JP2011009755A - Piezoelectric member for actuator - Google Patents

Piezoelectric member for actuator Download PDF

Info

Publication number
JP2011009755A
JP2011009755A JP2010157978A JP2010157978A JP2011009755A JP 2011009755 A JP2011009755 A JP 2011009755A JP 2010157978 A JP2010157978 A JP 2010157978A JP 2010157978 A JP2010157978 A JP 2010157978A JP 2011009755 A JP2011009755 A JP 2011009755A
Authority
JP
Japan
Prior art keywords
sintered body
less
zirconate titanate
lead zirconate
void
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010157978A
Other languages
Japanese (ja)
Other versions
JP5132728B2 (en
Inventor
Chitose Ueki
千歳 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010157978A priority Critical patent/JP5132728B2/en
Publication of JP2011009755A publication Critical patent/JP2011009755A/en
Application granted granted Critical
Publication of JP5132728B2 publication Critical patent/JP5132728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric member for an actuator, having high piezoelectric properties such as a piezoelectric constant, hardly causing cracking or chipping even if grinding work is executed thereto, and allowing an electrode and an electrode extraction line to be formed on a surface thereof even in an unpolished state.SOLUTION: The piezoelectric member for an actuator is formed with a lead zirconate titanate-based sintered body in which: the density of the sintered body is ≥98% of theoretical density; a maximum crystal particle diameter is ≤10 μm; a maximum void diameter is ≤10 μm; surface roughness on a surface of the sintered body in an unpolished state is ≤0.3 μm in center line average roughness (Ra); a void fraction in the sintered body is ≤1.0% when an area at the depth up to 100 μm from the sintered body surface and areas other than it are assumed to be a sintered body surface layer part and a sintered body inside, respectively; and the difference between the void fraction of the sintered body surface layer part and that of the inside of sintered body is ≤1.0%.

Description

本発明は、超音波モーター、インクジェットプリンタヘッド等に用いられるチタン酸ジルコン酸鉛系焼結体からなるアクチュエータ用圧電部材に関するものである。   The present invention relates to a piezoelectric member for an actuator made of a lead zirconate titanate-based sintered body used for an ultrasonic motor, an ink jet printer head or the like.

従来、超音波モーターやインクジェットプリンタヘッドには圧電型のアクチュエータが用いられている。この圧電型のアクチュエータの基本原理は、分極処理した圧電セラミックスからなるアクチュエータ用圧電部材の相対する面に電極を形成して電圧を印加すると、圧電セラミックス中の結晶に歪みが発生して変形することを利用したもので、このようなアクチュエータ用圧電部材としてチタン酸ジルコン酸鉛系焼結体が用いられていた。   Conventionally, piezoelectric actuators are used in ultrasonic motors and inkjet printer heads. The basic principle of this piezoelectric actuator is that when an electrode is formed on the opposing surface of a piezoelectric member made of polarized piezoelectric ceramics and a voltage is applied, the crystals in the piezoelectric ceramic are distorted and deformed. As a piezoelectric member for such an actuator, a lead zirconate titanate-based sintered body has been used.

チタン酸ジルコン酸鉛系焼結体を製造するには、アルコキシド法、蓚酸法、水熱合成法等の化学的方法や仮焼合成法等で合成したチタン酸ジルコン酸鉛系合成粉体を、周知のプレス成形法、テープ成形法等にて成形し、大気雰囲気(酸素濃度が20体積%程度)にて焼成して製作されていた。   In order to produce a lead zirconate titanate-based sintered body, a lead zirconate titanate-based synthetic powder synthesized by a chemical method such as an alkoxide method, an oxalic acid method, a hydrothermal synthesis method or a calcining synthesis method, It was manufactured by molding using a known press molding method, tape molding method, or the like, and firing in an air atmosphere (oxygen concentration of about 20% by volume).

しかしながら、PbOを主成分とした鉛系複合材料を大気雰囲気中で焼成すると、PbOが蒸発して圧電諸特性が劣化することが知られている。   However, it is known that when a lead-based composite material containing PbO as a main component is fired in an air atmosphere, PbO evaporates and various piezoelectric characteristics deteriorate.

その為、大気焼成にて圧電諸特性を劣化させずにチタン酸ジルコン酸鉛系焼結体を得る方法として、特開平11−12031号公報(以下特許文献1という)には、チタン酸ジルコン酸鉛系合成粉体を得る際に、焼成時に蒸発するPbOをあらかじめ過剰に加え、圧電諸特性の劣化を防止することが開示されている。   Therefore, as a method for obtaining a lead zirconate titanate-based sintered body without deteriorating various piezoelectric properties by atmospheric firing, JP-A-11-12031 (hereinafter referred to as Patent Document 1) discloses zirconate titanate. It is disclosed that when obtaining a lead-based synthetic powder, PbO that evaporates during firing is excessively added in advance to prevent deterioration of various piezoelectric characteristics.

また、チタン酸ジルコン酸鉛系焼結体をアクチュエータ用圧電部材として用いる場合、圧電定数等の圧電諸特性が高いことは勿論のこと、高細度、高精度の加工性が要求され、ダイシングソーやワイヤーソー等による微細加工においてカケやチッピング等が発生しないような機械的特性に優れたアクチュエータ用圧電部材が望まれていた。そして、ダイシングソーやワイヤーソー等での微細加工によるカケやチッピングの発生を防ぐためには、チタン酸ジルコン酸鉛系焼結体そのものの機械的強度を向上させるとともに、焼結体内部に存在するボイド径やボイド率を小さくすることが必要であった。   In addition, when using a lead zirconate titanate-based sintered body as a piezoelectric member for an actuator, not only high piezoelectric characteristics such as piezoelectric constants but also high fineness and high precision workability are required. There has been a demand for a piezoelectric member for an actuator excellent in mechanical characteristics that does not cause chipping or chipping in microfabrication using a wire saw or the like. In order to prevent the occurrence of chipping and chipping due to microfabrication with a dicing saw, wire saw, etc., the mechanical strength of the lead zirconate titanate-based sintered body itself is improved and voids existing inside the sintered body are also included. It was necessary to reduce the diameter and void ratio.

その為、緻密化されたチタン酸ジルコン酸鉛系焼結体を得る方法として、熱間静水圧プレス法(HIP法)にて、ボイドを押しつぶすか、あるいは特許第2652425号(以下特許文献2という)に開示されているように、昇温時の酸素濃度を50体積%以上とし、かつ焼成温度時の酸素濃度を昇温時の1/2乃至10体積%にして焼成することが提案されていた。   Therefore, as a method of obtaining a densified lead zirconate titanate-based sintered body, the void is crushed by the hot isostatic pressing method (HIP method), or Japanese Patent No. 2652425 (hereinafter referred to as Patent Document 2). ), It is proposed that the oxygen concentration at the time of temperature rise is 50% by volume or more, and the oxygen concentration at the firing temperature is ½ to 10% by volume of the temperature rise. It was.

特開平11−12031号公報JP-A-11-12031 特許第2652425号Japanese Patent No. 2652425

ところが、特許文献1に開示されているように、チタン酸ジルコン酸鉛系合成粉体の秤量時にあらかじめ過剰のPbOを加えるようにしても、大気雰囲気での焼成では、PbO
の蒸発を防ぐことが難しく、PbOが焼結体表面から蒸発するため、焼結体表層部と焼結体内部との組成差並びにボイド径やボイド率の差が大きく、均質なチタン酸ジルコン酸鉛系焼結体を得ることができなかった。
However, as disclosed in Patent Document 1, even if excess PbO is added in advance when weighing the lead zirconate titanate-based synthetic powder, PbO is not suitable for firing in an air atmosphere.
Since it is difficult to prevent the evaporation of PbO and the PbO evaporates from the surface of the sintered body, there is a large difference in composition between the surface layer of the sintered body and the inside of the sintered body, and the difference in void diameter and void ratio. A lead-based sintered body could not be obtained.

その為、得られたチタン酸ジルコン酸鉛系焼結体をアクチュエータ用圧電部材に用いる場合、焼結体表層部を研削加工にて除去する必要があり、高価な原料の無駄が多く、また研削時間が長くなるといった不都合があった。   Therefore, when the obtained lead zirconate titanate-based sintered body is used as a piezoelectric member for an actuator, it is necessary to remove the surface layer of the sintered body by grinding, which is wasteful of expensive raw materials and grinding. There was an inconvenience such as long time.

また、焼結体表層部を研削加工にて除去したとしても、焼結体内部は充分に緻密化されていないため、所定の形状に研削するために、ダイシングソーやワイヤーソー等にて加工を施すと、カケやチッピング等が発生し易く、例えば電極や微細な電極引出線を形成する場合、断線を招く要因となっていた。   In addition, even if the surface layer of the sintered body is removed by grinding, the inside of the sintered body is not sufficiently densified, so processing with a dicing saw or wire saw is necessary to grind it to the specified shape. If applied, chipping or chipping is likely to occur, and for example, when an electrode or a fine electrode lead wire is formed, it is a factor that causes disconnection.

しかも、大気雰囲気中での焼成では、大気圧の変化に伴ってPbOの蒸発量が変化し易いため、チタン酸ジルコン酸鉛系焼結体の組成にばらつきが生じ易く、安定した圧電諸特性を持ったアクチュエータ用圧電部材を得ることが難しかった。   In addition, when firing in an air atmosphere, the amount of PbO evaporation is likely to change with changes in atmospheric pressure, so the composition of the lead zirconate titanate-based sintered body is likely to vary, and stable piezoelectric properties can be obtained. It was difficult to obtain a piezoelectric member for actuator.

一方、熱間静水圧プレス法(HIP法)にて緻密化した場合、全体的に緻密なチタン酸ジルコン酸鉛系焼結体を得ることができるものの、焼結体表層部と焼結体内部とでボイドの分布状態に差があり、焼結体内外において均質な構造を有するチタン酸ジルコン酸鉛系焼結体を得ることは難しいものであった。   On the other hand, when densified by the hot isostatic pressing method (HIP method), an overall dense lead zirconate titanate-based sintered body can be obtained, but the surface layer of the sintered body and the inside of the sintered body Therefore, it was difficult to obtain a lead zirconate titanate-based sintered body having a homogeneous structure inside and outside the sintered body.

その為、熱間静水圧プレス法(HIP法)にて緻密化した焼結体もまたアクチュエータ用圧電部材として用いる場合、研削加工にて焼結体表層部を除去しなければならなかった。   Therefore, when a sintered body densified by a hot isostatic pressing method (HIP method) is also used as a piezoelectric member for an actuator, the surface layer portion of the sintered body has to be removed by grinding.

しかも、熱間静水圧プレス法(HIP法)は、外圧を加えながら焼成する方法であるため、焼結体中に残留応力が残り、ダイシングソーやワイヤーソーでの研削加工時に応力が開放され、カケやチッピングが発生する恐れもあった。   Moreover, since the hot isostatic pressing method (HIP method) is a method of firing while applying external pressure, residual stress remains in the sintered body, and the stress is released during grinding with a dicing saw or wire saw, There was a risk of chipping and chipping.

その上、熱間静水圧プレス法(HIP法)は、高価な加圧設備を必要とするためにコストがかかり、アクチュエータ用圧電部材が高額なものになってしまうとともに、量産化に適さないといった課題もあった。   In addition, the hot isostatic pressing method (HIP method) is expensive because it requires expensive pressurizing equipment, and the piezoelectric member for the actuator becomes expensive and is not suitable for mass production. There were also challenges.

これに対し、特許文献2に開示された方法では、焼成時における炉内雰囲気の変化を少なくでき、かつPbOの蒸発を制御することができるため、チタン酸ジルコン酸鉛系焼結体を全体的に緻密化できるものの、この方法においても大きなボイドが焼結体中に残ることがあった。   On the other hand, in the method disclosed in Patent Document 2, since the change in the furnace atmosphere during firing can be reduced and the evaporation of PbO can be controlled, the lead zirconate titanate-based sintered body is formed as a whole. Even in this method, large voids may remain in the sintered body.

この理由としては、チタン酸ジルコン酸鉛系粒子間に形成される空孔内の酸素濃度と外気の酸素濃度の勾配が大きくなると、酸素が拡散することにより、チタン酸ジルコン酸鉛系粒子間の隙間を埋めてボイドを追い出すとともに、粒成長を助長し、焼結を促進させ、ボイド径を小さくする傾向があり、ある程度の大きさのボイドは消失し、ボイド率を小さくできるのであるが、粒成長とともに、粒子界面に孤立したボイドがチタン酸ジルコン酸鉛系粒子中に取り込まれてしまうためであると思われる。そして、チタン酸ジルコン酸鉛系粒子中に取り込まれたボイドを取り除くことは、粒子界面に孤立したボイドを取り除くより困難であった。   The reason for this is that when the gradient between the oxygen concentration in the vacancies formed between the lead zirconate titanate-based particles and the oxygen concentration in the outside air increases, the oxygen diffuses, so that the lead zirconate titanate-based particles While filling voids and expelling voids, it tends to promote grain growth, promote sintering, and reduce void diameter.Voids of a certain size disappear, and the void ratio can be reduced. This is probably because voids isolated at the particle interface are taken into the lead zirconate titanate particles as they grow. And it was more difficult to remove voids taken into the lead zirconate titanate particles than to remove voids isolated at the particle interface.

その為、大きなボイドが存在するチタン酸ジルコン酸鉛系焼結体に研削加工を施すと、欠けやチッピングの原因となるとともに、電極や微細な電極引出線を形成する場合、断線
を招く要因となっていた。
Therefore, grinding a lead zirconate titanate-based sintered body with large voids may cause chipping or chipping, and may cause disconnection when forming electrodes or fine electrode lead wires. It was.

そこで、本発明は上記課題に鑑み、チタン酸ジルコン酸鉛系焼結体からなるアクチュエータ用圧電部材において、前記焼結体の密度が理論密度の98%以上、最大結晶粒子径が10μm以下、最大ボイド径が10μm以下であるとともに、無研磨状態での前記焼結体表面における表面粗度が中心線平均粗さ(Ra)で0.3μm以下であり、前記焼結体表面から100μmまでの深さを焼結体表層部、それ以外を焼結体内部とした時、該焼結体内部におけるボイド率が1.0%以下でかつ焼結体表層部と焼結体内部におけるボイド率の差が1.0%以下であることを特徴とする。   Therefore, in view of the above problems, the present invention provides a piezoelectric member for an actuator composed of a lead zirconate titanate-based sintered body, wherein the sintered body has a density of 98% or more of the theoretical density, a maximum crystal particle diameter of 10 μm or less, and a maximum. The void diameter is 10 μm or less, the surface roughness on the surface of the sintered body in an unpolished state is 0.3 μm or less in terms of centerline average roughness (Ra), and the depth from the sintered body surface to 100 μm When the thickness is the surface of the sintered body and the other is the inside of the sintered body, the void ratio inside the sintered body is 1.0% or less and the difference in the void ratio between the surface of the sintered body and the inside of the sintered body Is 1.0% or less.

本発明によれば、焼結体の密度が理論密度の98%以上、最大結晶粒子径が10μm以下、最大ボイド径が10μm以下であるとともに、無研磨状態での前記焼結体表面における表面粗度が中心線平均粗さ(Ra)で0.3μm以下であり、前記焼結体表面から100μmまでの深さを焼結体表層部、それ以外を焼結体内部とした時、該焼結体内部におけるボイド率が1.0%以下でかつ焼結体表層部と焼結体内部におけるボイド率の差が1.0%以下であるチタン酸ジルコン酸鉛系焼結体からなるアクチュエータ用圧電部材としたことから、アクチュエータとして重要な圧電定数等の圧電諸定数を向上させることができ、超音波モータやインクジェットプリンタヘッド等の圧電アクチュエータとして用いた時にはその性能を高めることができるとともに、均質な構造を有することから、焼結体表層部を除去する必要がなく、原料の無駄を無くすことができる。また、所望の形状とするために研削加工を施しても欠けやチッピングを生じ難く、無研磨状態での焼結体表面が滑らかであるため、この焼結体表面に直接電極や電極引出線を形成することができる。   According to the present invention, the density of the sintered body is 98% or more of the theoretical density, the maximum crystal particle diameter is 10 μm or less, the maximum void diameter is 10 μm or less, and the surface roughness on the surface of the sintered body in an unpolished state. When the degree of centerline average roughness (Ra) is 0.3 μm or less, the depth from the surface of the sintered body to 100 μm is the surface layer of the sintered body, and the other is the inside of the sintered body. Piezoelectric actuator for actuators comprising a lead zirconate titanate-based sintered body having a void ratio within the body of 1.0% or less and a difference in void ratio between the surface portion of the sintered body and the sintered body being 1.0% or less Because it is a member, it is possible to improve various piezoelectric constants such as piezoelectric constants that are important as actuators, and when used as piezoelectric actuators such as ultrasonic motors and inkjet printer heads, the performance can be improved. With, since it has a homogeneous structure, it is not necessary to remove the sintered surface layer portion, it is possible to eliminate the waste of raw materials. In addition, chipping and chipping hardly occur even if grinding is performed to obtain a desired shape, and the surface of the sintered body in an unpolished state is smooth. Therefore, an electrode or an electrode lead wire is directly attached to the surface of the sintered body. Can be formed.

本発明に係るアクチュエータ用圧電部材は、チタン酸ジルコン酸鉛系焼結体からなり、緻密で均質な構造を有し、かつ無研磨状態での焼結体表面が滑らかであることを特徴とする。   The piezoelectric member for an actuator according to the present invention is made of a lead zirconate titanate sintered body, has a dense and homogeneous structure, and has a smooth surface in a non-polished state. .

また、本発明において緻密とは、焼結体の密度が理論密度の98%以上を有することを言い、緻密化することで圧電定数等の圧電諸特性をさらに向上させることができるからであり、また、本発明において無研磨状態での焼結体表面が滑らかであるとは、中心線平均粗さ(Ra)で0.3μm以下であることを言い、研削加工などを施さなくても断線を生じることなく電極や電極引出線を直接焼結体表面に形成することができる。   Further, in the present invention, the term “dense” means that the density of the sintered body has 98% or more of the theoretical density, and it is possible to further improve the piezoelectric characteristics such as the piezoelectric constant by densification, In addition, in the present invention, the smooth surface of the sintered body in the unpolished state means that the center line average roughness (Ra) is 0.3 μm or less, and disconnection is not performed without grinding or the like. Electrodes and electrode lead wires can be formed directly on the surface of the sintered body without being generated.

さらに、本発明において均質な構造を有するとは、焼結体中におけるチタン酸ジルコン酸鉛系粒子の最大結晶粒子径が10μm以下でかつ最大ボイド径が10μm以下であるとともに、焼結体表面から100μmまでの深さを焼結体表層部、それ以外を焼結体内部とした時、焼結体内部におけるボイド率が1.0%以下でかつ焼結体表層部と焼結体内部におけるボイド率の差が1.0%以下であることを言う。   Furthermore, having a homogeneous structure in the present invention means that the maximum crystal particle diameter of the lead zirconate titanate-based particles in the sintered body is 10 μm or less and the maximum void diameter is 10 μm or less, and from the surface of the sintered body. When the depth of up to 100 μm is the sintered body surface layer portion and the other is the inside of the sintered body, the void ratio inside the sintered body is 1.0% or less and the voids in the sintered body surface layer portion and inside the sintered body The difference in rate is 1.0% or less.

ここで、チタン酸ジルコン酸鉛系粒子の最大結晶粒子径を10μm以下としたのは、最大結晶粒子径が10μmを越えると、無研磨状態での焼結体表面を中心線平均粗さ(Ra)で0.3μm以下とすることができず、また、焼結体の4点曲げ強度が大幅に低下して破損し易く、研削加工を施すとカケやチッピングが発生するからである。   Here, the maximum crystal particle diameter of the lead zirconate titanate-based particles is set to 10 μm or less because when the maximum crystal particle diameter exceeds 10 μm, the surface of the sintered body in the unpolished state is centerline average roughness (Ra ) Cannot be reduced to 0.3 μm or less, and the four-point bending strength of the sintered body is greatly reduced and easily damaged, and chipping and chipping occur when grinding is performed.

また、焼結体中の最大ボイド径を10μm以下としたのは、最大ボイド径が10μmを越えると、研削加工を施した時にこのボイドを起点としてカケやチッピングが発生するからであり、また、このボイドが焼結体表面に存在する時には、電極や微細な電極引出線を
形成する際に断線を引き起こす原因となるからである。
Moreover, the reason why the maximum void diameter in the sintered body is set to 10 μm or less is that when the maximum void diameter exceeds 10 μm, chipping or chipping occurs starting from this void when grinding is performed, This is because when the void is present on the surface of the sintered body, it causes disconnection when forming an electrode or a fine electrode lead wire.

さらに、焼結体内部のボイド率を1.0%以下としたのは、ボイド率が1.0%を越えると、焼結体の密度を理論密度の98%以上とすることができず、研削加工を施した時にカケやチッピングの起点となるボイドが占める比率が多くなってしまうからである。   Furthermore, the void ratio inside the sintered body is set to 1.0% or less. If the void ratio exceeds 1.0%, the density of the sintered body cannot be set to 98% or more of the theoretical density. This is because when grinding is performed, the ratio of voids that become the starting point of chipping and chipping increases.

そして、焼結体表層部と焼結体内部におけるボイド率の差を1.0%以下としたのは、1.0%を越えると、焼結体表層部と焼結体内部での圧電諸特性や研削加工時の研削性が大きくことなるために、均質な構造を有するものとは言い難く、アクチュエータ用圧電部材として用いるには、焼結体表層部を研削加工にて除去する必要があるからである。   The difference in the void ratio between the sintered body surface layer portion and the sintered body is set to 1.0% or less. Because the characteristics and grindability at the time of grinding process are large, it is difficult to say that it has a homogeneous structure. To use it as a piezoelectric member for actuators, it is necessary to remove the surface layer of the sintered body by grinding process Because.

その為、前記組成及び構造を満足する本発明のチタン酸ジルコン酸鉛系焼結体からなるアクチュエータ用圧電部材を用いれば、優れた圧電諸特性を有することから、超音波モーターやインクジェットプリンタヘッド等の圧電型アクチュエータとしても好適に用いることができるとともに、所定の形状に形成するにあたり研削加工を施しても欠けやチッピングを生じることがなく、さらには焼結した焼き放し面のままでも滑らかで大きなボイドが存在しないため、直接電極や電極引出線を形成することができ、研磨工程を不要あるいは研磨時間を短くでき、かつ高価な原料無駄を無くすことができる。   Therefore, if the piezoelectric member for actuators made of the lead zirconate titanate sintered body of the present invention satisfying the above composition and structure is used, it has excellent piezoelectric characteristics, so that an ultrasonic motor, an inkjet printer head, etc. It can be suitably used as a piezoelectric actuator, and even when it is ground to form a predetermined shape, no chipping or chipping occurs. Since there are no voids, it is possible to directly form electrodes and electrode lead lines, eliminate the need for a polishing step, shorten the polishing time, and eliminate waste of expensive raw materials.

ところで、このアクチュエータ用圧電部材を製造するには、一例として、チタン酸ジルコン酸鉛系焼結体を構成する各元素の化合物を秤量し、アルコキシド法、蓚酸法、水熱合成法等の化学的方法や仮焼合成法等で合成して基本組成式がPbZrTiO3 で表されるペロブスカイト組成を有し、前記基本組成式のPbがBa、Sr、Laのうち少なくとも1種以上の元素で一部置換され、且つZrとTiがNb、Zn、Sb、Ni、Mgのうち少なくとも1種以上で一部置換されたチタン酸ジルコン酸鉛系合成粉末を作製する。ここで、チタン酸ジルコン酸鉛系焼結体を構成する各元素の化合物としては、基本成分であるPb、ZrO、TiOに対し、Pbと一部置換する成分として、BaCO、SrCO、Laの少なくとも一種以上を、Zr及びTiと一部置換する成分として、Nb、ZnO、Sb、NiO、MgCOの少なくとも1種以上をそれぞれ添加する。 By the way, in order to manufacture this piezoelectric member for an actuator, as an example, a compound of each element constituting the lead zirconate titanate-based sintered body is weighed, and a chemical such as alkoxide method, oxalic acid method, hydrothermal synthesis method, etc. And a perovskite composition whose basic composition formula is represented by PbZrTiO 3 synthesized by a method, calcining synthesis method, etc., and Pb in the basic composition formula is a part of at least one element selected from Ba, Sr, and La A lead zirconate titanate-based synthetic powder that is substituted and in which Zr and Ti are partially substituted with at least one of Nb, Zn, Sb, Ni, and Mg is prepared. Here, as a compound of each element constituting the lead zirconate titanate-based sintered body, BaCO 3 is used as a component partially replacing Pb with respect to Pb 3 O 4 , ZrO 2 , and TiO 2 which are basic components. At least one of Nb 2 O 5 , ZnO, Sb 2 O 3 , NiO, and MgCO 3 is added as a component that partially replaces at least one of SrCO 3 and La 2 O 3 with Zr and Ti. .

そして、チタン酸ジルコン酸鉛系合成粉末を回転ミル等にて平均粒径が0.4〜0.7μm、粒度分布の標準偏差が0.2μm以下、BET比表面積が5〜13m/gになるまで粉砕する。 The lead zirconate titanate-based synthetic powder is averaged to 0.4 to 0.7 μm, the standard deviation of particle size distribution is 0.2 μm or less, and the BET specific surface area is 5 to 13 m 2 / g using a rotary mill or the like. Grind until

チタン酸ジルコン酸鉛系合成粉末の平均粒径が0.7μmを越えると、BET比表面積が5m/g未満となり、全エネルギーにしめる表面エネルギーの割合が小さくなるために焼成温度を下げる効果がなく、粒成長を促進されて焼結体中におけるチタン酸ジルコン酸鉛系粒子の最大結晶粒子径が10μmを越え、粒成長によってボイドがチタン酸ジルコン酸鉛系粒子中に取り込まれて最大ボイド径10μm以下、焼結体内部のボイド率1%以下を達成することができず、逆に平均粒径が0.4μm未満では、BET比表面積が13m/g以下となるように粉砕することが難しくなるとともに、メディアの摩耗粉が混入して組成が変わってしまうからである。また、粒度分布の標準偏差が0.2μmを超えると、粒径のバラツキが大きく、粒径の小さなチタン酸ジルコン酸鉛系粒子は、粒径の大きなチタン酸ジルコン酸鉛系粒子に取り込まれて粒成長し易くなり、焼結後におけるチタン酸ジルコン酸鉛系粒子の最大結晶粒子径を10μm以下とすることが難しく、また、ボイドが取り込まれて焼結体中の最大ボイド径10μm以下、焼結体内部のボイド率1%以下を達成することができないからである。 If the average particle size of the lead zirconate titanate-based synthetic powder exceeds 0.7 μm, the BET specific surface area becomes less than 5 m 2 / g, and the ratio of the surface energy to the total energy is small, so there is no effect of lowering the firing temperature. When the grain growth is promoted, the maximum crystal particle diameter of the lead zirconate titanate-based particles in the sintered body exceeds 10 μm, and the void is taken into the lead zirconate titanate-based particles by the grain growth and the maximum void diameter is 10 μm. Hereinafter, it is difficult to achieve a void ratio of 1% or less inside the sintered body, and conversely, when the average particle size is less than 0.4 μm, it is difficult to pulverize the BET specific surface area to be 13 m 2 / g or less. In addition, the composition is changed due to the mixing of media wear powder. When the standard deviation of the particle size distribution exceeds 0.2 μm, the particle size variation is large, and the lead zirconate titanate particles having a small particle size are incorporated into the lead zirconate titanate particles having a large particle size. It becomes easy to grow grains, it is difficult to make the maximum crystal particle diameter of the lead zirconate titanate-based particles after sintering 10 μm or less, and the maximum void diameter in the sintered body is 10 μm or less due to the incorporation of voids. This is because a void ratio of 1% or less inside the bonded body cannot be achieved.

なお、チタン酸ジルコン酸鉛系合成粉末の粉砕にあたっては、回転ミル以外に、振動ミ
ルや他粉砕手法を用いれば良い。そして、合成粉末の粒径を調整するには、ボールやビーズ等のメディア径を適宜選択し、湿式で10〜60Hr時間粉砕すれば良い。
In addition, when pulverizing the lead zirconate titanate-based synthetic powder, a vibration mill or other pulverization technique may be used in addition to the rotary mill. And in order to adjust the particle size of synthetic powder, media diameters, such as a ball | bowl and a bead, may be selected suitably, and what is necessary is just to grind | pulverize for 10 to 60 hours by wet.

次に、得られたチタン酸ジルコン酸鉛系合成粉末を有機バインダーと混合し、プレス成形法やテープ成形法等周知のセラミック成形手段にて、所定の形状に成形したあと、200℃〜900℃の大気雰囲気中にて有機バインダーを除去し、次いで鉛雰囲気調整用の粉体と共にマグネシア系セラミックス又はジルコニア系セラミックスからなる半密閉容器中に入れる。   Next, the obtained lead zirconate titanate-based synthetic powder is mixed with an organic binder and formed into a predetermined shape by a known ceramic forming means such as a press forming method or a tape forming method, and then 200 ° C. to 900 ° C. Then, the organic binder is removed in the air atmosphere, and then placed in a semi-sealed container made of magnesia ceramics or zirconia ceramics together with the powder for adjusting the lead atmosphere.

ここで、半密閉容器を用いる理由としては、焼成炉内の雰囲気置換段階において、容器内へ酸素が容易に置換され、さらにチタン酸ジルコン酸鉛系粒子間に形成されるボイド内に十分な酸素を供給する必要があるからである。また、半密閉容器をマグネシア系セラミックス又はジルコニア系セラミックスにより形成することで、チタン酸ジルコン酸鉛系焼結体との相互拡散反応を防ぐことができる。そして、焼成炉内に酸素を流入させた状態で、1000℃〜1300℃で焼成すれば良い。   Here, the reason for using the semi-sealed container is that oxygen is easily substituted into the container in the atmosphere replacement stage in the firing furnace, and sufficient oxygen is contained in the void formed between the lead zirconate titanate particles. It is because it is necessary to supply. Moreover, the mutual diffusion reaction with the lead zirconate titanate-based sintered body can be prevented by forming the semi-sealed container from magnesia-based ceramics or zirconia-based ceramics. And what is necessary is just to bake at 1000 to 1300 degreeC in the state which made oxygen flow into the baking furnace.

ただし、焼成炉内の容積1リットル当たりに供給する酸素流入量が0.1リットル/分より少なくと、焼結体中におけるチタン酸ジルコン酸鉛系粒子間に形成されるボイド内に十分な酸素を供給することができず、ボイド内の酸素濃度と外気の酸素濃度の勾配が小さくなって酸素拡散が抑制されるため、ボイドを追い出す効果が小さく、逆に、焼成炉内の容積1リットル当たりに供給する酸素流入量が2.0リットル/分より多くなると、炉内の温度が安定しなかったり、炉内の温度が低下するために、焼成ムラを生じることがある。その為、焼成時における酸素流入量は、焼成炉内の容積1リットル当たり0.1〜2.0リットル/分とする。   However, if the oxygen inflow supplied per volume of 1 liter in the firing furnace is less than 0.1 liter / minute, sufficient oxygen is contained in the void formed between the lead zirconate titanate particles in the sintered body. Since the oxygen concentration in the void and the gradient of the oxygen concentration in the outside air are reduced and the oxygen diffusion is suppressed, the effect of expelling the void is small. On the contrary, per volume of 1 liter in the firing furnace If the oxygen inflow rate supplied to the furnace is more than 2.0 liters / minute, the temperature in the furnace may not be stable or the temperature in the furnace may decrease, resulting in firing unevenness. Therefore, the oxygen inflow during firing is 0.1 to 2.0 liters / minute per liter volume in the firing furnace.

また、炉内雰囲気の酸素濃度が25体積%未満では、酸素濃度が低すぎるため、PbOの蒸発、分解が著しく、またボイド中の酸素濃度が低いことから、焼結時においてボイド内の酸素拡散が起り難く、ボイドを収縮させることができないために緻密化することができない。その為、ボイドの収縮速度を速めるためには、炉内雰囲気の酸素濃度を、25体積%以上、好ましくは50体積%以上、さらに望ましくは80体積%以上とすることが良い。   Also, if the oxygen concentration in the furnace atmosphere is less than 25% by volume, the oxygen concentration is too low, so that the evaporation and decomposition of PbO is remarkable, and the oxygen concentration in the void is low. Is difficult to occur and cannot be densified because the void cannot be shrunk. Therefore, in order to increase the shrinkage rate of the voids, the oxygen concentration in the furnace atmosphere should be 25% by volume or more, preferably 50% by volume or more, and more preferably 80% by volume or more.

以上のように、チタン酸ジルコン酸鉛系合成粉体の平均粒径、粒度分布の標準偏差、BET比表面積を前述したように制御するとともに、焼成過程で生成されたボイド中に酸素を供給して拡散させることで、ボイドを小さくしたり、消失させることができるため、チタン酸ジルコン酸鉛系焼結体中における最大ボイド径を10μm以下、焼結体内部におけるボイド率を1.0%以下、さらに焼結体表層部と焼結体内部におけるボイド率の差を1.0%以下とすることができるとともに、焼結体の密度を理論密度の98%以上に緻密化することができるため、アクチュエータとして重要な圧電定数等の圧電諸特性を向上させることができるとともに、所望の形状とするために研削加工を施しても欠けやチッピングを生じることがない。しかも、無研磨状態での焼結体表面の表面粗度を中心線平均粗さ(Ra)で0.3μm以下の滑らかな面とすることができるため、直接電極や電極引出線を形成することができ、製作工程を減らせるとともに、高価な原料無駄を防ぐことができるといった効果を有するアクチュエータ用圧電部材を形成することができる。   As described above, the mean particle size, standard deviation of particle size distribution, and BET specific surface area of the lead zirconate titanate-based synthetic powder are controlled as described above, and oxygen is supplied into the void generated in the firing process. By diffusing, the void can be reduced or eliminated, so the maximum void diameter in the lead zirconate titanate-based sintered body is 10 μm or less, and the void ratio inside the sintered body is 1.0% or less. In addition, the difference in void fraction between the surface portion of the sintered body and the inside of the sintered body can be made 1.0% or less, and the density of the sintered body can be densified to 98% or more of the theoretical density. Further, various piezoelectric characteristics such as a piezoelectric constant that is important as an actuator can be improved, and chipping and chipping do not occur even if grinding is performed to obtain a desired shape. Moreover, since the surface roughness of the surface of the sintered body in an unpolished state can be a smooth surface with a center line average roughness (Ra) of 0.3 μm or less, direct electrodes and electrode lead lines can be formed. Thus, it is possible to form a piezoelectric member for an actuator having effects that the manufacturing process can be reduced and expensive raw material waste can be prevented.

以下、本発明に係るアクチュエータ用圧電部材の一例について説明する。   Hereinafter, an example of the piezoelectric member for actuator according to the present invention will be described.

出発原料に、Pb、SrCO、ZrO、TiO、Nb、ZnOの粉末を用い、各粉末を所定量秤量し、ボールミルにて20時間湿式混合したあと、脱水乾燥
し、しかるのち900℃で3時間仮焼してチタン酸ジルコン酸鉛系合成粉体を得た。そして、得られた合成粉体、直径0.5〜10mmのジルコニアボール、イオン交換水を1:5:2の割合で容器に投入し、回転ミルにて20〜60時間粉砕することで、平均粒径、粒径の標準偏差、BET比表面積を表1に示すように異ならせた。
Pb 3 O 4 , SrCO 3 , ZrO 2 , TiO 2 , Nb 2 O 5 , ZnO powders were used as starting materials, each powder was weighed in a predetermined amount, wet-mixed in a ball mill for 20 hours, dehydrated and dried. Thereafter, it was calcined at 900 ° C. for 3 hours to obtain lead zirconate titanate-based synthetic powder. Then, the obtained synthetic powder, zirconia balls having a diameter of 0.5 to 10 mm, and ion-exchanged water were put into a container at a ratio of 1: 5: 2, and pulverized with a rotary mill for 20 to 60 hours. As shown in Table 1, the particle size, the standard deviation of the particle size, and the BET specific surface area were varied.

次に、得られた合成粉体に有機バインダーを添加混練し、乾燥、造粒して顆粒を作製したあと、得られた顆粒を1.2t/cmの圧力で一軸加圧成型して成形体を形成したあと、300℃の大気雰囲気中にて有機バインダーを除去し、しかるのち鉛雰囲気調整用の粉体と共にジルコニアセラミックス、マグネシアセラミックス、アルミナセラミックスからなる半密閉容器中に入れ、焼成炉内に供給する酸素流入量及び酸素濃度を表1のように調整して1100℃で焼成することにより、表2に示す試料A〜Oのチタン酸ジルコン酸鉛系焼結体からなるアクチュエータ用圧電部材を得た。 Next, an organic binder is added and kneaded to the obtained synthetic powder, dried and granulated to produce granules, and then the resulting granules are formed by uniaxial pressure molding at a pressure of 1.2 t / cm 2. After forming the body, the organic binder is removed in an air atmosphere at 300 ° C., and then placed in a semi-enclosed container made of zirconia ceramics, magnesia ceramics, and alumina ceramics together with the powder for adjusting the lead atmosphere, and in the firing furnace Piezoelectric members for actuators comprising the lead zirconate titanate-based sintered bodies of samples A to O shown in Table 2 by adjusting the oxygen inflow amount and oxygen concentration to be supplied as shown in Table 1 and firing at 1100 ° C. Got.

また、従来例として、表1の試料Pに示す平均粒径、粒径の標準偏差、BET比表面積を有するチタン酸ジルコン酸鉛系合成粉体を用い、除去処理した成形体を大気雰囲気下、1000℃で焼成し、得られたチタン酸ジルコン酸鉛系焼結体を、鉛雰囲気調整用の粉体と共にマグネシアセラミックスからなる半密閉容器中に入れたまま加圧・加熱室に入れ、20体積%の酸素を含んだアルゴンガスを充填し、2000kgf/cmの圧力で、1100℃で焼結することにより、表2に示す試料Pのチタン酸ジルコン酸鉛系焼結体からなるアクチュエータ用圧電部材を得た。 In addition, as a conventional example, using a lead zirconate titanate-based synthetic powder having an average particle diameter, a standard deviation of the particle diameter, and a BET specific surface area shown in Sample P of Table 1, the molded body subjected to the removal treatment was placed in an air atmosphere. The lead zirconate titanate sintered body obtained by firing at 1000 ° C. was placed in a pressure / heating chamber while being put in a semi-sealed container made of magnesia ceramics together with a powder for adjusting the lead atmosphere, and 20 volumes. Piezoelectric actuator for actuator comprising the lead zirconate titanate-based sintered body of sample P shown in Table 2 by filling with argon gas containing% oxygen and sintering at 1100 ° C. under a pressure of 2000 kgf / cm 2. A member was obtained.

そして、得られたチタン酸ジルコン酸鉛系焼結体について、焼結体の相対密度、最大結晶粒子径、最大ボイド径、無研磨状態での焼結体表面における表面粗度、焼結体内部におけるボイド率、焼結体表層部と焼結体内部におけるボイド率の差、焼結体の4点曲げ強度及び圧電定数(d15)、並びに研削加工を施した時の欠け等の有無について調べた。 And about the obtained lead zirconate titanate-based sintered body, the relative density of the sintered body, the maximum crystal particle diameter, the maximum void diameter, the surface roughness on the surface of the sintered body in an unpolished state, the inside of the sintered body Investigating void ratio, difference in void ratio between surface layer of sintered body and inside of sintered body, 4-point bending strength and piezoelectric constant (d 15 ) of sintered body, and presence or absence of chipping when grinding It was.

なお、焼結体の最大ボイド径、焼結体内部のボイド率、焼結体内外におけるボイド率の差の測定については、焼結体に鏡面加工(ダイヤモンド砥粒0〜1μm仕上げ)を施し、ニレコ製LUZEXーFS画像解析装置を用いて、顕微鏡倍率200倍、測定ポイント10ヶ所、測定面積10.0×10μm条件にて画像解析して測定した。 In addition, about the measurement of the maximum void diameter of a sintered compact, the void ratio inside a sintered compact, and the difference of the void ratio inside and outside a sintered compact, a mirror surface process (diamond abrasive grain 0-1 micrometer finish) is given to a sintered compact, Using a LUZEX-FS image analyzer manufactured by Nireco, image analysis was performed under the conditions of a microscope magnification of 200 times, 10 measurement points, and a measurement area of 10.0 × 10 3 μm 2 .

チタン酸ジルコン酸鉛系粒子の最大結晶粒子径については、塩酸にてケミカルエッチングを行ない、金属顕微鏡にて200倍の視野で300μm×300μmの範囲を10ヶ所測定し、その最大径を最大結晶粒子径とした。   About the maximum crystal particle size of lead zirconate titanate particles, chemical etching is performed with hydrochloric acid, and the range of 300 μm × 300 μm is measured with a metal microscope in a 200 × field of view. The diameter.

無研磨状態での焼結体表面の表面粗度は、JIS B 0601に準拠して測定し、次に電極を形成した時の断線の有無を確認するために、スパッタリングによって、30μmの線幅、0.1μm厚みを有する金属膜を形成し、この金属膜に通電して断線がなかったものを○、断線していたものを×として評価した。   The surface roughness of the surface of the sintered body in an unpolished state is measured in accordance with JIS B 0601, and in order to confirm the presence or absence of disconnection when an electrode is formed next, a line width of 30 μm is obtained by sputtering. A metal film having a thickness of 0.1 μm was formed, and when this metal film was energized, there was no disconnection, and when it was disconnected, it was evaluated as ×.

4点曲げ強度については、JIS R1601−1995に準拠し、圧電定数(d15
)については、EMAS−6005に準じて行った。
The four-point bending strength is based on JIS R1601-1995, and the piezoelectric constant (d 15
) Was performed in accordance with EMAS-6005.

さらに、研削加工による欠けやチッピングの有無を確認するため、厚み100μmのダイヤモンドブレードを用いて、200μmピッチでダイシングを行い、幅100μm、深さ350μmの溝を300本形成し、カケやチッピングの発生が見られないものを○、カケやチッピングが発生したものを×として評価した。それぞれの条件及び結果は表1及び表2に示す通りである。   Furthermore, in order to confirm the presence or absence of chipping or chipping due to grinding, dicing is performed at a pitch of 200 μm using a diamond blade with a thickness of 100 μm to form 300 grooves with a width of 100 μm and a depth of 350 μm. The case where no is seen was evaluated as ○, and the case where chipping or chipping occurred was evaluated as ×. The respective conditions and results are as shown in Tables 1 and 2.

Figure 2011009755
Figure 2011009755

Figure 2011009755
Figure 2011009755

この結果、従来例である試料Pは、緻密化されているものの、最大ボイド径が10μmを超え、また焼結体表層部と焼結体内部におけるポイド率の差が1%を超えているため、アクチュエータ用圧電部材として用いるには焼結体表層部を研削する必要があり、さらに研削加工を施すと欠けやチッピングが発生した。   As a result, although the sample P which is a conventional example is densified, the maximum void diameter exceeds 10 μm, and the difference in the void ratio between the surface portion of the sintered body and the inside of the sintered body exceeds 1%. In order to use it as a piezoelectric member for an actuator, it was necessary to grind the surface layer portion of the sintered body, and chipping and chipping occurred when further grinding was performed.

また、焼成時に半密閉容器の材質としてアルミナセラミックスを用いた試料G,Lでは、チタン酸ジルコン酸鉛系焼結体との反応が見られ、この焼結体をアクチュエータ用圧電部材として用いるには焼結体表層部を研削加工にて除去する必要があった。   In addition, in samples G and L using alumina ceramics as the material of the semi-sealed container at the time of firing, a reaction with the lead zirconate titanate-based sintered body was observed, and this sintered body was used as a piezoelectric member for an actuator. It was necessary to remove the surface layer of the sintered body by grinding.

一方、試料Aは、表1に見られるように、チタン酸ジルコン酸鉛系合成粉体の平均粒径が0.7μmより大きく、粒子の標準偏差が0.2を超え、さらにBET比表面積が5m/g未満であるため、焼結体とした時には焼結体内部のボイド率が1%を超え、焼結体の密度が理論密度の98%未満と緻密化が不十分であった。その為、圧電定数(d15)が600pm/V未満と低く、また、研削加工を施すと欠けやチッピングが発生した。しかも焼結体表層部と焼結体内部におけるボイド率の差も1%を超え大きいため、アクチュエータ用圧電部材として用いるには焼結体表層部を研削する必要があった。その上、無研磨状態での焼結体表面が粗いため、その表面上に微少幅の金属膜を形成すると断線した。 On the other hand, as shown in Table 1, sample A has an average particle size of lead zirconate titanate-based synthetic powder larger than 0.7 μm, a standard deviation of particles exceeding 0.2, and a BET specific surface area. Since it was less than 5 m 2 / g, when it was made into a sintered body, the void ratio inside the sintered body exceeded 1%, and the density of the sintered body was less than 98% of the theoretical density, and the densification was insufficient. Therefore, the piezoelectric constant (d 15 ) was as low as less than 600 pm / V, and chipping and chipping occurred when grinding was performed. In addition, since the difference in void ratio between the sintered body surface layer portion and the inside of the sintered body is larger than 1%, it was necessary to grind the sintered body surface layer portion for use as a piezoelectric member for an actuator. In addition, since the surface of the sintered body in a non-polished state is rough, disconnection occurs when a metal film having a very small width is formed on the surface.

また、試料Dは、焼成時の酸素濃度が低いため、焼結体とした時には焼結体内部のボイド率が1%を超え、焼結体の密度が理論密度の98%未満と緻密化が不十分であった。その為、圧電定数(d15)が600pm/V未満と低く、また、研削加工を施すと欠けやチッピングが発生した。しかも焼結体表層部と焼結体内部におけるボイド率の差も1%を超え大きいため、アクチュエータ用圧電部材として用いるには焼結体表層部を研削する必要があった。 Sample D has a low oxygen concentration at the time of firing. Therefore, when the sintered body is formed, the void ratio inside the sintered body exceeds 1%, and the density of the sintered body is less than 98% of the theoretical density. It was insufficient. Therefore, the piezoelectric constant (d 15 ) was as low as less than 600 pm / V, and chipping and chipping occurred when grinding was performed. In addition, since the difference in void ratio between the sintered body surface layer portion and the inside of the sintered body is larger than 1%, it was necessary to grind the sintered body surface layer portion for use as a piezoelectric member for an actuator.

これに対し、試料B,C,E,F,H〜K,M〜Oは、いずれもチタン酸ジルコン酸鉛系合成粉体の平均粒径が0.4〜0.7μm、粒子の標準偏差が0.2以下、BET比表面積が5〜13m/gの範囲にあり、焼成時にはマグネシアセラミックス又はジルコニアセラミックスの半密閉容器を用いて焼成炉内の酸素濃度を25体積%以上としてあることから、焼結体とした時には、焼結体内部のボイド率を10%以下、焼結体の密度を理論密度の98%以上と充分に緻密化することができ、600pm/V以上の高い圧電定数(d15)を得ることができるとともに、焼結体中の最大ボイド径を10μm以下とできるため、研削加工を施しても欠けやチッピングを生じることがなかった。しかも、最大結晶粒子径が10μm以下で、無研磨状態での焼結体表面を中心線平均粗さ(Ra)で0.3μm以下とできるため、無研磨状態での焼結体表面に直接金属膜を被覆しても断線は見られないというように優れていた。 On the other hand, samples B, C, E, F, H to K, and M to O all have a mean particle size of lead zirconate titanate-based synthetic powder of 0.4 to 0.7 μm and a standard deviation of particles. Is 0.2 or less, the BET specific surface area is in the range of 5 to 13 m 2 / g, and the oxygen concentration in the firing furnace is 25 vol% or more using a semi-sealed container of magnesia ceramics or zirconia ceramics at the time of firing. When the sintered body is formed, the void ratio inside the sintered body can be sufficiently densified to be 10% or less, the density of the sintered body can be 98% or more of the theoretical density, and a high piezoelectric constant of 600 pm / V or more. (D 15 ) can be obtained, and since the maximum void diameter in the sintered body can be 10 μm or less, chipping and chipping did not occur even when grinding was performed. In addition, since the maximum crystal particle diameter is 10 μm or less and the surface of the sintered body in the unpolished state can be 0.3 μm or less in the center line average roughness (Ra), a metal is directly applied to the surface of the sintered body in the unpolished state. Even if the film was coated, no disconnection was observed.

Claims (1)

チタン酸ジルコン酸鉛系焼結体からなるアクチュエータ用圧電部材において、前記焼結体の密度が理論密度の98%以上、最大結晶粒子径が10μm以下、最大ボイド径が10μm以下であるとともに、無研磨状態での前記焼結体表面における表面粗度が中心線平均粗さ(Ra)で0.3μm以下であり、前記焼結体表面から100μmまでの深さを焼結体表層部、それ以外を焼結体内部とした時、該焼結体内部におけるボイド率が1.0%以下でかつ焼結体表層部と焼結体内部におけるボイド率の差が1.0%以下であることを特徴とするアクチュエータ用圧電部材。 In the piezoelectric member for actuators composed of a lead zirconate titanate-based sintered body, the sintered body has a density of 98% or more of the theoretical density, a maximum crystal particle diameter of 10 μm or less, a maximum void diameter of 10 μm or less, and nothing. The surface roughness on the surface of the sintered body in the polished state is 0.3 μm or less in terms of centerline average roughness (Ra), and the depth from the surface of the sintered body to 100 μm is the surface area of the sintered body, and the others The void ratio in the sintered body is 1.0% or less and the difference in the void ratio in the sintered body surface layer and the sintered body is 1.0% or less. A piezoelectric member for an actuator.
JP2010157978A 2010-07-12 2010-07-12 Piezoelectric member for actuator Expired - Fee Related JP5132728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157978A JP5132728B2 (en) 2010-07-12 2010-07-12 Piezoelectric member for actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157978A JP5132728B2 (en) 2010-07-12 2010-07-12 Piezoelectric member for actuator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24264199A Division JP4582835B2 (en) 1999-08-30 1999-08-30 Method for manufacturing piezoelectric member for actuator

Publications (2)

Publication Number Publication Date
JP2011009755A true JP2011009755A (en) 2011-01-13
JP5132728B2 JP5132728B2 (en) 2013-01-30

Family

ID=43565974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157978A Expired - Fee Related JP5132728B2 (en) 2010-07-12 2010-07-12 Piezoelectric member for actuator

Country Status (1)

Country Link
JP (1) JP5132728B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137381A (en) * 1988-11-18 1990-05-25 Oki Electric Ind Co Ltd Manufacture of porous piezoelectric material
JPH0424971A (en) * 1990-05-16 1992-01-28 Oki Electric Ind Co Ltd Manufacture of porous piezoelectric ceramic
JPH04187563A (en) * 1990-11-19 1992-07-06 Toyota Motor Corp Production of piezoelectric ceramic
JPH04340900A (en) * 1991-05-16 1992-11-27 Japan Radio Co Ltd Urtrasonic vibrator transducer and its manufacture
JPH05254955A (en) * 1992-03-10 1993-10-05 Oki Electric Ind Co Ltd Production of porous pzt ceramic
JPH07250399A (en) * 1994-03-10 1995-09-26 Japan Radio Co Ltd Porous piezoelectric ceramic vibrator and its manufacture
JPH1081016A (en) * 1995-09-19 1998-03-31 Seiko Epson Corp Piezoelectric body thin film element and manufacture thereof, and ink jet recording head employing piezoelectric body thin film element
JPH1194560A (en) * 1997-07-24 1999-04-09 Denso Corp Angular speed sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137381A (en) * 1988-11-18 1990-05-25 Oki Electric Ind Co Ltd Manufacture of porous piezoelectric material
JPH0424971A (en) * 1990-05-16 1992-01-28 Oki Electric Ind Co Ltd Manufacture of porous piezoelectric ceramic
JPH04187563A (en) * 1990-11-19 1992-07-06 Toyota Motor Corp Production of piezoelectric ceramic
JPH04340900A (en) * 1991-05-16 1992-11-27 Japan Radio Co Ltd Urtrasonic vibrator transducer and its manufacture
JPH05254955A (en) * 1992-03-10 1993-10-05 Oki Electric Ind Co Ltd Production of porous pzt ceramic
JPH07250399A (en) * 1994-03-10 1995-09-26 Japan Radio Co Ltd Porous piezoelectric ceramic vibrator and its manufacture
JPH1081016A (en) * 1995-09-19 1998-03-31 Seiko Epson Corp Piezoelectric body thin film element and manufacture thereof, and ink jet recording head employing piezoelectric body thin film element
JPH1194560A (en) * 1997-07-24 1999-04-09 Denso Corp Angular speed sensor

Also Published As

Publication number Publication date
JP5132728B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
KR101333346B1 (en) Tungsten bronze-type piezoelectric material and production method therefor
EP1857425A1 (en) Piezoelectric ceramic composition and method for producing same
JP2013507526A (en) Tin oxide ceramic sputtering target and method for producing the same
EP3660183B1 (en) Potassium sodium niobate sputtering target and method for producing same
US10483454B2 (en) Piezoelectric component and method for producing a piezoelectric component
CN107235724B (en) Piezoelectric ceramic sputtering target material, lead-free piezoelectric film, and piezoelectric film element
JP5931542B2 (en) Firing member made of zirconia sintered body
JP4582835B2 (en) Method for manufacturing piezoelectric member for actuator
JP5550402B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP5132728B2 (en) Piezoelectric member for actuator
JP5550401B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP5036758B2 (en) Piezoelectric ceramic and piezoelectric element using the same
KR100875479B1 (en) Lead-free piezoelectric ceramic composition and its manufacturing method
KR101006958B1 (en) Piezoelectric thick flim for sensor containing oragnic materials and method for preparing the same
KR101722391B1 (en) Method of forming lead zirconate titanate sintered compact, lead zirconate titanate sintered compact and lead zirconate titanate sputtering target
JP2006265055A (en) Method of manufacturing piezoelectric ceramic
JP2001111127A (en) Piezoelectric/electrostrictive actuator and manufacturing method therefor
JP5550403B2 (en) Piezoelectric body and piezoelectric element using the same
CN116589277A (en) Piezoelectric ceramic, ceramic electronic component, and method for manufacturing piezoelectric ceramic
JP2003073173A (en) Method of manufacturing sintered compact and sintered compact and spattering terget using it
JP2002121069A (en) Sintered compact of bismuth layered compound and method of producing the same
JP2010222193A (en) Method for manufacturing crystal-oriented ceramic
JP2011153061A (en) Method for manufacturing pzt-related piezoelectric material fine powder
JPH05139828A (en) Production of piezoelectric ceramic
JPH09196098A (en) Heat resistant and conductive ceramics

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees