JP2011012906A - Heat supply facility - Google Patents

Heat supply facility Download PDF

Info

Publication number
JP2011012906A
JP2011012906A JP2009157986A JP2009157986A JP2011012906A JP 2011012906 A JP2011012906 A JP 2011012906A JP 2009157986 A JP2009157986 A JP 2009157986A JP 2009157986 A JP2009157986 A JP 2009157986A JP 2011012906 A JP2011012906 A JP 2011012906A
Authority
JP
Japan
Prior art keywords
heat
storage tank
medium
heat storage
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009157986A
Other languages
Japanese (ja)
Inventor
Hideki Yamaguchi
秀樹 山口
Yoshinori Hisakado
喜徳 久角
Yoshimichi Kiuchi
義通 木内
Teru Morita
輝 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2009157986A priority Critical patent/JP2011012906A/en
Publication of JP2011012906A publication Critical patent/JP2011012906A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat supply facility which appropriately supplies heat to heat consumption parts while improving energy saving performance by suppressing decline in waste heat recovery effects of a fuel cell.SOLUTION: An auxiliary heater H is provided between a heat storage tank T and a heating medium heating means K and the heat consumption parts F in a heat dissipation circulation path, and a heat storage tank bypass path Rb bypassing the heat storage tank T or heating medium heating means K and guiding a heating medium from the heat consumption parts F to the auxiliary heater H is provided in the heat dissipation circulation path. The heat supply facility includes a heat dissipation state switching means for switching the heat dissipation circulation path to a first circulation state for circulating the heating medium through the heat storage tank T or the heating medium heating means K and a second circulation state for circulating the heating medium in a form of heating by the auxiliary heater H through the heat storage tank bypass path Rb, based on a predetermined switching condition.

Description

本発明は、燃料電池の排熱を蓄熱タンクに蓄熱する蓄熱手段を備え、前記燃料電池の排熱及び前記蓄熱タンクに蓄熱された熱の少なくとも一方、並びに、補助加熱器にて発生された熱を熱消費部に供給自在に構成されている熱供給設備に関する。   The present invention comprises heat storage means for storing the exhaust heat of the fuel cell in a heat storage tank, and at least one of the exhaust heat of the fuel cell and the heat stored in the heat storage tank, and the heat generated by the auxiliary heater It is related with the heat supply equipment comprised so that supply of heat to a heat consumption part was possible.

上記のような熱供給設備は、暖房端末等の熱消費部に熱を供給するに当たり、補助加熱器にて発生された熱だけでなく、蓄熱手段にて蓄熱タンクに蓄熱した熱や燃料電池の排熱を熱消費部に供給することにより、省エネ性の向上を図っているものである。   When supplying heat to a heat consuming part such as a heating terminal, the heat supply facility as described above is not only the heat generated by the auxiliary heater, but also the heat stored in the heat storage tank by the heat storage means or the fuel cell. By supplying the exhaust heat to the heat consuming part, energy saving is improved.

従来の熱供給設備では、蓄熱手段として、蓄熱タンクの底部から熱媒を取り出して熱媒加熱用熱交換器を経由して蓄熱タンクの上部に戻す形態で熱媒を通流させる加熱用循環路
を通して熱媒を循環する加熱用熱媒循環手段が備えられ、熱媒加熱用熱交換器では、燃料電池の冷却水にて蓄熱タンクから取り出した熱媒を加熱するように構成されている(例えば、特許文献1参照。)。
In a conventional heat supply facility, as a heat storage means, a heating circulation path through which the heat medium flows in a form in which the heat medium is taken out from the bottom of the heat storage tank and returned to the top of the heat storage tank via a heat exchanger for heat medium heating A heating medium circulating means for circulating the heating medium is provided, and the heating medium heating heat exchanger is configured to heat the heating medium taken out from the heat storage tank with the cooling water of the fuel cell (for example, , See Patent Document 1).

特許文献1に記載の設備では、加熱用循環路に、熱媒加熱用熱交換器を通過した熱媒を蓄熱タンクを迂回して熱媒加熱用熱交換器に戻すバイパス路が備えられ、そのバイパス路に放熱用熱交換器が設けられている。そして、放熱用熱交換器と熱消費部との間で放熱用熱媒を循環させる放熱用循環路を通して放熱用熱媒を循環する放熱用熱媒手段が備えられている。これにより、放熱用熱交換器においてバイパス路の熱媒にて放熱用熱媒を加熱し、その加熱された放熱用熱媒を熱消費部に供給自在としている。つまり、加熱用熱媒循環手段を作動させることで、熱媒加熱用熱交換器において燃料電池の排熱にて熱媒を加熱し、その加熱された熱媒をバイパス路にて放熱用熱交換器に供給している。そして、放熱用熱交換器において燃料電池の排熱を回収した熱媒にて放熱用熱媒を加熱することになり、その加熱された放熱用熱媒を熱消費部に供給することにより、燃料電池の排熱を熱消費部に供給できるようになっている。また、放熱用循環路には、放熱用熱交換器と熱消費部との間に補助加熱器が設けられており、この補助加熱器にて放熱用熱媒を加熱することで、補助加熱器にて発生された熱を熱消費部に供給できるようになっている。   In the facility described in Patent Literature 1, the heating circulation path is provided with a bypass path that bypasses the heat storage tank and returns the heat medium that has passed through the heat medium heating heat exchanger to the heat medium heating heat exchanger. A heat exchanger for heat dissipation is provided in the bypass path. A heat dissipating heat medium means for circulating the heat dissipating heat medium through the heat dissipating circulation path for circulating the heat dissipating heat medium between the heat dissipating heat exchanger and the heat consuming part is provided. Thereby, in the heat exchanger for heat radiation, the heat medium for heat radiation is heated by the heat medium in the bypass passage, and the heated heat medium for heat radiation is freely supplied to the heat consuming part. In other words, by operating the heating medium circulating means, the heating medium is heated by the exhaust heat of the fuel cell in the heating medium heating heat exchanger, and the heated heating medium is radiated heat exchange by the bypass path. Supply to the vessel. Then, in the heat exchanger for heat dissipation, the heat dissipation heat medium is heated with the heat medium that has recovered the exhaust heat of the fuel cell, and the heated heat dissipation heat medium is supplied to the heat consuming part, thereby The exhaust heat of the battery can be supplied to the heat consuming part. Further, the heat dissipation circulation path is provided with an auxiliary heater between the heat dissipation heat exchanger and the heat consuming part, and the auxiliary heater is heated by heating the heat dissipation heat medium with the auxiliary heater. The heat generated in can be supplied to the heat consuming part.

特開2007−263388号公報JP 2007-263388 A

上記特許文献1に記載の設備では、補助加熱器の駆動をできるだけ低減させることで、燃料電池の排熱を有効に利用することができるので、省エネ性を向上することができる。しかしながら、熱消費部に熱を供給するに当たり、常に燃料電池の排熱を熱消費部に供給すると、燃料電池の排熱回収効果が低減する可能性がある。例えば、熱消費部が床暖房装置等の暖房端末であると、熱消費部から放熱用熱交換器に戻る放熱用熱媒の温度が比較的高温(例えば、30〜60℃)となることがあり、放熱用熱交換器を通過した熱媒の温度も比較的高温となる。一方、熱媒加熱用熱交換器に供給される熱媒の温度が高くなると燃料電池を冷却できなくなるので、放熱用熱交換器を通過した熱媒の温度が高温になると、ラジエータにて放熱してのち熱媒加熱用熱交換器に供給することになる。よって、熱媒が有する熱を一旦放熱しながら、燃料電池の排熱を回収することになり、燃料電池の排熱回収効果が低減することになる。   In the facility described in Patent Document 1, by reducing the drive of the auxiliary heater as much as possible, the exhaust heat of the fuel cell can be used effectively, so that energy saving can be improved. However, if the exhaust heat of the fuel cell is always supplied to the heat consuming portion when supplying heat to the heat consuming portion, the exhaust heat recovery effect of the fuel cell may be reduced. For example, when the heat consuming part is a heating terminal such as a floor heating device, the temperature of the heat radiating heat medium returning from the heat consuming part to the heat radiating heat exchanger may be relatively high (for example, 30 to 60 ° C.). Yes, the temperature of the heat medium that has passed through the heat exchanger for heat dissipation also becomes relatively high. On the other hand, since the fuel cell cannot be cooled when the temperature of the heat medium supplied to the heat exchanger for heat medium heating becomes high, if the temperature of the heat medium that has passed through the heat exchanger for heat dissipation becomes high, the radiator dissipates heat. After that, it is supplied to the heat exchanger for heating the heat medium. Therefore, the exhaust heat of the fuel cell is recovered while once dissipating the heat of the heat medium, and the exhaust heat recovery effect of the fuel cell is reduced.

また、蓄熱タンクに蓄熱された熱を熱消費部に供給する場合には、蓄熱タンクに貯湯された熱媒を蓄熱タンクと熱消費部との間で循環させることにより、蓄熱タンクに蓄熱された熱を熱消費部に供給することになる。例えば、熱消費部が床暖房装置等の暖房端末であると、熱消費部から蓄熱タンクに戻る熱媒の温度が比較的高温となる。そのために、その後、燃料電池の排熱を蓄熱タンクに蓄熱するときに、蓄熱タンクから取り出す熱媒の温度が比較的高温となる。しかしながら、燃料電池を冷却するために、ラジエータ等の放熱手段にて蓄熱タンクから取り出した熱媒の熱を放熱する必要が生じるので、燃料電池の排熱を熱消費部に供給する場合と同様に、熱媒が有する熱を一旦放熱しながら、燃料電池の排熱を回収することになり、燃料電池の排熱回収効果が低減することになる。   In addition, when the heat stored in the heat storage tank is supplied to the heat consumption unit, the heat medium stored in the heat storage tank is circulated between the heat storage tank and the heat consumption unit to store heat in the heat storage tank. Heat is supplied to the heat consuming part. For example, when the heat consuming unit is a heating terminal such as a floor heater, the temperature of the heat medium returning from the heat consuming unit to the heat storage tank is relatively high. Therefore, after that, when the exhaust heat of the fuel cell is stored in the heat storage tank, the temperature of the heat medium taken out from the heat storage tank becomes relatively high. However, in order to cool the fuel cell, it is necessary to radiate the heat of the heat medium taken out from the heat storage tank by a heat radiating means such as a radiator, so that the exhaust heat of the fuel cell is supplied to the heat consuming part. The exhaust heat of the fuel cell is recovered while temporarily dissipating the heat of the heat medium, and the exhaust heat recovery effect of the fuel cell is reduced.

本発明は、かかる点に着目してなされたものであり、その目的は、燃料電池の排熱回収効果の低減を抑制して省エネ性の向上を図りながら、熱消費部への熱の供給を適切に行うことができる熱供給設備を提供する点にある。   The present invention has been made paying attention to such points, and its purpose is to suppress the reduction of the exhaust heat recovery effect of the fuel cell and to improve the energy saving while supplying heat to the heat consuming part. It is in the point of providing the heat supply equipment which can be performed appropriately.

この目的を達成するために、本発明に係る熱供給設備の特徴構成は、燃料電池の排熱を蓄熱タンクに蓄熱する蓄熱手段を備え、前記燃料電池の排熱及び前記蓄熱タンクに蓄熱された熱の少なくとも一方、並びに、補助加熱器にて発生された熱を熱消費部に供給自在に構成されている熱供給設備において、
前記蓄熱タンクから取り出した熱媒を前記熱消費部を経由して前記蓄熱タンクに戻す形態で又は前記燃料電池の排熱により熱媒を加熱する熱媒加熱手段と前記熱消費部との間で循環させる形態で熱媒を通流させる放熱用循環路を通して熱媒を循環させる放熱用熱媒循環手段が備えられ、前記補助加熱器が、前記放熱用循環路における前記蓄熱タンク及び前記熱媒加熱手段と前記熱消費部との間に設けられ、前記放熱用循環路に、前記蓄熱タンク及び前記熱媒加熱手段を迂回して前記熱消費部から熱媒を前記補助加熱器に導く蓄熱タンク迂回路が備えられ、予め定められた切換条件に基づいて、前記蓄熱タンク又は前記熱媒加熱手段を通して熱媒を循環させる第1循環状態と前記蓄熱タンク迂回路を通して前記補助加熱器にて加熱する形態で熱媒を循環させる第2循環状態とに前記放熱用循環路を切り換える放熱状態切換手段が備えられている点にある。
In order to achieve this object, the characteristic configuration of the heat supply facility according to the present invention is provided with heat storage means for storing the exhaust heat of the fuel cell in the heat storage tank, and is stored in the exhaust heat of the fuel cell and the heat storage tank. In a heat supply facility configured to be able to freely supply heat generated by at least one of the heat and the heat generated by the auxiliary heater,
The heat medium taken out from the heat storage tank is returned to the heat storage tank via the heat consumption part or between the heat medium heating means for heating the heat medium by exhaust heat of the fuel cell and the heat consumption part. A heat dissipating heat medium circulating means for circulating the heat medium through the heat dissipating circulation path for circulating the heat medium in a circulating form is provided, and the auxiliary heater includes the heat storage tank and the heat medium heating in the heat dissipating circulation path. The heat storage tank is provided between the heat consuming section and bypasses the heat storage tank and the heat medium heating means, and bypasses the heat storage tank and guides the heat medium from the heat consuming section to the auxiliary heater. A mode in which a passage is provided and heated by the auxiliary heater through the heat storage tank or a first circulation state in which the heat medium is circulated through the heat storage tank or the heat medium heating means and through the heat storage tank detour based on a predetermined switching condition In heat Radiating state switching means for switching the radiating circulation path and the second circulation condition for circulating lies in is provided.

本特徴構成によれば、放熱状態切換手段が放熱用循環路を第1循環状態に切り換えると、放熱用循環路を通して蓄熱タンクと熱消費部との間で又は熱媒加熱手段と熱消費部との間で熱媒を循環させることができるので、蓄熱タンクの熱媒又は熱媒加熱手段にて加熱された熱媒を熱消費部に循環供給することができる。これにより、蓄熱タンクに蓄熱された熱又は燃料電池の排熱を熱消費部に供給することができる。放熱状態切換手段が放熱用循環路を第2循環状態に切り換えると、放熱用循環路及び蓄熱タンク迂回路を通して補助加熱器と熱消費部との間で熱媒を循環させることができるので、蓄熱タンクを通さずに補助加熱器にて加熱された熱媒を熱消費部に循環供給することができる。これにより、補助加熱器にて発生された熱を熱消費部に供給することができる。よって、放熱状態切換手段が放熱用循環路を第1循環状態に切り換えても第2循環状態に切り換えても、熱消費部への熱供給を適切に行うことができる。   According to this characteristic configuration, when the heat dissipation state switching means switches the heat dissipation circulation path to the first circulation state, the heat storage tank and the heat consumption section or between the heat storage tank and the heat consumption section through the heat dissipation circulation path, Since the heat medium can be circulated between the heat medium and the heat medium heated by the heat medium heating means or the heat medium heating means, the heat medium can be circulated and supplied to the heat consuming part. Thereby, the heat stored in the heat storage tank or the exhaust heat of the fuel cell can be supplied to the heat consuming part. When the heat radiation state switching means switches the heat radiation circuit to the second circulation state, the heat medium can be circulated between the auxiliary heater and the heat consuming part through the heat radiation circuit and the heat storage tank bypass, The heat medium heated by the auxiliary heater without passing through the tank can be circulated and supplied to the heat consuming part. Thereby, the heat generated by the auxiliary heater can be supplied to the heat consuming part. Therefore, even if the heat dissipation state switching means switches the heat dissipation circulation path to the first circulation state or to the second circulation state, heat can be appropriately supplied to the heat consuming part.

そして、切換条件については、例えば、上記の発明が解決しようとする課題にて述べた如く、熱消費部から蓄熱タンク又は熱媒加熱手段に戻される熱媒の温度等によって、燃料電池の排熱回収交換が低下することがあるので、燃料電池の排熱回収効果がより高くなるように、蓄熱タンク又は熱媒加熱手段に戻される熱媒の温度等から切換条件を予め定めておくことができる。また、例えば、蓄熱タンクの蓄熱量が多量であると、その後、燃料電池の排熱を蓄熱タンクに蓄熱する際に直ぐに蓄熱タンクの蓄熱量が満杯になってしまい、燃料電池の排熱を蓄熱タンクに蓄熱できなくなる。よって、蓄熱タンクの蓄熱量によっても、燃料電池の排熱回収効果が低下することがあるので、蓄熱タンク又は熱媒加熱手段に戻される熱媒の温度等に加えて、蓄熱タンクの蓄熱量から切換条件を定めておくことができる。そして、例えば、燃料電池は、将来予測される電気負荷や熱負荷を賄うように運転させるのであるが、燃料電池の出力や運転時間等の運転状況によって蓄熱タンクに蓄熱される蓄熱量が異なることになる。蓄熱タンクの蓄熱量については、例えば、将来予測される電気負荷や熱負荷等から推測することもできる。このように、蓄熱タンクに戻される熱媒の温度や蓄熱タンクの蓄熱量等の各種の条件から切換条件を適切に定めておくことができる。よって、このように定められた切換条件に基づいて、放熱状態切換手段が放熱用循環路を第1循環状態と第2循環状態とに切り換えるので、省エネ性に対して好適な切換を行うことができる。その結果、放熱状態切換手段が放熱用循環路を第1循環状態と第2循環状態とに好適に切り換えて熱消費部への熱の供給を行うことができるので、省エネ性の向上を図りながら、熱消費部への熱の供給を適切に行うことができる。   As for the switching condition, for example, as described in the problem to be solved by the above invention, the exhaust heat of the fuel cell is changed depending on the temperature of the heat medium returned from the heat consumption part to the heat storage tank or the heat medium heating means. Since the recovery and exchange may be reduced, the switching condition can be determined in advance from the temperature of the heat medium returned to the heat storage tank or the heat medium heating means so that the exhaust heat recovery effect of the fuel cell becomes higher. . Also, for example, if the amount of heat stored in the heat storage tank is large, then the heat storage amount in the heat storage tank becomes full immediately after storing the exhaust heat of the fuel cell in the heat storage tank, and the exhaust heat of the fuel cell is stored in the heat storage tank. It becomes impossible to store heat in the tank. Therefore, since the exhaust heat recovery effect of the fuel cell may be reduced depending on the amount of heat stored in the heat storage tank, in addition to the temperature of the heat medium returned to the heat storage tank or the heat medium heating means, the heat storage amount of the heat storage tank Switching conditions can be defined. For example, the fuel cell is operated so as to cover the electric load and heat load predicted in the future, but the amount of heat stored in the heat storage tank varies depending on the operation status such as the output of the fuel cell and the operation time. become. The amount of heat stored in the heat storage tank can be estimated from, for example, an electric load or a heat load predicted in the future. In this way, the switching condition can be appropriately determined from various conditions such as the temperature of the heat medium returned to the heat storage tank and the heat storage amount of the heat storage tank. Therefore, since the heat radiation state switching means switches the heat radiation circuit between the first circulation state and the second circulation state based on the switching condition thus determined, it is possible to perform a suitable switch for energy saving. it can. As a result, the heat dissipation state switching means can suitably switch the heat dissipation circulation path between the first circulation state and the second circulation state to supply heat to the heat consuming part, so that energy saving is improved. The heat supply to the heat consuming unit can be appropriately performed.

本発明に係る熱供給設備の更なる特徴構成は、前記切換条件は、前記燃料電池にて発電された電力が供給自在な電力供給部における将来予測される電力負荷、及び、将来予測される前記熱消費部での熱負荷を賄うことを想定して、前記第1循環状態に切り換えたときの指標と前記第2循環状態に切り換えたときの指標のうち優位な指標の方に切り換えるための条件として定められている点にある。   According to a further characteristic configuration of the heat supply facility according to the present invention, the switching condition includes a power load that is predicted in the future in a power supply unit that can supply power generated by the fuel cell, and the power that is predicted in the future. Assuming that the heat load in the heat consuming part is covered, the condition for switching to the dominant index among the index when switching to the first circulation state and the index when switching to the second circulation state It is in the point stipulated as.

本特徴構成によれば、例えば、将来予測される電力負荷を賄うように燃料電池を運転させる所謂電主運転を行うことを想定して、将来予測される熱消費部での熱負荷を賄うに当たり、第1循環状態に切り換えて賄うこと想定したときの指標(例えば、ガス使用量や一次エネルギー使用量等)を求めるとともに、第2循環状態に切り換えて賄うことを想定したときの指標(例えば、ガス使用量や一次エネルギー使用量等)を求めることができる。そして、その求めた指標のうち優位な指標の方(例えば、ガス使用量であればガス使用量が小さい方)に切り換えることができる。これにより、例えば、ガス使用量や一次エネルギー使用量等の指標に基づいて、第1循環状態と第2循環状態との切換を適切に行うことができ、省エネ性の向上を的確に図ることができる。   According to this characteristic configuration, for example, assuming that a so-called main operation is performed in which the fuel cell is operated so as to cover a power load predicted in the future, the heat load in the heat consumption unit predicted in the future is covered. In addition to obtaining an index (for example, gas usage or primary energy usage) that is assumed to be covered by switching to the first circulation state, an index (eg, for example) that is assumed to be covered by switching to the second circulation state (for example, Gas usage, primary energy usage, etc.). Then, it is possible to switch to the dominant index among the calculated indices (for example, the smaller the gas usage if it is a gas usage). Thereby, for example, based on indicators such as the amount of gas used and the amount of primary energy used, it is possible to appropriately switch between the first circulation state and the second circulation state, and to accurately improve the energy saving performance. it can.

本発明に係る熱供給設備の更なる特徴構成は、前記切換条件は、前記蓄熱タンクの蓄熱量及び前記放熱用循環路にて前記熱消費部から前記蓄熱タンクに戻される熱媒の温度に基づいて定められている点にある。   According to a further characteristic configuration of the heat supply facility according to the present invention, the switching condition is based on a heat storage amount of the heat storage tank and a temperature of the heat medium returned from the heat consumption unit to the heat storage tank in the heat dissipation circulation path. It is in the point stipulated.

蓄熱タンクの蓄熱量によって、燃料電池の排熱を蓄熱タンクに蓄熱する際に蓄熱タンクの蓄熱量が直ぐに満杯になって燃料電池の排熱回収効果が低減するか否かを把握することができる。また、熱消費部から蓄熱タンクに戻される熱媒の温度によって、燃料電池の排熱を蓄熱タンクに蓄熱する際に蓄熱タンクから取り出して燃料電池に供給される熱媒の温度が高温となって燃料電池の排熱回収効果が低減するか否かを把握することができる。よって、蓄熱タンクの蓄熱量及び放熱用循環路にて熱消費部から蓄熱タンクに戻される熱媒の温度に基づいて切換条件を定めておくことで、放熱用循環路の第1循環状態と第2循環状態との切換について、燃料電池の排熱回収効果の低減を防止するための最適な切換を行うことができる。   The amount of heat stored in the heat storage tank can be used to determine whether the amount of heat stored in the heat storage tank will soon fill up when the heat stored in the fuel cell is stored in the heat storage tank, reducing the fuel cell's exhaust heat recovery effect. . Further, the temperature of the heat medium returned from the heat consuming part to the heat storage tank causes the temperature of the heat medium to be taken out from the heat storage tank and supplied to the fuel cell when the exhaust heat of the fuel cell is stored in the heat storage tank. It can be ascertained whether the exhaust heat recovery effect of the fuel cell is reduced. Therefore, by setting the switching condition based on the heat storage amount of the heat storage tank and the temperature of the heat medium returned from the heat consuming part to the heat storage tank in the heat dissipation circuit, the first circulation state and the first heat circulation circuit With regard to switching between the two circulation states, it is possible to perform optimal switching for preventing a reduction in the exhaust heat recovery effect of the fuel cell.

本発明に係る熱供給設備の更なる特徴構成は、前記切換条件は、前記蓄熱タンクの蓄熱量に基づいて定められている点にある。   A further characteristic configuration of the heat supply facility according to the present invention is that the switching condition is determined based on a heat storage amount of the heat storage tank.

本特徴構成によれば、蓄熱タンクの蓄熱量だけを考慮して切換条件を定めることができ、切換条件の設定を実効的に且つ容易に行うことができながら、上述した如く、燃料電池の排熱回収効果の低減を防止できる条件とすることができる。   According to this characteristic configuration, the switching condition can be determined considering only the heat storage amount of the heat storage tank, and the switching condition can be set effectively and easily. The conditions can prevent the reduction of the heat recovery effect.

本発明に係る熱供給設備の更なる特徴構成は、前記放熱用循環路に、前記補助加熱器を迂回するバイパス路が備えられ、前記放熱状態切換手段が前記放熱用循環路を前記第1循環状態に切り換えているときには、前記補助加熱器を通して熱媒を通流させる加熱状態と前記バイパス路を通して熱媒を通流させるバイパス状態とに切換自在で、前記放熱状態切換手段が前記放熱用循環路を前記第2循環状態に切り換えているときには前記加熱状態に切り換える通流状態切換手段が備えられている点にある。   The heat supply equipment according to the present invention is further characterized in that the heat dissipating circuit is provided with a bypass that bypasses the auxiliary heater, and the heat dissipating state switching means passes through the heat dissipating circuit in the first circulation. When switching to a state, it is possible to switch between a heating state in which the heat medium is passed through the auxiliary heater and a bypass state in which the heat medium is passed through the bypass path, and the heat dissipation state switching means is the heat dissipation circuit. When switching to the second circulation state, a flow state switching means for switching to the heating state is provided.

本特徴構成によれば、放熱状態切換手段が放熱用循環路を第1循環状態に切り換えているときには、通流状態切換手段がバイパス状態に切り換えることにより、熱媒が補助加熱器を通過することにより補助加熱器での放熱を防止しながら、蓄熱タンクの熱媒を熱消費部に供給することができる。また、蓄熱タンクから取り出した熱媒の温度が熱消費部にて要求されている温度よりも低いときには、通流状態切換手段が加熱状態に切り換えることにより、蓄熱タンクから取り出した熱媒を補助加熱器にて加熱して熱消費部に供給することができ、熱消費部にて要求されている温度の熱媒を的確に供給することができる。また、放熱状態切換手段が放熱用循環路を第2循環状態に切り換えているときには、通流状態切換手段が加熱状態に切り換えて、補助加熱器にて加熱された熱媒を熱消費部に循環供給することができる。よって、第1循環状態及び第2循環状態のいずれであっても、熱消費部への熱の供給を無駄な放熱を抑制しながら適切に行うことができる。   According to this characteristic configuration, when the heat dissipation state switching means switches the heat dissipation circuit to the first circulation state, the flow medium switching means switches to the bypass state, so that the heat medium passes through the auxiliary heater. Thus, the heat medium in the heat storage tank can be supplied to the heat consuming part while preventing heat dissipation in the auxiliary heater. Further, when the temperature of the heat medium taken out from the heat storage tank is lower than the temperature required by the heat consuming unit, the flow state switching means switches to the heating state, so that the heat medium taken out from the heat storage tank is auxiliary heated. It can be heated by a vessel and supplied to the heat consuming part, and a heat medium having a temperature required by the heat consuming part can be supplied accurately. Further, when the heat dissipation state switching means switches the heat dissipation circulation path to the second circulation state, the flow state switching means switches to the heating state and circulates the heat medium heated by the auxiliary heater to the heat consuming part. Can be supplied. Therefore, in any of the first circulation state and the second circulation state, the heat supply to the heat consumption unit can be appropriately performed while suppressing wasteful heat radiation.

本発明に係る熱供給設備の更なる特徴構成は、前記放熱用循環路に、前記熱消費部から前記蓄熱タンクに戻す熱媒の一部を分岐させて前記燃料電池の排熱にて加熱して前記蓄熱タンクから取り出した熱媒に合流させる分岐合流路が備えられている点にある。   A further characteristic configuration of the heat supply facility according to the present invention is that a part of the heat medium returned from the heat consuming part to the heat storage tank is branched into the heat dissipation circulation path and heated by the exhaust heat of the fuel cell. Therefore, a branching / merging passage for joining the heat medium taken out from the heat storage tank is provided.

本特徴構成によれば、放熱状態切換手段が放熱用循環路を第1循環状態に切り換えているときに、分岐合流路によって、熱消費部から蓄熱タンクに戻す熱媒の一部が燃料電池の排熱にて加熱されたのち蓄熱タンクから取り出した熱媒に合流される。そして、合流後の熱媒が熱消費部に供給されるので、放熱用循環路を第1循環状態に切り換えているときに、蓄熱タンクに蓄熱されている熱だけでなく、燃料電池の排熱をも熱消費部に供給することができ、燃料電池の排熱回収効果を向上することができる。   According to this characteristic configuration, when the heat dissipation state switching means switches the heat dissipation circulation path to the first circulation state, a part of the heat medium returned from the heat consuming part to the heat storage tank by the branch junction flow path is After being heated by exhaust heat, it is joined to the heat medium taken out from the heat storage tank. Then, since the combined heat medium is supplied to the heat consuming part, when the heat radiation circuit is switched to the first circulation state, not only the heat stored in the heat storage tank but also the exhaust heat of the fuel cell Can also be supplied to the heat consuming part, and the exhaust heat recovery effect of the fuel cell can be improved.

本発明に係る熱供給設備の更なる特徴構成は、前記蓄熱手段は、前記蓄熱タンクの底部から取り出した熱媒を前記燃料電池の排熱にて加熱する熱媒加熱手段を経由して前記蓄熱タンクの上部に戻す形態で熱媒を通流させる加熱用循環路を通して熱媒を循環する加熱用熱媒循環手段を備え、前記放熱用循環路は、前記蓄熱タンクの上部から取り出した熱媒を前記熱消費部に供給して前記蓄熱タンクの底部に戻す形態で熱媒を通流するように構成され、前記加熱用循環路における前記蓄熱タンクの底部から熱媒を取り出す流路部位と前記放熱用循環路における前記蓄熱タンクの底部に熱媒を戻す流路部位とが共通の流路にて構成され、前記加熱用循環路における前記蓄熱タンクの上部に熱媒を戻す流路部位と前記放熱用循環路における前記蓄熱タンクの上部から熱媒を取り出す流路部位とが共通の流路にて構成されている点にある。   According to a further characteristic configuration of the heat supply facility according to the present invention, the heat storage means is configured to store the heat storage via a heat medium heating means that heats the heat medium taken out from the bottom of the heat storage tank with the exhaust heat of the fuel cell. A heating medium circulating means for circulating the heating medium through the heating circulation path for allowing the heating medium to flow back to the upper part of the tank; and the heat radiation circulation path is configured to remove the heating medium taken out from the upper part of the heat storage tank. The heat medium is supplied to the heat consuming part and returned to the bottom part of the heat storage tank, and the flow path part for taking out the heat medium from the bottom part of the heat storage tank in the heating circulation path and the heat dissipation The flow path portion for returning the heat medium to the bottom of the heat storage tank in the circulation path is constituted by a common flow path, and the flow path portion for returning the heat medium to the upper portion of the heat storage tank in the heating circulation path and the heat dissipation The heat storage unit in the circulation circuit Lies in the flow path portion to take out the heating medium from the top of the click is constituted by a common flow path.

本特徴構成によれば、蓄熱手段により燃料電池の排熱を蓄熱タンクに蓄熱するときには、加熱用循環路によって、蓄熱タンクの底部から取り出した熱媒が熱媒加熱手段にて加熱され、その加熱された熱媒が蓄熱タンクの上部に戻される。これにより、蓄熱タンクには、高温の熱媒が上部に且つ低温の熱媒が下部に存在する温度成層を形成させる状態で燃料電池の排熱を蓄熱させていくことができる。このように蓄熱タンクには温度成層が形成されていることから、加熱用循環路によって、蓄熱タンクの上部から取り出した熱媒は高温の熱媒となっており、その高温の熱媒を熱消費部に供給することができるので、熱消費部への熱の供給を適切に行うことができる。   According to this characteristic configuration, when the waste heat of the fuel cell is stored in the heat storage tank by the heat storage means, the heat medium taken out from the bottom of the heat storage tank is heated by the heat medium heating means by the heating circulation path, and the heating is performed. The heated heat medium is returned to the upper part of the heat storage tank. Thereby, the heat storage tank can store the exhaust heat of the fuel cell in a state where a temperature stratification is formed in which the high-temperature heat medium is present at the top and the low-temperature heat medium is present at the bottom. Since the thermal storage tank is thus formed with temperature stratification, the heating medium taken out from the upper part of the thermal storage tank by the heating circulation path becomes a high-temperature heating medium, and the high-temperature heating medium is consumed by heat. Since it can supply to a part, the heat supply to a heat-consuming part can be performed appropriately.

しかも、蓄熱タンクの底部と接続する加熱用循環路の流路部位及び放熱用循環路の流路部位を共通の流路にて兼用するとともに、蓄熱タンクの上部と接続する熱用循環路の流路部位及び放熱用循環路の流路部位を共通の流路にて兼用することができる。よって、構成の簡素化を図りながら、加熱用循環路及び放熱用循環路を構成することができる。   In addition, the flow path part of the heating circulation path connected to the bottom of the heat storage tank and the flow path part of the heat dissipation circulation path are shared by the common flow path, and the flow of the heat circulation path connected to the upper part of the heat storage tank The flow path part and the flow path part of the heat dissipation circuit can be shared by a common flow path. Therefore, it is possible to configure the heating circulation path and the heat radiation circulation path while simplifying the configuration.

蓄熱運転における熱媒の流れを示した熱供給設備の構成を示す図The figure which shows the structure of the heat supply equipment which showed the flow of the heat carrier in heat storage operation 給湯用放熱運転における熱媒の流れを示した熱供給設備の構成を示す図The figure which shows the structure of the heat supply equipment which showed the flow of the heat medium in the heat dissipation operation for hot water supply 追焚用放熱運転における熱媒の流れを示した熱供給設備の構成を示す図The figure which shows the structure of the heat supply equipment which showed the flow of the heat medium in the heat dissipation operation for remembrance 高温暖房用放熱運転における熱媒の流れを示した熱供給設備の構成を示す図The figure which shows the structure of the heat supply equipment which showed the flow of the heat medium in the thermal radiation operation for high temperature heating 低温暖房用放熱運転における熱媒の流れを示した熱供給設備の構成を示す図The figure which shows the structure of the heat supply equipment which showed the flow of the heat medium in the thermal radiation operation for low temperature heating 蓄熱タンクの蓄熱量及び熱媒の温度に基づいて定められている切換条件を示す図The figure which shows the switching conditions defined based on the thermal storage amount of a thermal storage tank, and the temperature of a heat medium

本発明に係る熱供給設備の実施形態を図面に基づいて説明する。
〔第1実施形態〕
この熱供給設備Aは、図1〜図5に示すように、密閉型の蓄熱タンクT、大気開放型の膨張タンクB、熱媒が通流する熱交換部をガスバーナにて加熱するガス燃焼式の補助加熱器H、熱媒循環ポンプ1、及び、熱消費部Fを備え、さらに、燃料電池2を備えた燃料電池システムDが組み付けられている。そして、燃料電池システムDは、燃料電池2の排熱にて熱媒を加熱する熱媒加熱手段Kとして構成されている。ちなみに、図1〜図5は、いずれも熱供給設備Aにおける同様の構成を示すものであるが、熱媒の流れについて異なる状態を示しており、熱媒の流れを実線太線、点線太線、実線矢印及び点線矢印にて示している。
An embodiment of a heat supply facility according to the present invention will be described with reference to the drawings.
[First Embodiment]
As shown in FIGS. 1 to 5, the heat supply facility A is a gas combustion type in which a closed heat storage tank T, an open-air expansion tank B, and a heat exchange section through which a heat medium flows are heated by a gas burner. The auxiliary heater H, the heat medium circulation pump 1, and the heat consuming part F, and the fuel cell system D including the fuel cell 2 are assembled. The fuel cell system D is configured as a heat medium heating means K that heats the heat medium with the exhaust heat of the fuel cell 2. Incidentally, FIGS. 1 to 5 all show the same configuration in the heat supply facility A, but show different states with respect to the flow of the heat medium, and the flow of the heat medium is indicated by a solid thick line, a dotted thick line, and a solid line. Indicated by arrows and dotted arrows.

熱供給設備Aは、熱媒加熱手段Kによって燃料電池2の排熱にて蓄熱タンクTに貯留される熱媒を加熱して、加熱された熱媒を蓄熱タンクTに貯留する。そして、蓄熱タンクTに貯留された熱媒を、熱消費部Fとしての、給湯用熱交換器N1、風呂用熱交換器N2、浴室暖房装置等の高温暖房端末N3、及び、床暖房装置等の低温暖房端末N4に循環供給自在に構成されている。   The heat supply facility A heats the heat medium stored in the heat storage tank T by the exhaust heat of the fuel cell 2 by the heat medium heating means K, and stores the heated heat medium in the heat storage tank T. Then, the heat medium stored in the heat storage tank T is used as the heat consuming part F, such as a heat exchanger N1 for hot water supply, a heat exchanger N2 for bath, a high-temperature heating terminal N3 such as a bathroom heating device, and a floor heating device. The low-temperature heating terminal N4 is configured to be freely circulated.

蓄熱タンクTは、図示は省略するが、複数個のタンク構成体を組み合わせて構成されている。タンク構成体が、樹脂製で且つ縦長の直方体状に形成され、例えば、2個のタンク構成体を前後に並べることにより、全体として縦長の直方体状の蓄熱タンクTが構成されている。ちなみに、使用者が必要とする熱媒量や燃料電池システムDの排熱発生量等に応じて、蓄熱タンクTを構成するタンク構成体の設置数は変更できるものである。   Although not shown, the heat storage tank T is configured by combining a plurality of tank constituents. The tank structure is made of a resin and is formed in a vertically long rectangular parallelepiped shape. For example, a heat storage tank T having a vertically long rectangular parallelepiped shape is formed as a whole by arranging two tank structure bodies in the front-rear direction. By the way, the number of tank components constituting the heat storage tank T can be changed according to the amount of heat medium required by the user, the amount of heat generated by the fuel cell system D, and the like.

以下、熱媒の通流回路を説明しながら、蓄熱タンクTに貯留されている熱媒を加熱する構成、及び、給湯用熱交換器N1、風呂用熱交換器N2、高温暖房端末N3、及び、低温暖房端末N4に対して、蓄熱タンクTに貯留された熱媒を循環供給する構成について詳述する。   Hereinafter, while explaining the heat medium flow circuit, the configuration for heating the heat medium stored in the heat storage tank T, and the hot water supply heat exchanger N1, the bath heat exchanger N2, the high temperature heating terminal N3, and The configuration for circulating and supplying the heat medium stored in the heat storage tank T to the low-temperature heating terminal N4 will be described in detail.

膨張タンクBが、蓄熱タンクTの上部とタンク接続用流路R0と接続されている。また、膨張タンクBに、熱媒通流用の第1流路R1が接続されている。膨張タンクBに接続された第1流路R1が、熱媒循環ポンプ1が配設された熱媒通流用の第2流路R2に接続されている。第2流路R2には、補助加熱器Hを備える熱媒通流用の第3流路R3、及び、補助加熱器Hを迂回するバイパス路としての熱媒通流用の第4流路R4が接続されている。   The expansion tank B is connected to the upper part of the heat storage tank T and the tank connection flow path R0. The expansion tank B is connected to a first flow path R1 for heat medium flow. The first flow path R1 connected to the expansion tank B is connected to the second flow path R2 for circulating the heat medium in which the heat medium circulation pump 1 is disposed. Connected to the second flow path R2 are a third flow path R3 for heat medium flow including the auxiliary heater H, and a fourth flow path R4 for heat medium flow as a bypass path that bypasses the auxiliary heater H. Has been.

第3流路R3及び第4流路R4に接続される熱媒通流用の第5流路R5、及び、熱媒通流用の第6流路R6が設けられ、第6流路R6が、低温暖房端末N4に接続されている。第5流路R5には、熱媒通流用の第7流路R7及び熱媒通流用の第8流路R8が接続され、第8流路R8が、高温暖房端末N3に接続されている。第7流路R7には、給湯用熱交換器N1が配設される熱媒通流用の第9流路R9、及び、風呂用熱交換器N2が配設される熱媒通流用の第10流路R10が接続されている。   A fifth flow path R5 for flowing the heat medium and a sixth flow path R6 for flowing the heat medium connected to the third flow path R3 and the fourth flow path R4 are provided, and the sixth flow path R6 has a low temperature. It is connected to the heating terminal N4. The fifth flow path R5 is connected to the seventh flow path R7 for heat medium flow and the eighth flow path R8 for heat medium flow, and the eighth flow path R8 is connected to the high temperature heating terminal N3. In the seventh flow path R7, a ninth flow path R9 for heat medium flow in which a heat exchanger N1 for hot water supply is disposed, and a tenth heat flow medium flow in which a heat exchanger N2 for bath is disposed. A flow path R10 is connected.

蓄熱タンクTの底部には、底部流路Rtが接続され、この底部流路Rtに、熱媒戻し用の第11流路R11が接続されている。そして、第11流路R11には、第9流路R9、第10流路R10、高温暖房端末N3に接続された熱媒戻し用の第12流路R12、及び、低温暖房端末N4に接続された熱媒戻し用の第13流路R13が接続されている。   A bottom channel Rt is connected to the bottom of the heat storage tank T, and an eleventh channel R11 for returning the heat medium is connected to the bottom channel Rt. The eleventh channel R11 is connected to the ninth channel R9, the tenth channel R10, the twelfth channel R12 for returning the heat medium connected to the high temperature heating terminal N3, and the low temperature heating terminal N4. The thirteenth flow path R13 for returning the heat medium is connected.

蓄熱タンクTの底部流路Rtには、熱媒取り出し用の第14流路R14が接続され、この第14流路R14に、熱媒往き流路3A及び熱媒戻り流路3Bが接続されて熱媒加熱手段Kとしての燃料電池システムDが組み付けられている。   The bottom flow path Rt of the heat storage tank T is connected to a fourteenth flow path R14 for taking out the heat medium, and the fourteenth flow path R14 is connected to the heat medium forward flow path 3A and the heat medium return flow path 3B. A fuel cell system D as the heat medium heating means K is assembled.

そして、第1流路R1を開閉する第1制御弁V1、第2流路R2を第3流路R3に接続する状態と第4流路R4に接続する状態とに切換自在な第2制御弁V2、第9流路R9を開閉する第3制御弁V3、第10流路R10を開閉する第4制御弁V4、第11流路R11を開閉する第5制御弁V5、及び、第14流路R14を開閉する第6制御弁V6が設けられている。これらの制御弁V1〜V6を開閉制御することにより、熱媒の通流状態を変更できるように構成されている。   A first control valve V1 that opens and closes the first flow path R1, and a second control valve that can be switched between a state in which the second flow path R2 is connected to the third flow path R3 and a state in which the second flow path R4 is connected to the fourth flow path R4. V2, a third control valve V3 that opens and closes the ninth flow path R9, a fourth control valve V4 that opens and closes the tenth flow path R10, a fifth control valve V5 that opens and closes the eleventh flow path R11, and a fourteenth flow path A sixth control valve V6 that opens and closes R14 is provided. By controlling the opening and closing of these control valves V1 to V6, the flow state of the heat medium can be changed.

燃料電池システムDは、燃料電池2、冷却のための熱媒を燃料電池2から取り出す熱媒往き流路3A、冷却のための熱媒を燃料電池2に戻す熱媒戻り流路3B、熱媒を循環させる熱媒循環用ポンプ4、及び、ラジエータ5を備えて構成されている。そして、蓄熱タンクTの底部から取り出した熱媒を第14流路R14から熱媒戻り流路3Bに流動させ、かつ、燃料電池2から排出される熱媒を熱媒往き流路3Aから第14流路R14に流動させる形態で熱媒を流動させるように、熱媒往き流路3A及び熱媒戻り流路3Bが、第14流路R14に接続されている。   The fuel cell system D includes a fuel cell 2, a heat medium forward flow path 3A for taking out a heat medium for cooling from the fuel cell 2, a heat medium return flow path 3B for returning the heat medium for cooling to the fuel cell 2, and a heat medium. The heat medium circulation pump 4 and the radiator 5 are circulated. The heat medium taken out from the bottom of the heat storage tank T is caused to flow from the fourteenth flow path R14 to the heat medium return flow path 3B, and the heat medium discharged from the fuel cell 2 is transferred from the heat medium forward flow path 3A to the fourteenth. The heat medium forward flow path 3A and the heat medium return flow path 3B are connected to the fourteenth flow path R14 so that the heat medium flows in the form of flowing in the flow path R14.

また、第2流路R2における第1制御弁V1と熱媒循環ポンプ1との間に位置する流路部位と、第9流路R9における給湯用熱交換N1と第11流路R11との間に位置する流路部位とを接続する蓄熱タンク迂回路Rbが設けられている。そして、その蓄熱タンク迂回路Rbを開閉する第7制御弁V7が装備され、熱消費部Fに循環流動させる熱媒を、蓄熱タンクTを迂回させて、補助加熱器Hにて加熱しながら流動させることができるように構成されている。   Further, a flow path portion located between the first control valve V1 and the heat medium circulation pump 1 in the second flow path R2, and between the hot water heat exchange N1 and the eleventh flow path R11 in the ninth flow path R9. A heat storage tank detour Rb is provided to connect the flow path portion located at the center. And the 7th control valve V7 which opens and closes the thermal storage tank bypass circuit Rb is equipped, and the heat medium made to circulate and flow to the heat consumption part F bypasses the thermal storage tank T and flows while heating with the auxiliary heater H It is comprised so that it can be made to.

本発明に係る熱供給設備Aでは、運転制御装置Sが第1〜第7制御弁V1〜V7の開閉制御を行うことにより、図1の実線太線及び実線矢印にて示すように、蓄熱タンクTの底部から熱媒加熱手段Kを経由して蓄熱タンクTの上部に戻す形態で熱媒を通流させる加熱用循環路Lが備えられている。そして、加熱用循環路Lが、底部流路Rt、第14流路R14、熱媒戻り流路3B、熱媒往き流路3A、第1流路R1、膨張タンクB、及び、タンク接続用流路R0にて形成されている。また、燃料電池2の排熱を蓄熱タンクTに蓄熱する蓄熱手段Pが、加熱用熱媒循環手段としての熱媒循環ポンプ4を備えている。   In the heat supply facility A according to the present invention, the operation control device S performs opening / closing control of the first to seventh control valves V1 to V7, so that the heat storage tank T as shown by the solid line thick line and the solid line arrow in FIG. Is provided with a heating circulation path L through which the heat medium flows in a form of returning to the upper part of the heat storage tank T via the heat medium heating means K. The heating circulation path L includes a bottom channel Rt, a fourteenth channel R14, a heating medium return channel 3B, a heating medium return channel 3A, a first channel R1, an expansion tank B, and a tank connection channel. It is formed by the path R0. The heat storage means P for storing the exhaust heat of the fuel cell 2 in the heat storage tank T includes a heat medium circulation pump 4 as a heat medium circulation means for heating.

給湯用熱交換器N1には、給水路15及び出湯路16が接続されており、第9流路R9を通流する熱媒にて給水路15を通して供給される湯水を加熱して、その加熱した湯水を出湯路16に供給できるように構成されている。そして、出湯路16には、給水路15からの水を混合して、出湯路16を通して供給される湯水の温度を目標温度に調整するための混合制御弁17、出湯路16を通して供給される湯水の量を調整するための流量制御弁18が備えられている。   The hot water supply heat exchanger N1 is connected to the water supply passage 15 and the hot water supply passage 16, and the hot water supplied through the water supply passage 15 is heated by the heat medium flowing through the ninth flow path R9, and the heating is performed. The hot water is supplied to the hot water outlet 16. And the hot water supplied through the hot water supply 16 and the mixing control valve 17 for adjusting the temperature of the hot water supplied through the hot water supply path 16 to target temperature is mixed in the hot water supply path 16 with the water from the water supply path 15. A flow rate control valve 18 is provided for adjusting the amount.

風呂用熱交換器N2には、浴槽20の湯水を循環させる浴槽用循環路21が接続されており、浴槽用循環ポンプ22にて浴槽用循環路21を通して浴槽20の湯水を循環させることにより、第10流路R10を通流する熱媒にて浴槽用循環路21を通流する湯水を加熱できるように構成されている。尚、23は、出湯路16の湯水を浴槽用循環路21に供給する湯張り流路24を開閉する湯張り弁である。また、25は、給水路15からの湯水を膨張タンクBに補給する湯水補給用の電磁弁である。   The bath heat exchanger N2 is connected to a bath circulation path 21 that circulates the hot water in the bathtub 20, and the hot water in the bathtub 20 is circulated through the bath circulation path 21 by the bath circulation pump 22. The hot water flowing through the bathtub circulation path 21 can be heated by the heat medium flowing through the tenth flow path R10. Reference numeral 23 denotes a hot water valve that opens and closes a hot water flow passage 24 for supplying hot water from the hot water supply passage 16 to the circulation path 21 for bathtubs. Reference numeral 25 denotes an electromagnetic valve for hot water supply for supplying hot water from the water supply passage 15 to the expansion tank B.

本発明に係る熱供給設備Aでは、図2〜図5に示すように、蓄熱タンクTの上部から熱消費部Fを経由して蓄熱タンクTの底部に戻す形態で熱媒を通流させる放熱用循環路Mを備えており、放熱用熱媒循環手段としての熱媒循環ポンプ1が、放熱用循環路Mを通して熱媒を循環させるように構成されている。そして、蓄熱タンクTに貯留された熱媒は、給湯用熱交換器N1、風呂用熱交換器N2、高温暖房端末N3、及び、低温暖房端末N4の夫々に放熱用循環路Mを通して循環供給自在に構成されており、運転制御装置Sが、第1〜第7制御弁V1〜V7の開閉制御を行うことにより、各熱消費部Fへの放熱用循環路Mを形成している。   In the heat supply facility A according to the present invention, as shown in FIG. 2 to FIG. 5, heat dissipation is performed by allowing the heat medium to flow from the top of the heat storage tank T to the bottom of the heat storage tank T via the heat consuming part F. A heat medium circulation pump 1 as a heat dissipation heat medium circulation means is configured to circulate the heat medium through the heat radiation circulation path M. The heat medium stored in the heat storage tank T can be freely circulated through the heat radiation circuit M to each of the hot water supply heat exchanger N1, the bath heat exchanger N2, the high temperature heating terminal N3, and the low temperature heating terminal N4. The operation control device S performs opening / closing control of the first to seventh control valves V1 to V7, thereby forming a heat radiation circulation path M to each heat consuming part F.

ここで、図示は省略するが、第6流路R6を開閉して、低温暖房端末N4に対する熱媒の供給を断続する熱動弁や、第8流路R8を開閉して、高温暖房端末N3に対する熱媒の供給を断続する熱動弁が備えられる。よって、放熱用循環路Mは、上述した第1〜第8制御弁V1〜V8の開閉制御に加えて、これら熱動弁の開閉によって形成されることになる。   Here, although not shown in the drawing, the sixth flow path R6 is opened and closed, a heat operated valve for intermittently supplying the heat medium to the low temperature heating terminal N4, and the eighth flow path R8 is opened and closed to open the high temperature heating terminal N3. There is provided a thermal valve for intermittently supplying the heating medium. Therefore, the heat radiation circuit M is formed by opening and closing these thermal valves in addition to the above-described opening and closing control of the first to eighth control valves V1 to V8.

放熱用循環路Mには、熱消費部Fから蓄熱タンクTの底部に戻す熱媒の一部を分岐させて熱媒加熱手段Kにて加熱して蓄熱タンクTの上部から取り出した熱媒に合流させる分岐合流路が備えられている。この分岐合流路は、第14流路R14、熱媒戻り流路3B、及び、熱媒往き流路3Aにて構成されており、加熱用循環路Lの一部が分岐合流路を兼用している。   In the heat radiation circuit M, a part of the heat medium returned from the heat consuming part F to the bottom part of the heat storage tank T is branched and heated by the heat medium heating means K to the heat medium taken out from the upper part of the heat storage tank T. A branching / merging passage for joining is provided. This branching / merging channel is composed of a fourteenth channel R14, a heating medium return channel 3B, and a heating medium return channel 3A, and a part of the heating circulation path L also serves as the branching / merging channel. Yes.

加熱用循環路Lにおける蓄熱タンクTの底部から熱媒を取り出す流路部位(図1の太線参照)と放熱用循環路Mにおける蓄熱タンクTの底部に熱媒を戻す流路部位(図2〜図5の太線参照)とが共通の底部流路Rtにて構成されている。また、加熱用循環路Lにおける蓄熱タンクTの上部に熱媒を戻す流路部位(図1の太線参照)と放熱用循環路Mにおける蓄熱タンクTの上部から熱媒を取り出す流路部位(図2〜図5の太線参照)とが共通の第1流路R1、膨張タンクB及びタンク接続用流路R0にて構成されている。   A flow path part (see the thick line in FIG. 1) for taking out the heat medium from the bottom of the heat storage tank T in the heating circulation path L and a flow path part for returning the heat medium to the bottom of the heat storage tank T in the heat circulation circuit M (FIG. 2). And a common bottom channel Rt (see the thick line in FIG. 5). Further, a flow path part for returning the heat medium to the upper part of the heat storage tank T in the heating circulation path L (see the thick line in FIG. 1) and a flow path part for taking out the heat medium from the upper part of the heat storage tank T in the heat circulation circuit M (see FIG. 2 to FIG. 5 are configured by a common first flow path R1, expansion tank B, and tank connection flow path R0.

本発明に係る熱供給設備Aでは、蓄熱タンクTを通して蓄熱タンクTの熱媒を循環させる第1循環状態(図2〜図5の実線太線及び実線矢印参照)と蓄熱タンク迂回路Rbを通して蓄熱タンクTを迂回して補助加熱器Hにて加熱する形態で熱媒を循環させる第2循環状態(図2〜図5の点線太線及び点線矢印参照)とに放熱用循環路Mを切り換える放熱状態切換手段が備えられており、この放熱状態切換手段が、予め定められた切換条件に基づいて、第1循環状態と第2循環状態とに切り換える。放熱状態切換手段は、第11流路R11に設けた第5制御弁V5、蓄熱タンク迂回路Rbに設けた第7制御弁V7、並びに、第5制御弁V5及び第7制御弁V7の開閉を制御する運転制御装置Sにて構成されている。これにより、本発明に係る熱供給設備Aでは、熱消費部Fに熱媒を供給するに当たり、切換条件によって、蓄熱タンクTを通して蓄熱タンクTに蓄熱された熱を有する熱媒を循環供給する第1循環状態と、蓄熱タンクTを通さずに補助加熱器Hにて加熱された熱媒を循環供給する第2循環状態とに切り換えられる。   In the heat supply equipment A according to the present invention, a heat storage tank is provided through a first circulation state in which the heat medium of the heat storage tank T is circulated through the heat storage tank T (see the solid line and solid line arrows in FIGS. 2 to 5) and the heat storage tank bypass Rb. Heat dissipation state switching for switching the heat dissipation circuit M to the second circulation state (see the dotted thick line and dotted line arrows in FIGS. 2 to 5) in which the heat medium is circulated in a form where it is heated by the auxiliary heater H bypassing T The heat dissipation state switching means switches between the first circulation state and the second circulation state based on a predetermined switching condition. The heat release state switching means opens and closes the fifth control valve V5 provided in the eleventh flow path R11, the seventh control valve V7 provided in the heat storage tank detour Rb, and the fifth control valve V5 and the seventh control valve V7. It is comprised by the operation control apparatus S to control. Thus, in the heat supply facility A according to the present invention, when supplying the heat medium to the heat consuming part F, the heat medium having the heat stored in the heat storage tank T through the heat storage tank T is circulated and supplied according to the switching condition. It is switched between the first circulation state and the second circulation state in which the heat medium heated by the auxiliary heater H is circulated without passing through the heat storage tank T.

放熱状態切換手段が第1循環状態と第2循環状態とに切り換えるための切換条件については、図6に示すように、蓄熱タンクTの蓄熱量及び放熱用循環路Mにて熱消費部Fから蓄熱タンクTの底部に戻される熱媒の温度Trに基づいて定められている。ここで、図示は省略するが、蓄熱タンクTには、蓄熱タンクTの貯湯量の検出用として、複数の温度センサを上下方向に間隔を隔てて設けられている。そして、運転制御装置Sは、これら複数の温度センサの検出温度に基づいて、蓄熱タンクTの貯湯量を把握できるように構成されている。つまり、最下部に設置された温度センサの検出温度が設定上限温度以上であれば、蓄熱タンクTの蓄熱量は100%であるとし、最上部に設置された温度センサの検出温度が設定下限温度以下であれば、蓄熱タンクTの蓄熱量は0%であるとしており、最上部と最下部との間に設置された複数の温度センサの検出温度により蓄熱タンクTの蓄熱量を段階的に把握できるように構成されている。また、底部流路Rt又は第11流路R11には熱媒の温度を検出する温度センサが設けられており、運転制御装置Sは、温度センサの検出温度により蓄熱タンクTの底部に戻される熱媒の温度Trを把握できるように構成されている。   As shown in FIG. 6, the heat dissipation state switching means switches between the first circulation state and the second circulation state from the heat consuming part F in the heat storage amount of the heat storage tank T and the heat radiation circuit M. It is determined based on the temperature Tr of the heat medium returned to the bottom of the heat storage tank T. Here, although illustration is omitted, the heat storage tank T is provided with a plurality of temperature sensors at intervals in the vertical direction for detecting the amount of hot water stored in the heat storage tank T. And the operation control apparatus S is comprised so that the amount of hot water storage of the thermal storage tank T can be grasped | ascertained based on the detected temperature of these several temperature sensors. That is, if the detected temperature of the temperature sensor installed at the bottom is equal to or higher than the set upper limit temperature, the heat storage amount of the heat storage tank T is 100%, and the detected temperature of the temperature sensor installed at the top is the set lower limit temperature. If it is below, the heat storage amount of the heat storage tank T is assumed to be 0%, and the heat storage amount of the heat storage tank T is grasped step by step based on the detection temperatures of a plurality of temperature sensors installed between the uppermost part and the lowermost part. It is configured to be able to. In addition, a temperature sensor that detects the temperature of the heat medium is provided in the bottom channel Rt or the eleventh channel R11, and the operation control device S is configured to return heat to the bottom of the heat storage tank T by the temperature detected by the temperature sensor. It is comprised so that the temperature Tr of a medium can be grasped | ascertained.

例えば、燃料電池2の排熱を蓄熱タンクTに蓄熱するに当たり、蓄熱タンクTの蓄熱量が多ければ直ぐに蓄熱タンクTの蓄熱量が満杯となって、燃料電池2の排熱回収効果が低減する。そこで、蓄熱タンクTの蓄熱量が多ければ第1循環状態に切り換えて、蓄熱タンクTの蓄熱量を少なくしておくことで、燃料電池2の排熱回収効果の低減を抑制して省エネ性の向上を図ることができる。また、熱消費部Fから蓄熱タンクTの底部に戻される熱媒の温度Trが高温となると、燃料電池2の排熱を蓄熱タンクTに蓄熱する際に、蓄熱タンクTから取り出す熱媒の温度が高くなり、燃料電池2を冷却させるためには蓄熱タンクTから取り出した熱媒が有する熱をラジエータ5にて放熱する必要が生じ、燃料電池2の排熱回収効果が低減する。そこで、熱媒の温度Trが高温(例えば60℃以上)となると第2循環状態に切り換えて、燃料電池2の排熱を蓄熱タンクTに蓄熱する際に、蓄熱タンクTから取り出す熱媒の温度が高くなるのを防止しておくことで、燃料電池2の排熱回収効果の低減を抑制して省エネ性の向上を図ることができる。よって、図6に示す如く、切換条件を、蓄熱タンクTの蓄熱量及び放熱用循環路Mにて熱消費部Fから蓄熱タンクTの底部に戻される熱媒の温度Trに基づいて予め定めておくことで、省エネ性の向上を図ることができる。   For example, in storing the exhaust heat of the fuel cell 2 in the heat storage tank T, if the heat storage amount of the heat storage tank T is large, the heat storage amount of the heat storage tank T becomes full immediately and the exhaust heat recovery effect of the fuel cell 2 is reduced. . Therefore, if the heat storage amount of the heat storage tank T is large, the heat storage tank T is switched to the first circulation state and the heat storage amount of the heat storage tank T is reduced, so that the reduction of the exhaust heat recovery effect of the fuel cell 2 is suppressed and energy saving is achieved. Improvements can be made. Further, when the temperature Tr of the heat medium returned from the heat consuming part F to the bottom of the heat storage tank T becomes high, the temperature of the heat medium taken out from the heat storage tank T when the exhaust heat of the fuel cell 2 is stored in the heat storage tank T. In order to cool the fuel cell 2, it is necessary to dissipate the heat of the heat medium taken out from the heat storage tank T by the radiator 5, and the exhaust heat recovery effect of the fuel cell 2 is reduced. Therefore, when the temperature Tr of the heat medium becomes a high temperature (for example, 60 ° C. or higher), the temperature of the heat medium to be taken out from the heat storage tank T when the exhaust heat of the fuel cell 2 is stored in the heat storage tank T is switched to the second circulation state. By preventing the fuel cell from becoming higher, it is possible to suppress the reduction of the exhaust heat recovery effect of the fuel cell 2 and improve the energy saving performance. Therefore, as shown in FIG. 6, the switching condition is determined in advance based on the heat storage amount of the heat storage tank T and the temperature Tr of the heat medium returned from the heat consuming part F to the bottom part of the heat storage tank T in the heat radiation circuit M. By setting it, energy savings can be improved.

また、後述するが、第1循環状態に切り換えた場合には、第6制御弁V6を部分的に開制御することにより、蓄熱タンクTの熱媒に加えて、現在の燃料電池2の熱出力をも熱消費部Fに供給可能となる。そして、現在の燃料電池2の熱出力をも熱消費部Fに供給可能である場合には、蓄熱タンクTの蓄熱量を現在の燃料電池2の熱出力に応じた設定量だけ増加させた上で、図6に示す切換条件に基づいて、第1循環状態と第2循環状態とを切り換えることもできる。   As will be described later, when switching to the first circulation state, the sixth control valve V6 is partially opened to control the heat output of the current fuel cell 2 in addition to the heat medium in the heat storage tank T. Can also be supplied to the heat consuming part F. If the current heat output of the fuel cell 2 can also be supplied to the heat consuming unit F, the amount of heat stored in the heat storage tank T is increased by a set amount corresponding to the current heat output of the fuel cell 2. Thus, the first circulation state and the second circulation state can be switched based on the switching condition shown in FIG.

運転制御装置Sは、燃料電池2の排熱を蓄熱タンクTに蓄熱する蓄熱運転と、蓄熱タンクTに蓄熱された熱、燃料電池2の排熱や補助加熱器Hにて発生させた熱を熱消費部Fに供給する放熱運転とを実行可能に構成されている。そして、運転制御装置Sは、放熱運転として、給湯用熱交換器N1に熱を供給する給湯用放熱運転、風呂用熱交換器N2に熱を供給する追焚用放熱運転、高温暖房端末N3に熱を供給する高温暖房用放熱運転、低温暖房端末N4に熱を供給する低温暖房用放熱運転の夫々の放熱運転を実行可能に構成されている。   The operation control device S stores a heat storage operation for storing the exhaust heat of the fuel cell 2 in the heat storage tank T, heat stored in the heat storage tank T, exhaust heat of the fuel cell 2 and heat generated by the auxiliary heater H. The heat dissipation operation supplied to the heat consuming part F is configured to be executable. Then, the operation control device S performs, as the heat dissipation operation, a hot water supply heat dissipation operation for supplying heat to the hot water supply heat exchanger N1, a recuperation heat dissipation operation for supplying heat to the bath heat exchanger N2, and a high temperature heating terminal N3. The heat radiation operation for high temperature heating for supplying heat and the heat radiation operation for low temperature heating for supplying heat to the low temperature heating terminal N4 are configured to be executable.

運転制御装置Sは、時系列的な電力負荷及び時系列的な熱負荷を管理している。例えば、運転制御装置Sが、1日の各時間帯(1時間ごと)の電力負荷及び熱負荷に区分けした状態で時系列的な電力負荷及び時系列的な熱負荷を管理している。そして、運転制御装置Sは、実際に使用された1日の各時間帯(1時間ごと)の電力負荷及び熱負荷に基づいて、既に記憶している1日の各時間帯(1時間ごと)の電力負荷及び熱負荷を更新して、1日の各時間帯(1時間ごと)の電力負荷及び熱負荷を学習するように構成されている。   The operation control device S manages a time-series power load and a time-series heat load. For example, the operation control device S manages the time-series power load and the time-series heat load in a state where the operation control apparatus S is divided into a power load and a heat load for each time period (every hour) of the day. And operation control device S is based on the electric load and heat load of each time zone (every hour) of the day actually used, and each time zone (every hour) of the day which has already been memorized. The power load and the heat load are updated, and the power load and the heat load in each time zone (every hour) of the day are learned.

ここで、電力負荷については、例えば、燃料電池2にて発電された電力を供給自在なテレビ、冷蔵庫、洗濯機等の電力供給部における電力負荷であり、図示は省略するが、この電力負荷を計測する電力負荷計測手段の検出情報に基づいて電力負荷を検出するようにしている。また、熱負荷は、給湯として用いられる給湯負荷と、浴槽水の追焚きに用いられる追焚負荷と、高温暖房端末N3及び低温暖房端末N4にて用いられる暖房負荷とを足し合わせたものである。給湯負荷については給湯温度及び給湯量に基づいて求めることができ、追焚負荷については浴槽用循環ポンプ22の作動状態及び浴槽20の湯水温度に基づいて求めることができ、暖房負荷については高温暖房端末N3及び低温暖房端末N4の作動状態に基づいて求めることができる。   Here, the power load is, for example, a power load in a power supply unit such as a television, a refrigerator, and a washing machine that can freely supply power generated by the fuel cell 2, and although not shown, The power load is detected based on the detection information of the power load measuring means to be measured. The heat load is a sum of a hot water supply load used as hot water supply, a renewal load used for bath water reheating, and a heating load used in the high temperature heating terminal N3 and the low temperature heating terminal N4. . The hot water supply load can be obtained on the basis of the hot water supply temperature and the amount of hot water supply, the memorial load can be obtained on the basis of the operating state of the circulation pump 22 for the bathtub and the hot water temperature of the bathtub 20, and the heating load is subjected to high-temperature heating. It can obtain | require based on the operating state of the terminal N3 and the low temperature heating terminal N4.

運転制御装置Sは、例えば、現在要求されている電力負荷及び将来予測される電力負荷を賄うように燃料電池システムDを運転させる所謂電主運転を行っており、この燃料電池システムDの運転中に蓄熱運転を行うように構成されている。また、運転制御装置Sは、給湯要求、追焚要求、高温暖房要求、低温暖房要求等の各要求の発生により放熱運転を行うように構成されている。ちなみに、運転制御装置Sは、燃料電池システムDの運転について、電主運転に限らず、現在要求されている熱負荷及び将来予測される熱負荷を賄うように燃料電池システムDを運転させる所謂熱主運転を行うことも可能である。   The operation control device S performs, for example, a so-called electric main operation in which the fuel cell system D is operated so as to cover a currently requested power load and a future predicted power load. It is comprised so that heat storage operation may be performed. In addition, the operation control device S is configured to perform a heat radiation operation upon occurrence of each request such as a hot water supply request, a chasing request, a high temperature heating request, and a low temperature heating request. Incidentally, the operation control device S is not limited to the main operation for the operation of the fuel cell system D, and so-called heat for operating the fuel cell system D so as to cover the currently required heat load and the predicted heat load in the future. It is also possible to perform the main operation.

以下、各運転について説明する。
(蓄熱運転)
運転制御装置Sは、第5制御弁V5及び第7制御弁V7等を閉じるとともに、第6制御弁V6及び第1制御弁V1を開き、熱媒循環用ポンプ4を作動させる。これにより、図1中実線太線及び実線矢印にて示すように、蓄熱タンクTの底部から取り出した熱媒を熱媒加熱手段Kを経由して蓄熱タンクTの上部に戻すように加熱用循環路Lにて熱媒を循環させて、熱媒加熱手段Kにて加熱された高温の熱媒を蓄熱タンクTに貯湯することで、燃料電池2の排熱を蓄熱タンクTに蓄熱する。
図示は省略するが、底部流路Rt又は第14流路R14には熱媒の温度を検出する温度センサが設けられており、運転制御装置Sは、この温度センサの検出温度により蓄熱タンクTの底部から取り出して燃料電池システムDに供給する熱媒の温度を把握している。そして、運転制御装置Sは、燃料電池システムDに供給する熱媒の温度が許容上限温度よりも高いと、ラジエータ5を作動させている。これにより、燃料電池2の冷却を行いながら、燃料電池2の排熱を蓄熱することができる。
Hereinafter, each operation will be described.
(Heat storage operation)
The operation control device S closes the fifth control valve V5, the seventh control valve V7, etc., and opens the sixth control valve V6 and the first control valve V1, and operates the heat medium circulation pump 4. Thereby, as shown by the solid line thick line and the solid line arrow in FIG. 1, the heating circulation path so that the heat medium taken out from the bottom of the heat storage tank T is returned to the upper part of the heat storage tank T via the heat medium heating means K. The heat medium is circulated in L, and the high-temperature heat medium heated by the heat medium heating means K is stored in the heat storage tank T, whereby the exhaust heat of the fuel cell 2 is stored in the heat storage tank T.
Although illustration is omitted, the bottom flow path Rt or the 14th flow path R14 is provided with a temperature sensor that detects the temperature of the heat medium, and the operation control device S uses the temperature detected by the temperature sensor to store the heat storage tank T. The temperature of the heat medium taken out from the bottom and supplied to the fuel cell system D is grasped. Then, the operation control device S operates the radiator 5 when the temperature of the heat medium supplied to the fuel cell system D is higher than the allowable upper limit temperature. Thereby, the exhaust heat of the fuel cell 2 can be stored while the fuel cell 2 is cooled.

そして、運転制御装置Dは、蓄熱タンクTの蓄熱量が満杯となっても、燃料電池システムDが運転している場合は、熱媒循環用ポンプ4の作動を継続させる。このときには、ラジエータ5にて放熱することで燃料電池2を冷却させる。   The operation control device D continues the operation of the heat medium circulation pump 4 when the fuel cell system D is operating even when the heat storage amount of the heat storage tank T is full. At this time, the fuel cell 2 is cooled by releasing heat from the radiator 5.

(給湯用放熱運転)
運転制御装置Sは、図6に示す切換条件に基づいて放熱用循環路Mを第1循環状態に切り換えるか第2循環状態に切り換えるかを選択し、第1〜第7制御弁V1〜V7の開閉制御を行うことにより第1循環状態と第2循環状態のうち選択した側に切り換えて、熱媒循環ポンプ1を作動させる。また、運転制御装置Sは、給湯用放熱運転の実行中に、図6に示す切換条件に基づいて放熱用循環路Mを第1循環状態に切り換えるか第2循環状態に切り換えるかを選択する動作を繰り返し行っており、給湯用放熱運転の実行中にも、放熱用循環路Mを第1循環状態と第2循環状態とに切り換えることができるようにしている。そして、給湯用熱交換器N1に供給された熱媒にて給水路15にて給水された水を加熱し、その加熱水に水を混合させて給湯している。そして、運転制御装置Sは、給湯が終了されると、給湯用放熱運転を終了する。
(Heat dissipation operation for hot water supply)
The operation control device S selects whether to switch the heat radiation circuit M to the first circulation state or the second circulation state based on the switching condition shown in FIG. 6, and controls the first to seventh control valves V1 to V7. By performing the opening / closing control, the heat medium circulation pump 1 is operated by switching to the selected one of the first circulation state and the second circulation state. Further, the operation control device S selects whether to switch the heat dissipation circuit M to the first circulation state or to the second circulation state based on the switching condition shown in FIG. 6 during the execution of the hot water supply heat radiation operation. The heat dissipation circuit M can be switched between the first circulation state and the second circulation state even during execution of the hot water supply heat radiation operation. And the water supplied in the water supply path 15 is heated with the heat medium supplied to the heat exchanger N1 for hot water supply, and the hot water is mixed with water to supply hot water. Then, when the hot water supply is finished, the operation control device S finishes the hot water supply heat radiation operation.

第1循環状態に切り換えたときには、図2の実線太線及び実線矢印にて示すように、放熱用循環路Mが、給湯用熱交換器N1から順に、蓄熱タンク迂回路Rb、第11流路R11、底部流路Rt、タンク接続用流路R0、膨張タンクB、第1流路R1、第2流路R2、第3流路R3又は第4流路R4、第5流路R5、第7流路R7、及び、第9流路R9にて形成される。   When switched to the first circulation state, as shown by the solid thick line and the solid line arrow in FIG. 2, the heat radiation circulation path M is sequentially connected from the hot water supply heat exchanger N1 to the heat storage tank detour Rb and the eleventh flow path R11. , Bottom channel Rt, tank connection channel R0, expansion tank B, first channel R1, second channel R2, third channel R3 or fourth channel R4, fifth channel R5, seventh flow It is formed by the path R7 and the ninth flow path R9.

そして、運転制御装置Sは、第1循環状態に切り換えているときに、給湯用熱交換器N1に供給される熱媒の温度が要求されている温度よりも低温となれば、第2制御弁V2にて第3流路R3と第4流路R4とのうち第3流路R3を選択することで、蓄熱タンクTの熱媒が補助加熱器Hを通して給湯用熱交換器N1に循環供給される。これにより、蓄熱タンクTに蓄熱されている熱に加えて補助加熱器Hにて加熱された熱媒を給湯用熱交換器N1に供給することができる。このようにして、放熱用循環路Mを第1循環状態に切り換えているときには、補助加熱器Hを通して熱媒を通流させる加熱状態とバイパス路としての第4流路R4を通して熱媒を通流させるバイパス状態とに切換自在な通流状態切換手段が備えられている。そして、通流状態切換手段は、第2制御弁V2及び運転制御装置Sにて構成されている。   Then, when the operation control device S is switched to the first circulation state, if the temperature of the heat medium supplied to the hot water supply heat exchanger N1 becomes lower than the required temperature, the second control valve By selecting the third flow path R3 from the third flow path R3 and the fourth flow path R4 at V2, the heat medium in the heat storage tank T is circulated and supplied to the hot water supply heat exchanger N1 through the auxiliary heater H. The Thereby, in addition to the heat stored in the heat storage tank T, the heat medium heated by the auxiliary heater H can be supplied to the hot water supply heat exchanger N1. In this way, when the heat dissipation circulation path M is switched to the first circulation state, the heating medium is passed through the heating state in which the heating medium is passed through the auxiliary heater H and the fourth flow path R4 as a bypass path. There is provided a flow state switching means switchable to a bypass state. The flow state switching means is configured by the second control valve V2 and the operation control device S.

また、運転制御装置Sは、第1循環状態に切り換えているときに、燃料電池システムDが運転中であれば、第6制御弁V6を部分的に開制御することで、給湯用熱交換器N1から蓄熱タンクTの底部に戻す熱媒の一部を分岐させて熱媒加熱手段Kにて加熱して蓄熱タンクTの上部から取り出した熱媒に合流させている。これにより、蓄熱タンクTに蓄熱されている熱だけでなく、燃料電池2の排熱をも給湯用熱交換器N1に供給することができる。この場合、例えば、蓄熱タンクTの底部に戻す熱媒の流量の方を熱媒加熱手段Kに供給する熱媒の流量よりも多くしており、給湯用熱交換器N1に対して、蓄熱タンクTに蓄熱されている熱を主として供給しながら、燃料電池2の排熱も追加して供給できるようになっている。このように、燃料電池2の排熱を利用可能とすることで、蓄熱タンクTに蓄熱された過去の燃料電池2の排熱を利用できるだけでなく、現在の燃料電池2の排熱をも利用可能となり、補助加熱器Hの稼働率を低下させることができ、省エネ性の向上に有利なものとなる。   In addition, when the fuel cell system D is in operation when the operation control device S is switched to the first circulation state, the operation control device S partially opens the sixth control valve V6 to thereby provide a heat exchanger for hot water supply. A part of the heat medium returned from N1 to the bottom part of the heat storage tank T is branched and heated by the heat medium heating means K and joined to the heat medium taken out from the upper part of the heat storage tank T. Thereby, not only the heat stored in the heat storage tank T but also the exhaust heat of the fuel cell 2 can be supplied to the hot water supply heat exchanger N1. In this case, for example, the flow rate of the heat medium returned to the bottom of the heat storage tank T is made larger than the flow rate of the heat medium supplied to the heat medium heating means K, and the heat storage tank is compared with the hot water supply heat exchanger N1. While mainly supplying the heat stored in T, the exhaust heat of the fuel cell 2 can be additionally supplied. Thus, by making the exhaust heat of the fuel cell 2 available, not only the exhaust heat of the past fuel cell 2 stored in the heat storage tank T but also the exhaust heat of the current fuel cell 2 can be used. This makes it possible to reduce the operating rate of the auxiliary heater H, which is advantageous for improving energy saving.

第2循環状態に切り換えたときには、図2の点線太線及び点線矢印にて示すように、放熱用循環路Mが、給湯用熱交換器N1から順に、バイパスRb、第2流路R2、第3流路R3、第5流路R5、第7流路R7、及び、第9流路R9にて形成される。よって、放熱用循環路Mを第2循環状態に切り換えているときには、通流状態切換手段としての運転制御装置S及び第2制御弁V2により、補助加熱器Hを通して熱媒を通流させる加熱状態に切り換えられている。   When switched to the second circulation state, as shown by the dotted thick line and the dotted arrow in FIG. 2, the heat radiation circulation path M is arranged in order from the hot water supply heat exchanger N1, the bypass Rb, the second flow path R2, the third The channel R3, the fifth channel R5, the seventh channel R7, and the ninth channel R9 are formed. Therefore, when the heat radiation circuit M is switched to the second circulation state, the heating state in which the heat medium is passed through the auxiliary heater H by the operation control device S and the second control valve V2 as the flow state switching means. It has been switched to.

(追焚用放熱運転)
給湯用放熱運転と同様に、運転制御装置Sは、図6に示す切換条件に基づいて放熱用循環路Mを第1循環状態又は第2循環状態に切り換えて熱媒循環ポンプ1を作動させる。また、運転制御装置Sは、追焚用放熱運転の実行中においても、図6に示す切換条件に基づいて放熱用循環路Mを第1循環状態又は第2循環状態に切り換える。そして、運転制御装置Sは、浴槽用循環ポンプ22を作動させて、風呂用熱交換器N2に供給された熱媒にて浴槽用循環路21にて循環される浴槽20の湯水を加熱して追焚を行っている。運転制御装置Sは、浴槽20の湯水が所定温度になると、追焚用放熱運転を終了する。
(Heat radiation operation for remembrance)
Similarly to the hot water supply heat radiation operation, the operation control device S switches the heat radiation circulation path M to the first circulation state or the second circulation state based on the switching condition shown in FIG. Further, the operation control device S switches the heat radiation circuit M to the first circulation state or the second circulation state based on the switching condition shown in FIG. 6 even during the execution of the memorial heat radiation operation. And the operation control apparatus S operates the circulating pump 22 for bathtubs, and heats the hot water of the bathtub 20 circulated in the circulation path 21 for bathtubs with the heat medium supplied to the heat exchanger N2 for baths. A memorial service. When the hot water in the bathtub 20 reaches a predetermined temperature, the operation control device S ends the memorial heat radiation operation.

第1循環状態に切り換えたときには、図3の実線太線及び実線矢印にて示すように、放熱用循環路Mが、風呂用熱交換器N2から順に、第10流路R10、第11流路R11、底部流路Rt、タンク接続用流路R0、膨張タンクB、第1流路R1、第2流路R2、第3流路R3又は第4流路R4、第5流路R5、第7流路R7、及び、第10流路R10にて形成される。   When switched to the first circulation state, as shown by the solid thick line and solid line arrow in FIG. 3, the heat radiation circulation path M starts from the bath heat exchanger N2 in order, the tenth flow path R10 and the eleventh flow path R11. , Bottom channel Rt, tank connection channel R0, expansion tank B, first channel R1, second channel R2, third channel R3 or fourth channel R4, fifth channel R5, seventh flow A path R7 and a tenth flow path R10 are formed.

そして、給湯用放熱運転と同様に、第1循環状態に切り換えているときには、風呂用熱交換器N2に供給される熱媒の温度が要求されている温度よりも低温となれば、運転制御装置Sが第2制御弁V2にて第3流路R3と第4流路R4とのうち第3流路R3を選択して、蓄熱タンクTの熱媒が補助加熱器Hにて加熱されて風呂用熱交換器N2に循環供給される。また、運転制御装置Sは、燃料電池システムDが運転中であれば、第6制御弁V6を部分的に開制御することで、風呂用熱交換器N2から蓄熱タンクTの底部に戻す熱媒の一部を分岐させて熱媒加熱手段Kにて加熱して蓄熱タンクTの上部から取り出した熱媒に合流させている。このように、燃料電池2の排熱を利用可能とすることで、蓄熱タンクTに蓄熱された過去の燃料電池2の排熱を利用できるだけでなく、現在の燃料電池2の排熱をも利用可能となり、補助加熱器Hの稼働率を低下させることができ、省エネ性の向上に有利なものとなる。   As in the case of the hot water supply heat radiation operation, if the temperature of the heat medium supplied to the bath heat exchanger N2 is lower than the required temperature when switching to the first circulation state, the operation control device S selects the third flow path R3 from the third flow path R3 and the fourth flow path R4 by the second control valve V2, and the heat medium in the heat storage tank T is heated by the auxiliary heater H to take a bath. Is circulated and supplied to the heat exchanger N2. In addition, when the fuel cell system D is in operation, the operation control device S partially opens the sixth control valve V6 to return the heat medium from the bath heat exchanger N2 to the bottom of the heat storage tank T. Is partly branched and heated by the heat medium heating means K and joined to the heat medium taken out from the upper part of the heat storage tank T. Thus, by making the exhaust heat of the fuel cell 2 available, not only the exhaust heat of the past fuel cell 2 stored in the heat storage tank T but also the exhaust heat of the current fuel cell 2 can be used. This makes it possible to reduce the operating rate of the auxiliary heater H, which is advantageous for improving energy saving.

第2循環状態に切り換えられたときには、図3の点線太線及び点線矢印にて示すように、放熱用循環路Mが、風呂用熱交換器N2から順に、第11流路R11、蓄熱タンク迂回路Rb、第2流路R2、第3流路R3、第5流路R5、第7流路R7、及び、第10流路R10にて形成される。   When switched to the second circulation state, as shown by the dotted thick line and the dotted arrow in FIG. 3, the heat radiation circulation path M is arranged in order from the bath heat exchanger N2 to the eleventh flow path R11, the heat storage tank detour. Rb, the second channel R2, the third channel R3, the fifth channel R5, the seventh channel R7, and the tenth channel R10.

(高温暖房用放熱運転)
給湯用放熱運転と同様に、運転制御装置Sは、図6に示す切換条件に基づいて放熱用循環路Mを第1循環状態又は第2循環状態に切り換えて熱媒循環ポンプ1を作動させる。また、運転制御装置Sは、高温暖房用放熱運転の実行中においても、図6に示す切換条件に基づいて放熱用循環路Mを第1循環状態又は第2循環状態に切り換える。そして、運転制御装置Sは、高温暖房端末N3に供給された熱媒が有する熱を用いて高温暖房端末N3を作動させる。運転制御装置Sは、高温暖房端末N3の運転スイッチがOFFされる等により高温暖房要求が停止すると、高温暖房用放熱運転を終了する。
(Heat radiation operation for high temperature heating)
Similarly to the hot water supply heat radiation operation, the operation control device S switches the heat radiation circulation path M to the first circulation state or the second circulation state based on the switching condition shown in FIG. Further, the operation control device S switches the heat radiation circuit M to the first circulation state or the second circulation state based on the switching condition shown in FIG. 6 even during the execution of the high temperature heating heat radiation operation. And the operation control apparatus S operates the high temperature heating terminal N3 using the heat which the heat medium supplied to the high temperature heating terminal N3 has. When the high temperature heating request is stopped, for example, when the operation switch of the high temperature heating terminal N3 is turned off, the operation control device S ends the high temperature heating heat radiation operation.

第1循環状態に切り換えられるときには、図4の実線太線及び実線矢印にて示すように、放熱用循環路Mが、高温暖房端末N3から順に、第12流路R12、第11流路R11、底部流路Rt、タンク接続用流路R0、膨張タンクB、第1流路R1、第2流路R2、第3流路R3又は第4流路R4、第5流路R5及び第8流路R8にて形成される。   When switched to the first circulation state, as shown by the solid thick line and solid line arrow in FIG. 4, the heat radiation circuit M is arranged in order from the high temperature heating terminal N3, the twelfth flow channel R12, the eleventh flow channel R11, and the bottom. Channel Rt, tank connection channel R0, expansion tank B, first channel R1, second channel R2, third channel R3 or fourth channel R4, fifth channel R5 and eighth channel R8 Is formed.

そして、給湯用放熱運転と同様に、第1循環状態に切り換えているときには、高温暖房端末N3に供給される熱媒の温度が要求されている温度よりも低温となれば、運転制御装置Sが第2制御弁V2にて第3流路R3と第4流路R4とのうち第3流路R3を選択して、蓄熱タンクTの熱媒が補助加熱器Hにて加熱されて高温暖房端末N3に循環供給される。また、運転制御装置Sは、燃料電池システムDが運転中であれば、第6制御弁V6を部分的に開制御することで、高温暖房端末N3から蓄熱タンクTの底部に戻す熱媒の一部を分岐させて熱媒加熱手段Kにて加熱して蓄熱タンクTの上部から取り出した熱媒に合流させている。このように、燃料電池2の排熱を利用可能とすることで、蓄熱タンクTに蓄熱された過去の燃料電池2の排熱を利用できるだけでなく、現在の燃料電池2の排熱をも利用可能となり、補助加熱器Hの稼働率を低下させることができ、省エネ性の向上に有利なものとなる。   As in the hot water supply heat radiation operation, when the temperature of the heat medium supplied to the high temperature heating terminal N3 is lower than the required temperature when switching to the first circulation state, the operation control device S The third flow path R3 is selected from the third flow path R3 and the fourth flow path R4 by the second control valve V2, and the heat medium in the heat storage tank T is heated by the auxiliary heater H, so that the high temperature heating terminal Circulatingly supplied to N3. Further, when the fuel cell system D is in operation, the operation control device S partially opens the sixth control valve V6 so as to return the heat medium returned from the high temperature heating terminal N3 to the bottom of the heat storage tank T. The part is branched and heated by the heat medium heating means K and joined to the heat medium taken out from the upper part of the heat storage tank T. Thus, by making the exhaust heat of the fuel cell 2 available, not only the exhaust heat of the past fuel cell 2 stored in the heat storage tank T but also the exhaust heat of the current fuel cell 2 can be used. This makes it possible to reduce the operating rate of the auxiliary heater H, which is advantageous for improving energy saving.

第2循環状態に切り換えられたときには、図4の点線太線及び点線矢印にて示すように、放熱用循環路Mが、高温暖房端末N3から順に、第12流路R12、第11流路R11、蓄熱タンク迂回路Rb、第2流路R2、第3流路R3、第5流路R5及び第8流路R8にて形成される。   When switched to the second circulation state, as shown by the dotted thick line and the dotted arrow in FIG. 4, the heat radiation circuit M is arranged in order from the high temperature heating terminal N3, the twelfth channel R12, the eleventh channel R11, The heat storage tank bypass Rb, the second flow path R2, the third flow path R3, the fifth flow path R5, and the eighth flow path R8 are formed.

(低温暖房用放熱運転)
給湯用放熱運転と同様に、運転制御装置Sは、図6に示す切換条件に基づいて放熱用循環路Mを第1循環状態又は第2循環状態に切り換えて熱媒循環ポンプ1を作動させる。また、運転制御装置Sは、低温暖房用放熱運転の実行中においても、図6に示す切換条件に基づいて放熱用循環路Mを第1循環状態又は第2循環状態に切り換える。そして、運転制御装置Sは、低温暖房端末N4に供給された熱媒が有する熱を用いて低温暖房端末N4を作動させる。運転制御装置Sは、低温暖房端末N4の運転スイッチがOFFされる等により低温暖房要求が停止すると、低温暖房用放熱運転を終了する。
(Heat radiation operation for low temperature heating)
Similarly to the hot water supply heat radiation operation, the operation control device S switches the heat radiation circulation path M to the first circulation state or the second circulation state based on the switching condition shown in FIG. Further, the operation control device S switches the heat radiation circuit M to the first circulation state or the second circulation state based on the switching condition shown in FIG. 6 even during the execution of the low temperature heating heat radiation operation. And the operation control apparatus S operates the low temperature heating terminal N4 using the heat which the heat medium supplied to the low temperature heating terminal N4 has. When the low temperature heating request is stopped, for example, when the operation switch of the low temperature heating terminal N4 is turned OFF, the operation control device S ends the low temperature heating heat radiation operation.

第1循環状態に切り換えられるときには、図5の実線太線及び実線矢印にて示すように、放熱用循環路Mが、低温暖房端末N4から順に、第13流路R13、第11流路R11、底部流路Rt、タンク接続用流路R0、膨張タンクB、第1流路R1、第2流路R2、第3流路R3又は第4流路R4、及び、第6流路R6にて形成される。   When switched to the first circulation state, as shown by the solid thick line and solid line arrow in FIG. 5, the heat radiation circuit M is arranged in order from the low-temperature heating terminal N4, the thirteenth channel R13, the eleventh channel R11, and the bottom. The channel Rt, the tank connection channel R0, the expansion tank B, the first channel R1, the second channel R2, the third channel R3 or the fourth channel R4, and the sixth channel R6 are formed. The

そして、給湯用放熱運転と同様に、第1循環状態に切り換えているときには、低温暖房端末N4に供給される熱媒の温度が要求されている温度よりも低温となれば、運転制御装置Sが第2制御弁V2にて第3流路R3と第4流路R4とのうち第3流路R3を選択して、蓄熱タンクTの熱媒が補助加熱器Hにて加熱されて低温暖房端末N4に循環供給される。また、運転制御装置Sは、燃料電池システムDが運転中であれば、第6制御弁V6を部分的に開制御することで、低温暖房端末N4から蓄熱タンクTの底部に戻す熱媒の一部を分岐させて熱媒加熱手段Kにて加熱して蓄熱タンクTの上部から取り出した熱媒に合流させている。このように、燃料電池2の排熱を利用可能とすることで、蓄熱タンクTに蓄熱された過去の燃料電池2の排熱を利用できるだけでなく、現在の燃料電池2の排熱をも利用可能となり、補助加熱器Hの稼働率を低下させることができ、省エネ性の向上に有利なものとなる。   As in the hot water supply heat radiation operation, when the temperature of the heat medium supplied to the low temperature heating terminal N4 becomes lower than the required temperature when switching to the first circulation state, the operation control device S The third flow path R3 is selected from the third flow path R3 and the fourth flow path R4 by the second control valve V2, and the heat medium in the heat storage tank T is heated by the auxiliary heater H, and the low temperature heating terminal Circulatingly supplied to N4. Further, when the fuel cell system D is in operation, the operation control device S partially opens the sixth control valve V6 so that the heat control medium S returns from the low temperature heating terminal N4 to the bottom of the heat storage tank T. The part is branched and heated by the heat medium heating means K and joined to the heat medium taken out from the upper part of the heat storage tank T. Thus, by making the exhaust heat of the fuel cell 2 available, not only the exhaust heat of the past fuel cell 2 stored in the heat storage tank T but also the exhaust heat of the current fuel cell 2 can be used. This makes it possible to reduce the operating rate of the auxiliary heater H, which is advantageous for improving energy saving.

第2循環状態に切り換えられるときには、図5の点線太線及び点線矢印にて示すように、放熱用循環路Mが、低温暖房端末N4から順に、第13流路R13、第11流路R11、蓄熱タンク迂回路Rb、第2流路R2、第3流路R3、及び、第6流路R6にて形成される。   When switched to the second circulation state, as indicated by the dotted thick line and the dotted arrow in FIG. 5, the heat radiation circulation path M starts from the low-temperature heating terminal N4 in order, the thirteenth flow path R13, the eleventh flow path R11, and the heat storage. A tank bypass route Rb, a second flow path R2, a third flow path R3, and a sixth flow path R6 are formed.

〔第2実施形態〕
この第2実施形態は、上記第1実施形態において、放熱状態切換手段が第1循環状態と第2循環状態とに切り換えるための切換条件についての別実施形態である。以下、切換条件について説明し、その他の構成については上記第1実施形態と同様であるので、説明を省略する。
[Second Embodiment]
This 2nd Embodiment is another embodiment about the switching conditions for the thermal radiation state switching means to switch to a 1st circulation state and a 2nd circulation state in the said 1st Embodiment. Hereinafter, the switching conditions will be described, and the other configurations are the same as those in the first embodiment, and thus description thereof will be omitted.

切換条件は、燃料電池2にて発電された電力が供給自在な電力供給部における将来予測される電力負荷、及び、将来予測される熱消費部Fでの熱負荷を賄うことを想定して、第1循環状態に切り換えたときの指標と第2循環状態に切り換えたときの指標のうち優位な指標の方に切り換えるための条件として定められている。   Assuming that the switching condition covers the power load predicted in the future in the power supply unit that can freely supply the power generated by the fuel cell 2 and the heat load in the heat consumption unit F predicted in the future, It is defined as a condition for switching to the dominant index among the index when switching to the first circulation state and the index when switching to the second circulation state.

上記第1実施形態で述べた如く、運転制御装置Sは、時系列的な電力負荷及び時系列的な熱負荷を管理している。例えば、運転制御装置Sが、1日の各時間帯(1時間ごと)の電力負荷及び熱負荷に区分けした状態で時系列的な電力負荷及び時系列的な熱負荷を管理している。そこで、運転制御装置Sは、管理している時系列的な電力負荷から将来(例えば、現在時刻から予測想定時刻までの間)予測される電力負荷を推測することができるので、この推測した将来予測される電力負荷及び現在要求されている電力負荷を賄うように燃料電池システムDを運転させる電主運転を行うことを想定する。そして、運転制御装置Sは、電主運転を行うことを想定した上で、将来予測される熱負荷(例えば、現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷)を賄うに当たり、第1循環状態に切り換えて賄う場合と第2循環状態に切り換えて賄う場合(燃料電池2の熱出力と補助加熱器Hの熱出力とで賄う場合)の夫々の場合について指標(例えば、ガス使用量、ガス料金、一次エネルギー使用量等)を求める。つまり、第1循環状態に切り換えて賄う場合とは、燃料電池2の熱出力で賄う場合であり、第2循環状態に切り換えて賄う場合とは、燃料電池2の熱出力と補助加熱器Hの熱出力とで賄う場合であり、夫々の場合について指標を求めることで、省エネ性の面でどちらかが有利か比較できるようにしている。このようにして、運転制御装置Sは、第1循環状態に切り換えて賄う場合の指標と第2循環状態に切り換えて賄う場合の指標とのうち、優位な指標の方に切り換える。   As described in the first embodiment, the operation control device S manages a time-series power load and a time-series heat load. For example, the operation control device S manages the time-series power load and the time-series heat load in a state where the operation control apparatus S is divided into a power load and a heat load for each time period (every hour) of the day. Therefore, the operation control device S can estimate the predicted power load in the future (for example, from the current time to the predicted prediction time) from the managed time-series power load. It is assumed that the main operation for operating the fuel cell system D to cover the predicted power load and the currently required power load is performed. Then, the operation control apparatus S assumes that the main operation is performed, and covers the future predicted heat load (for example, the heat load predicted between the current time T and the predicted expected time Te). An index (for example, gas) for each of the case where the first circulation state is covered and the case where the second circulation state is covered (when the heat output of the fuel cell 2 and the heat output of the auxiliary heater H are covered). Use amount, gas charge, primary energy use, etc.). That is, the case where it is covered by switching to the first circulation state is the case where it is covered by the heat output of the fuel cell 2, and the case where it is covered by switching to the second circulation state is that the heat output of the fuel cell 2 and the auxiliary heater H This is a case where it is covered by heat output, and by obtaining an index for each case, it is possible to compare which one is advantageous in terms of energy saving. In this way, the operation control device S switches to the dominant index among the index when switching to the first circulation state and the index when switching to the second circulation state.

例えば、指標としてガス使用量を求める場合について説明する。
現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷を賄うに当たり、下記の〔数1〕を用いて、第1循環状態に切り換えて賄う場合のガス使用量Wを求めるとともに、第2循環状態に切り換えて賄う場合のガス使用量Wを求める。
For example, the case where the amount of gas used is obtained as an index will be described.
In providing the thermal load predicted from the current time T to the predicted estimated time Te, the following [Equation 1] is used to obtain the gas usage W when switching to the first circulation state to cover the thermal load. 2) Use the gas usage W when switching to a circulating state.

Figure 2011012906
ここで、GFCは燃料電池2でのガス消費量(m3)であり、GBUは補助加熱器Hのガス消費量(m3)であり、EFCは燃料電池2の発電量(kWh)である。また、xは電力のガスの等価係数であり、発電量をガス使用量に変換するための係数である。
Figure 2011012906
Here, G FC is a gas consumption (m 3 ) in the fuel cell 2, G BU is a gas consumption (m 3 ) of the auxiliary heater H, and E FC is a power generation amount (kWh) of the fuel cell 2. ). Further, x is an equivalent coefficient of power gas, and is a coefficient for converting the amount of power generation into the amount of gas used.

例えば、運転制御装置Sは、管理している時系列的な電力負荷から現在時刻Tから予測想定時刻Teまでの間で予測される電力負荷を求めることができ、この電力負荷を賄うように燃料電池システムDを運転させる電主運転を行うことを想定する。この電主運転の想定により、現在時刻Tから予測想定時刻Teまでの間において燃料電池2の出力や運転時間等の運転状況を把握することができるので、その電主運転を行った場合に、燃料電池2でのガス消費量GFC及び燃料電池2の発電量EFCを求めることができるとともに、蓄熱タンクTに蓄熱される蓄熱量を求めることができる。 For example, the operation control device S can obtain a predicted power load from the time-series power load being managed to the predicted time Te from the current time T, and fuel to cover this power load. It is assumed that the main operation for operating the battery system D is performed. Based on the assumption of the main operation, since the operation status such as the output of the fuel cell 2 and the operation time can be grasped from the current time T to the predicted prediction time Te, when the main operation is performed, The gas consumption amount G FC in the fuel cell 2 and the power generation amount E FC of the fuel cell 2 can be obtained, and the heat storage amount stored in the heat storage tank T can be obtained.

上述の如く、ガス消費量GFC及び燃料電池2の発電量EFCについては、燃料電池システムDの電主運転を想定することで求めることができる。補助加熱器Hのガス消費量GBUについては、第1循環状態に切り換えたときと第2循環状態に切り換えたときとで異なるので、その点について説明する。 As described above, the gas consumption amount G FC and the power generation amount E FC of the fuel cell 2 can be obtained by assuming the main operation of the fuel cell system D. The gas consumption G BU of the auxiliary heater H is different between when switching to the first circulation state and when switching to the second circulation state, which will be described.

まず、第1循環状態に切り換えたときについて説明する。運転制御装置Sは、例えば、1時間ごとに熱負荷を管理しているので、その管理している時系列的な熱負荷から現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷を求めることができる。そこで、まず、現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷を第1循環状態に切り換えて賄う場合を想定する。電主運転を行った場合の燃料電池2の熱出力から蓄熱タンクTに蓄熱される蓄熱量が求めることができるので、その蓄熱量が現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷よりも大きければ、補助加熱器Hにて加熱することなく、蓄熱タンクTの蓄熱量だけで熱負荷を賄うことができる。よって、このときには、補助加熱器Hのガス消費量GBUを0(ゼロ)として求めることができる。逆に、求めた蓄熱量が予測される熱負荷よりも小さければ、その不足分を補助加熱器Hにて補うことになる。そこで、不足する熱負荷を補助加熱器Hにて賄うことを想定して、不足する熱負荷及び補助加熱器Hの効率等を用いて、補助加熱器Hのガス消費量GBUを求めることができる。このようにして、補助加熱器のガス消費量GBUを求めることで、第1循環状態に切り換えて現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷を賄う場合のガス使用量Wを求めることができる。 First, the case where it switches to the 1st circulation state is demonstrated. For example, since the operation control device S manages the thermal load every hour, the thermal load predicted from the managed time-series thermal load to the predicted estimated time Te from the current time T. Can be requested. Therefore, first, a case is assumed where the thermal load predicted from the current time T to the predicted prediction time Te is covered by switching to the first circulation state. Since the heat storage amount stored in the heat storage tank T can be obtained from the heat output of the fuel cell 2 when the main operation is performed, the heat storage amount is predicted between the current time T and the predicted prediction time Te. If it is larger than the heat load, the heat load can be covered only by the amount of heat stored in the heat storage tank T without being heated by the auxiliary heater H. Therefore, at this time, the gas consumption amount G BU of the auxiliary heater H can be obtained as 0 (zero). On the other hand, if the obtained heat storage amount is smaller than the predicted heat load, the shortage is supplemented by the auxiliary heater H. Therefore, assuming that the insufficient heat load is covered by the auxiliary heater H, the gas consumption G BU of the auxiliary heater H can be obtained using the insufficient heat load and the efficiency of the auxiliary heater H. it can. In this way, by obtaining the gas consumption amount G BU of the auxiliary heater, the gas usage amount in the case of covering the thermal load predicted from the current time T to the predicted estimated time Te by switching to the first circulation state. W can be obtained.

次に、第2循環状態に切り換えたときについて説明する。現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷を第2循環状態に切り換えて賄う場合を想定する。このときには、予測される熱負荷を補助加熱器Hにて賄うことになる。よって、予測される熱負荷及び補助加熱器の効率等を用いて、補助加熱器のガス消費量GBUを求めることができる。このようにして、補助加熱器のガス消費量GBUを求めることで、第2循環状態に切り換えて現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷を賄う場合のガス使用量Wを求めることができる。 Next, a description will be given of when switching to the second circulation state. Assume that the thermal load predicted between the current time T and the predicted estimated time Te is covered by switching to the second circulation state. At this time, the predicted heat load is covered by the auxiliary heater H. Therefore, the gas consumption G BU of the auxiliary heater can be obtained by using the predicted heat load and the efficiency of the auxiliary heater. In this way, by obtaining the gas consumption amount G BU of the auxiliary heater, the gas usage amount in the case of covering the thermal load predicted from the current time T to the predicted estimated time Te by switching to the second circulation state W can be obtained.

このようにして、現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷を第1循環状態に切り換えて賄う場合(燃料電池2の熱出力で賄う場合)のガス使用量Wを求めるとともに、現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷を第2循環状態に切り換えて賄う場合(燃料電池2の熱出力と補助加熱器Hの熱出力とで賄う場合)のガス使用量Wを求め、求めたガス使用量Wのうち小さい方が優位な指標であるとして、第1循環状態と第2循環状態とのうち求めたガス使用量Wが小さい方に切り換える。   In this way, the gas usage W is obtained when the thermal load predicted between the current time T and the predicted estimated time Te is covered by switching to the first circulation state (when the thermal output of the fuel cell 2 covers the thermal load). In addition, when the thermal load predicted from the current time T to the predicted estimated time Te is covered by switching to the second circulation state (when the thermal output of the fuel cell 2 and the thermal output of the auxiliary heater H are covered) The gas usage amount W is obtained, and the smaller one of the obtained gas usage amounts W is regarded as the superior index, and the obtained gas usage amount W is switched to the smaller one of the first circulation state and the second circulation state.

上述の如く、ガス使用量Wを求めるに当たり、電主運転を行うことを想定しているが、電力負荷の大きさによって燃料電池システムDの出力を変更することになり、燃料電池システムDの部分負荷効率等を考慮する係数を用いて蓄熱タンクTの蓄熱量を求めて、ガス使用量Wを求めることもできる。また、運転制御装置Sは、現在の蓄熱タンクTの蓄熱量を把握しているので、電主運転にて蓄熱タンクTに蓄熱される蓄熱量に現在の蓄熱タンクTの蓄熱量を加えて、ガス使用量Wを求めることもできる。   As described above, it is assumed that the main operation is performed when obtaining the gas consumption W. However, the output of the fuel cell system D is changed depending on the magnitude of the electric power load. The amount of gas used W can also be obtained by obtaining the amount of heat stored in the heat storage tank T using a coefficient that considers load efficiency and the like. Moreover, since the operation control apparatus S grasps the heat storage amount of the current heat storage tank T, the current heat storage amount of the heat storage tank T is added to the heat storage amount stored in the heat storage tank T in the main operation, The amount of gas used W can also be obtained.

上記第1実施形態にて説明した如く、放熱用循環路Mを第1循環状態に切り換えたときに、燃料電池システムDが運転中であれば、第6制御弁V6を部分的に開制御することで、現在の燃料電池2の排熱をも熱消費部Fに供給可能となる。そこで、〔数1〕にて第1循環状態に切り換えて賄う場合のガス使用量Wを求めるに当たり、現在の燃料電池2の熱出力及びガス使用量等も用いながら、ガス使用量Wを求めることも可能である。   As described in the first embodiment, when the heat dissipation circuit M is switched to the first circulation state, if the fuel cell system D is in operation, the sixth control valve V6 is partially opened. As a result, the exhaust heat of the current fuel cell 2 can be supplied to the heat consuming part F. Therefore, in calculating the gas usage W when the first circulation state is switched by [Equation 1], the gas usage W is calculated using the current heat output and gas usage of the fuel cell 2. Is also possible.

上記第1実施形態では、放熱用循環路Mを第1循環状態に切り換えると、蓄熱タンクTと熱消費部Fとの間で熱媒を循環させるようにしているが、例えば、底部流路Rtに開閉弁を設け、その開閉弁を閉弁するとともに、第6制御弁V6を開弁させることで、熱媒加熱手段Kと熱消費部Fとの間で熱媒を循環させることもできる。このように、熱媒加熱手段Kと熱消費部Fとの間で熱媒を循環させることで、燃料電池2の排熱を蓄熱タンクTに蓄熱することなく、直接熱消費部Fに供給することができる。
そこで、この第2実施形態において、将来予測される熱負荷(例えば、現在時刻Tから予測想定時刻Teまでの間で予測される熱負荷)を賄うに当たり、第1循環状態に切り換えて賄う場合の指標を求める場合に、放熱用循環路Mを第1循環状態に切り換えて燃料電池システムDの熱出力にて直接熱負荷を賄うとして、指標を求めることができる。
In the first embodiment, when the heat radiation circuit M is switched to the first circulation state, the heat medium is circulated between the heat storage tank T and the heat consuming unit F. For example, the bottom channel Rt It is also possible to circulate the heat medium between the heat medium heating means K and the heat consuming part F by providing an open / close valve in the valve and closing the open / close valve and opening the sixth control valve V6. Thus, the heat medium is circulated between the heat medium heating means K and the heat consumption unit F, so that the exhaust heat of the fuel cell 2 is directly supplied to the heat consumption unit F without being stored in the heat storage tank T. be able to.
Therefore, in the second embodiment, when the thermal load predicted in the future (for example, the thermal load predicted between the current time T and the predicted estimated time Te) is covered, the first circulation state is provided. When obtaining the index, the index can be obtained by switching the heat radiation circuit M to the first circulation state and directly covering the heat load with the heat output of the fuel cell system D.

また、例えば、現在の熱負荷を賄うように燃料電池システムDを運転させる所謂熱主運転を行うことで、熱消費部Fに対して熱を供給する場合には、燃料電池システムDを運転させておくことができる。そこで、燃料電池システムDについて熱主運転を行うことを想定して、放熱用循環路Mを第1循環状態に切り換えて燃料電池システムDの熱出力にて将来予測される熱負荷を賄う場合の指標を求めるとともに、放熱用循環路Mを第2循環状態に切り換えて燃料電池システムDの熱出力と補助加熱器Hの熱出力とで将来予測される熱負荷を賄う場合の指標を求めて、その求めた指標のうち優位な指標の方に切り換えることもできる。   In addition, for example, when heat is supplied to the heat consuming part F by performing a so-called main heat operation that operates the fuel cell system D so as to cover the current heat load, the fuel cell system D is operated. I can keep it. Therefore, assuming that the main heat operation is performed for the fuel cell system D, the heat radiation circuit M is switched to the first circulation state to cover the heat load predicted in the future by the heat output of the fuel cell system D. In addition to obtaining an index, obtaining an index in the case where a heat load of the fuel cell system D and a heat output of the auxiliary heater H cover a predicted thermal load in the future by switching the heat dissipation circuit M to the second circulation state, It is also possible to switch to the dominant index among the obtained indices.

〔別実施形態〕
(1)上記第1及び第2実施形態において、膨張タンクBを備えることなく、密閉型の蓄熱タンクTのみを備えることもできる。また、蓄熱タンクTについては、密閉型のものに限らず、大気開放型のものを適応することもでき、各種の蓄熱タンクを適応することができる。
[Another embodiment]
(1) In the first and second embodiments, it is possible to provide only the sealed heat storage tank T without providing the expansion tank B. Further, the heat storage tank T is not limited to a sealed type, but can be an open air type, and various heat storage tanks can be applied.

(2)上記第1及び第2実施形態では、熱消費部Fとして、給湯用熱交換器N1、風呂用熱交換器N2、高温暖房端末N3、及び、低温暖房端末N4を備える場合を例示したが、これらの少なくともひとつを熱消費部Fとして装備する形態で実施してもよく、また、熱消費部Fとしは、これら以外のものを適用できる。 (2) In the said 1st and 2nd embodiment, the case where the heat consumption part F was equipped with the heat exchanger N1 for hot water supply, the heat exchanger N2 for baths, the high temperature heating terminal N3, and the low temperature heating terminal N4 was illustrated. However, you may implement with the form equipped with at least one of these as the heat-consuming part F, and the thing other than these is applicable as the heat-consuming part F.

(3)上記第1及び第2実施形態では、複数の熱消費部Fの全てについて、放熱用循環路Mを第1循環状態と第2循環状態とに切換自在としているが、例えば、高温暖房端末N3についての放熱用循環路Mのみを第1循環状態と第2循環状態とに切換自在とすることもでき、複数の熱消費部Fの一部についてだけ、放熱用循環路Mを第1循環状態と第2循環状態とに切換自在とすることもできる。 (3) In the first and second embodiments, the heat dissipation circuit M can be switched between the first circulation state and the second circulation state for all of the plurality of heat consuming parts F. Only the heat radiation circuit M for the terminal N3 can be switched between the first circulation state and the second circulation state, and the heat radiation circuit M is provided for only a part of the plurality of heat consuming parts F. It is also possible to switch between the circulation state and the second circulation state.

(4)上記第1実施形態では、切換条件を蓄熱タンクの蓄熱量及び放熱用循環路にて熱消費部から蓄熱タンクに戻される熱媒の温度に基づいて定められているが、切換条件を、放熱用循環路にて熱消費部から蓄熱タンクに戻される熱媒の温度にかかわらず、蓄熱タンクの蓄熱量のみに基づいて定めることもできる。 (4) In the first embodiment, the switching condition is determined based on the heat storage amount of the heat storage tank and the temperature of the heat medium returned from the heat consuming part to the heat storage tank in the heat dissipation circuit, but the switching condition is Regardless of the temperature of the heat medium returned from the heat consuming part to the heat storage tank in the heat dissipation circulation path, it can be determined based only on the heat storage amount of the heat storage tank.

本発明は、燃料電池の排熱を蓄熱タンクに蓄熱する蓄熱手段を備え、前記燃料電池の排熱及び前記蓄熱タンクに蓄熱された熱の少なくとも一方、並びに、補助加熱器にて発生された熱を熱消費部に供給自在に構成され、燃料電池の排熱回収効果の低減を抑制して省エネ性の向上を図りながら、熱消費部への熱の供給を適切に行うことができる各種の熱供給設備に適応可能である。   The present invention comprises heat storage means for storing the exhaust heat of the fuel cell in a heat storage tank, and at least one of the exhaust heat of the fuel cell and the heat stored in the heat storage tank, and the heat generated by the auxiliary heater The heat can be supplied to the heat consuming unit, and various heats can be appropriately supplied to the heat consuming unit while reducing the exhaust heat recovery effect of the fuel cell and improving energy saving. Applicable to supply equipment.

1 放熱用熱媒循環手段
2 燃料電池
F 熱消費部
H 補助加熱器
K 熱媒加熱手段
L 加熱用循環路
M 放熱用循環路
P 蓄熱手段
T 蓄熱タンク
R4 バイパス路(第4流路)
R14,3B,3A 分岐合流路
Rb 蓄熱タンク迂回路
V5,V7,S 放熱状態切換手段
V2,S 通流状態切換手段
DESCRIPTION OF SYMBOLS 1 Heat dissipation medium circulation means 2 Fuel cell F Heat consumption part H Auxiliary heater K Heat medium heating means L Heating circulation path M Heat radiation circulation path P Thermal storage means T Thermal storage tank R4 Bypass path (fourth flow path)
R14, 3B, 3A Branch / joint flow path Rb Heat storage tank detours V5, V7, S Heat radiation state switching means V2, S Flow state switching means

Claims (7)

燃料電池の排熱を蓄熱タンクに蓄熱する蓄熱手段を備え、前記燃料電池の排熱及び前記蓄熱タンクに蓄熱された熱の少なくとも一方、並びに、補助加熱器にて発生された熱を熱消費部に供給自在に構成されている熱供給設備であって、
前記蓄熱タンクから取り出した熱媒を前記熱消費部を経由して前記蓄熱タンクに戻す形態で又は前記燃料電池の排熱により熱媒を加熱する熱媒加熱手段と前記熱消費部との間で循環させる形態で熱媒を通流させる放熱用循環路を通して熱媒を循環させる放熱用熱媒循環手段が備えられ、前記補助加熱器が、前記放熱用循環路における前記蓄熱タンク及び前記熱媒加熱手段と前記熱消費部との間に設けられ、前記放熱用循環路に、前記蓄熱タンク及び前記熱媒加熱手段を迂回して前記熱消費部から熱媒を前記補助加熱器に導く蓄熱タンク迂回路が備えられ、予め定められた切換条件に基づいて、前記蓄熱タンク又は前記熱媒加熱手段を通して熱媒を循環させる第1循環状態と前記蓄熱タンク迂回路を通して前記補助加熱器にて加熱する形態で熱媒を循環させる第2循環状態とに前記放熱用循環路を切り換える放熱状態切換手段が備えられている熱供給設備。
Heat storage means for storing the exhaust heat of the fuel cell in a heat storage tank, and at least one of the exhaust heat of the fuel cell and the heat stored in the heat storage tank, and the heat generated by the auxiliary heater as a heat consuming unit A heat supply facility configured to be freely supplied to
The heat medium taken out from the heat storage tank is returned to the heat storage tank via the heat consumption part or between the heat medium heating means for heating the heat medium by exhaust heat of the fuel cell and the heat consumption part. A heat dissipating heat medium circulating means for circulating the heat medium through the heat dissipating circulation path for circulating the heat medium in a circulating form is provided, and the auxiliary heater includes the heat storage tank and the heat medium heating in the heat dissipating circulation path. The heat storage tank is provided between the heat consuming section and bypasses the heat storage tank and the heat medium heating means, and bypasses the heat storage tank and guides the heat medium from the heat consuming section to the auxiliary heater. A mode in which a passage is provided and heated by the auxiliary heater through the heat storage tank or a first circulation state in which the heat medium is circulated through the heat storage tank or the heat medium heating means and through the heat storage tank detour based on a predetermined switching condition In heat Heat supply facility radiating state switching means for switching the radiating circulation path and the second circulation condition that circulates is provided with.
前記切換条件は、前記燃料電池にて発電された電力が供給自在な電力供給部における将来予測される電力負荷、及び、将来予測される前記熱消費部での熱負荷を賄うことを想定して、前記第1循環状態に切り換えたときの指標と前記第2循環状態に切り換えたときの指標のうち優位な指標の方に切り換えるための条件として定められている請求項1に記載の熱供給設備。   It is assumed that the switching condition covers a future predicted power load in a power supply unit capable of supplying power generated by the fuel cell and a future predicted heat load in the heat consumption unit. 2. The heat supply equipment according to claim 1, wherein the heat supply equipment is defined as a condition for switching to the dominant index among the index when switching to the first circulation state and the index when switching to the second circulation state. . 前記切換条件は、前記蓄熱タンクの蓄熱量及び前記放熱用循環路にて前記熱消費部から前記蓄熱タンクに戻される熱媒の温度に基づいて定められている請求項1に記載の熱供給設備。   2. The heat supply facility according to claim 1, wherein the switching condition is determined based on a heat storage amount of the heat storage tank and a temperature of a heat medium returned from the heat consumption unit to the heat storage tank in the heat dissipation circulation path. . 前記切換条件は、前記蓄熱タンクの蓄熱量に基づいて定められている請求項1に記載の熱供給設備。   The heat supply facility according to claim 1, wherein the switching condition is determined based on a heat storage amount of the heat storage tank. 前記放熱用循環路に、前記補助加熱器を迂回するバイパス路が備えられ、前記放熱状態切換手段が前記放熱用循環路を前記第1循環状態に切り換えているときには、前記補助加熱器を通して熱媒を通流させる加熱状態と前記バイパス路を通して熱媒を通流させるバイパス状態とに切換自在で、前記放熱状態切換手段が前記放熱用循環路を前記第2循環状態に切り換えているときには前記加熱状態に切り換える通流状態切換手段が備えられている請求項1〜4の何れか1項に記載の熱供給設備。   When the heat dissipation circulation path is provided with a bypass path that bypasses the auxiliary heater, and the heat dissipation state switching means switches the heat dissipation circulation path to the first circulation state, a heat medium is passed through the auxiliary heater. The heating state is freely switchable between a heating state for flowing through and a bypass state for allowing a heat medium to flow through the bypass passage, and the heating state is switched when the heat dissipation state switching means switches the heat dissipation circulation path to the second circulation state. The heat supply facility according to any one of claims 1 to 4, further comprising a flow state switching means for switching to the above. 前記放熱用循環路に、前記熱消費部から前記蓄熱タンクに戻す熱媒の一部を分岐させて前記燃料電池の排熱にて加熱して前記蓄熱タンクから取り出した熱媒に合流させる分岐合流路が備えられている請求項1〜5の何れか1項に記載の熱供給設備。   Branching and merging that causes a part of the heat medium returned from the heat consuming part to the heat storage tank to be branched into the heat dissipation circulation path and heated by the exhaust heat of the fuel cell to join the heat medium taken out from the heat storage tank The heat supply facility according to any one of claims 1 to 5, wherein a path is provided. 前記蓄熱手段は、前記蓄熱タンクの底部から取り出した熱媒を前記燃料電池の排熱にて加熱する熱媒加熱手段を経由して前記蓄熱タンクの上部に戻す形態で熱媒を通流させる加熱用循環路を通して熱媒を循環する加熱用熱媒循環手段を備え、前記放熱用循環路は、前記蓄熱タンクの上部から取り出した熱媒を前記熱消費部に供給して前記蓄熱タンクの底部に戻す形態で熱媒を通流するように構成され、前記加熱用循環路における前記蓄熱タンクの底部から熱媒を取り出す流路部位と前記放熱用循環路における前記蓄熱タンクの底部に熱媒を戻す流路部位とが共通の流路にて構成され、前記加熱用循環路における前記蓄熱タンクの上部に熱媒を戻す流路部位と前記放熱用循環路における前記蓄熱タンクの上部から熱媒を取り出す流路部位とが共通の流路にて構成されている請求項1〜6の何れか1項に記載の熱供給設備。   The heat storage means is a heating medium that causes the heat medium to flow in such a manner that the heat medium taken out from the bottom of the heat storage tank is returned to the top of the heat storage tank via a heat medium heating means that heats the exhaust heat from the fuel cell. A heating medium circulating means for circulating the heating medium through the circulation path for supplying heat to the bottom part of the heat storage tank by supplying the heat medium taken out from the upper part of the heat storage tank to the heat consuming part. The heat medium is configured to flow in a return form, and the heat medium is returned to the flow path portion for taking out the heat medium from the bottom of the heat storage tank in the heating circulation path and to the bottom of the heat storage tank in the heat dissipation circulation path. The flow path part is constituted by a common flow path, and the heat medium is taken out from the flow path part for returning the heat medium to the upper part of the heat storage tank in the heating circulation path and from the upper part of the heat storage tank in the heat dissipation circulation path. Shared with the flow path Heat supply facility according to any one of claims 1 to 6, are constituted by flow paths.
JP2009157986A 2009-07-02 2009-07-02 Heat supply facility Pending JP2011012906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157986A JP2011012906A (en) 2009-07-02 2009-07-02 Heat supply facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157986A JP2011012906A (en) 2009-07-02 2009-07-02 Heat supply facility

Publications (1)

Publication Number Publication Date
JP2011012906A true JP2011012906A (en) 2011-01-20

Family

ID=43591992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157986A Pending JP2011012906A (en) 2009-07-02 2009-07-02 Heat supply facility

Country Status (1)

Country Link
JP (1) JP2011012906A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248624A (en) * 1988-08-11 1990-02-19 Minolta Camera Co Ltd Zoom lens
JP2012225589A (en) * 2011-04-20 2012-11-15 Noritz Corp Heat recovery device, cogeneration system, and method for detecting wrong pipe connection
JP2014224672A (en) * 2013-04-24 2014-12-04 大阪瓦斯株式会社 Hot water storage type heat source device
JP2015075256A (en) * 2013-10-07 2015-04-20 Jx日鉱日石エネルギー株式会社 Co-generation system
JP2016515190A (en) * 2013-03-11 2016-05-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Heating equipment and method of operating heating equipment
RU194450U1 (en) * 2019-10-07 2019-12-11 Акционерное общество "Радиотехнические и Информационные Системы Воздушно-космической обороны (АО "РТИС ВКО") Boiler
RU2735883C1 (en) * 2019-12-02 2020-11-09 Акционерное общество "Радиотехнические и Информационные Системы Воздушно-космической обороны (АО "РТИС ВКО") Mobile source of heat and electric energy
GB2591127A (en) * 2020-01-17 2021-07-21 Warmflow Engineering Company Ltd Hot water apparatus and system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248624A (en) * 1988-08-11 1990-02-19 Minolta Camera Co Ltd Zoom lens
JP2012225589A (en) * 2011-04-20 2012-11-15 Noritz Corp Heat recovery device, cogeneration system, and method for detecting wrong pipe connection
JP2016515190A (en) * 2013-03-11 2016-05-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Heating equipment and method of operating heating equipment
JP2014224672A (en) * 2013-04-24 2014-12-04 大阪瓦斯株式会社 Hot water storage type heat source device
JP2015075256A (en) * 2013-10-07 2015-04-20 Jx日鉱日石エネルギー株式会社 Co-generation system
RU194450U1 (en) * 2019-10-07 2019-12-11 Акционерное общество "Радиотехнические и Информационные Системы Воздушно-космической обороны (АО "РТИС ВКО") Boiler
RU2735883C1 (en) * 2019-12-02 2020-11-09 Акционерное общество "Радиотехнические и Информационные Системы Воздушно-космической обороны (АО "РТИС ВКО") Mobile source of heat and electric energy
GB2591127A (en) * 2020-01-17 2021-07-21 Warmflow Engineering Company Ltd Hot water apparatus and system
GB2591127B (en) * 2020-01-17 2023-11-29 Warmflow Engineering Company Ltd Hot water apparatus and system

Similar Documents

Publication Publication Date Title
JP2011012906A (en) Heat supply facility
JP2011098628A (en) Cooling system of hybrid vehicle
JP2006343011A (en) Hot water supplier
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP2007132612A (en) Cogeneration system, its control method, and program
JP5829492B2 (en) Hot water storage type hot water supply system and operation control method thereof
JP2009243852A (en) Cogeneration system
JP2015050826A (en) Demand response system
JP5299324B2 (en) Vehicle thermal management device
JP2008309094A (en) Warming-up device for internal combustion engine
JP5037985B2 (en) Bath equipment
JP5069455B2 (en) Collective cogeneration system
JP2007132613A (en) Cogeneration system
JP5846413B2 (en) Cogeneration system
JP4628074B2 (en) Electricity consumption equipment and cogeneration system
JP2011210684A (en) Fuel cell cogeneration system
JP4953436B2 (en) Thermal storage and heat dissipation system
JP2013057435A (en) Heat supply system
JP2011257130A (en) Apparatus for recovering exhaust heat
JP5551942B2 (en) Cogeneration system
JP2011190730A (en) Engine cooling device
JP5119190B2 (en) Vehicle thermal management device
JP2008241208A (en) Cogeneration system
JP6403631B2 (en) Hot water storage unit
JP2006329611A (en) Cogeneration system