JP2012222130A - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
JP2012222130A
JP2012222130A JP2011086033A JP2011086033A JP2012222130A JP 2012222130 A JP2012222130 A JP 2012222130A JP 2011086033 A JP2011086033 A JP 2011086033A JP 2011086033 A JP2011086033 A JP 2011086033A JP 2012222130 A JP2012222130 A JP 2012222130A
Authority
JP
Japan
Prior art keywords
semiconductor laser
connection surface
heat sink
water
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011086033A
Other languages
Japanese (ja)
Inventor
Nobuyasu Suzuki
信靖 鈴木
Tadashi Morimoto
廉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011086033A priority Critical patent/JP2012222130A/en
Publication of JP2012222130A publication Critical patent/JP2012222130A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor laser device that efficiently radiates waste heat from a high-power laser.SOLUTION: A semiconductor laser device comprises: a plurality of light-emitting elements; a semiconductor laser bar 10 that is perpendicular to the resonator direction of the light-emitting elements and has a first connection surface and a second connection surface for supplying power to the light-emitting elements facing to each other; a first water-cooled heat sink 11a that has a first electrode-side connection surface electrically and thermally bonded to the first connection surface, serves also as a first electrode, and has a minute flow channel located adjacent to the semiconductor laser bar; a first conductive support member that has a second electrode connection surface electrically and thermally connected to the second connection surface and serves also as a heat spreader; a metal foil 12 that is electrically and thermally connected to the conductive support member on the surface opposite to the second electrode connection surface and has flexibility; an insulating plate that is bonded between the first water-cooled heat sink and the metal foil; and a second water-cooled heat sink 11b that is bonded to the metal foil, serves also as a second electrode, and has a minute flow channel.

Description

本発明は、レーザアニール装置等に用いられ、高出力レーザの排熱を効率的に放散するための機構を有する半導体レーザ装置に関する。   The present invention relates to a semiconductor laser device used in a laser annealing device or the like and having a mechanism for efficiently dissipating exhaust heat of a high-power laser.

半導体レーザは光ストレージ等に広く用いられているが、例えば光ピックアップ等において、近年のブルーレイディスクに代表される高密度記録に対応して半導体レーザの高出力化及び高信頼性が求められている。ところで、半導体レーザ装置の出力が高くなるとそれに伴って発生する熱量も不可避的に増大するが、半導体レーザ素子は自身の放出する熱による劣化等の影響を受け易いため、出力上昇に従って発生する熱は半導体レーザの性能向上にとって深刻な問題となっている。とくに、半導体レーザにおいては瞬時光学損傷現象(COD)が発生することが知られている。これは、レーザ光が界面準位が多くバンドギャップが縮小している端面付近にくると、光吸収→非発光再結合という過程でその光エネルギーが熱に変わり端面温度が上昇することから、光出力上昇に伴い端面でのバンドギャップが益々縮小し光吸収(発熱)が多くなるという正の循環が生じ、最終的に端面が破壊される現象であり、半導体レーザ装置で高出力状態で高い信頼性を得るための阻害要因となっている。そのため、一般的に排熱を効率的に行うことによりCODレベルを高めることが要求されている。   Semiconductor lasers are widely used for optical storage and the like. For example, in optical pickups and the like, high output and high reliability of semiconductor lasers are required in response to high-density recording typified by recent Blu-ray discs. . By the way, when the output of the semiconductor laser device is increased, the amount of heat generated is inevitably increased. However, since the semiconductor laser element is easily affected by deterioration due to heat released by itself, the heat generated as the output increases is increased. This is a serious problem for improving the performance of semiconductor lasers. In particular, it is known that an instantaneous optical damage phenomenon (COD) occurs in a semiconductor laser. This is because when the laser beam comes near the end face where the interface state is large and the band gap is reduced, the light energy changes into heat in the process of light absorption → non-radiative recombination, and the end face temperature rises. As the output rises, the band gap at the end face is further reduced and light absorption (heat generation) increases, resulting in a positive circulation, which eventually destroys the end face. The semiconductor laser device is highly reliable in a high output state. It is an obstructive factor for obtaining sex. Therefore, it is generally required to increase the COD level by efficiently performing exhaust heat.

半導体レーザ素子では、上記致命的な破壊損傷以外にも、温度上昇が光出力、電流特性、波長、ノイズ、寿命に大きな影響を与え、各基本特性は動作中の発熱により全て悪化の方向にシフトすることが知られている。   In semiconductor laser devices, in addition to the above-mentioned catastrophic breakdown damage, temperature rise has a large effect on light output, current characteristics, wavelength, noise, and life, and all basic characteristics shift in the direction of deterioration due to heat generation during operation. It is known to do.

加えて、複数の発光点を有するレーザバーを用いた半導体レーザ装置では、波長、発光効率、光出力といった、各レーザ素子からのビームの特性の相対差を抑え、均一な光特性を持ったレーザ素子を実現させることが要求されるため、実装時の熱応力を低減し、発光部に加わる歪みの相対差を低減することが重要な課題となる。   In addition, in a semiconductor laser device using a laser bar having a plurality of light emitting points, a laser element having uniform optical characteristics by suppressing relative differences in the characteristics of beams from each laser element such as wavelength, light emission efficiency, and light output. Therefore, it is important to reduce the thermal stress during mounting and to reduce the relative difference in strain applied to the light emitting portion.

従来の半導体レーザ装置の一例では、半導体レーザバーの電極表面に複数のバンプが形成されており、バンプ間の空隙に導電性ペースト(Ag)等を充填して熱的な接触面積の向上を果たしている。バンプとペーストを介して、半導体レーザバーの上面と引き出し電極の下面とが電気的及び熱的に互いに接続されており、レーザ出力時における半導体レーザバーの上方向への排熱が成される(特許文献1参照)。   In an example of a conventional semiconductor laser device, a plurality of bumps are formed on the electrode surface of the semiconductor laser bar, and the space between the bumps is filled with a conductive paste (Ag) or the like to improve the thermal contact area. . The upper surface of the semiconductor laser bar and the lower surface of the extraction electrode are electrically and thermally connected to each other via the bump and the paste, and heat is exhausted upward in the semiconductor laser bar during laser output (Patent Document) 1).

特開2003−86883号公報JP 2003-88683 A

特許文献1では、バンプと呼ばれる突起状の端子と空隙に充填されたペースト等を介してレーザバーと引き出し電極が接続されている。バンプを用いた接続ではバンプのサイズによって素子と引き出し電極間の間隙距離が決まるため、接続熱抵抗を抑制するためにバンプのサイズを縮小し密度を上げると間隙距離は狭くなるが充填剤であるペースト等の未充填やボイド(空隙)の発生が多くなるという課題がある。   In Patent Document 1, a laser bar and a lead electrode are connected via a protruding terminal called a bump and a paste filled in a gap. In the connection using bumps, the gap distance between the element and the extraction electrode is determined by the size of the bump. Therefore, if the bump size is reduced and the density is increased in order to suppress the connection thermal resistance, the gap distance becomes narrower but the filler. There is a problem that the occurrence of unfilled paste and voids (voids) increases.

加えてバンプサイズを小さくすることにより、接合部における応力集中が生じるため半田を材料として用いた場合、クラックの発生頻度が高くなる。   In addition, by reducing the bump size, stress concentration occurs at the joint, so that when solder is used as a material, the frequency of occurrence of cracks increases.

さらに接続部がバンプとペーストないしは半田といった複数材料の複合構造であるため熱膨張係数がそれぞれ異なり半導体レーザバーからの排熱サイクルを繰り返すことにより、接合面に加えられる熱応力の作用で電極表面からの剥離が生じ、熱抵抗が増加してしまい、益々熱応力が大きくなるという正循環が生じて最終的には電気的接続が解消されて、オープン故障に至る。   Furthermore, since the connection part is a composite structure of multiple materials such as bumps and paste or solder, the thermal expansion coefficients are different from each other, and by repeating the exhaust heat cycle from the semiconductor laser bar, the thermal stress applied to the joint surface causes the stress from the electrode surface. Separation occurs, the thermal resistance increases, and a normal circulation occurs in which the thermal stress becomes larger and larger. Finally, the electrical connection is canceled and an open failure occurs.

本発明は、前記のような課題を解決するためになされたものであり、レーザバーを高出力で発振させた際に生じる排熱を効率的に放散するとともに、レーザバー実装時等に生じる熱応力を軽減せしめ、安定した特性を得ることができる半導体レーザ装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and efficiently dissipates exhaust heat generated when the laser bar is oscillated at a high output, and also generates thermal stress generated when the laser bar is mounted. An object of the present invention is to provide a semiconductor laser device that can be reduced and obtain stable characteristics.

前記のような課題を解決するために、本発明の半導体レーザ装置は、レーザ出力用の複数の発光素子と、発光素子の共振器方向に直交する互いに対向する前記発光素子に電力を供給するための第1接続面と第2接続面を有する半導体レーザバー、前記半導体レーザバーの第1接続面と電気的および熱的に接合された第1電極側接続面を有し、第1電極を兼ねる、前記半導体レーザバーに近接した位置に微小流路(マイクロチャネル)を有する第1水冷ヒートシンクと、前記半導体レーザバーの第2接続面と電気的および熱的に接続された第2電極接続面を有し、ヒートスプレッダを兼ねる第1導電性支持部材と、前記第2電極接続面に対向する面で前記導電性支持部材と電気的および熱的に接続された屈曲性を有する金属箔と、前記水冷ヒートシンクと前記金属箔間に配置され機械的に接合された絶縁板と、前記金属箔と電気的および熱的に接合された第2電極を兼ねる微小流路(マイクロチャネル)を有する第2水冷ヒートシンクから構成される。   In order to solve the above problems, a semiconductor laser device according to the present invention supplies power to a plurality of light emitting elements for laser output and the light emitting elements facing each other perpendicular to the resonator direction of the light emitting elements. A semiconductor laser bar having a first connection surface and a second connection surface, a first electrode side connection surface electrically and thermally bonded to the first connection surface of the semiconductor laser bar, and also serving as a first electrode, A heat spreader having a first water-cooled heat sink having a micro-channel (microchannel) at a position close to the semiconductor laser bar; a second electrode connection surface electrically and thermally connected to the second connection surface of the semiconductor laser bar; A metal foil having flexibility which is electrically and thermally connected to the conductive support member on a surface facing the second electrode connection surface, and the water-cooled heat A second water-cooled heat sink having an insulating plate disposed between the sink and the metal foil and mechanically bonded, and a microchannel serving as a second electrode electrically and thermally bonded to the metal foil Consists of

また、本発明では、前記構成に加え、前記半導体レーザバーの第1接続面と電気的および熱的に接合された電極接続面を有し、前記電極接続面に対向するヒートシンク接続面で前記第1水冷ヒートシンクと電気的および熱的に接続されたヒートスプレッダを兼ねる第2導電性支持部材を備えることにより、放熱性を高めるとともに、特に実装時に生じる熱応力を低減しうる。   According to the present invention, in addition to the above-described configuration, the first connection surface has an electrode connection surface electrically and thermally bonded to the first connection surface of the semiconductor laser bar, and the heat sink connection surface facing the electrode connection surface By providing the second conductive support member that also serves as a heat spreader that is electrically and thermally connected to the water-cooled heat sink, heat dissipation can be improved, and thermal stress generated particularly during mounting can be reduced.

さらに、従属項に記載された発明は、本発明に係わる半導体レーザ装置の具体的なものを規定する。   Furthermore, the invention described in the dependent claims defines a specific semiconductor laser device according to the present invention.

本発明によれば、レーザバーを高出力で発振させた際に生じる排熱を効率的に放散するとともに、レーザバー実装時等に生じる熱応力を軽減せしめ、安定した特性を得ることができる半導体レーザ装置を実現することができる。   According to the present invention, a semiconductor laser device capable of efficiently dissipating exhaust heat generated when a laser bar oscillates at a high output and reducing thermal stress generated when the laser bar is mounted, etc., and obtaining stable characteristics. Can be realized.

本発明の一実施の形態に係わる半導体レーザ装置の全体構成を表す分解斜視図1 is an exploded perspective view showing the overall configuration of a semiconductor laser device according to an embodiment of the present invention. 本発明の実施の形態1における半導体レーザ装置の断面図でありレーザ光出射端近傍の拡大図1 is a sectional view of a semiconductor laser device according to a first embodiment of the present invention, and is an enlarged view in the vicinity of a laser beam emitting end. 本発明の実施の形態1における半導体レーザ装置の正面図でありレーザ光出射端近傍の拡大図1 is a front view of a semiconductor laser device according to a first embodiment of the present invention, and is an enlarged view in the vicinity of a laser beam emitting end. 本発明の実施の形態2における半導体レーザ装置の断面図でありレーザ光出射端近傍の拡大図It is sectional drawing of the semiconductor laser apparatus in Embodiment 2 of this invention, and is an enlarged view near a laser beam emission end 本発明の実施の形態2における半導体レーザ装置の正面図でありレーザ光出射端近傍の拡大図It is a front view of the semiconductor laser apparatus in Embodiment 2 of this invention, and is an enlarged view near the laser beam emission end

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の一実施の形態に係わる半導体レーザ装置の全体構成を表す分解斜視図である。図2は本発明の半導体レーザ装置の断面図であり、レーザ光出射端近傍の拡大図である。図3は本発明の半導体レーザ装置の正面図であり、レーザ光出射端近傍の拡大図である。
(Embodiment 1)
FIG. 1 is an exploded perspective view showing the entire configuration of a semiconductor laser device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the semiconductor laser device of the present invention, and is an enlarged view of the vicinity of the laser beam emitting end. FIG. 3 is a front view of the semiconductor laser device of the present invention, and is an enlarged view of the vicinity of the laser beam emitting end.

図において半導体レーザバー10は、例えば略405nmの発振波長を有する窒化ガリウム(GaN)系半導体からなる半導体層を有する青紫色レーザである。半導体レーザバー10は複数のレーザダイオード素子(図示せず)が並設されたレーザダイオードバーであり、その寸法は例えば、長さ約3mm、共振器長約0.8mm、厚み約0.1mmである。なお、半導体レーザバー10の熱膨張係数は約4.5ppm/K、熱伝導率は130W/(m・K)である。   In the figure, a semiconductor laser bar 10 is a blue-violet laser having a semiconductor layer made of a gallium nitride (GaN) based semiconductor having an oscillation wavelength of about 405 nm, for example. The semiconductor laser bar 10 is a laser diode bar in which a plurality of laser diode elements (not shown) are arranged in parallel, and the dimensions thereof are, for example, a length of about 3 mm, a resonator length of about 0.8 mm, and a thickness of about 0.1 mm. . The semiconductor laser bar 10 has a thermal expansion coefficient of about 4.5 ppm / K and a thermal conductivity of 130 W / (m · K).

半導体レーザバー10の内部の下面側には、レーザダイオード素子のn型半導体が配置されており、さらに半導体レーザバーの下面にはn型半導体に電力を供給するための第1接続面である、例えば最表面が金(Au)層となるようにチタン(Ti)層、白金(Pt)層、Au層を順に積層した構成の金属層が設けられている。   An n-type semiconductor of a laser diode element is arranged on the lower surface side inside the semiconductor laser bar 10, and further, a lower surface of the semiconductor laser bar is a first connection surface for supplying power to the n-type semiconductor, for example, A metal layer having a structure in which a titanium (Ti) layer, a platinum (Pt) layer, and an Au layer are sequentially laminated so that the surface becomes a gold (Au) layer is provided.

また、半導体レーザバー10の内部の上面側には、レーザダイオード素子のp型半導体が配置されており、さらに半導体レーザバーの上面にはp型半導体に電力を供給するための第2接続面である、例えば最表面が金(Au)層となるようにチタン(Ti)層、白金(Pt)層、Au層を順に積層した構成の金属層が設けられている。   The p-type semiconductor of the laser diode element is arranged on the upper surface side inside the semiconductor laser bar 10, and the upper surface of the semiconductor laser bar is a second connection surface for supplying power to the p-type semiconductor. For example, a metal layer having a structure in which a titanium (Ti) layer, a platinum (Pt) layer, and an Au layer are sequentially laminated so that the outermost surface is a gold (Au) layer is provided.

第1水冷ヒートシンク11aは前方(レーザ光出射端側)に微小流路(マイクロチャネル)を設けた銅(Cu、熱伝導率は398W/(m・K))薄板とモリブデン(Mo、熱伝導率は140W/(m・K))薄板を積層して構成されており、8ppm/Kの熱膨張係数を有する。さらに、表面および内部流路はAuメッキ処理が施されている。第1水冷ヒートシンク11aの寸法は、例えば、幅約10.8mm、奥行き約27mm、厚み約1.55mmである。また、第1水冷ヒートシンク11aの前方約3mmの部分には厚み約5μmの金錫(AuSn)半田層が形成されている。   The first water-cooled heat sink 11a has a copper (Cu, thermal conductivity of 398 W / (m · K)) thin plate and molybdenum (Mo, thermal conductivity) provided with a micro flow channel (micro channel) in front (laser beam emission end side). Is formed by laminating 140 W / (m · K) thin plates and has a thermal expansion coefficient of 8 ppm / K. Furthermore, the surface and the internal flow path are subjected to Au plating. The dimensions of the first water-cooled heat sink 11a are, for example, a width of about 10.8 mm, a depth of about 27 mm, and a thickness of about 1.55 mm. Further, a gold tin (AuSn) solder layer having a thickness of about 5 μm is formed in a portion of about 3 mm in front of the first water-cooled heat sink 11a.

第2水冷ヒートシンク11bは前方(レーザ光出射端側)に微小流路(マイクロチャネル)を設けた銅(Cu)薄板とモリブデン(Mo)薄板を積層して構成されており、8ppm/Kの熱膨張係数を有する。さらに、表面および内部流路はAuメッキ処理が施されている。第2水冷ヒートシンク11bの寸法は、例えば、幅約10.8mm、奥行き約27mm、厚み約1.55mmである。   The second water-cooled heat sink 11b is formed by laminating a copper (Cu) thin plate and a molybdenum (Mo) thin plate provided with a micro flow channel (micro channel) on the front side (laser beam emission end side), and has a heat of 8 ppm / K. Has an expansion coefficient. Furthermore, the surface and the internal flow path are subjected to Au plating. The dimensions of the second water-cooled heat sink 11b are, for example, a width of about 10.8 mm, a depth of about 27 mm, and a thickness of about 1.55 mm.

屈曲性を有する金属箔12は例えば、厚み約50μmのCuからなり、表面はAuメッキ処理がなされている。全体的な平面形状は前方が狭くなった凸型形状であり、幅約10.8mm、奥行き約25mmの平板から幅約4mmの凸部が長さ約2mmで突き出た構成である。さらに水冷ヒートシンクの冷却水流入口、冷却水排出口、固定用貫通穴部と重なる部分はほぼ同一径の穴が形成されている。屈曲性の金属箔12の熱伝導は最も断面積の小さい凸部であっても、通常、上側電極の電気的および熱的な接続に用いられる50μm径のAuワイヤ約125本分に相当する。   The flexible metal foil 12 is made of, for example, Cu having a thickness of about 50 μm, and the surface is subjected to Au plating. The overall planar shape is a convex shape with a narrow front, and a convex portion with a width of about 4 mm protrudes from a flat plate with a width of about 10.8 mm and a depth of about 25 mm with a length of about 2 mm. Furthermore, holes having substantially the same diameter are formed in portions that overlap the cooling water inlet, the cooling water discharge port, and the fixing through hole of the water cooling heat sink. The heat conduction of the flexible metal foil 12 is usually equivalent to about 125 Au wires having a diameter of 50 μm used for electrical and thermal connection of the upper electrode, even if the convex portion has the smallest cross-sectional area.

導電性支持部材21aは例えば、熱膨張係数が約8ppm/KのCu(約20%)とW(約80%)の複合材料(熱伝導率は200W/(m・K))からなり、表面はAuメッキ処理されている。導電性支持部材21aの寸法は、例えば、長さ約5mm、奥行き約1.5mm、厚み約0.3mmである。さらに導電性支持部材21aの上面および下面には厚み約2.5μmのAuSn半田層が形成されている。   The conductive support member 21a is made of, for example, a composite material (thermal conductivity is 200 W / (m · K)) of Cu (about 20%) and W (about 80%) having a thermal expansion coefficient of about 8 ppm / K, Is Au plated. The dimensions of the conductive support member 21a are, for example, a length of about 5 mm, a depth of about 1.5 mm, and a thickness of about 0.3 mm. Further, an AuSn solder layer having a thickness of about 2.5 μm is formed on the upper and lower surfaces of the conductive support member 21a.

導電性支持部材はCu(約30%)とMo(約70%)の複合材料(熱膨張係数約8ppm/K、熱伝導率は200W/(m・K))から構成されていてもよい。熱膨張係数を水冷ヒートシンク11aと略同一の値とすることで特に実装時に生じる熱応力を低減することができる。   The conductive support member may be composed of a composite material of Cu (about 30%) and Mo (about 70%) (thermal expansion coefficient is about 8 ppm / K, thermal conductivity is 200 W / (m · K)). By setting the thermal expansion coefficient to substantially the same value as that of the water-cooled heat sink 11a, it is possible to reduce the thermal stress particularly generated during mounting.

絶縁板13は厚み40μmのポリイミド(PI)とPIを上下からはさむ接着層(上下とも約10μm)から構成され総厚み約60μmであり、全体的な平面形状は幅約10.8mm、奥行き約25mmの矩形である。さらに水冷ヒートシンクの冷却水流入口、冷却水排出口、固定用貫通穴部と重なる部分はほぼ同一径の穴が形成されている。   The insulating plate 13 is composed of polyimide (PI) having a thickness of 40 μm and an adhesive layer (about 10 μm on both top and bottom) sandwiching PI from above and below, and has a total thickness of about 60 μm. The overall planar shape is about 10.8 mm in width and about 25 mm in depth. Rectangle. Furthermore, holes having substantially the same diameter are formed in portions that overlap the cooling water inlet, the cooling water discharge port, and the fixing through hole of the water cooling heat sink.

スペーサ13、上部電極取り出し部を兼ねる押さえ板14、下部電極取り出し部を兼ねる冷却水流路ベース部15はCuからなり、表面および内部流路はAuメッキ処理が施されている。   The spacer 13, the holding plate 14 that also serves as the upper electrode take-out part, and the cooling water flow path base part 15 that also serves as the lower electrode take-out part are made of Cu, and the surface and the internal flow path are subjected to Au plating.

本発明の半導体レーザ装置は、例えば、以下のように製造することができる。   The semiconductor laser device of the present invention can be manufactured, for example, as follows.

まず、例えばGaNからなる基板上に、例えば有機金属化学気相成長(MOCVD)法等でGaN系半導体からなる半導体層を形成し、上下面に前記金属層を形成する。続いて所定の寸法にGaN基板を成形する。これにより、図に示した半導体レーザバー10を形成する。   First, a semiconductor layer made of a GaN-based semiconductor is formed on a substrate made of GaN, for example, by a metal organic chemical vapor deposition (MOCVD) method or the like, and the metal layers are formed on the upper and lower surfaces. Subsequently, a GaN substrate is formed to a predetermined dimension. As a result, the semiconductor laser bar 10 shown in the figure is formed.

続いて、第1水冷ヒートシンク11aを用意し、先端部のAuSn半田層と、半導体レーザバー10下部の第1接続面を対向させ、精度よく位置合わせを行った上で、半導体レーザバー10を第1水冷ヒートシンクに載せる。   Subsequently, the first water-cooled heat sink 11a is prepared, the AuSn solder layer at the tip and the first connection surface at the lower part of the semiconductor laser bar 10 are opposed to each other, and the semiconductor laser bar 10 is subjected to the first water-cooling after being aligned with high accuracy. Place on heat sink.

さらに、導電性支持部材21aを用意し、下面のAuSn半田層と、半導体レーザバー10上部の第2接続面を対向させ、精度よく位置合わせを行った上で、導電性支持部材21aを半導体レーザバー10上に載せる。   Further, a conductive support member 21a is prepared, the AuSn solder layer on the lower surface and the second connection surface on the top of the semiconductor laser bar 10 are opposed to each other, and the conductive support member 21a is aligned with high accuracy. Put it on top.

さらに、金属箔12を用意し、導電性支持部材21aの上面のAuSn半田層上に精度よく位置合わせを行った上で金属箔12の凸部を載せる。   Furthermore, the metal foil 12 is prepared, and after aligning with high precision on the AuSn solder layer on the upper surface of the conductive support member 21a, the convex portion of the metal foil 12 is placed.

続いて金属箔12の凸部に平板の治具を介して下向きの力約0.6Nを加え、第1水冷ヒートシンク11aに対して加熱処理を施すことにより、金属箔12の凸部、導電性支持部材21a、半導体レーザバー10、第1水冷ヒートシンク11aを溶着させる。   Subsequently, a downward force of about 0.6 N is applied to the convex portion of the metal foil 12 via a flat jig, and the first water-cooled heat sink 11a is subjected to heat treatment, whereby the convex portion of the metal foil 12 and the conductive property are obtained. The support member 21a, the semiconductor laser bar 10, and the first water-cooled heat sink 11a are welded.

さらに、絶縁板13を用意し、第1水冷ヒートシンク11aに下部接着層を介して接着する。続いて、金属箔12凸部の導電性支持部材21aと固着していない部分を図2のように屈曲させる。加えて、絶縁板13上部の接着層を介して絶縁板13上に、金属箔12の平板部を接着する。   Further, an insulating plate 13 is prepared and bonded to the first water-cooled heat sink 11a via a lower adhesive layer. Subsequently, the portion of the convex portion of the metal foil 12 that is not fixed to the conductive support member 21a is bent as shown in FIG. In addition, the flat plate portion of the metal foil 12 is bonded onto the insulating plate 13 via the adhesive layer on the insulating plate 13.

上記の工程で第1水冷ヒートシンク11a上に半導体レーザバー10、導電性支持部材21a、絶縁板13、屈曲性金属箔12が固定された部材が完成する。   Through the above steps, a member in which the semiconductor laser bar 10, the conductive support member 21a, the insulating plate 13, and the flexible metal foil 12 are fixed on the first water-cooled heat sink 11a is completed.

半導体レーザバー10を、略同一でレーザバーに近い熱膨張係数を有する導電性支持部材21aと第1水冷ヒートシンク11aではさんで実装を行うことにより、半導体レーザバー10の上面と下面の両面で熱膨張係数の均衡がとれることとなり、実装時に生じる熱応力を低減し、半導体レーザバー10の反りを抑制することができる。   By mounting the semiconductor laser bar 10 between the conductive support member 21a having the same thermal expansion coefficient as that of the laser bar and the first water-cooled heat sink 11a, the thermal expansion coefficient of both the upper surface and the lower surface of the semiconductor laser bar 10 is increased. As a result, the thermal stress generated during mounting can be reduced, and the warpage of the semiconductor laser bar 10 can be suppressed.

ここで前記部材を図示しないOリング1を間にはさんで冷却水流路ベース15に載せる。続いて図示しないOリング2とスペーサ13を間にはさんで第2水冷ヒートシンク11bを前記部材に載せる。さらに図示しないOリング3を間にはさんで押さえ板14を第2水冷ヒートシンク11bに載せる。絶縁性の止めネジ16a〜16c(例えば、アルミナセラミック(Al2O3)製)を用いて前記全ての部材を冷却水路ベース部15に固定する。   Here, the member is placed on the cooling water passage base 15 with an O-ring 1 (not shown) interposed therebetween. Subsequently, the second water-cooled heat sink 11b is placed on the member with an O-ring 2 and a spacer 13 (not shown) interposed therebetween. Further, the holding plate 14 is placed on the second water-cooled heat sink 11b with an O-ring 3 (not shown) interposed therebetween. All the members are fixed to the cooling water channel base 15 using insulating set screws 16 a to 16 c (for example, made of alumina ceramic (Al 2 O 3)).

次に、動作について説明する。図示しない駆動用電源装置のプラス極は押さえ板14後方端部のねじ穴に、端子、導線を介して電気的に接続される。プラス極からの電流は、押さえ板14と第2水冷ヒートシンク11b、スペーサ13、金属箔12、導電性支持部材21aとを通って半導体レーザバー10に流れる。電流は半導体レーザバー10内部のpnジャンクションに注入され、図中のレーザ光出射方向にレーザ光が出力される。pnジャンクションを流れた電流は第1水冷ヒートシンク11aと冷却水流路ベース部15を通って、冷却水流路ベース部15上面後部のねじ穴に端子、導線を介して接続された駆動用電源装置のマイナス極に戻る。   Next, the operation will be described. A positive pole of a driving power supply device (not shown) is electrically connected to a screw hole at the rear end of the pressing plate 14 via a terminal and a conductive wire. The current from the positive electrode flows to the semiconductor laser bar 10 through the pressing plate 14, the second water-cooled heat sink 11b, the spacer 13, the metal foil 12, and the conductive support member 21a. The current is injected into the pn junction inside the semiconductor laser bar 10, and the laser beam is output in the laser beam emission direction in the figure. The current flowing through the pn junction passes through the first water-cooling heat sink 11a and the cooling water passage base portion 15 and is minus of the driving power supply device connected to the screw hole on the rear upper surface of the cooling water passage base portion 15 via a terminal and a lead wire. Return to the pole.

続いてレーザ光出力時の熱の流れに関して説明する。前記pnジャンクション部で発生した熱は、上方向に関しては、まず導電性支持部材21aに拡散し、続いて金属箔12の凸部を介して平板部に伝わり、スペーサ13、第2水冷ヒートシンク11bに拡散する。第2水冷ヒートシンク11bに伝わった熱はマイクロチャネル部で、図示しない冷却水循環装置から冷却水路ベース部15を介してマイクロチャネル部に流入した冷却水に熱を奪われる。冷却水は冷却水路ベース部15から排出され冷却水循環装置に戻る。一方、下方向に関しては、熱は第1水冷ヒートシンク11aに拡散して伝わり、半導体レーザバー10直下に設けられた第1水冷ヒートシンク11a内のマイクロチャネル部で冷却水に熱を奪われる。上方向と同様に冷却水は冷却水路ベース部から排出され冷却水循環装置に戻る。   Next, the heat flow at the time of laser beam output will be described. The heat generated in the pn junction portion is first diffused to the conductive support member 21a in the upward direction, and then is transferred to the flat plate portion via the convex portion of the metal foil 12, to the spacer 13 and the second water-cooled heat sink 11b. Spread. The heat transmitted to the second water-cooled heat sink 11b is in the microchannel portion, and the heat is taken away by the cooling water flowing into the microchannel portion from the cooling water circulation device (not shown) via the cooling water channel base portion 15. The cooling water is discharged from the cooling water channel base 15 and returns to the cooling water circulation device. On the other hand, in the downward direction, the heat is diffused and transmitted to the first water-cooled heat sink 11a, and the cooling water is deprived of heat by the microchannel portion in the first water-cooled heat sink 11a provided immediately below the semiconductor laser bar 10. As in the upward direction, the cooling water is discharged from the cooling water channel base and returns to the cooling water circulation device.

上記のように本発明の半導体レーザ装置では半導体レーザバーの上下両方向から熱伝導性の高い部材を介して、排熱を効率的に冷却水に放散することで、安定した特性で高出力のレーザ光を出力することができる。   As described above, in the semiconductor laser device according to the present invention, the exhaust heat is efficiently dissipated into the cooling water from both the upper and lower directions of the semiconductor laser bar through the highly heat conductive member, so that the laser light with stable characteristics and high output can be obtained. Can be output.

(実施の形態2)
図1は本発明の一実施の形態に係わる半導体レーザ装置の全体構成を表す分解斜視図である。図4は本発明の半導体レーザ装置の断面図であり、レーザ光出射端近傍の拡大図である。図5は本発明の半導体レーザ装置の正面図であり、レーザ光出射端近傍の拡大図である。
(Embodiment 2)
FIG. 1 is an exploded perspective view showing the entire configuration of a semiconductor laser device according to an embodiment of the present invention. FIG. 4 is a cross-sectional view of the semiconductor laser device of the present invention, and is an enlarged view of the vicinity of the laser beam emitting end. FIG. 5 is a front view of the semiconductor laser device of the present invention, and is an enlarged view of the vicinity of the laser beam emitting end.

図において半導体レーザバー10は、例えば略405nmの発振波長を有する窒化ガリウム(GaN)系半導体からなる半導体層を有する青紫色レーザである。半導体レーザバー10は複数のレーザダイオード素子(図示せず)が並設されたレーザダイオードバーであり、その寸法は例えば、長さ約3mm、共振器長約0.8mm、厚み約0.1mmである。なお、半導体レーザバー10の熱膨張係数は約4.5ppm/Kである。   In the figure, a semiconductor laser bar 10 is a blue-violet laser having a semiconductor layer made of a gallium nitride (GaN) based semiconductor having an oscillation wavelength of about 405 nm, for example. The semiconductor laser bar 10 is a laser diode bar in which a plurality of laser diode elements (not shown) are arranged in parallel, and the dimensions thereof are, for example, a length of about 3 mm, a resonator length of about 0.8 mm, and a thickness of about 0.1 mm. . The thermal expansion coefficient of the semiconductor laser bar 10 is about 4.5 ppm / K.

半導体レーザバー10の内部の下面側には、レーザダイオード素子のn型半導体が配置されており、さらに半導体レーザバーの下面にはn型半導体に電力を供給するための第1接続面である、例えば最表面が金(Au)層となるようにチタン(Ti)層、白金(Pt)層、Au層を順に積層した構成の金属層が設けられている。   An n-type semiconductor of a laser diode element is arranged on the lower surface side inside the semiconductor laser bar 10, and further, a lower surface of the semiconductor laser bar is a first connection surface for supplying power to the n-type semiconductor, for example, A metal layer having a structure in which a titanium (Ti) layer, a platinum (Pt) layer, and an Au layer are sequentially laminated so that the surface becomes a gold (Au) layer is provided.

また、半導体レーザバー10の内部の上面側には、レーザダイオード素子のp型半導体が配置されており、さらに半導体レーザバーの上面にはp型半導体に電力を供給するための第2接続面である、例えば最表面が金(Au)層となるようにチタン(Ti)層、白金(Pt)層、Au層を順に積層した構成の金属層が設けられている。   The p-type semiconductor of the laser diode element is arranged on the upper surface side inside the semiconductor laser bar 10, and the upper surface of the semiconductor laser bar is a second connection surface for supplying power to the p-type semiconductor. For example, a metal layer having a structure in which a titanium (Ti) layer, a platinum (Pt) layer, and an Au layer are sequentially laminated so that the outermost surface is a gold (Au) layer is provided.

第1水冷ヒートシンク11aは前方(レーザ光出射端側)に微小流路(マイクロチャネル)を設けた銅(Cu)薄板とモリブデン(Mo)薄板を積層して構成されており、8ppm/Kの熱膨張係数を有する。さらに、表面および内部流路はAuメッキ処理が施されている。第1水冷ヒートシンク11aの寸法は、例えば、幅約10.8mm、奥行き約27mm、厚み約1.55mmである。   The first water-cooled heat sink 11a is formed by laminating a copper (Cu) thin plate and a molybdenum (Mo) thin plate provided with a micro flow channel (micro channel) on the front side (laser beam emission end side), and heat of 8 ppm / K. Has an expansion coefficient. Furthermore, the surface and the internal flow path are subjected to Au plating. The dimensions of the first water-cooled heat sink 11a are, for example, a width of about 10.8 mm, a depth of about 27 mm, and a thickness of about 1.55 mm.

第2水冷ヒートシンク11bは前方(レーザ光出射端側)に微小流路(マイクロチャネル)を設けた銅(Cu)薄板とモリブデン(Mo)薄板を積層して構成されており、8ppm/Kの熱膨張係数を有する。さらに、表面および内部流路はAuメッキ処理が施されている。第2水冷ヒートシンク11bの寸法は、例えば、幅約10.8mm、奥行き約27mm、厚み約1.55mmである。   The second water-cooled heat sink 11b is formed by laminating a copper (Cu) thin plate and a molybdenum (Mo) thin plate provided with a micro flow channel (micro channel) on the front side (laser beam emission end side), and has a heat of 8 ppm / K. Has an expansion coefficient. Furthermore, the surface and the internal flow path are subjected to Au plating. The dimensions of the second water-cooled heat sink 11b are, for example, a width of about 10.8 mm, a depth of about 27 mm, and a thickness of about 1.55 mm.

屈曲性を有する金属箔12は例えば、厚み約50μmのCuからなり、表面はAuメッキ処理がなされている。全体的な平面形状は前方が狭くなった凸型形状であり、幅約10.8mm、奥行き約25mmの平板から幅約4mmの凸部が長さ約2mmで突き出た構成である。さらに水冷ヒートシンクの冷却水流入口、冷却水排出口、固定用貫通穴部と重なる部分はほぼ同一径の穴が形成されている。屈曲性の金属箔12の熱伝導は最も断面積の小さい凸部であっても、通常、上側電極の電気的および熱的な接続に用いられる50μm径のAuワイヤ約125本分に相当する。   The flexible metal foil 12 is made of, for example, Cu having a thickness of about 50 μm, and the surface is subjected to Au plating. The overall planar shape is a convex shape with a narrow front, and a convex portion with a width of about 4 mm protrudes from a flat plate with a width of about 10.8 mm and a depth of about 25 mm with a length of about 2 mm. Furthermore, holes having substantially the same diameter are formed in portions that overlap the cooling water inlet, the cooling water discharge port, and the fixing through hole of the water cooling heat sink. The heat conduction of the flexible metal foil 12 is usually equivalent to about 125 Au wires having a diameter of 50 μm used for electrical and thermal connection of the upper electrode, even if the convex portion has the smallest cross-sectional area.

導電性支持部材21a、21bは例えば、熱膨張係数が約2.3ppm/K、熱伝導率は>1000W/(m・K)のダイヤモンドからなり、表面にはTi層(0.06μm)、Pt層(0.2μm)、Au層(2μm)を順に積層した構成の金属層が形成されている。導電性支持部材21aの寸法は、例えば、長さ約5mm、奥行き約1.5mm、厚み約0.2mmである。さらに導電性支持部材21a、21bの上面および下面には厚み約2.5μmのAuSn半田層が形成されている。   For example, the conductive support members 21a and 21b are made of diamond having a thermal expansion coefficient of about 2.3 ppm / K and a thermal conductivity of> 1000 W / (m · K), and a Ti layer (0.06 μm), Pt on the surface. A metal layer having a structure in which a layer (0.2 μm) and an Au layer (2 μm) are sequentially laminated is formed. The dimensions of the conductive support member 21a are, for example, a length of about 5 mm, a depth of about 1.5 mm, and a thickness of about 0.2 mm. Further, an AuSn solder layer having a thickness of about 2.5 μm is formed on the upper and lower surfaces of the conductive support members 21a and 21b.

導電性支持部材21a、21bは表面にAuメッキ層が形成されたダイヤモンド(約40%)とCu(約60%)の複合材料(熱膨張係数約6ppm/K、熱伝導率は550W/(m・K))からなり、上面および下面には厚み約2.5μmのAuSn半田層が形成されている構成でもよい。   The conductive support members 21a and 21b are a composite material of diamond (about 40%) and Cu (about 60%) with an Au plating layer formed on the surface (thermal expansion coefficient is about 6 ppm / K, thermal conductivity is 550 W / (m A structure in which an AuSn solder layer having a thickness of about 2.5 μm is formed on the upper surface and the lower surface is also possible.

絶縁板22は厚み40μmのポリイミド(PI)とPIを上下からはさむ接着層(上下とも約10μm)から構成され総厚み約60μmであり、全体的な平面形状は幅約10.8mm、奥行き約25mmの矩形である。さらに水冷ヒートシンクの冷却水流入口、冷却水排出口、固定用貫通穴部と重なる部分はほぼ同一径の穴が形成されている。   The insulating plate 22 is composed of polyimide (PI) having a thickness of 40 μm and an adhesive layer (about 10 μm on both top and bottom) sandwiching PI from above and below, and has a total thickness of about 60 μm. The overall planar shape is about 10.8 mm in width and about 25 mm in depth. Rectangle. Furthermore, holes having substantially the same diameter are formed in portions that overlap the cooling water inlet, the cooling water discharge port, and the fixing through hole of the water cooling heat sink.

スペーサ13、上部電極取り出し部を兼ねる押さえ板14、下部電極取り出し部を兼ねる冷却水流路ベース部15はCuからなり、表面および内部流路はAuメッキ処理が施されている。   The spacer 13, the holding plate 14 that also serves as the upper electrode take-out part, and the cooling water flow path base part 15 that also serves as the lower electrode take-out part are made of Cu, and the surface and the internal flow path are subjected to Au plating.

本発明の半導体レーザ装置は、例えば、以下のように製造することができる。   The semiconductor laser device of the present invention can be manufactured, for example, as follows.

まず、例えばGaNからなる基板上に、例えば有機金属化学気相成長(MOCVD)法等でGaN系半導体からなる半導体層を形成し、上下面に前記金属層を形成する。続いて所定の寸法にGaN基板を成形する。これにより、図に示した半導体レーザバー10を形成する。   First, a semiconductor layer made of a GaN-based semiconductor is formed on a substrate made of GaN, for example, by a metal organic chemical vapor deposition (MOCVD) method or the like, and the metal layers are formed on the upper and lower surfaces. Subsequently, a GaN substrate is formed to a predetermined dimension. As a result, the semiconductor laser bar 10 shown in the figure is formed.

続いて、第1水冷ヒートシンク11aと導電性支持部材21aを用意し、精度よく位置合わせを行った上で、導電性支持部材21aを第1水冷ヒートシンクに載せる。   Subsequently, the first water-cooled heat sink 11a and the conductive support member 21a are prepared, and after aligning with high precision, the conductive support member 21a is placed on the first water-cooled heat sink.

さらに、導電性支持部材21a上面のAuSn半田層と、半導体レーザバー10下部の第1接続面を対向させ、精度よく位置合わせを行った上で、半導体レーザバー10を導電性支持部材21a上に載せる。   Further, the AuSn solder layer on the upper surface of the conductive support member 21a and the first connection surface below the semiconductor laser bar 10 are opposed to each other, and after positioning with high precision, the semiconductor laser bar 10 is placed on the conductive support member 21a.

加えて、導電性支持部材21bを用意し、下面のAuSn半田層と、半導体レーザバー10上部の第2接続面を対向させ、精度よく位置合わせを行った上で、導電性支持部材21bを半導体レーザバー10上に載せる。   In addition, the conductive support member 21b is prepared, the AuSn solder layer on the lower surface and the second connection surface on the upper portion of the semiconductor laser bar 10 are opposed to each other, and the conductive support member 21b is attached to the semiconductor laser bar with high accuracy. 10 on top.

さらに、金属箔12を用意し、導電性支持部材21bの上面のAuSn半田層上に精度よく位置合わせを行った上で金属箔12の凸部を載せる。   Furthermore, the metal foil 12 is prepared, and after aligning with high precision on the AuSn solder layer on the upper surface of the conductive support member 21b, the convex portion of the metal foil 12 is placed.

続いて金属箔12の凸部に平板の治具を介して下向きの力約0.6Nを加え、第1水冷ヒートシンク11aに対して加熱処理を施すことにより、金属箔12の凸部、導電性支持部材21b、半導体レーザバー10、導電性支持部材21a、第1水冷ヒートシンク11aを溶着させる。   Subsequently, a downward force of about 0.6 N is applied to the convex portion of the metal foil 12 via a flat jig, and the first water-cooled heat sink 11a is subjected to heat treatment, whereby the convex portion of the metal foil 12 and the conductive property are obtained. The support member 21b, the semiconductor laser bar 10, the conductive support member 21a, and the first water-cooled heat sink 11a are welded.

さらに、絶縁板22を用意し、第1水冷ヒートシンク11aに下部接着層を介して接着する。続いて、金属箔12凸部の導電性支持部材21bと固着していない部分を図4のように屈曲させる。加えて、絶縁板22上部の接着層を介して絶縁板22上に、金属箔12の平板部を接着する。   Further, an insulating plate 22 is prepared and bonded to the first water-cooled heat sink 11a via a lower adhesive layer. Subsequently, the portion of the metal foil 12 convex portion not fixed to the conductive support member 21b is bent as shown in FIG. In addition, the flat plate portion of the metal foil 12 is bonded onto the insulating plate 22 via the adhesive layer on the insulating plate 22.

上記の工程で第1水冷ヒートシンク11a上に導電性支持部材21a、半導体レーザバー10、導電性支持部材21b、絶縁板22、屈曲性金属箔12が固定された部材が完成する。   A member in which the conductive support member 21a, the semiconductor laser bar 10, the conductive support member 21b, the insulating plate 22, and the flexible metal foil 12 are fixed on the first water-cooled heat sink 11a is completed through the above steps.

半導体レーザバー10を同一のレーザバーに近い熱膨張係数を有する導電性支持部材21a、21bではさんで実装を行うことにより、半導体レーザバー10の上面と下面の両面で熱膨張係数の均衡がとれることとなり、実装時に生じる熱応力を低減し、半導体レーザバー10の反りを抑制することができる。さらに、非常に高い熱伝導率を有する材料で導電性支持部材を構成することにより、レーザバーで発生した熱を速やかに拡散することが可能となる。   By mounting the semiconductor laser bar 10 between the conductive support members 21a and 21b having a thermal expansion coefficient close to that of the same laser bar, the thermal expansion coefficient can be balanced on both the upper surface and the lower surface of the semiconductor laser bar 10, Thermal stress generated during mounting can be reduced, and warpage of the semiconductor laser bar 10 can be suppressed. Furthermore, the heat generated by the laser bar can be quickly diffused by configuring the conductive support member with a material having very high thermal conductivity.

ここで前記部材を図示しないOリング1を間にはさんで冷却水流路ベース15に載せる。続いて図示しないOリング2とスペーサ13を間にはさんで第2水冷ヒートシンク11bを前記部材に載せる。さらに図示しないOリング3を間にはさんで押さえ板14を第2水冷ヒートシンク11bに載せる。絶縁性の止めネジ16a〜16c(例えば、アルミナセラミック(Al2O3)製)を用いて前記全ての部材を冷却水路ベース部15に固定する。   Here, the member is placed on the cooling water passage base 15 with an O-ring 1 (not shown) interposed therebetween. Subsequently, the second water-cooled heat sink 11b is placed on the member with an O-ring 2 and a spacer 13 (not shown) interposed therebetween. Further, the holding plate 14 is placed on the second water-cooled heat sink 11b with an O-ring 3 (not shown) interposed therebetween. All the members are fixed to the cooling water channel base 15 using insulating set screws 16 a to 16 c (for example, made of alumina ceramic (Al 2 O 3)).

次に、動作について説明する。図示しない駆動用電源装置のプラス極は押さえ板14後方端部のねじ穴に、端子、導線を介して電気的に接続される。プラス極からの電流は、押さえ板14と第2水冷ヒートシンク11b、スペーサ13、金属箔12、導電性支持部材21bとを通って半導体レーザバー10に流れる。電流は半導体レーザバー10内部のpnジャンクションに注入され、図中のレーザ光出射方向にレーザ光が出力される。pnジャンクションを流れた電流は導電性支持部材21bと第1水冷ヒートシンク11a、冷却水流路ベース部15とを通って、冷却水流路ベース部15上面後部のねじ穴に端子、導線を介して接続された駆動用電源装置のマイナス極に戻る。   Next, the operation will be described. A positive pole of a driving power supply device (not shown) is electrically connected to a screw hole at the rear end of the pressing plate 14 via a terminal and a conductive wire. The current from the positive electrode flows to the semiconductor laser bar 10 through the pressing plate 14, the second water-cooled heat sink 11b, the spacer 13, the metal foil 12, and the conductive support member 21b. The current is injected into the pn junction inside the semiconductor laser bar 10, and the laser beam is output in the laser beam emission direction in the figure. The current flowing through the pn junction passes through the conductive support member 21b, the first water-cooled heat sink 11a, and the cooling water channel base 15 and is connected to the screw hole at the rear of the upper surface of the cooling water channel base 15 via a terminal and a conductor. Return to the negative pole of the drive power supply.

続いてレーザ光出力時の熱の流れに関して説明する。前記pnジャンクション部で発生した熱は、上方向に関しては、まず導電性支持部材21bに拡散し、続いて金属箔12の凸部を介して平板部に伝わり、スペーサ13、第2水冷ヒートシンク11bに拡散する。第2水冷ヒートシンク11bに伝わった熱はマイクロチャネル部で、図示しない冷却水循環装置から冷却水路ベース部15を介してマイクロチャネル部に流入した冷却水に熱を奪われる。冷却水は冷却水路ベース部15から排出され冷却水循環装置に戻る。一方、下方向に関しては、熱はまず導電性支持部材21aに拡散し、続いて第1水冷ヒートシンク11aに伝わり、半導体レーザバー10直下に設けられた第1水冷ヒートシンク11a内のマイクロチャネル部で冷却水に熱を奪われる。上方向と同様に冷却水は冷却水路ベース部から排出され冷却水循環装置に戻る。   Next, the heat flow at the time of laser beam output will be described. The heat generated in the pn junction portion is first diffused to the conductive support member 21b in the upward direction, and then is transferred to the flat plate portion via the convex portion of the metal foil 12, and then to the spacer 13 and the second water-cooled heat sink 11b. Spread. The heat transmitted to the second water-cooled heat sink 11b is in the microchannel portion, and the heat is taken away by the cooling water flowing into the microchannel portion from the cooling water circulation device (not shown) via the cooling water channel base portion 15. The cooling water is discharged from the cooling water channel base 15 and returns to the cooling water circulation device. On the other hand, in the downward direction, the heat is first diffused to the conductive support member 21a, then transferred to the first water-cooled heat sink 11a, and the cooling water in the microchannel portion in the first water-cooled heat sink 11a provided immediately below the semiconductor laser bar 10. Deprived of heat. As in the upward direction, the cooling water is discharged from the cooling water channel base and returns to the cooling water circulation device.

上記のように本発明の半導体レーザ装置では半導体レーザバーの上下両方向から熱伝導性の高い部材を介して、排熱を効率的に冷却水に放散することで、安定した特性で高出力のレーザ光を出力することができる。   As described above, in the semiconductor laser device according to the present invention, the exhaust heat is efficiently dissipated into the cooling water from both the upper and lower directions of the semiconductor laser bar through the highly heat conductive member, so that the laser light with stable characteristics and high output can be obtained. Can be output.

10 半導体レーザバー
11a,11b 水冷ヒートシンク
12 金属箔
13 スペーサ
14 押さえ板
15 冷却水流路ベース部
21a,21b 導電性支持部材
22 絶縁板
DESCRIPTION OF SYMBOLS 10 Semiconductor laser bar 11a, 11b Water cooling heat sink 12 Metal foil 13 Spacer 14 Holding plate 15 Cooling water flow path base part 21a, 21b Conductive support member 22 Insulating plate

Claims (7)

レーザ出力用の複数の発光素子と、
前記発光素子の共振器方向に直交する互いに対向する前記発光素子に電力を供給するための第1接続面と第2接続面を有する半導体レーザバーと、
前記半導体レーザバーの第1接続面と電気的および熱的に接合された第1電極側接続面を有し、第1電極を兼ねる、前記半導体レーザバーに近接した位置に微小流路(マイクロチャネル)を有する第1水冷ヒートシンクと、
前記半導体レーザバーの第2接続面と電気的および熱的に接続された第2電極接続面を有し、ヒートスプレッダを兼ねる第1導電性支持部材と、
前記第2電極接続面に対向する面で前記導電性支持部材と電気的および熱的に接続された屈曲性を有する金属箔と、
前記水冷ヒートシンクと前記金属箔間に配置され機械的に接合された絶縁板と、前記金属箔と電気的および熱的に接合された第2電極を兼ねる微小流路(マイクロチャネル)を有する第2水冷ヒートシンクとを
備えていることを特徴とする半導体レーザ装置。
A plurality of light emitting elements for laser output;
A semiconductor laser bar having a first connection surface and a second connection surface for supplying power to the light emitting elements facing each other perpendicular to the resonator direction of the light emitting elements;
A first channel-side connection surface that is electrically and thermally joined to the first connection surface of the semiconductor laser bar, and also serves as a first electrode, and a microchannel (microchannel) is provided in the vicinity of the semiconductor laser bar. A first water-cooled heat sink having,
A first conductive support member having a second electrode connection surface electrically and thermally connected to the second connection surface of the semiconductor laser bar, and also serving as a heat spreader;
A flexible metal foil electrically and thermally connected to the conductive support member on a surface facing the second electrode connection surface;
A second electrode having an insulating plate disposed between the water-cooled heat sink and the metal foil and mechanically joined thereto, and a microchannel serving as a second electrode electrically and thermally joined to the metal foil. A semiconductor laser device comprising a water-cooled heat sink.
前記半導体レーザバーの第1接続面と電気的および熱的に接合された電極接続面を有し、前記電極接続面に対向するヒートシンク接続面で前記第1水冷ヒートシンクと電気的および熱的に接続されたヒートスプレッダを兼ねる第2導電性支持部材を備えていることを特徴とする請求項1記載の半導体レーザ装置。 An electrode connection surface electrically and thermally bonded to the first connection surface of the semiconductor laser bar, and electrically and thermally connected to the first water-cooled heat sink at a heat sink connection surface facing the electrode connection surface; 2. The semiconductor laser device according to claim 1, further comprising a second conductive support member that also serves as a heat spreader. 前記半導体レーザバーは、略405nmの発振波長を有するGaN系半導体からなる半導体層を有することを特徴とする請求項1ないしは2記載の半導体レーザ装置。 3. The semiconductor laser device according to claim 1, wherein the semiconductor laser bar has a semiconductor layer made of a GaN-based semiconductor having an oscillation wavelength of about 405 nm. 前記第1水冷ヒートシンクは銅とモリブデンの積層構造体であり、半導体レーザ素子に近い熱膨張係数を有することを特徴とする請求項1から3のいずれかに記載の半導体レーザ装置。 4. The semiconductor laser device according to claim 1, wherein the first water-cooled heat sink is a laminated structure of copper and molybdenum and has a thermal expansion coefficient close to that of the semiconductor laser element. 前記導電性支持部材は銅とタングステンないしは銅とモリブデンの複合材料からなり、前記銅とモリブデンの積層構造体からなる第1水冷ヒートシンクと略同一の熱膨張係数を有することを特徴とする請求項4記載の半導体レーザ装置。 5. The conductive support member is made of a composite material of copper and tungsten or copper and molybdenum, and has substantially the same thermal expansion coefficient as that of the first water-cooled heat sink made of the laminated structure of copper and molybdenum. The semiconductor laser device described. 前記導電性支持部材はダイヤモンドからなる本体部の表面に厚さ2μm以上の積層構造からなる金属被覆層を有することを特徴とする請求項4記載の半導体レーザ装置。 5. The semiconductor laser device according to claim 4, wherein the conductive support member has a metal coating layer having a laminated structure having a thickness of 2 [mu] m or more on a surface of a main body portion made of diamond. 前記導電性支持部材はダイヤモンドと銅の複合材料からなることを特徴とする請求項4記載の半導体レーザ装置。 5. The semiconductor laser device according to claim 4, wherein the conductive support member is made of a composite material of diamond and copper.
JP2011086033A 2011-04-08 2011-04-08 Semiconductor laser device Withdrawn JP2012222130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011086033A JP2012222130A (en) 2011-04-08 2011-04-08 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086033A JP2012222130A (en) 2011-04-08 2011-04-08 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JP2012222130A true JP2012222130A (en) 2012-11-12

Family

ID=47273331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086033A Withdrawn JP2012222130A (en) 2011-04-08 2011-04-08 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2012222130A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772997A1 (en) * 2013-02-28 2014-09-03 PBC Lasers GmbH Laserdiode element and method for its production
CN104795726A (en) * 2015-05-05 2015-07-22 中国科学院武汉物理与数学研究所 Semiconductor laser device capable of being operated below zero DEG C by integral refrigeration
JP2016167505A (en) * 2015-03-09 2016-09-15 株式会社クリスタルシステム Semiconductor laser module
WO2016185274A1 (en) * 2015-05-19 2016-11-24 Ii-Vi Laser Enterprise Gmbh Low thermal resistance, stress-controlled diode laser assemblies

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772997A1 (en) * 2013-02-28 2014-09-03 PBC Lasers GmbH Laserdiode element and method for its production
JP2016167505A (en) * 2015-03-09 2016-09-15 株式会社クリスタルシステム Semiconductor laser module
CN104795726A (en) * 2015-05-05 2015-07-22 中国科学院武汉物理与数学研究所 Semiconductor laser device capable of being operated below zero DEG C by integral refrigeration
CN104795726B (en) * 2015-05-05 2018-04-20 中国科学院武汉物理与数学研究所 Integrally cooling can be operated in the semicondcutor laser unit below zero degrees celsius
WO2016185274A1 (en) * 2015-05-19 2016-11-24 Ii-Vi Laser Enterprise Gmbh Low thermal resistance, stress-controlled diode laser assemblies
JP2018517287A (en) * 2015-05-19 2018-06-28 ツー−シックス レーザー エンタープライズ ゲーエムベーハー Low thermal resistance stress controlled diode laser assembly.
US10297976B2 (en) 2015-05-19 2019-05-21 Ii-Vi Laser Enterprise Gmbh Low thermal resistance, stress-controlled diode laser assemblies

Similar Documents

Publication Publication Date Title
US9203213B2 (en) Semiconductor light-emitting device
JP4037815B2 (en) Laser diode module, laser device, and laser processing device
KR101142561B1 (en) Laser light source module
CN110809841B (en) Semiconductor laser device
US7724791B2 (en) Method of manufacturing laser diode packages and arrays
JPWO2013150715A1 (en) Semiconductor laser device and manufacturing method thereof
JP6320557B2 (en) Laser light source device
JP6580244B2 (en) Semiconductor laser light source device
JP2006344743A (en) Semiconductor laser device
KR20060115453A (en) Heat dissipating structure and light emitting device having the same
JP2012222130A (en) Semiconductor laser device
JP4811629B2 (en) Semiconductor laser device
US10937937B2 (en) Optical semiconductor element
US20190067161A1 (en) Semiconductor laser module and method for manufacturing the same
JP2008172141A (en) Laser diode element
JP2003046181A (en) Sub-mount, semiconductor device, and method of manufacturing sub-mount
JP2006351847A (en) Semiconductor light-emitting device
JP4543651B2 (en) Heat sink and light source device having heat sink
JP2018113377A (en) Laser light source device
JP5338029B2 (en) Semiconductor laser device, semiconductor laser device and manufacturing method thereof
JP2009158645A (en) Laser module
JP2007158008A (en) Semiconductor light emitting device
JP2017079285A (en) Laser light source device
JP2008147556A (en) Semiconductor laser device and manufacturing method therefor
JP2006013038A (en) Semiconductor laser array device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701