JP2011018683A - Thin-film solar cell and method of manufacturing the same - Google Patents

Thin-film solar cell and method of manufacturing the same Download PDF

Info

Publication number
JP2011018683A
JP2011018683A JP2009160636A JP2009160636A JP2011018683A JP 2011018683 A JP2011018683 A JP 2011018683A JP 2009160636 A JP2009160636 A JP 2009160636A JP 2009160636 A JP2009160636 A JP 2009160636A JP 2011018683 A JP2011018683 A JP 2011018683A
Authority
JP
Japan
Prior art keywords
solar cell
film solar
photoelectric conversion
thin film
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009160636A
Other languages
Japanese (ja)
Inventor
Akihiko Hosono
彰彦 細野
Hidetada Tokioka
秀忠 時岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009160636A priority Critical patent/JP2011018683A/en
Publication of JP2011018683A publication Critical patent/JP2011018683A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To reduce the electric resistance between adjacent photoelectric conversion cells by improving coverage of conductive thin films in open grooves for connection even if the conductive thin films for connection are thinner than the thickness of photoelectric conversion layers.SOLUTION: In the thin-film solar cell, a plurality of thin-film solar cell elements are disposed on a transparent insulating substrate 1 while sandwiching a groove 22 for connection, and thin-film solar cell elements are mutually connected in series within the groove 22 for connection. The thin-film solar cell includes an inclination part 8 made of an insulating material on a side within the groove 22 for connection. By a conductive film 6 formed on an incline at the inclination part 8, a rear side of one of the adjacent thin-film solar cell elements is electrically and serially connected to a front side of the other thin-film solar cell element.

Description

本発明は、集積化構造を有する薄膜太陽電池及びその製法に関するものである。   The present invention relates to a thin film solar cell having an integrated structure and a method for manufacturing the same.

光エネルギーを電気エネルギーに変換する光電変換装置として、基板上に、第1導電層、光電変換層、第2導電層が順に積層された薄膜太陽電池が知られている。その光電変換層は一般に半導体であり、p型層、高抵抗のi層、n型層の3層積層pinダイオード構造のものが用いられる。光電変換層の半導体材料としては、シリコンを主成分とするアモルファスシリコンや微結晶シリコン、シリコンとゲルマニウムの混合材料などがある。これらの膜の光電変換層は、たとえばシランガスなどシリコンを含む原料ガスを用いたプラズマCVD法などで形成することができる。また、半導体材料としてI-III-VI族化合物などの化合物半導体材料も用いられる。   As a photoelectric conversion device that converts light energy into electrical energy, a thin film solar cell in which a first conductive layer, a photoelectric conversion layer, and a second conductive layer are sequentially stacked on a substrate is known. The photoelectric conversion layer is generally a semiconductor, and a three-layer stacked pin diode structure of a p-type layer, a high-resistance i layer, and an n-type layer is used. As a semiconductor material for the photoelectric conversion layer, there are amorphous silicon mainly containing silicon, microcrystalline silicon, a mixed material of silicon and germanium, and the like. The photoelectric conversion layer of these films can be formed by, for example, a plasma CVD method using a source gas containing silicon such as silane gas. In addition, compound semiconductor materials such as I-III-VI group compounds are also used as semiconductor materials.

第1導電層と第2導電層とは光電変換層が変換した電力(電流)を取り出す電極となる。第1導電層と第2導電層とのうち、光が入射する側の表面電極には透明性を有する導電膜材料などからなる透明電極により構成されている。また、第1導電層と第2導電層とのうち、光が入射する側と反対側にある裏面電極は光を光電変換層側に反射させる高反射率の金属材料などが用いられる。   The first conductive layer and the second conductive layer serve as electrodes for extracting electric power (current) converted by the photoelectric conversion layer. Of the first conductive layer and the second conductive layer, the surface electrode on the light incident side is made of a transparent electrode made of a conductive film material having transparency. In addition, among the first conductive layer and the second conductive layer, the back electrode on the side opposite to the light incident side is made of a highly reflective metal material that reflects light toward the photoelectric conversion layer.

屋外に設置する太陽電池では、光が入射する側に透明な絶縁材料のガラス基板を設置するスーパーストレート構造が使用される場合が多い。光電変換素子はガラス基板の裏面側に形成され、その裏面側はさらに封止シートによって覆われて湿度などの影響を受けにくくされる。   In solar cells installed outdoors, a super straight structure is often used in which a transparent insulating glass substrate is installed on the light incident side. The photoelectric conversion element is formed on the back surface side of the glass substrate, and the back surface side is further covered with a sealing sheet so that it is not easily affected by humidity or the like.

また、薄膜太陽電池では、基板上の光電変換層は溝などで複数の単位セルごとに分割された集積型構造が用いられる。光電変換層や電極を分割する溝はレーザービームを照射し、その熱で照射部の光電変換層や電極を除去させるレーザースクライブ法などを用いて形成される。この集積型構造では、ある単位セルの第1導電層とその隣の単位セルの第2導電層とが電気的に直列接続される構造が一般的である。隣り合う単位セルの第1導電層(透明導電層)と第2導電層(裏面電極層)との接続は、光電変換層に形成された溝を通じてなされる。   In the thin film solar cell, an integrated structure in which the photoelectric conversion layer on the substrate is divided into a plurality of unit cells by grooves or the like is used. The groove for dividing the photoelectric conversion layer and the electrode is formed using a laser scribing method in which a laser beam is irradiated and the photoelectric conversion layer and the electrode in the irradiated portion are removed by the heat. In this integrated structure, a structure in which a first conductive layer of a certain unit cell and a second conductive layer of an adjacent unit cell are electrically connected in series is common. Connection between the first conductive layer (transparent conductive layer) and the second conductive layer (back electrode layer) of adjacent unit cells is made through a groove formed in the photoelectric conversion layer.

また、薄膜太陽電池では光の吸収波長範囲を広げることで変換効率を高めたタンデム型構造が知られている。このタンデム型は、光電変換層を光の吸収波長特性の異なる第1の半導体光電変換層と第2の半導体光電変換層との積層構造となっている。一般に、光が入射する表面側には短波長領域の光を吸収する光電変換層、裏面側には長波長領域の光を吸収する光電変換層が設置された構造となっている。光電変換層がいずれも半導体の場合は、表面側にバンドギャップの大きい半導体構成とし、裏面側はバンドギャップの小さい半導体構成が取られる。   In addition, a thin film solar cell is known to have a tandem structure in which the conversion efficiency is increased by extending the light absorption wavelength range. In the tandem type, the photoelectric conversion layer has a stacked structure of a first semiconductor photoelectric conversion layer and a second semiconductor photoelectric conversion layer having different light absorption wavelength characteristics. In general, a photoelectric conversion layer that absorbs light in a short wavelength region is provided on the front surface side where light enters, and a photoelectric conversion layer that absorbs light in a long wavelength region is provided on the back surface side. When all the photoelectric conversion layers are semiconductors, a semiconductor configuration with a large band gap on the front surface side and a semiconductor configuration with a small band gap on the back surface side is taken.

特許文献1には透明絶縁基板上に積層された透明電極層、シリコン系光電変換ユニット層、および裏面電極層が複数の光電変換セルを形成するように複数の分離溝で分離され、それらのセルが直列接続された集積型薄膜太陽電池が示されている。セル間の透明電極層を分離する溝と裏面電極層を分離する溝と間に、隣接する光電変換セルを電気的に直列接続するための接続用開口溝が形成される。この溝は結晶質シリコン系光電変換ユニット層をレーザースクライブによって除去し、その底部に透明電極層が露出するように形成される。そして、この溝に金属の裏面電極層を埋めて、一方のセルの光電変換ユニット層とその隣のセルの透明電極層とを接続する。   In Patent Document 1, a transparent electrode layer, a silicon photoelectric conversion unit layer, and a back electrode layer laminated on a transparent insulating substrate are separated by a plurality of separation grooves so as to form a plurality of photoelectric conversion cells. An integrated thin film solar cell is shown in which are connected in series. A connection opening groove for electrically connecting adjacent photoelectric conversion cells in series is formed between the groove for separating the transparent electrode layer between the cells and the groove for separating the back electrode layer. The groove is formed so that the crystalline silicon photoelectric conversion unit layer is removed by laser scribing and the transparent electrode layer is exposed at the bottom. Then, a metal back electrode layer is buried in the groove to connect the photoelectric conversion unit layer of one cell and the transparent electrode layer of the adjacent cell.

特開2001−267613号公報JP 2001-267613 A

上記のような、集積型の薄膜太陽電池では、光電変換層を除去して形成した接続用開口溝内および光電変換層の上に導電性の薄膜を形成して隣接するセル間の電気的接続がおこなわれる。しかしながら、このような薄膜太陽電池の構造を検討したところ、光電変換層の裏面と隣接する透明電極層と隣接するセルの透明電極層との電気抵抗がしばしば大きくなる問題を見出した。セル間の電気抵抗が大きくなると光電変換効率が低下する。この問題は、光電変換層の厚みが接続用開口溝内に形成される導電性膜の厚みに比べて、十分大きい場合に起こりやすい。検討の結果、その原因の一つは接続用開口溝内における導電層のカバレッジ不足であると推定された。たとえば、接続用開口溝を透明絶縁基板からレーザービームを照射するレーザースクライブによって除去した場合、その溝側面はおおむね基板に対して垂直となるが、詳細に観察するとその側面は凹凸があり、特に側面の一部にオーバーハング状になる。特に透明電極層との境界付近の溝側面がオーバーハング状になると、その部分で導電性膜が薄くなったり途切れたりして、電気抵抗が著しく増加する。   In the integrated thin film solar cell as described above, a conductive thin film is formed in the connection opening groove formed by removing the photoelectric conversion layer and on the photoelectric conversion layer, and electrical connection between adjacent cells is made. Is done. However, when examining the structure of such a thin film solar cell, the inventors have found that the electrical resistance between the back surface of the photoelectric conversion layer, the adjacent transparent electrode layer, and the transparent electrode layer of the adjacent cell often increases. When the electrical resistance between the cells increases, the photoelectric conversion efficiency decreases. This problem is likely to occur when the thickness of the photoelectric conversion layer is sufficiently larger than the thickness of the conductive film formed in the connection opening groove. As a result of the investigation, it was estimated that one of the causes was insufficient coverage of the conductive layer in the opening groove for connection. For example, when the opening groove for connection is removed from the transparent insulating substrate by laser scribing that irradiates a laser beam, the side surface of the groove is generally perpendicular to the substrate, but when observed in detail, the side surface is uneven, especially the side surface. Overhanging part of the. In particular, when the side surface of the groove near the boundary with the transparent electrode layer is in an overhang shape, the conductive film becomes thin or interrupted at that portion, and the electrical resistance is remarkably increased.

そこで、本発明はこのような問題を解決し、光電変換層の厚さに比べて接続用の導電性膜が薄い場合でも、接続用開口溝内における導電性膜のカバレッジを改善して隣接する光電変換セル間の電気抵抗低減を図ることを目的とする。   Therefore, the present invention solves such a problem and improves the coverage of the conductive film in the connection opening groove even when the conductive film for connection is thinner than the thickness of the photoelectric conversion layer. It aims at reducing the electrical resistance between photoelectric conversion cells.

本発明の薄膜太陽電池は、透明絶縁基板上に複数の薄膜太陽電池素子が接続用溝を挟んで配列され、薄膜太陽電池素子間が前記接続用溝内で相互に直列接続される薄膜太陽電池であって、前記接続用溝内の側面に絶縁材料からなる傾斜部を有し、前記傾斜部の傾斜面上に形成された導電性膜によって、隣接する一方の薄膜太陽電池素子の裏面側と他方の薄膜太陽電池素子の表面側とが電気的に直列接続された薄膜太陽電池とする。   The thin film solar cell of the present invention is a thin film solar cell in which a plurality of thin film solar cell elements are arranged on a transparent insulating substrate with a connection groove interposed therebetween, and the thin film solar cell elements are mutually connected in series within the connection groove. And having a slope portion made of an insulating material on a side surface in the connection groove, and a conductive film formed on the slope surface of the slope portion, and a back surface side of one adjacent thin film solar cell element The thin film solar cell is electrically connected in series with the surface side of the other thin film solar cell element.

本発明の薄膜太陽電池の製造方法は、透明絶縁基板上に複数の薄膜太陽電池素子が接続用溝を挟んで配列され、隣接する薄膜太陽電池素子間が前記接続用溝内で相互に直列接続される薄膜太陽電池の製造方法であって、前記透明絶縁基板上に透明電極分離溝を有する透明電極と、前記透明電極上に光電変換層と、を積層する積層工程と、隣接する前記薄膜太陽電池素子間の前記光電変換層を除去して底部に前記透明電極の接続部を露出するように接続用溝を形成する接続用溝作製工程と、前記光電変換層の裏面側と前記接続用溝内とに絶縁膜を形成する絶縁膜形成工程と、前記光電変換層の裏面側と、前記接続用溝内の底部の前記透明電極の接続部の上の前記絶縁膜を除去して、前記接続用溝内の側面に前記絶縁膜からなる傾斜部を形成する工程と、前記光電変換層の裏面側と、前記傾斜部の傾斜面の上と、前記透明電極の接続部と、に連続する導電膜を形成する工程と、前記薄膜太陽電池素子間の前記導電膜を分離する工程と、を有する薄膜太陽電池の製造方法とする。   In the method for manufacturing a thin film solar cell of the present invention, a plurality of thin film solar cell elements are arranged on a transparent insulating substrate with a connection groove interposed therebetween, and adjacent thin film solar cell elements are connected in series in the connection groove. A thin film solar cell manufacturing method, comprising: a laminating step of laminating a transparent electrode having a transparent electrode separation groove on the transparent insulating substrate; and a photoelectric conversion layer on the transparent electrode; and the adjacent thin film solar cell A connecting groove forming step of forming a connecting groove so as to remove the photoelectric conversion layer between the battery elements and exposing the connecting portion of the transparent electrode at the bottom; and a back surface side of the photoelectric conversion layer and the connecting groove An insulating film forming step of forming an insulating film in the inner surface, removing the insulating film on the back surface side of the photoelectric conversion layer and the connecting portion of the transparent electrode at the bottom in the connecting groove, and An inclined portion made of the insulating film is formed on the side surface in the groove for use. Forming a conductive film that is continuous with the back surface side of the photoelectric conversion layer, the inclined surface of the inclined portion, and the connecting portion of the transparent electrode, and the conductivity between the thin-film solar cell elements. And a step of separating the film.

本発明の薄膜太陽電池は接続用溝の側面に絶縁材料からなる傾斜部を有し、傾斜部の傾斜面上に形成された導電性膜によって、隣接する一方の薄膜太陽電池素子の裏面側と他方の薄膜太陽電池素子の表面側とが電気的に直列接続されるので導電性膜が薄い場合でも、接続用開口溝内における導電性膜のカバレッジを改善して隣接する光電変換セル間の電気抵抗低減を図ることができる。   The thin film solar cell of the present invention has an inclined portion made of an insulating material on the side surface of the connecting groove, and a conductive film formed on the inclined surface of the inclined portion, and the back surface side of one adjacent thin film solar cell element Since the surface side of the other thin film solar cell element is electrically connected in series, even when the conductive film is thin, the coverage of the conductive film in the opening groove for connection is improved and the electricity between adjacent photoelectric conversion cells is improved. Resistance can be reduced.

また、その製造方法として、光電変換層の裏面側と接続用溝内とに絶縁膜を形成する絶縁膜形成工程と、光電変換層の裏面側と、接続用溝内の底部の透明電極の接続部の上の絶縁膜を除去して、接続用溝内の側面に絶縁膜からなる傾斜部を形成する工程と有するので、幅の狭い傾斜部を容易に形成することができる。   In addition, as a manufacturing method thereof, an insulating film forming step of forming an insulating film on the back surface side of the photoelectric conversion layer and in the connection groove, and a connection between the back surface side of the photoelectric conversion layer and the transparent electrode at the bottom in the connection groove And the step of forming the inclined portion made of the insulating film on the side surface in the connecting groove by removing the insulating film on the connecting portion, the inclined portion having a narrow width can be easily formed.

本発明の実施の形態1の薄膜太陽電池の構造を示す斜視図である。It is a perspective view which shows the structure of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の構造を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態2の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 2 of this invention. 本発明の実施の形態2の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 2 of this invention. 本発明の実施の形態2の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 2 of this invention. 本発明の実施の形態2の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 2 of this invention. 本発明の実施の形態2の薄膜太陽電池の部分構造を説明する断面図である。It is sectional drawing explaining the partial structure of the thin film solar cell of Embodiment 2 of this invention. 本発明の実施の形態3の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 3 of this invention. 本発明の実施の形態3の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 3 of this invention. 本発明の実施の形態3の薄膜太陽電池の部分構造を説明する断面図である。It is sectional drawing explaining the partial structure of the thin film solar cell of Embodiment 3 of this invention. 本発明の実施の形態4の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 4 of this invention. 本発明の実施の形態4の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 4 of this invention. 本発明の実施の形態4の薄膜太陽電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the thin film solar cell of Embodiment 4 of this invention. 本発明の実施の形態4の薄膜太陽電池の部分構造を説明する断面図である。It is sectional drawing explaining the partial structure of the thin film solar cell of Embodiment 4 of this invention.

以下に、本発明にかかる薄膜太陽電池およびその製造方法の実施の形態を図面を用いて説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。さらに、実施の形態において同じ構成要素は同じ符号を付し、ある実施の形態において説明した構成要素については、別の実施の形態においてその詳細な説明を略すものとする。   Embodiments of a thin film solar cell and a method for manufacturing the same according to the present invention will be described below with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably. In the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings. Further, in the embodiment, the same components are denoted by the same reference numerals, and the detailed description of the components described in one embodiment will be omitted in another embodiment.

<実施の形態1.>
図1は本実施の形態1の薄膜太陽電池の構造を示す斜視図であり、裏面側から見た図である。薄膜太陽電池100には透明絶縁基板1の上に複数の薄膜太陽電池素子11が配列されている。この薄膜太陽電池100は薄膜太陽電池素子11と反対側の透明絶縁基板1の表面側から入射した光Sを光電変換する太陽電池である。薄膜太陽電池素子11は透明絶縁基板1側から順に、透明電極2、光電変換層4、裏面電極6が積層された構造を有する。本実施の形態1で用いた光電変換層4は基板側から順に、第1光電変換層41、中間層43、第2光電変換層42を積層したタンデム型構造を有する。透明絶縁基板1側から入射した光Sは、その一部が第1光電変換層41で光電変換されたのちに、残りが中間層43を経て、後段の第2光電変換層42でさらに光電変換される。中間層43は導電性を有して、薄膜太陽電池素子11内で第1光電変換層41と第2光電変換層42とは直列接続される。相互に直列接続された複数の薄膜太陽電池素子11の両端に位置する素子の電極から発電した電力を取り出す。なお、本実施の形態1ではタンデム型構造としたが単一の光電変換層のみからなる構造としてもよい。
<Embodiment 1. >
FIG. 1 is a perspective view showing the structure of the thin-film solar cell of the first embodiment, and is a view seen from the back side. In the thin film solar cell 100, a plurality of thin film solar cell elements 11 are arranged on the transparent insulating substrate 1. The thin film solar cell 100 is a solar cell that photoelectrically converts light S incident from the surface side of the transparent insulating substrate 1 opposite to the thin film solar cell element 11. The thin film solar cell element 11 has a structure in which a transparent electrode 2, a photoelectric conversion layer 4, and a back electrode 6 are laminated in order from the transparent insulating substrate 1 side. The photoelectric conversion layer 4 used in Embodiment 1 has a tandem structure in which a first photoelectric conversion layer 41, an intermediate layer 43, and a second photoelectric conversion layer 42 are stacked in this order from the substrate side. A part of the light S incident from the transparent insulating substrate 1 side is subjected to photoelectric conversion by the first photoelectric conversion layer 41, and the rest passes through the intermediate layer 43, and further photoelectrically converted by the second photoelectric conversion layer 42 in the subsequent stage. Is done. The intermediate layer 43 has conductivity, and the first photoelectric conversion layer 41 and the second photoelectric conversion layer 42 are connected in series in the thin film solar cell element 11. Electric power generated from the electrodes of the elements located at both ends of the plurality of thin film solar cell elements 11 connected in series with each other is taken out. Although the tandem structure is used in Embodiment 1, a structure including only a single photoelectric conversion layer may be used.

隣接する薄膜太陽電池素子11どうしは透明電極2、光電変換層4、裏面電極6に形成した溝によって分離される。本実施の形態1の薄膜太陽電池では透明電極2を分離する透明電極分離溝21と、裏面電極6を分離する裏面電極分離溝23とを有する。その透明電極分離溝21と裏面電極分離溝23とに挟まれた間に、接続用溝22が形成される。この接続用溝22内で隣接する素子の一方の裏面電極6が他方の透明電極2と電気的に接続されて素子同士が直列に接続される。なお、本実施の形態1では典型的な薄膜太陽電池素子11として細長い矩形状としたが、必ずしも矩形である必要はない。なお図では、接続用溝22と裏面電極分離溝23との間に幅の狭い光電変換層4が残って島状部25ができることを示す。この島状部25は必須ではなく、裏面電極分離溝23が接続用溝22に繋がって一体となってもよい。   Adjacent thin film solar cell elements 11 are separated by grooves formed in the transparent electrode 2, the photoelectric conversion layer 4, and the back electrode 6. The thin film solar cell of Embodiment 1 has a transparent electrode separation groove 21 that separates the transparent electrode 2 and a back electrode separation groove 23 that separates the back electrode 6. A connection groove 22 is formed between the transparent electrode separation groove 21 and the back electrode separation groove 23. One back electrode 6 of an element adjacent in the connection groove 22 is electrically connected to the other transparent electrode 2, and the elements are connected in series. In the first embodiment, a typical thin-film solar cell element 11 has an elongated rectangular shape. However, the thin-film solar cell element 11 is not necessarily rectangular. In the figure, it is shown that the narrow photoelectric conversion layer 4 remains between the connection groove 22 and the back electrode separation groove 23 to form an island-shaped portion 25. The island portion 25 is not essential, and the back electrode separation groove 23 may be integrated with the connection groove 22.

図2は本実施の形態1の薄膜太陽電池の部分構造を示す断面図であり、図1のX1−X2の点線部の基板に垂直な方向の断面を示す。この図は隣接する薄膜太陽電池素子11の接続部の構造を示している。一方の素子Aの光電変換層4の裏面側と、他方の素子Bの基板側とは接続用溝22内を介して直列接続される。本実施の形態1では一方の素子Aの光電変換層4の裏面から接続用溝22内の側面を経て、接続用溝22底部に露出した他方の素子Bの透明電極2まで連続するように裏面電極6を形成される。なお、接続用溝22内の側面を経て電気接続する構造は、必ずしも裏面電極6と透明電極2とが直接に接する必要はなく、たとえば他の導電性膜を接続用溝22内に形成したりしてもよい。   FIG. 2 is a cross-sectional view showing a partial structure of the thin-film solar cell of the first embodiment, and shows a cross section in a direction perpendicular to the substrate at the dotted line X1-X2 in FIG. This figure shows the structure of the connecting portion of adjacent thin film solar cell elements 11. The back side of the photoelectric conversion layer 4 of one element A and the substrate side of the other element B are connected in series via the connection groove 22. In the first embodiment, the back surface continues from the back surface of the photoelectric conversion layer 4 of one element A through the side surface in the connection groove 22 to the transparent electrode 2 of the other element B exposed at the bottom of the connection groove 22. Electrode 6 is formed. The structure in which electrical connection is made via the side surface in the connection groove 22 does not necessarily require the back electrode 6 and the transparent electrode 2 to be in direct contact. For example, another conductive film may be formed in the connection groove 22. May be.

この接続用溝22内の側面には絶縁材料からなる傾斜部8が設けられ、素子間を直列接続する裏面電極6などの導電性膜は傾斜部8の上に形成される。接続用溝22内において、光電変換層4側面から傾斜部8の表面までの傾斜部8の厚みは裏面電極6側で薄く、透明電極2に近づくほど厚くなっている。このため、傾斜部8の表面は基板に対して垂直より浅い角となる。たとえば、光電変換層4側面の基板に対する角度が、90度や部分的に90度以上のオーバーハング状部分を有していても、傾斜部8の表面の基板に対する角度を70〜80度などとできる。素子間を電気接続する導電性膜は、傾斜部8の上に形成されるので、側面部における傾斜が緩やかとなり、接続用溝22内側面で断線が生じにくくなり、素子間を直列接続の接続不良や抵抗増加が防止できる。   An inclined portion 8 made of an insulating material is provided on a side surface in the connection groove 22, and a conductive film such as a back electrode 6 that connects elements in series is formed on the inclined portion 8. In the connecting groove 22, the thickness of the inclined portion 8 from the side surface of the photoelectric conversion layer 4 to the surface of the inclined portion 8 is thin on the back electrode 6 side and becomes thicker as it approaches the transparent electrode 2. For this reason, the surface of the inclined portion 8 has a shallower angle than perpendicular to the substrate. For example, even if the angle of the side surface of the photoelectric conversion layer 4 with respect to the substrate is 90 degrees or partially has an overhanging portion of 90 degrees or more, the angle of the surface of the inclined portion 8 with respect to the substrate is 70 to 80 degrees or the like. it can. Since the conductive film that electrically connects the elements is formed on the inclined portion 8, the inclination at the side surface portion becomes gentle, and disconnection hardly occurs on the inner surface of the connection groove 22, and the elements are connected in series. Defects and resistance increase can be prevented.

図3〜図8は本実施の形態1の薄膜太陽電池の製造方法を説明する断面図であり、図2と同じ部分を示す。傾斜部8を形成する以外の工程は、たとえば特開2001−267613号公報で示された製造方法と同様としてもよい。まず、図3のように、SnO、ZnOなどを主成分とする透明導電材料からなる透明電極2を形成したガラスなどの透明絶縁基板1を用意する。透明電極2はスパッタ法やCVD法でたとえば0.3〜1ミクロンの厚みの透明導電膜を形成した後に、素子間で分離する透明電極分離溝21がレーザースクライブ法などで形成される。図において透明電極分離溝21は紙面に垂直方向に延びた溝を示す。透明電極2には微細な凹凸が形成されていてもよい。 3-8 is sectional drawing explaining the manufacturing method of the thin film solar cell of this Embodiment 1, and shows the same part as FIG. Processes other than the formation of the inclined portion 8 may be the same as the manufacturing method disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-267613. First, as shown in FIG. 3, a transparent insulating substrate 1 such as glass on which a transparent electrode 2 made of a transparent conductive material mainly composed of SnO 2 , ZnO or the like is formed is prepared. The transparent electrode 2 is formed with a transparent conductive film having a thickness of, for example, 0.3 to 1 micron by sputtering or CVD, and then a transparent electrode separation groove 21 for separating elements is formed by laser scribing or the like. In the figure, a transparent electrode separation groove 21 indicates a groove extending in a direction perpendicular to the paper surface. Fine irregularities may be formed on the transparent electrode 2.

次いで図4のように、透明電極2の上に光電変換層4を形成する。本実施の形態1では光電変換層4は、アモルファスシリコン層からなる第1光電変換層41、透光性の導電材料からなる中間層43、微結晶シリコン層からなる第2光電変換層42を順に積層する。これらの半導体材料からなる第1光電変換層41、第2光電変換層42はシランガスなどの半導体材料ガスを用いたプラズマCVD法で形成することができる。それらの厚みはたとえば、アモルファスシリコン層で0.3〜0.5ミクロン、微結晶シリコン層は2〜4ミクロン等とする。これらの半導体層は、高抵抗のi型層を挟んで不純物を添加したp型、n型とした層が基板側と裏面側に形成される。中間層43は、たとえばZnOやSiO(0<X<2)などの酸化物膜であり、その厚みは数〜100nm程度とする。なお、これらの層構造や材料は上記で述べた以外にも他の種々の半導体材料、導電材料を用いることができ、それらの厚みも変更可能である。1層の半導体層からなる光電変換層4としてもよい。 Next, as shown in FIG. 4, the photoelectric conversion layer 4 is formed on the transparent electrode 2. In the first embodiment, the photoelectric conversion layer 4 includes a first photoelectric conversion layer 41 made of an amorphous silicon layer, an intermediate layer 43 made of a light-transmitting conductive material, and a second photoelectric conversion layer 42 made of a microcrystalline silicon layer in order. Laminate. The first photoelectric conversion layer 41 and the second photoelectric conversion layer 42 made of these semiconductor materials can be formed by a plasma CVD method using a semiconductor material gas such as a silane gas. For example, the thickness of the amorphous silicon layer is 0.3 to 0.5 microns, and the thickness of the microcrystalline silicon layer is 2 to 4 microns. In these semiconductor layers, p-type and n-type layers to which impurities are added with a high-resistance i-type layer interposed are formed on the substrate side and the back side. The intermediate layer 43 is an oxide film such as ZnO or SiO X (0 <X <2), and has a thickness of about several to 100 nm. In addition to the above-described layer structures and materials, various other semiconductor materials and conductive materials can be used, and their thicknesses can be changed. It is good also as the photoelectric converting layer 4 which consists of one semiconductor layer.

次いで、図5のように接続用溝22を形成する。光電変換層4に溝を形成してその底部に透明電極2を露出させる。光電変換層4がシリコンやゲルマニウムなどを含有する半導体層であれば、可視レーザーを用いたレーザースクライブ法で溝を形成することが比較的容易である。YAGパルスレーザの2倍高調波の光ビームを透明絶縁基板1の表側から照射すると、透明絶縁基板1、透明電極2を通過した光ビームは光電変換層4で吸収され、光電変換層4が高温となって蒸発するなどの現象で除去される。透明電極分離溝21のすぐ近傍にこの溝に沿って光ビームを走査すると、光電変換層4は溝状に除去される。この場合、接続用溝22の幅は光ビームの集光サイズに依存し、典型的な幅は30〜100ミクロンである。なお、接続用溝22を形成する方法は、このようなレーザースクライブ法に限らず、マスクを用いてシリコンを反応性ガスのプラズマでエッチングするドライエッチング法を用いてもよい。マスクを形成する工程が必要となるが、レーザースクライブ法に比べてより幅の狭い接続用溝22を形成することが可能である。   Next, a connection groove 22 is formed as shown in FIG. A groove is formed in the photoelectric conversion layer 4 and the transparent electrode 2 is exposed at the bottom. If the photoelectric conversion layer 4 is a semiconductor layer containing silicon, germanium, or the like, it is relatively easy to form a groove by a laser scribing method using a visible laser. When the light beam of the second harmonic of the YAG pulse laser is irradiated from the front side of the transparent insulating substrate 1, the light beam that has passed through the transparent insulating substrate 1 and the transparent electrode 2 is absorbed by the photoelectric conversion layer 4, and the photoelectric conversion layer 4 has a high temperature. It is removed by a phenomenon such as evaporation. When a light beam is scanned along the groove in the immediate vicinity of the transparent electrode separation groove 21, the photoelectric conversion layer 4 is removed in a groove shape. In this case, the width of the connecting groove 22 depends on the condensing size of the light beam, and a typical width is 30 to 100 microns. The method for forming the connection groove 22 is not limited to such a laser scribing method, and a dry etching method in which silicon is etched with plasma of a reactive gas using a mask may be used. Although a step of forming a mask is required, it is possible to form a connection groove 22 that is narrower than that of the laser scribing method.

次いで図6のように、絶縁膜18を形成する。薄膜電池100の裏面全体を覆うように絶縁膜18を成膜し、接続用溝22の側面にも絶縁膜18が付着するようにする。本実施の形態1では絶縁膜18は後述のように異方性エッチングで加工するため、異方性エッチングが容易である材料が望ましい。たとえば絶縁膜18としてテトラエトキシシラン(TEOS)と酸化性ガスを用いたプラズマCVDで形成される酸化シリコン膜を用いると、接続用溝22の側面の被覆が良好で、かつ異方性エッチングが容易であるので良い。プラズマCVD法は、垂直に近い壁面においても均一に層が形成されるので、光電変換層4の上、光電変換層4の側面、接続用溝22底部の透明電極2上に連続的に層が形成される。絶縁膜18の厚みは、光電変換層4の厚みに対して、ある程度厚い膜であることが望ましい。たとえば光電変換層4の厚みの30%以上、より望ましくは50%以上とすると良く、光電変換層4の厚みと同等以上とするとさらに望ましい。また、タンデム型の薄膜電池の場合、基板側の光電変換層4の厚み以上とすると良い。なお、絶縁膜18の材料としては、シリコンを主成分とする光電変換層の場合に、上で述べたような酸化シリコン膜が密着性などの点で優れるが、これに限らず他の材料であってもよい。また、その成膜法として、上面部と側面部に付着する膜厚がおおむね同じとなるような等方的な製膜法を用いると被覆性の点で優れ、たとえばプラズマCVDやスパッタ法などのプラズマ雰囲気を用いた製膜法がよい。   Next, as shown in FIG. 6, an insulating film 18 is formed. An insulating film 18 is formed so as to cover the entire back surface of the thin film battery 100, and the insulating film 18 is also attached to the side surface of the connection groove 22. In the first embodiment, since the insulating film 18 is processed by anisotropic etching as described later, a material that can be easily etched is desirable. For example, when a silicon oxide film formed by plasma CVD using tetraethoxysilane (TEOS) and an oxidizing gas is used as the insulating film 18, the side surface of the connection groove 22 is satisfactorily covered and anisotropic etching is easy. So good. In the plasma CVD method, a layer is uniformly formed even on a wall surface close to vertical, so that the layer is continuously formed on the photoelectric conversion layer 4, the side surface of the photoelectric conversion layer 4, and the transparent electrode 2 at the bottom of the connection groove 22. It is formed. The thickness of the insulating film 18 is desirably a film that is somewhat thicker than the thickness of the photoelectric conversion layer 4. For example, it may be 30% or more of the thickness of the photoelectric conversion layer 4, more preferably 50% or more, and even more preferably equal to or more than the thickness of the photoelectric conversion layer 4. In the case of a tandem-type thin film battery, the thickness is preferably equal to or greater than the thickness of the photoelectric conversion layer 4 on the substrate side. As the material of the insulating film 18, in the case of a photoelectric conversion layer mainly composed of silicon, the silicon oxide film as described above is excellent in terms of adhesion and the like, but not limited thereto, other materials are used. There may be. Further, as the film forming method, an isotropic film forming method in which the film thicknesses attached to the upper surface portion and the side surface portion are almost the same is excellent in terms of coverage, such as plasma CVD or sputtering. A film forming method using a plasma atmosphere is preferable.

次いで図7のように、絶縁膜18を異方性エッチングする。異方性エッチングとは方向によってエッチング速度の異なるエッチングである。特に本実施の形態1の場合の異方性エッチングは、基板面に対して垂直方向のエッチング速度が、基板面に水平な方向のエッチング速度に比べてたとえば、数倍から10倍以上のように充分大きい。このような異方性エッチング方法として、たとえば、平行平板型の電極対を備えた反応性イオンエッチングを用いてもよい。絶縁膜18が酸化シリコン材料の場合、エッチングガスとしてフッ素を含有する炭化水素系ガス、たとえばCHF、Cなどを用いることができる。このような異方性エッチングによって接続用溝22内の光電変換層4の側面には絶縁膜18からなる傾斜部8ができる。一方、光電変換層4の上および接続用溝22の透明電極2の接続部分の上の絶縁膜18は除去されて、これら部分が露出する。このような傾斜部8はサイドウォールとも呼ばれ、側面からの厚みは上部から基板に近づくにつれて厚くなる。なお、上記のようなガスで絶縁膜18全部をドライエッチングすると、シリコンを主成分とする光電変換層4の一部までエッチングされる可能性がある。そこで絶縁膜18が少し残るように反応性イオンエッチングした後に、フッ化水素酸などのウェットエッチングで除去すると光電変換層4のエッチングを防止できる。 Next, as shown in FIG. 7, the insulating film 18 is anisotropically etched. Anisotropic etching is etching with different etching rates depending on the direction. In particular, the anisotropic etching in the case of the first embodiment is such that the etching rate in the direction perpendicular to the substrate surface is several times to 10 times or more compared to the etching rate in the direction horizontal to the substrate surface. Big enough. As such an anisotropic etching method, for example, reactive ion etching including a parallel plate type electrode pair may be used. When the insulating film 18 is a silicon oxide material, a hydrocarbon-based gas containing fluorine such as CHF 3 or C 2 F 6 can be used as an etching gas. By such anisotropic etching, the inclined portion 8 made of the insulating film 18 is formed on the side surface of the photoelectric conversion layer 4 in the connection groove 22. On the other hand, the insulating film 18 on the photoelectric conversion layer 4 and on the connection portion of the transparent electrode 2 in the connection groove 22 is removed, and these portions are exposed. Such an inclined portion 8 is also referred to as a sidewall, and the thickness from the side surface increases as it approaches the substrate from above. Note that when the entire insulating film 18 is dry-etched with the gas as described above, even a part of the photoelectric conversion layer 4 containing silicon as a main component may be etched. Therefore, after the reactive ion etching is performed so that the insulating film 18 remains a little, the photoelectric conversion layer 4 can be prevented from being etched by removing it by wet etching such as hydrofluoric acid.

また、異方的にエッチングする方法としてウェットエッチングによる方法でも良い。たとえばフッ化アンモニウム等の酸化シリコンのエッチング液でシャワーエッチングするとエッチング液が上面側から酸化シリコンの絶縁膜18に当たるためエッチングが上方から下方に向かって進行する。光電変換層4の上部と透明電極2の上部との絶縁膜18が無くなった時点でエッチングを完了すると、光電変換層4の側面部分には絶縁膜18が残留しており、その表面はエッチング液の流れに沿ってテーパーがついた形状となる。また、このようなウェットエッチングを用いると傾斜部8表面が滑らかな面となり、導電膜の被覆性がさらに良くなるので好ましい。   Further, a method by wet etching may be used as a method for anisotropic etching. For example, when shower etching is performed with a silicon oxide etchant such as ammonium fluoride, the etchant hits the silicon oxide insulating film 18 from the upper surface side, so that etching proceeds from the top to the bottom. When the etching is completed when the insulating film 18 between the upper part of the photoelectric conversion layer 4 and the upper part of the transparent electrode 2 disappears, the insulating film 18 remains on the side surface portion of the photoelectric conversion layer 4, and the surface thereof is an etching solution. It becomes a shape with a taper along the flow. Moreover, it is preferable to use such wet etching because the surface of the inclined portion 8 becomes a smooth surface and the coverage of the conductive film is further improved.

次いで図8のように、裏面電極6を形成して、一方の薄膜電池素子の光電変換層4の裏面側と、他方の薄膜電池素子の透明電極2とを電気的に接続する。裏面電極6は薄膜電池100の裏面全体を覆うように成膜され、光電変換層4の裏面から接続用溝22の側面と底面に連続するように付着させる。裏面電極6はAgやAl、それらの合金材料などからなる導電性膜である。その膜の典型的な厚みは0.2〜0.5ミクロンなどである。裏面電極6は接続用溝22の側面の傾斜部8の斜面に形成される。接続用溝22内の側面に対する被覆性が良くなるように裏面電極6はArガスプラズマを用いたスパッタ法などで形成されると望ましい。その後、素子間で裏面電極6を分離する裏面電極分離溝23が形成される。裏面電極分離溝23は接続用溝22を形成した場合と同様のレーザースクライブ法で形成することができる。基板側から照射されたレーザーによって光電変換層4が蒸発すると、その上部の裏面電極6も同時に剥離して溝が形成される。以上のような工程を経て、薄膜太陽電池が形成される。
なお、上記は傾斜部8の傾斜面に付着した裏面電極6を介して光電変換層4の裏面と透明電極2とを接続したが、裏面電極6以外の接続用の導電性膜を用いて接続してもよい。たとえば、光電変換層4の上に裏面電極6を形成した後に、接続用溝22を形成し、その後に傾斜部8を形成して、その傾斜部8の傾斜面に0.2〜0.5ミクロンの厚みの導電性膜を形成し、上で述べた裏面電極分離溝23と同様にこの導電性膜に分離溝を形成する。この場合でも、上記と同様な薄膜太陽電池が形成される。
Next, as shown in FIG. 8, the back electrode 6 is formed, and the back side of the photoelectric conversion layer 4 of one thin film battery element and the transparent electrode 2 of the other thin film battery element are electrically connected. The back electrode 6 is formed so as to cover the entire back surface of the thin film battery 100, and is attached so as to be continuous from the back surface of the photoelectric conversion layer 4 to the side surface and the bottom surface of the connection groove 22. The back electrode 6 is a conductive film made of Ag, Al, or an alloy material thereof. The typical thickness of the film is 0.2-0.5 microns, etc. The back electrode 6 is formed on the inclined surface of the inclined portion 8 on the side surface of the connection groove 22. It is desirable that the back electrode 6 be formed by sputtering using Ar gas plasma or the like so that the coverage on the side surface in the connection groove 22 is improved. Thereafter, a back electrode separation groove 23 for separating the back electrode 6 between the elements is formed. The back electrode separation groove 23 can be formed by a laser scribing method similar to the case where the connection groove 22 is formed. When the photoelectric conversion layer 4 is evaporated by the laser irradiated from the substrate side, the upper surface back electrode 6 is also peeled off simultaneously to form a groove. A thin film solar cell is formed through the above steps.
In addition, although the above connected the back surface of the photoelectric conversion layer 4 and the transparent electrode 2 via the back surface electrode 6 attached to the inclined surface of the inclined portion 8, the connection was made using a conductive film for connection other than the back surface electrode 6. May be. For example, after forming the back electrode 6 on the photoelectric conversion layer 4, the connecting groove 22 is formed, and then the inclined portion 8 is formed, and 0.2 to 0.5 is formed on the inclined surface of the inclined portion 8. A conductive film having a micron thickness is formed, and a separation groove is formed in this conductive film in the same manner as the back electrode separation groove 23 described above. Even in this case, a thin film solar cell similar to the above is formed.

なお、裏面電極6や接続用の導電性膜を光電変換層4と同程度に厚くすると接続用溝22内の被覆性は良好となるが、裏面電極分離溝23によって素子間を分離することが著しく困難となり、分離不十分となった裏面電極6や導電性膜によって短絡するなどの問題が生じてしまう。   If the back electrode 6 and the conductive film for connection are made as thick as the photoelectric conversion layer 4, the coverage in the connection groove 22 is improved, but the elements can be separated by the back electrode separation groove 23. It becomes extremely difficult to cause problems such as short-circuiting by the back electrode 6 and the conductive film that are insufficiently separated.

光電変換層4をレーザースクライブ法などで加工した側面は、凹凸が大きく、垂直やオーバーハング状の部分を有することが多い。このような側面に導電性膜を形成すると、スパッタ法などを用いても被覆されなかったり断線したりする部分が生じる。特に、光電変換層の厚みが導電性膜に比べて1桁以上大きいような構造でその影響が大きい。また、光電変換層に微結晶半導体層を含む場合にも、側面に凹凸ができやすく、その影響が大きい。導電性膜を厚くする方法も考えられるが、その場合、材料増加だけでなく、素子間で導電性膜を分離する加工が困難になり、歩留まり低下やコスト上昇になる。本実施の形態1の構造では、導電性膜の厚みが薄い場合でも接続用溝22内の被覆が良好となり、素子間を低抵抗に接続することが可能となる。また、ウェットエッチングなどにより傾斜部8表面が滑らかな面とされると、裏面電極6の厚みが薄い場合でも断線が生じにくく望ましい。   The side surface obtained by processing the photoelectric conversion layer 4 by a laser scribing method or the like is largely uneven, and often has a vertical or overhang portion. When a conductive film is formed on such a side surface, a portion that is not covered or disconnected is generated even if a sputtering method or the like is used. In particular, the influence is large in a structure in which the thickness of the photoelectric conversion layer is one digit or more larger than that of the conductive film. Further, in the case where the photoelectric conversion layer includes a microcrystalline semiconductor layer, unevenness is easily generated on the side surface, which is greatly affected. Although a method of increasing the thickness of the conductive film is also conceivable, in that case, not only the material increase but also the processing for separating the conductive film between elements becomes difficult, resulting in a decrease in yield and an increase in cost. In the structure of the first embodiment, even when the conductive film is thin, the coating in the connection groove 22 is good, and the elements can be connected with low resistance. Further, if the surface of the inclined portion 8 is made smooth by wet etching or the like, it is desirable that disconnection hardly occurs even when the back electrode 6 is thin.

また、光電変換層4の厚みに対して数10%〜同程度の厚みの絶縁膜18を加工して傾斜部8としたので、その厚みは、光電変換層4の厚みよりも小さくなる。このため、狭い接続用溝22であっても、裏面電極6と透明電極2との接触面積を十分大きくできるので、低抵抗に接続することができる。接続用溝22の側面に液状の樹脂を塗布して、傾斜面を有する絶縁部とするなどの方法も考えられるが、その場合、塗布樹脂の流動性から絶縁部の幅は光電変換層4の厚みよりはるかに広くなり、透明電極2を露出させるためには接続用溝22の幅を充分に広くしておく必要がある。従って、本実施の形態1の構造により、素子間の良好な電気的な接続と、接続用溝22の狭幅間による受光面積増加が両立できるので、高効率の太陽電池を実現できる。   In addition, since the insulating film 18 having a thickness of several tens% to the same thickness as the thickness of the photoelectric conversion layer 4 is processed into the inclined portion 8, the thickness is smaller than the thickness of the photoelectric conversion layer 4. For this reason, even if it is the narrow connection groove | channel 22, since the contact area of the back surface electrode 6 and the transparent electrode 2 can be enlarged enough, it can connect to low resistance. A method of applying a liquid resin to the side surface of the connecting groove 22 to form an insulating portion having an inclined surface is also conceivable, but in that case, the width of the insulating portion is that of the photoelectric conversion layer 4 due to the fluidity of the coating resin. The width of the connecting groove 22 needs to be sufficiently wide in order to be much wider than the thickness and expose the transparent electrode 2. Therefore, the structure of the first embodiment can achieve both good electrical connection between elements and an increase in the light receiving area due to the narrow width of the connection groove 22, thereby realizing a highly efficient solar cell.

さらに、タンデム型の太陽電池の場合、側面におけるリーク電流による損失を絶縁材料からなる傾斜部8で防止することができる。タンデム型の薄膜太陽電池は、光異なる電変換層の境目付近、本実施の形態1では中間層43の近傍に、n型やp型の低抵抗の層が露出する。これらに直接、導電性膜を形成すると、短絡してリーク電流による損失が生じる。傾斜部8がこれらの低抵抗の層の側部を覆うようにするとよい。たとえば、基板側に形成した光電変換層41の側部電部が覆われるようにするとよい。なお、本実施の形態1によれば、傾斜部8は一旦、形成した絶縁膜8を加工して得るので、少なくとも0.1ミクロン以上のリーク電流を防止するのに充分な厚みをとすることが容易である。   Furthermore, in the case of a tandem solar cell, loss due to leakage current on the side surface can be prevented by the inclined portion 8 made of an insulating material. In the tandem-type thin film solar cell, an n-type or p-type low-resistance layer is exposed near the boundary between different light conversion layers, in the first embodiment, near the intermediate layer 43. If a conductive film is formed directly on these, a short circuit occurs and a loss due to leakage current occurs. It is preferable that the inclined portion 8 covers the side portions of these low resistance layers. For example, the side electrical parts of the photoelectric conversion layer 41 formed on the substrate side may be covered. According to the first embodiment, since the inclined portion 8 is obtained by processing the insulating film 8 once formed, the inclined portion 8 has a thickness sufficient to prevent a leakage current of at least 0.1 microns or more. Is easy.

なお、傾斜部8は光電変換層4の側面の上端部まで被覆することが最も望ましいが必須ではない。傾斜部8の上端部はたとえば、傾斜部8の上端が光電変換層4の厚みの中間などとしても、透明電極2と側部との境界部分に傾斜ができ、その部分の接続が良好となるので素子間接続性を良好とする効果が得られる。   In addition, although it is most desirable to cover the inclined part 8 to the upper end part of the side surface of the photoelectric conversion layer 4, it is not essential. For example, even if the upper end portion of the inclined portion 8 is, for example, the upper end of the inclined portion 8 being in the middle of the thickness of the photoelectric conversion layer 4, the boundary portion between the transparent electrode 2 and the side portion can be inclined, and the connection between the portions becomes good. Therefore, an effect of improving the inter-element connectivity can be obtained.

<実施の形態2.>
図13は本実施の形態2の薄膜太陽電池の部分構造を説明する断面図であり、実施の形態1の図2と同じ部分を示す。図9〜図12は本実施の形態2の薄膜太陽電池の製造方法を説明する断面図である。本実施の形態2の薄膜太陽電池は、基本的には実施の形態1と同様であるが傾斜部8の形成方法や材料が異なる。本実施の形態2の傾斜部8は絶縁性の樹脂材料からなっている。以下ではその形成方法を説明する。
<Embodiment 2. >
FIG. 13 is a cross-sectional view for explaining a partial structure of the thin-film solar cell of the second embodiment, and shows the same portion as that of FIG. 2 of the first embodiment. 9-12 is sectional drawing explaining the manufacturing method of the thin film solar cell of this Embodiment 2. FIG. The thin film solar cell of the second embodiment is basically the same as that of the first embodiment, but the formation method and material of the inclined portion 8 are different. The inclined portion 8 of the second embodiment is made of an insulating resin material. Below, the formation method is demonstrated.

実施の形態1の図5のように接続用溝22を形成した後に、図9のように、接続用溝22を埋めるように、液体状の樹脂材料からなる絶縁膜18を塗布形成する。その後、樹脂材料に含まれる溶剤等をベーキング除去して固化した後、図10のように、酸素プラズマ処理などによって、光電変換層4の上に付着した絶縁膜18を除去して、接続用溝22のみに残るようにする。さらに図11のように接続用溝22中の絶縁膜18を接続用溝22の側部を残して中央部分が除去するように加工する。この加工は、絶縁膜18に裏面側からレーザービームを照射して加工することができる。そのレーザービームのサイズは接続用溝22の幅よりわずかに狭い溝としておくとよい。さらに図12のように接続用溝22の側部の絶縁膜18を加熱により変形させる。これによって、絶縁膜18は基板側に傾斜した傾斜部8となる。さらにこの上に裏面電極6を形成して一方のセルAの光電変換層4の裏面側と他方のセルBの透明電極2とを電気的に接続する。最後に裏面電極分離溝23を形成して図13の本実施の形態2の薄膜太陽電池が完成する。   After forming the connecting groove 22 as shown in FIG. 5 of the first embodiment, the insulating film 18 made of a liquid resin material is applied and formed so as to fill the connecting groove 22 as shown in FIG. After that, after the solvent contained in the resin material is removed by baking and solidified, the insulating film 18 adhered on the photoelectric conversion layer 4 is removed by oxygen plasma treatment or the like as shown in FIG. Only 22 is left. Further, as shown in FIG. 11, the insulating film 18 in the connection groove 22 is processed so that the central portion is removed except for the side portion of the connection groove 22. This processing can be performed by irradiating the insulating film 18 with a laser beam from the back side. The size of the laser beam is preferably a groove slightly narrower than the width of the connection groove 22. Further, as shown in FIG. 12, the insulating film 18 on the side of the connection groove 22 is deformed by heating. Thereby, the insulating film 18 becomes the inclined portion 8 inclined toward the substrate side. Further, a back electrode 6 is formed thereon to electrically connect the back side of the photoelectric conversion layer 4 of one cell A and the transparent electrode 2 of the other cell B. Finally, the back electrode separation groove 23 is formed to complete the thin film solar cell of the second embodiment shown in FIG.

本実施の形態2では、塗布後に一旦固化した樹脂材料を接続用溝2の側部のみに残るように加工して、その後にその部分を変形させて傾斜部8としたので、幅の狭い傾斜部8を作製することができる。たとえば、その傾斜部8の幅は、光電変換層22の厚みと同等としてもよい。素子間接続部Cの幅を狭めて受光部面積を増大することができる。   In the second embodiment, the resin material once solidified after application is processed so as to remain only on the side portion of the connection groove 2, and then the portion is deformed to form the inclined portion 8. Therefore, the narrow inclination Part 8 can be fabricated. For example, the width of the inclined portion 8 may be equal to the thickness of the photoelectric conversion layer 22. The width of the inter-element connection portion C can be narrowed to increase the area of the light receiving portion.

<実施の形態3.>
図16は本実施の形態3の薄膜太陽電池の部分構造を説明する断面図であり、実施の形態1の図2と同じ部分を示す。図14〜図15は本実施の形態3の薄膜太陽電池の製造方法を説明する断面図である。本実施の形態3の薄膜太陽電池は、基本的には実施の形態1と同様であるが、光電変換層4の上に金属酸化物からなる透明導電層33を有する。この透明導電層33はたとえば、ZnOなどをスパッタ法で形成した層である。
<Embodiment 3. >
FIG. 16 is a cross-sectional view for explaining a partial structure of the thin-film solar cell of the third embodiment, and shows the same portion as that of FIG. 2 of the first embodiment. 14-15 is sectional drawing explaining the manufacturing method of the thin film solar cell of this Embodiment 3. FIG. The thin film solar cell of the third embodiment is basically the same as that of the first embodiment, but has a transparent conductive layer 33 made of a metal oxide on the photoelectric conversion layer 4. This transparent conductive layer 33 is a layer formed by sputtering, for example, ZnO.

基本的には、実施の形態1と同様な工程で製造するが、傾斜部8の異方性エッチング時に透明導電層33をエッチングのストッパとして利用する。このため、エッチングガスや液として透明導電層33のエッチング速度が絶縁膜18のエッチング速度に比べて、1ケタ以上小さくなるような材料を使用する。図14のように絶縁膜18を形成後に、図15のように絶縁膜18を異方的にエッチングする際に、エッチングが透明導電層33に達すると停止するので光電変換層4をエッチングされてしまうことを容易に防止できる。ストッパとしてZnOなどの透明導電層33を用いるので、透明導電層33の上に直接に裏面電極6を形成でき、製造が容易である。その後、透明導電層33の上に裏面電極6、裏面電極分離溝23を形成することにより、図16のような本実施の形態3の薄膜太陽電池が完成する。   Basically, the manufacturing process is the same as in the first embodiment, but the transparent conductive layer 33 is used as an etching stopper during the anisotropic etching of the inclined portion 8. For this reason, a material whose etching rate of the transparent conductive layer 33 is smaller by one digit or more than the etching rate of the insulating film 18 is used as an etching gas or liquid. After forming the insulating film 18 as shown in FIG. 14, when the insulating film 18 is anisotropically etched as shown in FIG. 15, the etching stops when the etching reaches the transparent conductive layer 33, so that the photoelectric conversion layer 4 is etched. Can be easily prevented. Since the transparent conductive layer 33 such as ZnO is used as a stopper, the back electrode 6 can be formed directly on the transparent conductive layer 33, and the manufacture is easy. Thereafter, by forming the back electrode 6 and the back electrode separation groove 23 on the transparent conductive layer 33, the thin film solar cell of the third embodiment as shown in FIG. 16 is completed.

<実施の形態4.>
図20は本実施の形態4の薄膜太陽電池の部分構造を説明する断面図であり、実施の形態1の図2と同じ部分を示す。図17〜図19は本実施の形態4の薄膜太陽電池の製造方法を説明する断面図である。本実施の形態4の薄膜太陽電池は、基本的には実施の形態1と同様であるが、接続用溝22内の傾斜部8は、傾斜面を有する絶縁膜18と、光電変換層4の側面や透明電極2の上との間に薄い第2絶縁膜28を有している。絶縁膜18と第2絶縁膜28とは異なる材料からなり、エッチング特性の違いを利用して、絶縁膜18を異方性エッチングする際に第2絶縁膜28をストッパとする。
<Embodiment 4. >
FIG. 20 is a cross-sectional view for explaining a partial structure of the thin-film solar cell according to the fourth embodiment, and shows the same portion as FIG. 2 according to the first embodiment. 17-19 is sectional drawing explaining the manufacturing method of the thin film solar cell of this Embodiment 4. FIG. The thin-film solar cell of the fourth embodiment is basically the same as that of the first embodiment, but the inclined portion 8 in the connection groove 22 includes an insulating film 18 having an inclined surface and the photoelectric conversion layer 4. A thin second insulating film 28 is provided between the side surface and the transparent electrode 2. The insulating film 18 and the second insulating film 28 are made of different materials, and the second insulating film 28 is used as a stopper when the insulating film 18 is anisotropically etched using the difference in etching characteristics.

たとえば、絶縁膜18を有機樹脂材料からなる膜、第2絶縁膜28を、たとえば酸化シリコンや窒化シリコン膜とする。有機樹脂材料からなる絶縁膜18を酸素プラズマなどで異方性エッチングで加工して傾斜面を形成する。このとき、第2絶縁膜28は酸素プラズマでエッチングされないので、第2絶縁膜28が露出した時点でエッチングが停止する。その後、適当なエッチング液などを用いて第2絶縁膜28を除去する。   For example, the insulating film 18 is a film made of an organic resin material, and the second insulating film 28 is a silicon oxide or silicon nitride film, for example. The insulating film 18 made of an organic resin material is processed by anisotropic etching with oxygen plasma or the like to form an inclined surface. At this time, since the second insulating film 28 is not etched by oxygen plasma, the etching is stopped when the second insulating film 28 is exposed. Thereafter, the second insulating film 28 is removed using an appropriate etching solution or the like.

なお、絶縁膜18は抵抗率が光電変換層4中のn層やp層に比べて3ケタ以上等大きいなど、充分に高抵抗であれば、完全に絶縁性でなくとも実質的に絶縁性として用いることができる。絶縁膜18としてノンドープのポリシリコン膜を用いてもよい。その場合、第2絶縁膜28を酸化シリコンとしてハロゲン系のエッチングガスを用いて異方性ドライエッチングを行うとよい。   The insulating film 18 is substantially insulative even if it is not completely insulative if it has a sufficiently high resistance, such as a resistivity of 3 digits or more as compared with the n layer or p layer in the photoelectric conversion layer 4. Can be used as A non-doped polysilicon film may be used as the insulating film 18. In that case, anisotropic dry etching is preferably performed using the second insulating film 28 as silicon oxide and a halogen-based etching gas.

接続用溝22を加工した後に、図17のように、光電変換層4の裏面側の露出部分の全面を被覆するように第2絶縁膜28を形成する。第2絶縁膜28が酸化シリコン膜や窒化シリコン膜の場合は、スパッタ法やプラズマCVD法を用いて形成することができる。第2絶縁膜28は接続用溝22内の光電変換層4の側面にも付着する。しかし、上で述べたように、接続用溝22の逆テーパ部などを有している場合、これらの部分に被覆することは困難であり、必ずしも全面を完全に被覆する必要はない。この第2絶縁膜28のうえにさらに絶縁膜18を形成する。有機樹脂材料からなる絶縁膜18はたとえば、減圧下における化学蒸着法を用いたポリパラキシリレン膜等で、接続用溝22内にも良好に被覆することができる。絶縁膜18としてポリシリコン膜を用いる場合は、シランガスを用いたプラズマCVD法で作成することができる。   After processing the connection groove 22, as shown in FIG. 17, the second insulating film 28 is formed so as to cover the entire exposed portion on the back surface side of the photoelectric conversion layer 4. When the second insulating film 28 is a silicon oxide film or a silicon nitride film, it can be formed using a sputtering method or a plasma CVD method. The second insulating film 28 also adheres to the side surface of the photoelectric conversion layer 4 in the connection groove 22. However, as described above, when the connecting groove 22 has the reverse tapered portion or the like, it is difficult to cover these portions, and it is not always necessary to completely cover the entire surface. An insulating film 18 is further formed on the second insulating film 28. The insulating film 18 made of an organic resin material is, for example, a polyparaxylylene film using a chemical vapor deposition method under reduced pressure and can be satisfactorily covered also in the connection groove 22. When a polysilicon film is used as the insulating film 18, it can be formed by a plasma CVD method using silane gas.

次いで、図18のように絶縁膜18を異方性エッチングで加工して傾斜面を作成する。その後、図19のように光電変換層4の裏面側の第2絶縁膜28を除去する。酸化シリコンであればフッ化水素水系のエッチング液で容易に除去できる。   Next, as shown in FIG. 18, the insulating film 18 is processed by anisotropic etching to form an inclined surface. Thereafter, the second insulating film 28 on the back surface side of the photoelectric conversion layer 4 is removed as shown in FIG. If it is silicon oxide, it can be easily removed with a hydrogen fluoride aqueous etching solution.

その後、裏面電極6、裏面電極分離溝23を形成することにより、図20のような本実施の形態4の薄膜太陽電池が完成する。このように本実施の形態4では、絶縁膜を複数の異なる材料からなる膜を積層して作製して、異なる材料からなる膜は異なるエッチング方法を用いてエッチングする。傾斜部8を2つのエッチング特性の異なる膜を用いて形成したので、エッチングの停止が容易となり、加工性に優れる。   Thereafter, by forming the back electrode 6 and the back electrode separation groove 23, the thin film solar cell of the fourth embodiment as shown in FIG. 20 is completed. As described above, in Embodiment 4, the insulating film is formed by stacking a plurality of films made of different materials, and the films made of different materials are etched using different etching methods. Since the inclined portion 8 is formed using two films having different etching characteristics, it is easy to stop the etching and the workability is excellent.

以上のように、本発明の薄膜太陽電池は、透明絶縁基板1上に複数の薄膜太陽電池素子11が接続用溝22を挟んで配列され、薄膜太陽電池素子11間が接続用溝22内で相互に直列接続される薄膜太陽電池100であって、接続用溝22内の側面に絶縁材料からなる傾斜部8を有し、傾斜部8の傾斜面上に形成された導電性膜によって、隣接する一方の薄膜太陽電池素子11の裏面側と他方の薄膜太陽電池素子11の表面側とが電気的に直列接続される。このため、部分的に逆テーパの部分を有するような接続用溝22であっても、薄い導電性膜で良好な電気的接続が可能となる。接続用溝22内の側面を介したリーク電流を防止できる。また、傾斜部8の幅を光電変換層4の厚みの2倍以下や、より望ましくは等倍以下に薄くすると発電に寄与しない素子間接続部Cの幅を狭くできるので望ましい。   As described above, in the thin film solar cell of the present invention, a plurality of thin film solar cell elements 11 are arranged on the transparent insulating substrate 1 with the connection groove 22 interposed therebetween, and the thin film solar cell elements 11 are connected within the connection groove 22. A thin film solar cell 100 connected in series with each other, which has an inclined portion 8 made of an insulating material on the side surface in the connecting groove 22 and is adjacent to each other by a conductive film formed on the inclined surface of the inclined portion 8. The back surface side of one thin film solar cell element 11 and the front surface side of the other thin film solar cell element 11 are electrically connected in series. For this reason, even if it is the connection groove | channel 22 which has a part of a reverse taper partially, a favorable electrical connection is attained with a thin electroconductive film. Leakage current through the side surface in the connection groove 22 can be prevented. Further, it is desirable to make the width of the inclined portion 8 less than twice the thickness of the photoelectric conversion layer 4, or more preferably less than the same thickness, because the width of the inter-element connection portion C that does not contribute to power generation can be reduced.

また、本発明の薄膜太陽電池の製造方法は、透明絶縁基板1上に複数の薄膜太陽電池素子11が接続用溝22を挟んで配列され、隣接する薄膜太陽電池素子11間が接続用溝22内で相互に直列接続される薄膜太陽電池100の製造方法であって、透明絶縁基板1上に透明電極分離溝21を有する透明電極2と、透明電極2上に光電変換層4とを積層する積層工程と、隣接する薄膜太陽電池素子11間の光電変換層4を除去して底部に透明電極2の接続部を露出するように接続用溝22を形成する接続用溝作製工程と、光電変換層4の裏面側と接続用溝22内とに絶縁膜18を形成する絶縁膜形成工程と、光電変換層4の裏面側と、接続用溝22内の底部の透明電極2の接続部の上の絶縁膜18を除去して、接続用溝22内の側面に絶縁膜18からできる傾斜部8を形成する工程と、光電変換層4の裏面側、傾斜部8の傾斜面の上、透明電極2の接続部、に連続する導電膜を形成する工程と、薄膜太陽電池素子11間の導電膜を分離する工程と、を有する。この方法によれば、一旦、成膜した絶縁膜18を加工して傾斜部8を形成するので、光電変換層4の厚みの2倍以下や、より望ましくは等倍以下に薄くすることが容易に実現できる。これにより、接続用溝22の形成時に部分的に逆テーパの部分があっても、素子間を良好に電気的接続することが可能となる。接続用溝22内の側面を介したリーク電流を防止できる。また傾斜部8の形成方法として、等方的に絶縁膜18を成膜した後に、異方的にエッチングを行う方法で作成することで、その作製が容易となる。また、その際に、傾斜部8をエッチング特性の異なる複数の層を用いて作製して、下側の層をエッチングのストッパとして用いると、さらに加工が容易となる。   In the method for manufacturing a thin film solar cell of the present invention, a plurality of thin film solar cell elements 11 are arranged on the transparent insulating substrate 1 with the connection groove 22 interposed therebetween, and the adjacent thin film solar cell elements 11 are connected to the connection groove 22. In which a transparent electrode 2 having a transparent electrode separation groove 21 on a transparent insulating substrate 1 and a photoelectric conversion layer 4 are laminated on the transparent electrode 2. A stacking step, a connecting groove forming step of removing the photoelectric conversion layer 4 between the adjacent thin-film solar cell elements 11 and exposing the connecting portion of the transparent electrode 2 at the bottom, and a photoelectric conversion An insulating film forming step for forming an insulating film 18 on the back surface side of the layer 4 and in the connection groove 22; on the back surface side of the photoelectric conversion layer 4; and on the connection portion of the transparent electrode 2 at the bottom in the connection groove 22. The insulating film 18 is removed, and the insulating film 1 is formed on the side surface in the connecting groove 22. A step of forming an inclined portion 8 made from the above, a step of forming a conductive film continuous with the back surface side of the photoelectric conversion layer 4, on the inclined surface of the inclined portion 8, and the connecting portion of the transparent electrode 2, and a thin film solar cell element 11 to separate the conductive film between the two. According to this method, since the inclined portion 8 is formed by processing the insulating film 18 once formed, it is easy to reduce the thickness to less than twice the thickness of the photoelectric conversion layer 4, more preferably less than the same size. Can be realized. Thereby, even when there is a portion having a reverse taper when the connection groove 22 is formed, the elements can be electrically connected well. Leakage current through the side surface in the connection groove 22 can be prevented. In addition, as the method of forming the inclined portion 8, by forming the insulating film 18 isotropically and then etching it anisotropically, the manufacturing thereof becomes easy. At this time, if the inclined portion 8 is formed using a plurality of layers having different etching characteristics, and the lower layer is used as an etching stopper, the processing is further facilitated.

本発明は、性能に優れた積層型の薄膜太陽電池を実現し、その製造を容易とするものである。   The present invention realizes a laminated thin film solar cell having excellent performance and facilitates its manufacture.

1 透明絶縁基板、2 透明電極、4 光電変換層、6 裏面電極、8 傾斜部、11 薄膜太陽電池素子、18 絶縁膜、21 透明電極分離溝、22 接続用溝、23 裏面電極分離溝、25 島状部、28 第2絶縁膜、41 第1光電変換層、42 第2光電変換層、43 中間層、100 薄膜太陽電池。 DESCRIPTION OF SYMBOLS 1 Transparent insulating substrate, 2 Transparent electrode, 4 Photoelectric conversion layer, 6 Back surface electrode, 8 Inclined part, 11 Thin film solar cell element, 18 Insulating film, 21 Transparent electrode separation groove, 22 Connection groove | channel, 23 Back surface electrode separation groove, 25 Island-shaped part, 28 2nd insulating film, 41 1st photoelectric converting layer, 42 2nd photoelectric converting layer, 43 intermediate | middle layer, 100 thin film solar cell.

Claims (5)

透明絶縁基板上に複数の薄膜太陽電池素子が接続用溝を挟んで配列され、隣接する薄膜太陽電池素子間が前記接続用溝内で相互に直列接続される薄膜太陽電池の製造方法であって、
前記透明絶縁基板上に透明電極分離溝を有する透明電極と、前記透明電極上に光電変換層と、を積層する積層工程と、
隣接する前記薄膜太陽電池素子間の前記光電変換層を除去して底部に前記透明電極の接続部を露出するように接続用溝を形成する接続用溝作製工程と、
前記光電変換層の裏面側と前記接続用溝内とに絶縁膜を形成する絶縁膜形成工程と、
前記光電変換層の裏面側と、前記接続用溝内の底部の前記透明電極の接続部の上の前記絶縁膜を除去して、前記接続用溝内の側面に前記絶縁膜からなる傾斜部を形成する工程と、
前記光電変換層の裏面側と、前記傾斜部の傾斜面の上と、前記透明電極の接続部と、に連続する導電膜を形成する工程と、
前記薄膜太陽電池素子間の前記導電膜を分離する工程と、
を有する薄膜太陽電池の製造方法。
A thin-film solar cell manufacturing method in which a plurality of thin-film solar cell elements are arranged on a transparent insulating substrate with a connection groove interposed therebetween, and adjacent thin-film solar cell elements are connected in series in the connection groove. ,
A lamination step of laminating a transparent electrode having a transparent electrode separation groove on the transparent insulating substrate, and a photoelectric conversion layer on the transparent electrode;
A connecting groove forming step of forming a connecting groove so as to expose the connecting portion of the transparent electrode at the bottom by removing the photoelectric conversion layer between the adjacent thin film solar cell elements;
An insulating film forming step of forming an insulating film on the back surface side of the photoelectric conversion layer and in the connection groove;
The insulating film on the back surface side of the photoelectric conversion layer and the connecting portion of the transparent electrode at the bottom in the connecting groove is removed, and an inclined portion made of the insulating film is formed on the side surface in the connecting groove. Forming, and
Forming a continuous conductive film on the back surface side of the photoelectric conversion layer, on the inclined surface of the inclined portion, and on the connecting portion of the transparent electrode;
Separating the conductive film between the thin-film solar cell elements;
The manufacturing method of the thin film solar cell which has this.
請求項1に記載の薄膜太陽電池の製造方法であって、前記傾斜部を形成する工程において前記絶縁膜を異方性エッチングして前記傾斜部を形成する薄膜太陽電池の製造方法。 It is a manufacturing method of the thin film solar cell of Claim 1, Comprising: The manufacturing method of the thin film solar cell which forms the said inclination part by anisotropically etching the said insulating film in the process of forming the said inclination part. 請求項1に記載の薄膜太陽電池の製造方法であって、前記絶縁膜形成工程において、複数の異なる材料からなる膜を積層して前記絶縁膜を作製し、
前記傾斜部を形成する工程において、異なる材料からなる膜は異なるエッチング方法を用いてエッチングする薄膜太陽電池の製造方法。
It is a manufacturing method of the thin film solar cell according to claim 1, wherein in the insulating film forming step, a film made of a plurality of different materials is laminated to produce the insulating film,
A method of manufacturing a thin film solar cell, wherein in the step of forming the inclined portion, films made of different materials are etched using different etching methods.
透明絶縁基板上に複数の薄膜太陽電池素子が接続用溝を挟んで配列され、薄膜太陽電池素子間が前記接続用溝内で相互に直列接続される薄膜太陽電池であって、前記接続用溝内の側面に絶縁材料からなる傾斜部を有し、前記傾斜部の傾斜面上に形成された導電性膜によって、隣接する一方の薄膜太陽電池素子の裏面側と他方の薄膜太陽電池素子の表面側とが電気的に直列接続された薄膜太陽電池。 A thin film solar cell in which a plurality of thin film solar cell elements are arranged on a transparent insulating substrate with a connection groove interposed therebetween, and the thin film solar cell elements are connected in series in the connection groove, and the connection groove The inner side surface has an inclined portion made of an insulating material, and the conductive film formed on the inclined surface of the inclined portion causes the back surface side of one adjacent thin film solar cell element and the surface of the other thin film solar cell element to Thin-film solar cell in which the side is electrically connected in series. 請求項4に記載の薄膜太陽電池であって、前記傾斜部の前記接続用溝内の側面からの厚みは0.1ミクロン以上で前記光電変換層の厚み以下である薄膜太陽電池。 5. The thin film solar cell according to claim 4, wherein a thickness from a side surface in the connection groove of the inclined portion is 0.1 μm or more and less than a thickness of the photoelectric conversion layer.
JP2009160636A 2009-07-07 2009-07-07 Thin-film solar cell and method of manufacturing the same Pending JP2011018683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160636A JP2011018683A (en) 2009-07-07 2009-07-07 Thin-film solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160636A JP2011018683A (en) 2009-07-07 2009-07-07 Thin-film solar cell and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011018683A true JP2011018683A (en) 2011-01-27

Family

ID=43596274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160636A Pending JP2011018683A (en) 2009-07-07 2009-07-07 Thin-film solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011018683A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220222A (en) * 2011-04-05 2012-11-12 Mitsubishi Electric Corp Method of manufacturing infrared imaging device and infrared imaging device
WO2013057830A1 (en) * 2011-10-21 2013-04-25 京セミ株式会社 Functional thread provided with semiconductor functional element, and method for manufacturing functional thread provided with semiconductor functional element
WO2013062298A1 (en) * 2011-10-25 2013-05-02 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
KR101273015B1 (en) * 2011-05-19 2013-06-10 엘지이노텍 주식회사 Solar cell apparatus and method of fabricating the same
KR101277111B1 (en) * 2010-12-27 2013-06-20 주식회사 아바코 Solar cell and method of manufacturing the same
WO2013094940A1 (en) * 2011-12-19 2013-06-27 Lg Innotek Co., Ltd. Solar cell module and method of fabricating the same
JP2016512928A (en) * 2013-03-15 2016-05-09 サンパワー コーポレイション Reduced contact resistivity and improved lifetime of solar cells
JP2021529428A (en) * 2019-05-28 2021-10-28 信利半導体有限公司Truly Semiconductors Ltd. Manufacturing method of thin-film solar cells and thin-film solar cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317357A (en) * 1991-04-17 1992-11-09 Fujitsu Ltd Manufacture of semiconductor device
JPH1154772A (en) * 1997-08-01 1999-02-26 Citizen Watch Co Ltd Manufacture of photoelectric conversion device
JP2005093939A (en) * 2003-09-19 2005-04-07 Mitsubishi Heavy Ind Ltd Integrated tandem connection solar cell and manufacturing method of integrated tandem connection solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317357A (en) * 1991-04-17 1992-11-09 Fujitsu Ltd Manufacture of semiconductor device
JPH1154772A (en) * 1997-08-01 1999-02-26 Citizen Watch Co Ltd Manufacture of photoelectric conversion device
JP2005093939A (en) * 2003-09-19 2005-04-07 Mitsubishi Heavy Ind Ltd Integrated tandem connection solar cell and manufacturing method of integrated tandem connection solar cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277111B1 (en) * 2010-12-27 2013-06-20 주식회사 아바코 Solar cell and method of manufacturing the same
JP2012220222A (en) * 2011-04-05 2012-11-12 Mitsubishi Electric Corp Method of manufacturing infrared imaging device and infrared imaging device
KR101273015B1 (en) * 2011-05-19 2013-06-10 엘지이노텍 주식회사 Solar cell apparatus and method of fabricating the same
JPWO2013057830A1 (en) * 2011-10-21 2015-04-02 スフェラーパワー株式会社 Functional yarn with semiconductor functional element and manufacturing method thereof
WO2013057830A1 (en) * 2011-10-21 2013-04-25 京セミ株式会社 Functional thread provided with semiconductor functional element, and method for manufacturing functional thread provided with semiconductor functional element
WO2013062298A1 (en) * 2011-10-25 2013-05-02 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
US9401440B2 (en) 2011-10-25 2016-07-26 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
KR101326951B1 (en) 2011-10-25 2013-11-13 엘지이노텍 주식회사 Solar cell and method of fabricating the same
KR101306525B1 (en) 2011-12-19 2013-09-09 엘지이노텍 주식회사 Solar cell module and method of fabricating the same
WO2013094940A1 (en) * 2011-12-19 2013-06-27 Lg Innotek Co., Ltd. Solar cell module and method of fabricating the same
JP2016512928A (en) * 2013-03-15 2016-05-09 サンパワー コーポレイション Reduced contact resistivity and improved lifetime of solar cells
JP2021529428A (en) * 2019-05-28 2021-10-28 信利半導体有限公司Truly Semiconductors Ltd. Manufacturing method of thin-film solar cells and thin-film solar cells
JP7064591B2 (en) 2019-05-28 2022-05-10 信利半導体有限公司 Manufacturing method of thin-film solar cells and thin-film solar cells

Similar Documents

Publication Publication Date Title
JP2011018683A (en) Thin-film solar cell and method of manufacturing the same
JP4485506B2 (en) Thin film solar cell and method for manufacturing thin film solar cell
JP5390102B2 (en) Semiconductor device having heterojunction and interfinger structure
JP4791098B2 (en) Integrated thin film solar cell module
WO2011115206A1 (en) Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
JP2014075526A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
JP2010045332A (en) Thin-film solar cell and method of manufacturing the same
JP2013537364A (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP2010062185A (en) Photoelectric converter and method of manufacturing the same
TWI453932B (en) Photovoltaic module and method of manufacturing a photovoltaic module having an electrode diffusion layer
JP2010062186A (en) Photoelectric converter and method of manufacturing the same
WO2015122096A1 (en) Photoelectric conversion apparatus
JP6013200B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP4568531B2 (en) Integrated solar cell and method of manufacturing integrated solar cell
WO2010150749A1 (en) Solar cell, solar cell with wiring sheet attached, and solar cell module
WO2012090650A1 (en) Solar cell
JP2014072209A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
TWI492400B (en) Solar cell, method for manufacturing the same and solar cell module
WO2015141338A1 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JPH11261086A (en) Photovoltaic device and solar battery module
JP2017045818A (en) Back electrode type solar battery cell and method of manufacturing the same
JP5084868B2 (en) Method for manufacturing thin film solar cell
JP2006237100A (en) Photovoltaic apparatus and its manufacturing method
JP6013198B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
WO2017203751A1 (en) Solar cell and method for manufacturing same, and solar cell panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205