記端子にレーザ溶接で接合する。   In the wire bonding method of the present invention, a rectangular bonding wire made of Cu or Cu alloy is superposed on a terminal having a base material made of Cu or Cu alloy and a plating layer, and the beam cross section is a rectangular YAG harmonic. Pulse laser light is irradiated onto the bonding wire, and the bonding wire is joined to the terminal by laser welding.

また、本発明におけるワイヤボンディング用のレーザ溶接装置は、CuまたはCu合金からなる母材とめっき層とを有する端子の上に、CuまたはCu合金からなる平角型のボンディングワイヤを接合するワイヤボンディングのためのレーザ溶接装置であって、YAG高調波パルスレーザ光を生成するYAG高調波パルスレーザ発生部と、前記YAG高調波パルスレーザ光のビーム断面を円形から矩形状に変えるための断面が矩形のコアを有する矩形コアファイバと、前記矩形コアファイバより得られるビーム断面矩形状のYAG高調波パルスレーザ光を前記端子の上に重ねられた前記ボンディングワイヤの加工ポイントに集光照射するレーザ出射部とを有する。   The laser welding apparatus for wire bonding according to the present invention is a wire bonding device for joining a rectangular bonding wire made of Cu or Cu alloy on a terminal having a base material made of Cu or Cu alloy and a plating layer. A YAG harmonic pulse laser generator for generating a YAG harmonic pulse laser beam, and a cross section for changing the beam cross section of the YAG harmonic pulse laser beam from a circular shape to a rectangular shape. A rectangular core fiber having a core, and a laser emitting unit for condensing and irradiating a YAG harmonic pulse laser beam having a rectangular beam cross section obtained from the rectangular core fiber onto a processing point of the bonding wire superimposed on the terminal; Have

本発明のワイヤボンディング法においては、ビーム断面が矩形状のYAG高調波パルスレーザ光をボンディングワイヤの接合ポイントに照射することで、ビームスポットのパワー密度分布が広くて低い矩形トップハットのプロファイルとなり、これによって接合ポイントに得られる溶接部の溶け込みはレーザパワー密度分布を逆さにしたような広くて浅いプロファイルになる。   In the wire bonding method of the present invention, by irradiating the bonding point of the bonding wire with a YAG harmonic pulse laser beam having a rectangular beam cross section, the profile of the rectangular top hat with a wide and low power density distribution of the beam spot is obtained. As a result, the weld penetration obtained at the joining point has a wide and shallow profile as if the laser power density distribution is inverted.

本発明のレーザ溶接装置は、断面が矩形のコアを有する矩形コアファイバの一端面にビーム断面が円形のYAG高調波パルスレーザ光を入射させて、YAG高調波パルスレーザ光が矩形コアファイバを伝搬する間にそのビーム横モードをシングルモードからマルチモードに変えていき、矩形コアファイバの他端面よりビーム断面矩形状のYAG高調波パルスレーザ光を取り出す。   In the laser welding apparatus of the present invention, YAG harmonic pulse laser light having a circular beam cross section is incident on one end face of a rectangular core fiber having a core having a rectangular cross section, and the YAG harmonic pulse laser light propagates through the rectangular core fiber. In the meantime, the beam transverse mode is changed from the single mode to the multimode, and the YAG harmonic pulse laser beam having a rectangular beam section is taken out from the other end face of the rectangular core fiber.

本発明の好適な一態様においては、YAG高調波パルスレーザ光の照射位置付近で端子の母材には溶け込みが及ばないようにしてボンディングワイヤと端子のめっき層とが溶融した溶接部が得られる。好ましくは、端子のめっき層はAu(金)であり、その下地膜としてNiめっき層があってよい。   In a preferred aspect of the present invention, a welded portion in which the bonding wire and the plating layer of the terminal are melted is obtained so that the base metal of the terminal is not melted in the vicinity of the irradiation position of the YAG harmonic pulse laser beam. . Preferably, the terminal plating layer is Au (gold), and the Ni plating layer may be provided as the base film.

また、本発明においては、溶接部の接合面積を大きくするのが容易であり、ボンディングワイヤに照射されるYAG高調波パルスレーザ光の矩形状ビームスポットの各辺のサイズを、ボンディングワイヤの幅のサイズに比して0.6以上にするのが好ましい。   Further, in the present invention, it is easy to increase the bonding area of the welded portion, and the size of each side of the rectangular beam spot of the YAG harmonic pulse laser beam irradiated to the bonding wire is set to the width of the bonding wire. It is preferable to make it 0.6 or more compared to the size.

また、本発明におけるCu系のボンディングワイヤが、めっきを施されていてもよく、たとえばNiめっき層を好適に有することができる。   Further, the Cu-based bonding wire in the present invention may be plated, and for example, can suitably have a Ni plating layer.

本発明のワイヤボンディング方法によってボンディングワイヤとレーザ溶接で接合されるCu系の端子は、典型的には半導体パッケージの外部引き出し端子あるいは半導体チップの電極パッドであるが、プリント基板上の導体パターン等であってもよい。   A Cu-based terminal joined by laser welding with a bonding wire according to the wire bonding method of the present invention is typically an external lead terminal of a semiconductor package or an electrode pad of a semiconductor chip. There may be.

本発明のワイヤボンディング方法によれば、上記のような構成および作用により、Cu系のボンディングワイヤとCu系の端子との間に広くて浅くて強固な接合を得ることができる。   According to the wire bonding method of the present invention, a wide, shallow, and strong bond can be obtained between the Cu-based bonding wire and the Cu-based terminal by the configuration and operation as described above.

また、本発明のワイヤボンディング用のレーザ溶接装置によれば、上記のような構成および作用により、本発明のワイヤボンディング方法を首尾よく効率的に実施することができる。   Further, according to the laser welding apparatus for wire bonding of the present invention, the wire bonding method of the present invention can be carried out successfully and efficiently by the configuration and operation as described above.

本発明の一実施形態におけるワイヤボンディング方法を示す斜視図である。It is a perspective view which shows the wire bonding method in one Embodiment of this invention. 一実施形態におけるワイヤボンディング用のレーザ溶接装置の構成を示す図である。It is a figure which shows the structure of the laser welding apparatus for wire bonding in one Embodiment. 上記レーザ溶接装置において矩形コアファイバの一端面にグリーンパルスレーザ光が入射する様子を示す斜視図である。It is a perspective view which shows a mode that the green pulse laser beam injects into the end surface of a rectangular core fiber in the said laser welding apparatus. 上記レーザ溶接装置において矩形コアファイバの他端面よりグリーンパルスレーザ光が出射する様子を示す斜視図である。It is a perspective view which shows a mode that a green pulse laser beam radiate | emits from the other end surface of a rectangular core fiber in the said laser welding apparatus. 上記実施形態においてビーム断面が矩形のグリーンパルスレーザ光がボンディングワイヤの接合ポイントントに集光照射される様子を示す斜視図である。It is a perspective view which shows a mode that the green pulse laser beam whose beam cross section is a rectangle in the said embodiment is condensed and irradiated to the junction point of a bonding wire. 実施形態のワイヤボンディングの作用を参考例と対比して示す図である。It is a figure which shows the effect | action of the wire bonding of embodiment compared with a reference example. 実施形態の一実験例で得られた溶接部の断面構造を示す金属顕微鏡の観察画像である。It is an observation image of the metal microscope which shows the cross-sectional structure of the welding part obtained by one experimental example of embodiment.

以下、添付図を参照して本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に、本発明におけるワイヤボンディング方法の一実施形態を示す。   FIG. 1 shows an embodiment of a wire bonding method according to the present invention.

図示の例は封止前の半導体パッケージ10であり、ウエハプロセスを経た半導体チップ12がこの半導体パッケージ10に実装される。半導体チップ12の上面には、チップに搭載されている半導体集積回路の電圧端子または信号入出力端子である電極パッド14が多数設けられている。好適な一実施例として、電極パッド14は、CuまたはCu合金を母材とし、Niめっき層を下地膜として表面にAuめっき層を有している。   The illustrated example is a semiconductor package 10 before sealing, and a semiconductor chip 12 that has undergone a wafer process is mounted on the semiconductor package 10. On the upper surface of the semiconductor chip 12, a large number of electrode pads 14 which are voltage terminals or signal input / output terminals of a semiconductor integrated circuit mounted on the chip are provided. As a preferred embodiment, the electrode pad 14 has Cu or Cu alloy as a base material, Ni plating layer as a base film, and Au plating layer on the surface.

パッケージ10は、熱放散性に優れた窒化アルミニウム(AlN)のようなセラミック製のマウント用基板(ダイパッド)16を有している。パッケージ10に半導体チップ12を実装するためには、ワイヤボンディング工程に先立って、半導体チップ12がこの基板16上にフェイスアップでダイボンドされる。   The package 10 has a mounting substrate (die pad) 16 made of ceramic such as aluminum nitride (AlN) having excellent heat dissipation. In order to mount the semiconductor chip 12 on the package 10, the semiconductor chip 12 is die-bonded on the substrate 16 face up prior to the wire bonding process.

この半導体パッケージ10の外部引き出し端子は、リードフレームのリード(インナリード)18によって与えられる。好適な一実施例として、リード18も、CuまたはCu合金を母材とし、Ni(ニッケル)めっき層を下地膜として表面にAuめっき層を有している。   External lead terminals of the semiconductor package 10 are provided by leads (inner leads) 18 of the lead frame. As a preferred embodiment, the lead 18 also has an Au plating layer on the surface using Cu or a Cu alloy as a base material and a Ni (nickel) plating layer as a base film.

上記のようなダイボンディングにより半導体チップ12を固定したパッケージ10が、この実施形態のワイヤボンディング加工を受けるため、図1に模式的に示すX−Yステージ20上の所定位置に配置される。X−Yステージ20は、ボールネジ駆動またはリニアモータ駆動によりX−Y方向で移動して、ステージ上のワーク(10,12)の任意の加工ポイント(接合ポイント)を予め設定された加工位置(ボンディング位置)に位置合わせできるようになっている。   The package 10 to which the semiconductor chip 12 is fixed by die bonding as described above is disposed at a predetermined position on the XY stage 20 schematically shown in FIG. 1 in order to receive the wire bonding process of this embodiment. The XY stage 20 is moved in the XY direction by ball screw driving or linear motor driving, and an arbitrary processing point (joining point) of the workpieces (10, 12) on the stage is set in a predetermined processing position (bonding). Position).

この実施形態のワイヤボンディング装置は、上記ボンディング位置にて各被接合部または端子(電極パッド14,リード18)の上にボンディングワイヤ22の先端部を位置合わせして重ねるボンディングヘッド(図示せず)と、ボンディングワイヤ22の先端部を各端子にレーザ溶接で接合するためのレーザ溶接装置24(図2)とを有している。図1に示すように、レーザ溶接装置24のレーザ出射ユニット32は、ステージ20の上方に設置または配置され、上記ボンディング位置の加工ポイントに対して、ビーム断面が矩形状のYAG第2高調波(波長532μmのグリーン光)のパルスレーザ光SHGを集光照射するようになっている。この明細書では、以下、YAG第2高調波のパルスレーザ光SHGをグリーンパルスレーザ光SHGと称する。   In the wire bonding apparatus of this embodiment, a bonding head (not shown) that aligns and overlaps the tip of the bonding wire 22 on each bonded portion or terminal (electrode pad 14, lead 18) at the bonding position. And a laser welding device 24 (FIG. 2) for joining the tip end portion of the bonding wire 22 to each terminal by laser welding. As shown in FIG. 1, the laser emission unit 32 of the laser welding apparatus 24 is installed or arranged above the stage 20 and has a YAG second harmonic (having a rectangular beam cross section with respect to the processing point at the bonding position). A pulsed laser beam SHG having a wavelength of 532 μm) is condensed and irradiated. In this specification, the YAG second harmonic pulse laser beam SHG is hereinafter referred to as green pulse laser beam SHG.

この実施形態では、ボンディングワイヤ22に断面矩形の平角型Cu(またはCu合金)のボンディングワイヤ(以下、「Cuワイヤ」と称する。)を使用し、半導体チップ12の各電極パッド14とそれに対応するリード18とを電気的に接続するために、Cuワイヤ22をビーム断面が矩形状のグリーンパルスレーザ光SHGを用いてCuワイヤ22の先端部を各端子(14,18)にレーザ溶接で接合するようにしている。この実施形態におけるレーザワイヤボンディング法の作用は後に詳細に説明する。   In this embodiment, a rectangular Cu (or Cu alloy) bonding wire (hereinafter, referred to as “Cu wire”) having a rectangular cross section is used as the bonding wire 22, and each electrode pad 14 of the semiconductor chip 12 and corresponding to it. In order to electrically connect the lead 18, the Cu wire 22 is joined to each terminal (14, 18) by laser welding using a green pulse laser beam SHG having a rectangular beam cross section. I am doing so. The operation of the laser wire bonding method in this embodiment will be described in detail later.

図2に、この実施形態のワイヤボンディング方法に好適に使用できるレーザ溶接装置24の構成を示す。   FIG. 2 shows a configuration of a laser welding apparatus 24 that can be suitably used in the wire bonding method of this embodiment.

このレーザ溶接装置24は、ロングパルス(10μs以上、典型的には1〜3ms)のグリーンパルスレーザ光SHGを生成するグリーンパルスレーザ発生器26と、このグリーンパルスレーザ発振器26にレーザ発振用の駆動電流ILDを供給するレーザ電源28と、グリーンパルスレーザ発生器26で生成されたグリーンパルスレーザ光SHGを所望のレーザ加工場所まで伝送し、その伝送中にグリーンパルスレーザ光SHGのビーム断面形状を円形から矩形状に変換する矩形コアファイバ30と、レーザ加工場所で断面矩形状のグリーンパルスレーザ光SHGをワイヤボンディングの溶接ポイントWPに向けて集光照射するレーザ出射ユニット32とを備えている。 The laser welding apparatus 24 includes a green pulse laser generator 26 that generates a long pulse (10 μs or longer, typically 1 to 3 ms) of green pulse laser light SHG, and a drive for laser oscillation in the green pulse laser oscillator 26. The laser power supply 28 for supplying the current I LD and the green pulse laser beam SHG generated by the green pulse laser generator 26 are transmitted to a desired laser processing location, and the beam cross-sectional shape of the green pulse laser beam SHG is transmitted during the transmission A rectangular core fiber 30 for converting from a circular shape to a rectangular shape and a laser emitting unit 32 for condensing and irradiating a green pulse laser beam SHG having a rectangular cross section toward a welding point WP of wire bonding at a laser processing location are provided.

グリーンパルスレーザ発生器26においては、一対の終端ミラー34,36の間の直線的な光路上に、図の右から左に向かって、1/4波長板38、活性媒質40、高調波分離出力ミラー42、収束レンズ44、非線形光学結晶(波長変換結晶)46が所定の距離間隔を空けて一列に配置されている。なお、別のレイアウトとして、1/4波長板と活性媒質との間に折り返しミラーを配置し、光共振器内の光路を曲げた構成としてもよい。   In the green pulse laser generator 26, on the linear optical path between the pair of terminal mirrors 34 and 36, from the right to the left in the figure, the quarter wavelength plate 38, the active medium 40, and the harmonic separation output. The mirror 42, the converging lens 44, and the nonlinear optical crystal (wavelength conversion crystal) 46 are arranged in a line at a predetermined distance. As another layout, a folding mirror may be arranged between the quarter wavelength plate and the active medium, and the optical path in the optical resonator may be bent.

両終端ミラー34,36は互いに向かい合って光共振器を構成している。図の右側の第1終端ミラー34の反射面34aには、基本波長(1064nm)に対して反射性の膜がコーティングされている。図の左側の第2終端ミラー36の反射面36aには、基本波長(1064nm)に対して反射性の膜がコーティングされるとともに、第2高調波(532nm)に対して反射性の膜がコーティングされている。   Both end mirrors 34 and 36 face each other to form an optical resonator. The reflective surface 34a of the first terminal mirror 34 on the right side of the drawing is coated with a film reflective to the fundamental wavelength (1064 nm). The reflective surface 36a of the second terminal mirror 36 on the left side of the drawing is coated with a film reflective to the fundamental wavelength (1064 nm) and coated with a film reflective to the second harmonic (532 nm). Has been.

なお、両終端ミラー34,36の反射面34a,36aはそれぞれ適当な曲率半径を有する凹面に形成されている、一例として、第1終端ミラー34の反射面34aは約9000mmの曲率半径を有し、第2終端ミラー36の反射面36aは約5000mmの曲率半径を有している。   The reflecting surfaces 34a and 36a of the both end mirrors 34 and 36 are respectively formed as concave surfaces having an appropriate radius of curvature. As an example, the reflecting surface 34a of the first end mirror 34 has a radius of curvature of about 9000 mm. The reflecting surface 36a of the second terminal mirror 36 has a radius of curvature of about 5000 mm.

活性媒質40は、たとえばNd:YAGロッドからなり、第1終端ミラー34寄りに配置され、電気光学励起部48によって光学的にポンピングされる。電気光学励起部46は、活性媒質40に向けて励起光を発生するための励起光源(たとえば励起ランプあるいはレーザダイオード)を有し、この励起光源をレーザ電源部28からの励起電流で点灯駆動することにより、活性媒質40を持続的または断続的にポンピングする。こうして活性媒質40で生成される基本波長(1064nm)の光ビームLAは、両終端ミラー34,36の間に閉じ込められて増幅される。   The active medium 40 is made of, for example, an Nd: YAG rod, is disposed near the first terminal mirror 34, and is optically pumped by the electro-optic excitation unit 48. The electro-optic excitation unit 46 has an excitation light source (for example, an excitation lamp or a laser diode) for generating excitation light toward the active medium 40, and the excitation light source is driven to be lit by an excitation current from the laser power source unit 28. As a result, the active medium 40 is pumped continuously or intermittently. Thus, the light beam LA having the fundamental wavelength (1064 nm) generated in the active medium 40 is confined between both the end mirrors 34 and 36 and amplified.

第1終端ミラー34と活性媒質40との間に配置されている1/4波長板38は、複屈折結晶素子からなり、基本波レーザ光LAがこの結晶を通過する際に2つの固有偏光(S波/P波)の間に一定の位相差を与え、ひいては非線形光学結晶46に対して常光・異常光のパワー比を一定に保つように作用する。   A quarter-wave plate 38 disposed between the first terminal mirror 34 and the active medium 40 is composed of a birefringent crystal element, and two intrinsic polarizations (when the fundamental laser beam LA passes through this crystal) A constant phase difference is given between the S wave and the P wave, and as a result, the nonlinear optical crystal 46 acts to keep the power ratio of ordinary light / abnormal light constant.

非線形光学結晶46は、タイプIIの位相整合にカットされた、たとえばKTP(KTiOPO4 )結晶あるいはLBO(LiB35)結晶等からなり、第2終端ミラー36寄りに配置され、この光共振器で励起された基本モードに光学的に結合され、基本波長との非線形光学作用により第2高調波(532nm)の光ビームSHGを光共振器の光路上に生成する。 The nonlinear optical crystal 46 is made of, for example, a KTP (KTiOPO 4 ) crystal or an LBO (LiB 3 O 5 ) crystal that has been cut to type II phase matching, and is disposed near the second terminal mirror 36. The second harmonic (532 nm) light beam SHG is generated on the optical path of the optical resonator by a nonlinear optical action with the fundamental wavelength.

光学レンズ44は、非線形光学結晶46に入射する基本波長の光ビームLAのパワー密度を増大させるためのものであり、その両面に基本波長および第2高調波のいずれに対しても高透過性の誘電体膜をコーティングした平凸レンズからなる。   The optical lens 44 is for increasing the power density of the light beam LA having the fundamental wavelength incident on the nonlinear optical crystal 46, and has high transparency with respect to both the fundamental wavelength and the second harmonic on both sides. It consists of a plano-convex lens coated with a dielectric film.

第1終端ミラー34あるいは活性媒質40側から図の左方向に伝播してきた基本波長の光ビームLAは、光学レンズ44を透過した後は、収束しながら非線形光学結晶46を通過し(これによって非線形光学結晶46が基本モードに光学的に結合し)、第2終端ミラー36の反射面36a付近に設定される光学レンズ44の焦点位置に集光するようになっている。そして、第2終端ミラー36の反射面36aで反射した基本波長の光ビームLAは、放射状に広がりながら非線形光学結晶46を通過し(これによって非線形光学結晶46が基本モードに光学的に結合し)、収束レンズ44で平行光にコリメートされて、活性媒質40側に戻るようになっている。   After passing through the optical lens 44, the fundamental wavelength light beam LA propagating from the first terminal mirror 34 or the active medium 40 side to the left in the figure passes through the nonlinear optical crystal 46 while converging. The optical crystal 46 is optically coupled to the fundamental mode) and is condensed at the focal position of the optical lens 44 set near the reflecting surface 36a of the second terminal mirror 36. The light beam LA having the fundamental wavelength reflected by the reflecting surface 36a of the second terminal mirror 36 passes through the nonlinear optical crystal 46 while spreading radially (by this, the nonlinear optical crystal 46 is optically coupled to the fundamental mode). The collimating lens 44 collimates the light so that it returns to the active medium 40 side.

また、図1において、非線形光学結晶46より図の左側に出た第2高調波の光ビームSHGは、第2終端ミラー36の反射面36aで反射して反対方向(図の右方向)に戻され、非線形光学結晶46を通り抜ける。非線形光学結晶46より図の右側に出た第2高調波の光ビームは、光共振器の光路または光軸に対して所定の角度(たとえば45°)で斜めに配置されている高調波分離出力ミラー42に入射する。   In FIG. 1, the second harmonic light beam SHG emitted from the nonlinear optical crystal 46 on the left side of the figure is reflected by the reflecting surface 36a of the second terminal mirror 36 and returns to the opposite direction (right direction in the figure). And passes through the nonlinear optical crystal 46. The second harmonic light beam emitted from the nonlinear optical crystal 46 on the right side of the figure is disposed at an angle with respect to the optical path or the optical axis of the optical resonator at a predetermined angle (for example, 45 °). Incident on the mirror 42.

高調波分離出力ミラー42は、ガラス基板からなり、その主面42aに基本波長に対して透過性の膜をコーティングし、第2高調波に対して反射性の膜をコーティングしている。これにより、光共振器内で、基本波長の光ビームLAは高調波分離出力ミラー42を双方向で透過する。また、第2高調波の光ビームつまりグリーンパルスレーザ光SHGは、非線形光学結晶46側から高調波分離出力ミラー42に入射し、そこで所定の方向(図の下方)に反射して、光共振器の光路から分離出力されるようになっている。   The harmonic separation output mirror 42 is made of a glass substrate, and has a principal surface 42a coated with a film that is transmissive to the fundamental wavelength and a film that is reflective to the second harmonic. As a result, the light beam LA having the fundamental wavelength passes through the harmonic separation output mirror 42 in both directions in the optical resonator. Further, the second harmonic light beam, that is, the green pulse laser beam SHG, is incident on the harmonic separation output mirror 42 from the nonlinear optical crystal 46 side, and is reflected there in a predetermined direction (downward in the figure), and the optical resonator. Are separated from the optical path.

このグリーンパルスレーザ発生器26で生成されるグリーンパルスレーザ光SHGは、基本波長の光ビームLAと同様に、光軸に垂直な方向でパワー密度がガウス分布を示すガウスビームであり、ビーム断面形状が円形になっている。   The green pulse laser beam SHG generated by the green pulse laser generator 26 is a Gaussian beam whose power density shows a Gaussian distribution in the direction perpendicular to the optical axis, as in the case of the light beam LA having the fundamental wavelength. Is circular.

高調波分離出力ミラー46より光共振器の外に取り出されたグリーンパルスレーザ光SHGは、入射ユニット50内で集光レンズ52により集光されて矩形コアファイバ30の一端面30aに入射する。   The green pulse laser beam SHG taken out of the optical resonator from the harmonic separation output mirror 46 is condensed by the condenser lens 52 in the incident unit 50 and is incident on the one end face 30 a of the rectangular core fiber 30.

図3に、この矩形コアファイバ30の一端面30aにビーム断面円形のグリーンパルスレーザ光SHGが集光入射する様子を示す。矩形コアファイバ30は、たとえばSI(ステップインデックス)形の矩形コアファイバからなり、断面矩形のコア29を有している。通常、コア29の材質は石英ガラスであり、コア29を取り囲むクラッド31の材質はコア29よりも屈折率の小さい石英ガラスまたは樹脂である。   FIG. 3 shows a state in which green pulse laser light SHG having a circular beam cross-section is focused and incident on one end face 30 a of the rectangular core fiber 30. The rectangular core fiber 30 is made of, for example, an SI (step index) rectangular core fiber and has a core 29 having a rectangular cross section. Usually, the material of the core 29 is quartz glass, and the material of the clad 31 surrounding the core 29 is quartz glass or resin having a refractive index smaller than that of the core 29.

矩形コアファイバ30の一端面30aに入射したグリーンパルスレーザ光SHGは、断面矩形のコア29とクラッド31との界面で全反射を繰り返しながらコア29に閉じ込められてファイバの軸方向に伝搬する。このファイバ30内の伝搬中に、グリーンパルスレーザ光SHGの横モードがシングルモードからマルチモードに変わり、ビーム断面形状が円形から矩形に変わる。   The green pulse laser beam SHG incident on the one end face 30a of the rectangular core fiber 30 is confined in the core 29 while repeating total reflection at the interface between the core 29 and the clad 31 having a rectangular cross section and propagates in the axial direction of the fiber. During propagation in the fiber 30, the transverse mode of the green pulse laser beam SHG changes from a single mode to a multimode, and the beam cross-sectional shape changes from a circle to a rectangle.

そして、出射ユニット54内で、図4に示すように、矩形コアファイバ30の他端面30bより、ビーム断面が矩形状のグリーンパルスレーザ光SHGが一定の拡がり角で出射される。   Then, in the emission unit 54, as shown in FIG. 4, the green pulse laser beam SHG having a rectangular beam cross section is emitted from the other end face 30b of the rectangular core fiber 30 at a constant divergence angle.

このようにグリーンパルスレーザ光SHGのビーム断面形状を円状から矩形状に変える作用を奏するうえで、矩形コアファイバ30のファイバ長は一定以上必要であり、通常は1m以上あればよく、好ましくは2m以上あるとよい。   As described above, in order to achieve the effect of changing the beam cross-sectional shape of the green pulse laser beam SHG from a circular shape to a rectangular shape, the fiber length of the rectangular core fiber 30 is required to be a certain length or more, usually 1 m or more, preferably It is good to have 2m or more.

出射ユニット54内には、所定の間隔を置いて光軸上にコリメートレンズ54と集光レンズ56が設けられている。コリメートレンズ54は、図4に示すように、矩形コアファイバ30の終端面30bより出たグリーンパルスレーザ光SHGを平行光にコリメートする。   In the emission unit 54, a collimating lens 54 and a condensing lens 56 are provided on the optical axis at a predetermined interval. As shown in FIG. 4, the collimating lens 54 collimates the green pulse laser beam SHG emitted from the end face 30 b of the rectangular core fiber 30 into parallel light.

図5に示すように、集光レンズ56は、平行光のグリーンパルスレーザ光SHGを所定の焦点位置つまりワイヤボンディングの接合ポイントに集光させる。これにより、Cuワイヤ22の接合ポイントの部位にグリーンパルスレーザ光SHGが集光入射し、矩形状のビームスポットBSの下でレーザスポット溶接が行われる。   As shown in FIG. 5, the condensing lens 56 condenses the parallel green pulse laser beam SHG at a predetermined focal position, that is, a bonding point of wire bonding. As a result, the green pulse laser beam SHG is focused and incident on the portion of the bonding point of the Cu wire 22, and laser spot welding is performed under the rectangular beam spot BS.

図6に、この実施形態におけるレーザワイヤボンディング法の作用を参考例と対比して示す。ここで、参考例とは、図2のレーザ溶接装置24において矩形コアファイバ30を断面円形のコアを有する一般の円形コアファイバに置き換えて、それ以外はすべて実施形態と同じ条件にしたものである。   FIG. 6 shows the operation of the laser wire bonding method in this embodiment in comparison with the reference example. Here, the reference example is obtained by replacing the rectangular core fiber 30 with a general circular core fiber having a circular core in the laser welding apparatus 24 of FIG. .

実施形態によれば、グリーンパルスレーザ光SHGのビーム断面が矩形状であるため、光軸に垂直な方向のレーザパワー密度分布が広くて低い矩形トップハットのプロファイルとなり、これによって接合ポイントに得られる溶接部WPの溶け込みはレーザパワー密度分布を逆さにしたような広くて浅いプロファイルになる。グリーンパルスレーザ光SHGのパワーを調整することで、溶接部WPの接合面積を一定に維持しつつ、溶け込みの深さをCuワイヤ22および端子(リード18または電極パッド14)のめっき層(Au,Ni)に留め、端子の母材(Cu)には及ばないようにすることができる。   According to the embodiment, since the beam cross section of the green pulse laser beam SHG is rectangular, a profile of a rectangular top hat with a wide and low laser power density distribution in a direction perpendicular to the optical axis is obtained, thereby obtaining a junction point. The penetration of the weld WP has a wide and shallow profile in which the laser power density distribution is inverted. By adjusting the power of the green pulse laser beam SHG, the bonding area of the welded portion WP is maintained constant, and the depth of penetration is set to the plated layer (Au, Cu) of the Cu wire 22 and the terminal (lead 18 or electrode pad 14). Ni), and it can be prevented from reaching the base material (Cu) of the terminal.

これに対して、参考例においては、グリーンパルスレーザ光SHGのビーム断面が円形であるため、光軸に垂直な方向のレーザパワー密度分布が中央部の突出したテーパ状のプロファイルとなり、これによって接合ポイントに得られる溶接部BPの溶け込みはレーザパワー密度分布を逆さにしたような狭くて深いプロファイルになる。この場合、溶接部BPの溶け込みを浅くするために、グリーンパルスレーザ光SHGのパワーを下げると、溶接部BPの接合面積が非常に小さなものになる。また、溶接部BPの接合面積を大きくするために、グリーンパルスレーザ光SHGのパワーを上げると、溶接部WPの溶け込み深さがさらに増し、端子の母材(Cu)を傷めることがある。   On the other hand, in the reference example, since the beam cross section of the green pulse laser beam SHG is circular, the laser power density distribution in the direction perpendicular to the optical axis becomes a protruding taper profile at the center, thereby joining The penetration of the weld BP obtained at the point has a narrow and deep profile as if the laser power density distribution is inverted. In this case, if the power of the green pulse laser beam SHG is lowered in order to make the penetration of the welded part BP shallow, the joining area of the welded part BP becomes very small. Further, when the power of the green pulse laser beam SHG is increased in order to increase the joining area of the welded portion BP, the penetration depth of the welded portion WP further increases, and the base material (Cu) of the terminal may be damaged.

なお、実施形態におけるグリーンパルスレーザ光SHGのビームスポット断面形状は厳密に矩形である必要はなく、図6に示すように角隅部に多少の丸み60があってもよい。   In addition, the beam spot cross-sectional shape of the green pulse laser beam SHG in the embodiment does not need to be strictly rectangular, and there may be some roundness 60 at the corners as shown in FIG.

また、この実施形態においては、グリーンパルスレーザ光SHGのビームスポット径を調節することで、溶接部BPの接合面積を可変調整することができる。ワイヤボンディングでは、物理的特性および電気的特性の面で溶接部WPの接合面積が大きいほどよい。したがって、Cuワイヤ22の幅サイズW22を基準にとると、溶接部BPの各辺のサイズWBPは基準(W22)に対する比で0.6以上であるのが好ましい。具体的には、たとえば、Cuワイヤ22の幅サイズW22が0.4mmである場合は、溶接部WPの各辺のサイズWBPは0.24mm以上であるのが好ましい。 In this embodiment, the bonding area of the welded portion BP can be variably adjusted by adjusting the beam spot diameter of the green pulse laser beam SHG. In wire bonding, the larger the bonding area of the weld WP, the better in terms of physical characteristics and electrical characteristics. Thus, taking as a reference the width size W 22 of Cu wire 22, the size W BP of each side of the weld BP is preferably a ratio above 0.6 relative to the reference (W 22). Specifically, for example, when the width size W 22 of Cu wire 22 is 0.4mm, the size W BP of each side of the weld WP is preferably not less than 0.24 mm.

上記のように、この実施形態のレーザワイヤボンディング法によれば、熱圧着ワイヤボンディング法や超音波ワイヤボンディング法と同等に広くて浅く、しかもレーザ溶接による強固な接合部を得ることができる。   As described above, according to the laser wire bonding method of this embodiment, a strong joint by laser welding can be obtained which is as wide and shallow as the thermocompression wire bonding method and the ultrasonic wire bonding method.

図7は、この実施形態における一実験例で得られた溶接部の断面構造を示す金属顕微鏡の観察画像である。この実験例において、Cuワイヤの厚さは50μm、CuワイヤのNiめっき層の厚さは3μm、端子部材(Cuプレート)の母材(Cu)の厚さは0.5mm、下地Niめっき層の厚さは5μm、Auめっき層の厚さは0.3μmである。また、グリーンパルスレーザ光SHGのパルス幅は0.6ms、ピークパワーは1.0kWである。   FIG. 7 is an observation image of a metal microscope showing the cross-sectional structure of the welded part obtained in one experimental example in this embodiment. In this experimental example, the thickness of the Cu wire is 50 μm, the thickness of the Ni plating layer of the Cu wire is 3 μm, the thickness of the base material (Cu) of the terminal member (Cu plate) is 0.5 mm, and the thickness of the underlying Ni plating layer is The thickness is 5 μm, and the thickness of the Au plating layer is 0.3 μm. The pulse width of the green pulse laser beam SHG is 0.6 ms and the peak power is 1.0 kW.

図7に示すように、端子部材側のAuめっきが溶けてCuワイヤの溶融部に混じり込んでいるのがわかる。一方で、端子部材側の母材(Cu)はもちろん下地膜のNiめっき層も殆ど溶けていないことがわかる。つまり、溶接部の溶け込みはCuワイヤを貫通して端子部材のAuめっき層まで及び、端子部材の下地Niめっき層および母材(Cu)には及んでいないことが確認できた。   As shown in FIG. 7, it can be seen that the Au plating on the terminal member side is melted and mixed into the molten portion of the Cu wire. On the other hand, it can be seen that the Ni plating layer of the base film as well as the base material (Cu) on the terminal member side is hardly melted. That is, it was confirmed that the penetration of the welded part penetrated the Cu wire to the Au plating layer of the terminal member, and did not reach the base Ni plating layer and the base material (Cu) of the terminal member.

以上、本発明の好適な実施形態について説明したが、上述した実施形態は本発明を限定するものではない。当業者にあっては、具体的な実施態様において本発明の技術思想および技術範囲から逸脱せずに種々の変形・変更を加えることが可能である。   As mentioned above, although preferred embodiment of this invention was described, embodiment mentioned above does not limit this invention. Those skilled in the art can make various modifications and changes in specific embodiments without departing from the technical idea and technical scope of the present invention.

たとえば、上記した実施形態ではCuワイヤ22のめっき層がNiであったが、他の材質のめっき層であってもよく、あるいはCuワイヤ22にめっき層が無くてもよい。また、端子(電極パッド14、リード18)側においても、任意の材質のめっき層が可能である。   For example, although the plating layer of the Cu wire 22 is Ni in the above-described embodiment, it may be a plating layer of another material, or the Cu wire 22 may not have a plating layer. Also, a plating layer of any material is possible on the terminal (electrode pad 14, lead 18) side.

また、上記実施形態のレーザ溶接装置24においては、レーザ出射ユニット32にガルバノメータ・スキャナを搭載して、ワイヤボンディング加工のレーザ溶接にスキャニング機能を持たせることも可能である。   In the laser welding apparatus 24 of the above-described embodiment, a galvanometer / scanner can be mounted on the laser emitting unit 32 to provide a scanning function for laser welding in wire bonding processing.

また、本発明のワイヤボンディング方法は、半導体チップをリードフレームに搭載して樹脂封止実装をする場合に限らず、多ピンのPGA(Pin Grid Array)に実装する場合や複数の半導体チップ間あるいは複数の回路基板間の電気接続にも適用可能である。   In addition, the wire bonding method of the present invention is not limited to the case where a semiconductor chip is mounted on a lead frame and is resin-sealed, but when mounted on a multi-pin PGA (Pin Grid Array) or between a plurality of semiconductor chips or It is also applicable to electrical connection between a plurality of circuit boards.

10 半導体パッケージ
12 半導体チップ
14 電極パッド
18 リード
20 X−Yステージ
22 ボンディングワイヤ
24 レーザ溶接装置
26 グリーンパルスレーザ発生器
29 コア
30 矩形コアファイバ
32 レーザ出射ユニット
DESCRIPTION OF SYMBOLS 10 Semiconductor package 12 Semiconductor chip 14 Electrode pad 18 Lead 20 XY stage 22 Bonding wire 24 Laser welding apparatus 26 Green pulse laser generator 29 Core 30 Rectangular core fiber 32 Laser emission unit

Claims (10)

CuまたはCu合金からなる母材とめっき層とを有する端子の上に、CuまたはCu合金からなる平角型のボンディングワイヤを重ね、
ビーム断面が矩形状のYAG高調波パルスレーザ光を前記ボンディングワイヤに照射して、前記ボンディングワイヤを前記端子にレーザ溶接で接合するワイヤボンディング方法。
On a terminal having a base material made of Cu or Cu alloy and a plating layer, a rectangular bonding wire made of Cu or Cu alloy is stacked,
A wire bonding method of irradiating the bonding wire with a YAG harmonic pulse laser beam having a rectangular beam cross section and bonding the bonding wire to the terminal by laser welding.
前記YAG高調波パルスレーザ光の照射位置付近で前記母材には溶け込みが及ばないようにして前記ボンディングワイヤと前記めっき層とを溶融させる、請求項1に記載のワイヤボンディング方法。   The wire bonding method according to claim 1, wherein the bonding wire and the plating layer are melted so that the base material does not penetrate near the irradiation position of the YAG harmonic pulse laser beam. 前記めっき層がAuめっき層である、請求項2に記載のワイヤボンディング方法。   The wire bonding method according to claim 2, wherein the plating layer is an Au plating layer. 前記端子が、前記Auめっき層の下地膜としてNiめっき層を有する、請求項3に記載のワイヤボンディング方法。   The wire bonding method according to claim 3, wherein the terminal has a Ni plating layer as a base film of the Au plating layer. 前記ボンディングワイヤに照射される前記YAG高調波パルスレーザ光の矩形状ビームスポットの各辺のサイズが、前記ボンディングワイヤの幅のサイズに比して0.6以上である、請求項1〜4のいずれか一項に記載のワイヤボンディング方法。   The size of each side of the rectangular beam spot of the YAG harmonic pulse laser beam irradiated to the bonding wire is 0.6 or more as compared with the width size of the bonding wire. The wire bonding method according to any one of the above. 前記ボンディングワイヤがNiめっき層を有する、請求項1〜5のいずれか一項に記載のワイヤボンディング方法。   The wire bonding method according to claim 1, wherein the bonding wire has a Ni plating layer. 前記端子が半導体パッケージの外部引き出し端子である、請求項1〜6のいずれか一項に記載のワイヤボンディング方法。   The wire bonding method according to claim 1, wherein the terminal is an external lead terminal of a semiconductor package. 前記端子が半導体チップの電極パッドである、請求項1〜6のいずれか一項に記載のワイヤボンディング方法。   The wire bonding method according to claim 1, wherein the terminal is an electrode pad of a semiconductor chip. 断面が矩形のコアを有する矩形コアファイバの一端面にビーム断面が円形のYAG高調波パルスレーザ光を入射させて、前記矩形コアファイバの他端面より前記ビーム断面矩形状のYAG高調波パルスレーザ光を得る、請求項1〜8のいずれか一項に記載のワイヤボンディング方法。   A YAG harmonic pulsed laser beam having a circular beam cross section is incident on one end face of a rectangular core fiber having a rectangular core, and the YAG harmonic pulsed laser light having a rectangular beam cross section from the other end face of the rectangular core fiber. The wire bonding method according to any one of claims 1 to 8, wherein: CuまたはCu合金からなる母材とめっき層とを有する端子の上に、CuまたはCu合金からなる平角型のボンディングワイヤを接合するワイヤボンディングのためのレーザ溶接装置であって、
YAG高調波パルスレーザ光を生成するYAG高調波パルスレーザ発生部と、
前記YAG高調波パルスレーザ光のビーム断面を円形から矩形状に変えるための断面が矩形のコアを有する矩形コアファイバと、
前記矩形コアファイバより得られるビーム断面矩形状のYAG高調波パルスレーザ光を前記端子の上に重ねられた前記ボンディングワイヤの加工ポイントに集光照射するレーザ出射部と
を有するワイヤボンディング用のレーザ溶接装置。
A laser welding apparatus for wire bonding, in which a rectangular bonding wire made of Cu or Cu alloy is bonded onto a terminal having a base material made of Cu or Cu alloy and a plating layer,
A YAG harmonic pulse laser generator for generating YAG harmonic pulse laser light;
A rectangular core fiber having a core having a rectangular cross section for changing the beam cross section of the YAG harmonic pulse laser light from a circular shape to a rectangular shape;
Laser welding for wire bonding comprising: a laser emitting portion for condensing and irradiating a YAG harmonic pulse laser beam having a rectangular beam section obtained from the rectangular core fiber onto a processing point of the bonding wire superimposed on the terminal apparatus.
JP2009163454A 2009-07-10 2009-07-10 Wire bonding method, and laser welding apparatus for wire bonding Pending JP2011018823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163454A JP2011018823A (en) 2009-07-10 2009-07-10 Wire bonding method, and laser welding apparatus for wire bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163454A JP2011018823A (en) 2009-07-10 2009-07-10 Wire bonding method, and laser welding apparatus for wire bonding

Publications (1)

Publication Number Publication Date
JP2011018823A true JP2011018823A (en) 2011-01-27

Family

ID=43596383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163454A Pending JP2011018823A (en) 2009-07-10 2009-07-10 Wire bonding method, and laser welding apparatus for wire bonding

Country Status (1)

Country Link
JP (1) JP2011018823A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072500A (en) * 2014-09-30 2016-05-09 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2018119990A (en) * 2018-05-09 2018-08-02 日立オートモティブシステムズ株式会社 Thermal type flowmeter
KR20190000150A (en) * 2017-06-22 2019-01-02 주식회사 아이엠티 apparatus and method of bonding of electrode bridge on touch screen panel
JP2019514694A (en) * 2016-04-29 2019-06-06 ヌブル インク Visible laser welding of electronic packaging, automotive electrical equipment, batteries and other components
JP2019089120A (en) * 2017-11-17 2019-06-13 三菱電線工業株式会社 Optical fiber for laser beam transmission and welding method
CN110581418A (en) * 2018-06-08 2019-12-17 罗伯特·博世有限公司 Method and device for producing a material-fit laser joining connection
CN111710630A (en) * 2020-06-24 2020-09-25 安徽富信半导体科技有限公司 Wire bonding machine for processing electronic components and working method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072500A (en) * 2014-09-30 2016-05-09 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2019514694A (en) * 2016-04-29 2019-06-06 ヌブル インク Visible laser welding of electronic packaging, automotive electrical equipment, batteries and other components
JP7050002B2 (en) 2016-04-29 2022-04-07 ヌブル インク Visible laser welding of electronic packaging, automotive electrical equipment, batteries, and other components
KR20190000150A (en) * 2017-06-22 2019-01-02 주식회사 아이엠티 apparatus and method of bonding of electrode bridge on touch screen panel
KR102113908B1 (en) * 2017-06-22 2020-05-21 주식회사 아이엠티 apparatus and method of bonding of electrode bridge on touch screen panel
JP2019089120A (en) * 2017-11-17 2019-06-13 三菱電線工業株式会社 Optical fiber for laser beam transmission and welding method
JP2018119990A (en) * 2018-05-09 2018-08-02 日立オートモティブシステムズ株式会社 Thermal type flowmeter
CN110581418A (en) * 2018-06-08 2019-12-17 罗伯特·博世有限公司 Method and device for producing a material-fit laser joining connection
CN111710630A (en) * 2020-06-24 2020-09-25 安徽富信半导体科技有限公司 Wire bonding machine for processing electronic components and working method thereof
CN111710630B (en) * 2020-06-24 2023-05-26 安徽富信半导体科技有限公司 Wire bonding machine for processing electronic components and working method thereof

Similar Documents

Publication Publication Date Title
JP2011018823A (en) Wire bonding method, and laser welding apparatus for wire bonding
KR100688317B1 (en) Semiconductor light-emitting device and method of manufacturing the same and mounting plate
JP7368450B2 (en) Semiconductor device and bonding method
KR101142561B1 (en) Laser light source module
JP4858238B2 (en) Laser welding member and semiconductor device using the same
JP2010199204A (en) Light-emitting device and method of manufacturing the same
JP2010166019A (en) Semiconductor laser device
JP4764983B2 (en) Manufacturing method of semiconductor device
JP2015119072A (en) Laser welding method, laser welding jig, and semiconductor device
JPH0613717A (en) Carrier and mounting assembly for laser diode bar
JP4765853B2 (en) Manufacturing method of semiconductor device
US20210336411A1 (en) Method of manufacturing laser light source
JP7319295B2 (en) semiconductor equipment
JP2009146979A (en) Photoelectric conversion device
JP4800019B2 (en) Semiconductor laser package device and manufacturing method thereof
JP2012222130A (en) Semiconductor laser device
JP2006316290A (en) Method and apparatus for peeling plated gold film
JP2007305620A (en) Manufacturing method of semiconductor device
JP2005347415A (en) Electric part mounting method
JP2006066794A (en) Wire bonding method
JP2022013800A (en) Semiconductor device and welding method
US8471385B2 (en) Method for the connection of two wafers, and a wafer arrangement
CN117161561B (en) Method and system for welding chip and copper frame and chip assembly
WO2024111593A1 (en) Joining method and laser processing device
JP2007287991A (en) Manufacturing method of semiconductor device