JP2011009752A - Substrate processing apparatus, method of manufacturing semiconductor device, and semiconductor device - Google Patents

Substrate processing apparatus, method of manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
JP2011009752A
JP2011009752A JP2010151826A JP2010151826A JP2011009752A JP 2011009752 A JP2011009752 A JP 2011009752A JP 2010151826 A JP2010151826 A JP 2010151826A JP 2010151826 A JP2010151826 A JP 2010151826A JP 2011009752 A JP2011009752 A JP 2011009752A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
gas supply
source gas
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010151826A
Other languages
Japanese (ja)
Other versions
JP5204809B2 (en
Inventor
Kenji Takaishi
賢治 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2010151826A priority Critical patent/JP5204809B2/en
Publication of JP2011009752A publication Critical patent/JP2011009752A/en
Application granted granted Critical
Publication of JP5204809B2 publication Critical patent/JP5204809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To achieve reduction in cost by enabling formation of a thin film of high quality including oxygen and eliminating the need of a moisture generator or ozone generator.SOLUTION: An apparatus has: a reaction tube 203 that accommodates a plurality of laminated substrates; a first gas supply means 232a that supplies a first raw material gas; a second gas supply means 232b that supplies a second raw material gas including an oxygen containing gas and a hydrogen containing gas; and an exhausting means 246 that exhausts the reaction tube. The first gas supply means includes a first gas supply pipe connected to the bottom of the reaction tube and which supplies the first raw material gas and a gas nozzle 233 erected in the reaction tube and having a plurality of gas supply inlets 248a. The second gas supply means includes a second gas supply pipe connected to the top of the reaction tube and which supplies the second raw material gas and forms an oxide film on the substrate by alternately supplying the first raw material gas and the second raw material gas without mixing them.

Description

本発明は、第1の原料ガスと第2の原料ガスとを交互に供給することにより基板上に薄膜を形成する基板処理装置に関するものである。   The present invention relates to a substrate processing apparatus for forming a thin film on a substrate by alternately supplying a first source gas and a second source gas.

図3に、半導体デバイスであるMOSFET構造を示す。基板10上に成長したエピタキシャル層11に素子分離層12を設けることにより区画形成したトランジスタ領域に埋込み層13を設け、その上に歪チャンネル層17が形成される。歪チャンネル層17には、ソース領域(n領域)15及びドレイン領域(n領域)16、及びソース領域15とドレイン領域16とに挟まれたゲート領域を形成する。ゲート領域の上にゲート絶縁膜18、ゲート電極19、ゲート電極20が積層され、その外側がオフセットスペーサ21を介してスペーサ22で覆われている(これらの部分をゲート部という)。ソース領域15上にはコンタクト23を介してコンタクトプラグ(W)24及びメタル配線層(Cu)25が設けられる。ドレイン領域16上にもコンタクト26を介してコンタクトプラグ27及びメタル配線層28が設けられる。なお、符号30は層間絶縁膜である。 FIG. 3 shows a MOSFET structure which is a semiconductor device. A buried layer 13 is provided in a transistor region partitioned by providing an element isolation layer 12 in an epitaxial layer 11 grown on a substrate 10, and a strain channel layer 17 is formed thereon. In the strained channel layer 17, a source region (n + region) 15 and a drain region (n + region) 16 and a gate region sandwiched between the source region 15 and the drain region 16 are formed. A gate insulating film 18, a gate electrode 19, and a gate electrode 20 are stacked on the gate region, and the outside thereof is covered with a spacer 22 via an offset spacer 21 (these portions are referred to as a gate portion). A contact plug (W) 24 and a metal wiring layer (Cu) 25 are provided on the source region 15 via a contact 23. A contact plug 27 and a metal wiring layer 28 are also provided on the drain region 16 via a contact 26. Reference numeral 30 denotes an interlayer insulating film.

上述したMOSFETは微細化により、ゲート絶縁膜18、あるいはゲート部のオフセットスペーサ21及びスペーサ22(以下、スペーサ部分という)の薄膜化や、成膜時の低温化が進んでいる。ゲート絶縁膜やスペーサ部分は酸素を含む薄膜で構成される。例えば、ゲート絶縁膜は高誘電体膜(High−k膜)となるHfO膜やZrO膜で形成され、スペーサ部分はSiO膜で形成されることが多い。
薄膜化及び低温化に対応するために、ゲート絶縁膜やスペーサ部分を原子層成長と呼ばれるALD(Atomic Layer Deposition)により成膜することが検討されている。ALDとは、複数種類、例えば2種類の原料を交互に供給し、原子層を1層ずつ増やして薄膜を成長させる成膜方法である。
As the above-described MOSFET is miniaturized, the gate insulating film 18 or the offset spacer 21 and the spacer 22 (hereinafter referred to as a spacer portion) in the gate portion are made thinner and the temperature is lowered at the time of film formation. A gate insulating film and a spacer part are comprised with the thin film containing oxygen. For example, the gate insulating film is often formed of an HfO 2 film or a ZrO 2 film that becomes a high dielectric film (High-k film), and the spacer portion is often formed of an SiO 2 film.
In order to cope with thinning and low temperature, it has been studied to form a gate insulating film and a spacer portion by ALD (Atomic Layer Deposition) called atomic layer growth. ALD is a film forming method in which a plurality of types, for example, two types of raw materials are alternately supplied, and a thin film is grown by increasing atomic layers one by one.

ALDは、原料供給サイクル内で各原料の供給が十分であれば基板表面の形状に関係無く原料供給のサイクル毎に一定した厚さの膜が形成され、膜の成長速度は時間ではなく、原料供給サイクルの数に比例するだけであって、原料供給量などの工程条件に敏感ではないため薄い膜の厚みを精密に制御することができる。   In ALD, if the supply of each raw material is sufficient in the raw material supply cycle, a film having a constant thickness is formed for each raw material supply cycle regardless of the shape of the substrate surface. Since it is only proportional to the number of supply cycles and is not sensitive to process conditions such as the amount of raw material supply, the thickness of the thin film can be precisely controlled.

ALDの特長は、
(1)非常に薄い膜の形成ができる。
(2)基板の面積が広くても均一した厚さの膜を形成することができ、300mmウェハにも適用できる。
(3)基板の凸凹に関係無く一定した厚さの膜形成ができるため段差被覆性に優れている。
(4)形成されている膜にはピンホールがない。
(5)粉末のような物質にも均一した厚さの膜を形成することができる。
The feature of ALD is
(1) A very thin film can be formed.
(2) A film having a uniform thickness can be formed even if the substrate has a large area, and can be applied to a 300 mm wafer.
(3) Since a film having a constant thickness can be formed regardless of the unevenness of the substrate, the step coverage is excellent.
(4) There is no pinhole in the formed film.
(5) A film having a uniform thickness can be formed on a substance such as powder.

このALDを用いて、酸素を含む薄膜を成膜する場合、2種類の原料ガスのうち一方の原料ガスに膜原料ガスを用い、他方の原料ガスに酸化性ガスを使用する。例えば、シリコン酸化膜(SiO)を形成する場合は、シリコンを含むSi系ガスと酸化性ガスとの2種類のガスを用いて、原子層を1層ずつ増やして薄膜を成長させ、SiO膜を成膜させる。なお、酸素を含む薄膜には、その他に、Al、ZrO、HfO、Y、La等がある。 When a thin film containing oxygen is formed using this ALD, a film source gas is used for one of the two source gases, and an oxidizing gas is used for the other source gas. For example, when forming a silicon oxide film (SiO 2), using the two kinds of gases of Si-based gas and an oxidizing gas containing silicon, it is grown a thin film by increasing the atomic layer by one layer, SiO 2 A film is formed. Other examples of the thin film containing oxygen include Al 2 O 3 , ZrO 2 , HfO 2 , Y 2 O 3 , and La 2 O 3 .

上記酸化性ガスには、HO(水)やO(オゾン)が多く用いられ、一般的にはHO(水)が良く使用される。HO(水)は、直接、水分を直接供給する方法と、水分を直接供給しない方法の2種類がある。 As the oxidizing gas, H 2 O (water) and O 3 (ozone) are often used, and generally H 2 O (water) is often used. There are two types of H 2 O (water): a method of directly supplying moisture and a method of not supplying moisture directly.

ALDでは、専ら水分を直接供給するやり方が用いられるが、この場合、水分の純度が低く、形成される薄膜の品質に問題があり、良質な膜生成が困難であった。なお、水分を直接供給しない場合は、水分発生器が必要となりコスト高となってしまう。さらに、Oを用いる場合も、オゾン発生器が大掛かりになるという問題点があった。
本発明の課題は、上述した従来技術の問題点を解消して、酸素を含む高品質な膜形成が可能で、水分発生器やオゾン発生器を必要とせず、低コスト化を実現することが可能な基板処理装置を提供することにある。
In ALD, a method of directly supplying moisture is used, but in this case, the purity of the moisture is low, there is a problem in the quality of the thin film to be formed, and it is difficult to produce a good film. In the case where moisture is not directly supplied, a moisture generator is required and the cost is increased. Further, when O 3 is used, there is a problem that the ozone generator becomes large.
An object of the present invention is to solve the above-mentioned problems of the prior art, and to form a high-quality film containing oxygen, to realize a low cost without requiring a moisture generator or an ozone generator. An object of the present invention is to provide a possible substrate processing apparatus.

第1の発明は、基板を収容する処理室と、前記基板および処理室内を加熱する加熱手段と、前記第1の原料ガスを前記処理室へ供給する第1のガス供給手段と、前記第1の原料ガスとは異なるO含有ガスとH含有ガスとを含む第2の原料ガスを前記処理室へ供給する第2のガス供給手段と、前記処理室内の雰囲気を排気する排気手段と、処理室内の基板に対して第1の原料ガスと前記第2の原料ガスとを互いに混合することなく交互に供給するよう制御する制御手段とを備えて、前記処理室内の基板に対して第1の原料ガスを供給して第1の原料を基板上に吸着させ、第2の原料ガスを供給してOラジカルとOHラジカルを発生させ、前記ラジカルにより、前記第1の原料が吸着した基板表面で表面反応を行わせ、基板上に酸化膜を形成するようにしたことを特徴とする基板処理装置である。
制御手段により処理室内に交互に供給する第1の原料ガスと第2の原料ガスのうち、第2の原料ガスにO含有ガス(酸化性ガス)とH含有ガス(還元性ガス)とを含むガスを用いて、処理室内でOラジカルとOHラジカルを発生させ、第1の原料が吸着した基板表面で表面反応を行わせるようにしたので、簡単な構造でありながら、水分を酸化性ガスとして使用するときのような純度の悪化を解決し、また水分発生器やオゾン発生器を必要とせず、低コスト化を実現することができる。
According to a first aspect of the present invention, there is provided a processing chamber that accommodates a substrate, a heating unit that heats the substrate and the processing chamber, a first gas supply unit that supplies the first source gas to the processing chamber, and the first A second gas supply means for supplying a second source gas containing an O-containing gas and an H-containing gas different from the source gas to the processing chamber, an exhaust means for exhausting the atmosphere in the processing chamber, and a processing chamber Control means for controlling the first source gas and the second source gas to be alternately supplied to the substrate without being mixed with each other, and the first source material for the substrate in the processing chamber A gas is supplied to adsorb the first raw material on the substrate, a second raw material gas is supplied to generate O radicals and OH radicals, and the radicals cause a surface on the surface of the substrate on which the first raw material is adsorbed. Let the reaction occur and form an oxide film on the substrate A substrate processing apparatus, characterized in that had Unishi.
Of the first source gas and the second source gas supplied alternately into the processing chamber by the control means, the second source gas includes an O-containing gas (oxidizing gas) and an H-containing gas (reducing gas). Since gas is used to generate O radicals and OH radicals in the processing chamber and the surface reaction is performed on the substrate surface on which the first raw material is adsorbed, moisture is used as an oxidizing gas while having a simple structure. It is possible to solve the deterioration of purity as in use, and to reduce the cost without requiring a moisture generator or an ozone generator.

第2の発明は、処理室内の基板に対して第1の原料ガスを供給して基板上に第1の原料を吸着させる工程と、その後処理室内のパージを行う工程と、前記パージ後、処理室内の基板上に吸着させた第1の原料に対して、前記第1の原料ガスとは異なるO含有ガスとH含有ガスとを含む第2の原料ガスを供給して、OラジカルとOHラジカルを発生させ、前記ラジカルにより、前記第1の原料が吸着した基板表面で表面反応を行わせ、基板上に酸化膜を形成する工程と、その後処理室内のパージを行う工程と、を複数回繰り返す半導体デバイスの製造方法である。
第2の原料ガスにO含有ガスとH含有ガスとを含むガスを用いて、処理室内でOラジカルとOHラジカルを発生させることにより、第1の原料が吸着した基板表面で表面反応を行わせるようにしたので、簡単な方法でありながら、水分を酸化性ガスとして使用するときのような純度の悪化を解決し、また水分発生器やオゾン発生器を必要とせず、低コスト化を実現することができる。
According to a second aspect of the present invention, a step of supplying a first source gas to a substrate in a processing chamber to adsorb the first source material on the substrate, a step of purging the processing chamber thereafter, a process after the purging, A second raw material gas containing an O-containing gas and an H-containing gas different from the first raw material gas is supplied to the first raw material adsorbed on the substrate in the room, and the O radical and the OH radical are supplied. And the surface reaction is performed on the surface of the substrate on which the first raw material is adsorbed by the radicals, and the step of forming an oxide film on the substrate and the step of purging the processing chamber thereafter are repeated a plurality of times. It is a manufacturing method of a semiconductor device.
Using a gas containing an O-containing gas and an H-containing gas as the second source gas, an O radical and an OH radical are generated in the processing chamber, so that a surface reaction is performed on the substrate surface on which the first source is adsorbed. As a result, it is a simple method, but it solves the deterioration of purity as when moisture is used as an oxidizing gas, and does not require a moisture generator or ozone generator, thus realizing cost reduction. be able to.

本発明によれば、酸素を含む高品質な膜形成が可能で、水分発生器やオゾン発生器を必要とせず、低コスト化を実現することができる。   According to the present invention, a high-quality film containing oxygen can be formed, and a cost reduction can be realized without requiring a moisture generator or an ozone generator.

実施の形態における縦型ALD装置の処理炉の概略図である。It is the schematic of the processing furnace of the vertical ALD apparatus in embodiment. 実施の形態におけるALDによるH/OガスとSi系ガスとのガスフロー図である。It is a gas flow diagram of the H 2 / O 2 gas and Si-based gas by ALD in the embodiment. 半導体デバイスであるMOSFET構造の断面図である。It is sectional drawing of MOSFET structure which is a semiconductor device. 実施の形態における半導体製造装置の透視斜視図である。It is a see-through | perspective perspective view of the semiconductor manufacturing apparatus in embodiment. 実施の形態における半導体製造装置の縦断面図である。It is a longitudinal cross-sectional view of the semiconductor manufacturing apparatus in embodiment.

以下に本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図4、図5において本発明が適用される基板処理装置の一例である半導体製造装置についての概略を説明する。   4 and 5, an outline of a semiconductor manufacturing apparatus which is an example of a substrate processing apparatus to which the present invention is applied will be described.

筐体101内部の前面側には、図示しない外部搬送装置との間で基板収納容器としてのカセット100の授受を行う保持具授受部材としてのカセットステージ105が設けられ、該カセットステージ105の後側には昇降手段としてのカセットエレベータ115が設けられ、該カセットエレベータ115には搬送手段としてのカセット移載機114が取りつけられている。又、前記カセットエレベータ115の後側には、前記カセット100の載置手段としてのカセット棚109が設けられると共に前記カセットステージ105の上方にも予備カセット棚110が設けられている。前記予備カセット棚110の上方にはクリーンユニット118が設けられクリーンエアを前記筐体101の内部を流通させるように構成されている。   A cassette stage 105 is provided on the front side of the inside of the housing 101 as a holding member transfer member that transfers the cassette 100 as a substrate storage container to and from an external transfer device (not shown). Is provided with a cassette elevator 115 as an elevating means, and a cassette transfer machine 114 as a conveying means is attached to the cassette elevator 115. Further, a cassette shelf 109 as a mounting means for the cassette 100 is provided on the rear side of the cassette elevator 115 and a spare cassette shelf 110 is also provided above the cassette stage 105. A clean unit 118 is provided above the spare cassette shelf 110 so as to distribute clean air through the inside of the casing 101.

前記筐体101の後部上方には、処理炉202が設けられ、該処理炉202の下方には基板としてのウェハ200を水平姿勢で多段に保持する基板保持手段としてのボート217を該処理炉202に昇降させる昇降手段としてのボートエレベータ121が設けられ、該ボートエレベータ121に取りつけられた昇降部材122の先端部には蓋体としてのシールキャップ219が取りつけられ該ボート217を垂直に支持している。前記ボートエレベータ121と前記カセット棚109との間には昇降手段としての移載エレベータ113が設けられ、該移載エレベータ113には搬送手段としてのウェハ移載機112が取りつけられている。又、前記ボートエレベータ121の横には、開閉機構を持ち前記処理炉202の下面を塞ぐ遮蔽部材としての炉口シャッタ116が設けられている。   A processing furnace 202 is provided above the rear portion of the housing 101, and a boat 217 as a substrate holding unit that holds the wafers 200 as substrates in a multi-stage in a horizontal posture is provided below the processing furnace 202. A boat elevator 121 is provided as an elevating means for elevating and lowering, and a seal cap 219 as a lid is attached to the tip of an elevating member 122 attached to the boat elevator 121 to support the boat 217 vertically. . Between the boat elevator 121 and the cassette shelf 109, a transfer elevator 113 as an elevating means is provided, and a wafer transfer machine 112 as a transfer means is attached to the transfer elevator 113. Next to the boat elevator 121, a furnace port shutter 116 is provided as a shielding member that has an opening / closing mechanism and closes the lower surface of the processing furnace 202.

前記ウェハ200が装填された前記カセット100は、図示しない外部搬送装置から前記カセットステージ105に該ウェハ200が上向き姿勢で搬入され、該ウェハ200が水平姿勢となるよう該カセットステージ105で90°回転させられる。更に、前記カセット100は、前記カセットエレベータ115の昇降動作、横行動作及び前記カセット移載機114の進退動作、回転動作の協働により前記カセットステージ105から前記カセット棚109又は前記予備カセット棚110に搬送される。   The cassette 100 loaded with the wafer 200 is loaded into the cassette stage 105 from an external transfer device (not shown) in an upward posture and rotated by 90 ° on the cassette stage 105 so that the wafer 200 is in a horizontal posture. Be made. Further, the cassette 100 is moved from the cassette stage 105 to the cassette shelf 109 or the spare cassette shelf 110 by cooperation of the raising / lowering operation of the cassette elevator 115, the transverse operation, the advance / retreat operation of the cassette transfer machine 114, and the rotation operation. Be transported.

前記カセット棚109には前記ウェハ移載機112の搬送対象となる前記カセット100が収納される移載棚123があり、前記ウェハ200が移載に供される該カセット100は前記カセットエレベータ115、前記カセット移載機114により該移載棚123に移載される。   The cassette shelf 109 has a transfer shelf 123 in which the cassette 100 to be transferred by the wafer transfer device 112 is stored. The cassette 100 to which the wafer 200 is transferred is the cassette elevator 115, The cassette is transferred to the transfer shelf 123 by the cassette transfer device 114.

前記カセット100が前記移載棚123に移載されると、前記ウェハ移載機112の進退動作、回転動作及び前記移載エレベータ113の昇降動作の協働により該移載棚123から降下状態の前記ボート217に前記ウェハ200を移載する。   When the cassette 100 is transferred to the transfer shelf 123, the wafer 100 is lowered from the transfer shelf 123 by the cooperation of the advancing / retreating operation, rotation operation, and lifting / lowering operation of the transfer elevator 113. The wafer 200 is transferred to the boat 217.

前記ボート217に所定枚数の前記ウェハ200が移載されると前記ボートエレベータ121により該ボート217が前記処理炉202に挿入され、前記シールキャップ219
により前記処理炉202が気密に閉塞される。気密に閉塞された前記処理炉202内では前記ウェハ200が加熱されると共に処理ガスが該処理炉202内に供給され、前記ウェハ200に処理がなされる。
When a predetermined number of wafers 200 are transferred to the boat 217, the boat 121 is inserted into the processing furnace 202 by the boat elevator 121, and the seal cap 219 is inserted.
As a result, the processing furnace 202 is hermetically closed. The wafer 200 is heated and the processing gas is supplied into the processing furnace 202 in the hermetically closed processing furnace 202, and the wafer 200 is processed.

前記ウェハ200への処理が完了すると、該ウェハ200は上記した作動の逆の手順により、前記ボート217から前記移載棚123の前記カセット100に移載され、該カセット100は前記カセット移載機114により該移載棚123から前記カセットステージ105に移載され、図示しない外部搬送装置により前記筐体101の外部に搬出される。尚、前記炉口シャッタ116は、前記ボート217が降下状態の際に前記処理炉202の下面を塞ぎ、外気が該処理炉202内に巻き込まれるのを防止している。   When the processing on the wafer 200 is completed, the wafer 200 is transferred from the boat 217 to the cassette 100 of the transfer shelf 123 by the reverse procedure of the above-described operation, and the cassette 100 is transferred to the cassette transfer machine. 114 is transferred from the transfer shelf 123 to the cassette stage 105 and is carried out of the casing 101 by an external transfer device (not shown). The furnace port shutter 116 closes the lower surface of the processing furnace 202 when the boat 217 is in the lowered state, and prevents outside air from being caught in the processing furnace 202.

前記カセット移載機114等の搬送動作は、搬送制御手段124により制御される。   The transport operation of the cassette transfer machine 114 and the like is controlled by the transport control means 124.

次に図1を用いて、実施の形態による縦型ALD装置の処理炉202の概略について説明する。
加熱手段としてのヒータ207の内側に、ウェハ200を収容する処理室201を構成する反応管203が設けられる。反応管203は炉口フランジ205によって支持される。炉口フランジ205の下端開口はシールキャップ218により気密に閉塞され、シールキャップ218上にボート217が立設されて反応管203内に挿入される。ボート217にはバッチ処理される複数のウェハ200が水平姿勢で管軸方向に多段に積載される。前記ヒータ207は反応管203内のウェハ200を所定の温度に加熱する。
Next, the outline of the processing furnace 202 of the vertical ALD apparatus according to the embodiment will be described with reference to FIG.
A reaction tube 203 constituting a processing chamber 201 for accommodating the wafer 200 is provided inside a heater 207 as a heating means. The reaction tube 203 is supported by the furnace port flange 205. The lower end opening of the furnace port flange 205 is hermetically closed by a seal cap 218, and a boat 217 is erected on the seal cap 218 and inserted into the reaction tube 203. On the boat 217, a plurality of wafers 200 to be batch-processed are stacked in a multi-stage in the tube axis direction in a horizontal posture. The heater 207 heats the wafer 200 in the reaction tube 203 to a predetermined temperature.

反応管203に、第1及び第2の原料ガスを反応管203内に供給する供給手段としての2本のガス供給配管232a、232bが設けられる。第1の原料ガスを供給する第1のガス供給配管232aは、反応管203を支持する炉口フランジ205に接続されている。また、第2の原料ガスとは異なるO含有ガスとH含有ガスとを含む第1の原料ガスを供給する第2のガス供給配管232bは、反応管203の頂部に接続されている。炉口フランジ205の第1のガス供給配管232aとは反対側に、処理室201を排気する排気手段としての排気配管231が設けられ、排気配管231には真空ポンプ246が設けられ、処理室201内を真空排気するようになっている。   The reaction tube 203 is provided with two gas supply pipes 232a and 232b as supply means for supplying the first and second source gases into the reaction tube 203. The first gas supply pipe 232 a that supplies the first source gas is connected to the furnace port flange 205 that supports the reaction tube 203. A second gas supply pipe 232 b that supplies a first source gas containing an O-containing gas and an H-containing gas different from the second source gas is connected to the top of the reaction tube 203. On the opposite side of the furnace port flange 205 from the first gas supply pipe 232a, an exhaust pipe 231 is provided as exhaust means for exhausting the processing chamber 201. The exhaust pipe 231 is provided with a vacuum pump 246. The inside is evacuated.

第1のガス供給配管232aは、反応管203内においてボート217に沿って立設されたノズル233に連結される。このノズル233には、多段に積載された多数枚の各ウェハ200と対向するように多数の出口穴248aがノズル軸方向に沿って設けられる。   The first gas supply pipe 232 a is connected to a nozzle 233 that is erected along the boat 217 in the reaction tube 203. The nozzle 233 is provided with a large number of outlet holes 248a along the nozzle axis direction so as to face a large number of wafers 200 stacked in multiple stages.

出口穴248aは、ガス上流のウェハ200からガス下流のウェハ200まで第2の原料ガスを均一に供給するために、ガス上流の出口穴径を小さくし、ガス下流の出口穴径を大きくすることによりコンダクタンスを変化させて、上流でも下流でも均等にガスが吹き出す構造とするとよい。   In order to uniformly supply the second source gas from the gas upstream wafer 200 to the gas downstream wafer 200, the outlet hole 248a reduces the gas upstream outlet hole diameter and increases the gas downstream outlet hole diameter. It is preferable to change the conductance so that the gas is blown evenly upstream and downstream.

また、上述した2種類の原料ガスの供給方法、及びウェハ200の成膜温度を制御する制御手段としてのコントローラ125が設けられる。コントローラ125は、2種類のガスを一種類ずつ交互に繰り返し流すように、第1のガス供給配管232a及び第2のガス供給配管232bに設けたバルブ(図示せず)を制御するガス供給制御手段と、ヒータ加熱によるウェハ温度が成膜温度となるようにヒータ207を制御する温度制御手段とを内部に有している。   Further, a controller 125 is provided as a control means for controlling the above-described two kinds of source gas supply methods and the film forming temperature of the wafer 200. The controller 125 is a gas supply control means for controlling valves (not shown) provided in the first gas supply pipe 232a and the second gas supply pipe 232b so as to alternately and repeatedly flow two kinds of gases one by one. And temperature control means for controlling the heater 207 so that the wafer temperature by the heater heating becomes the film forming temperature.

次に上述した縦型ALD装置の処理炉202を用いて成膜する方法を、図2を用いて説明する。膜はSiOを形成する。第1の原料ガスにDCS(SiHCl:ジクロルシラン)を用い、第2の原料ガスに酸素(O:酸化性ガス)及び水素(H:還元性ガ
ス)を用いる。
Next, a method for forming a film using the processing furnace 202 of the vertical ALD apparatus described above will be described with reference to FIG. Film is formed a SiO 2. DCS (SiH 2 Cl 2 : dichlorosilane) is used as the first source gas, and oxygen (O 2 : oxidizing gas) and hydrogen (H 2 : reducing gas) are used as the second source gas.

成膜しようとするウェハ200をボート217に装填し、反応管203内(以下、単に炉内ともいう)に搬入する。次にウェハ上にSiO膜の成膜を行なう。このときの炉内温度は、下地膜と密着性がよく界面の欠陥の少ない膜が形成される温度、例えば450〜600℃である。この成膜には、DCSとO及びHとを交互に流して1原子層ずつ膜を形成するALDを用いる。 A wafer 200 to be deposited is loaded into a boat 217 and carried into a reaction tube 203 (hereinafter also simply referred to as a furnace). Next, a SiO 2 film is formed on the wafer. The furnace temperature at this time is a temperature at which a film having good adhesion to the base film and few interface defects is formed, for example, 450 to 600 ° C. For this film formation, ALD is used in which DCS, O 2 and H 2 are alternately flowed to form a film for each atomic layer.

まず第1のガス供給配管232aから処理室201内にDCSを供給しつつ排気配管231から排気する。DCSは上記炉内温度で反応する。このとき、炉内圧力は比較的低い圧力13Pa(0.1Torr)〜1333Pa(10Torr)に維持しつつ、DCSを10sccm〜300slm、0.1秒〜60秒間供給する。処理室201内に供給される原料ガスはDCSだけなので、DCSは気相反応を起こすことなく、ウェハ200上の下地膜と表面反応して、下地膜にSi原子が吸着する。   First, the exhaust gas is exhausted from the exhaust pipe 231 while DCS is supplied into the processing chamber 201 from the first gas supply pipe 232a. DCS reacts at the furnace temperature. At this time, DCS is supplied at 10 sccm to 300 slm for 0.1 seconds to 60 seconds while maintaining the furnace pressure at a relatively low pressure of 13 Pa (0.1 Torr) to 1333 Pa (10 Torr). Since the source gas supplied into the processing chamber 201 is only DCS, the DCS causes a surface reaction with the base film on the wafer 200 without causing a gas phase reaction, and Si atoms are adsorbed on the base film.

Si原子を吸着させた後、例えば第1のガス供給配管232aから処理室201内をNパージして第1のガス供給配管232a及び処理室201内の残留ガスを排気する。このときのパージNガス流量は10sccm〜100slm、パージ時間は0.1秒〜60秒間である。 After the Si atoms are adsorbed, for example, the inside of the processing chamber 201 is purged from the first gas supply pipe 232a with N 2 to exhaust the residual gas in the first gas supply pipe 232a and the processing chamber 201. The purge N 2 gas flow rate at this time is 10 sccm to 100 slm, and the purge time is 0.1 second to 60 seconds.

つぎに第2のガス供給配管232bから酸素及び水素を処理室210内に供給する。O及びHの供給により、後述するように酸素活性種Oを発生させ、この酸素活性種と下地膜上のSi原子とを表面反応させて、SiO膜を成膜させる。 Next, oxygen and hydrogen are supplied into the processing chamber 210 from the second gas supply pipe 232b. By supplying O 2 and H 2 , an oxygen active species O * is generated as described later, and this oxygen active species and the Si atoms on the base film are surface-reacted to form a SiO 2 film.

とOを使用すると、Hは、500〜600℃でOと反応を開始する。このとき処理室内では下記反応が起こっていると考えられる。
+O→H+HO
+H→OH+O
+O→H+OH
+OH→H+H
(酸素活性種)、OH(水酸基活性種)
When H 2 and O 2 are used, H 2 initiates reaction with O 2 at 500-600 ° C. At this time, it is considered that the following reaction occurs in the processing chamber.
H 2 + O 2 → H * + HO 2
O 2 + H * → OH * + O *
H 2 + O * → H * + OH *
H 2 + OH * → H * + H 2 O
O * (oxygen active species), OH * (hydroxyl active species)

よって、O及びHの供給時の炉内温度は500℃以上とする。また、O(酸素活性種)は炉内圧力が266Pa(2Torr)以下の低圧力下であると、活性種の寿命が伸びる。したがって、ウェハ面内、ウェハ面間の薄膜均一性向上のために、このときの炉内圧力は266Pa以下とする。
また、このとき流すH流量は10sccm〜30slm、O流量は10sccm〜30slm、H/Oガス供給時間は0.1〜60秒間である。
Therefore, the furnace temperature when supplying O 2 and H 2 is set to 500 ° C. or higher. O * (active oxygen species) extends the life of active species when the pressure in the furnace is a low pressure of 266 Pa (2 Torr) or less. Therefore, in order to improve the uniformity of the thin film within the wafer surface and between the wafer surfaces, the furnace pressure at this time is set to 266 Pa or less.
Further, the H 2 flow rate to flow at this time is 10 sccm to 30 slm, the O 2 flow rate is 10 sccm to 30 slm, and the H 2 / O 2 gas supply time is 0.1 to 60 seconds.

SiO膜を形成させた後、処理室201内をNパージして処理室201内の残留ガスを排気する。このときのパージNガス流量は10sccm〜100slm、パージ時間は0.1秒〜60秒間である。 After forming the SiO 2 film, the inside of the processing chamber 201 is purged with N 2 to exhaust the residual gas in the processing chamber 201. The purge N 2 gas flow rate at this time is 10 sccm to 100 slm, and the purge time is 0.1 second to 60 seconds.

上述したDCSと酸素及び水素とを交互に流す工程を1サイクルとする。このサイクルを繰り返すことにより、所定厚のSiO膜が形成される。
これらのサイクル制御はコントローラ125によって行われる。
The above-described process of alternately flowing DCS, oxygen, and hydrogen is defined as one cycle. By repeating this cycle, a SiO 2 film having a predetermined thickness is formed.
These cycle controls are performed by the controller 125.

上述したように、本実施の形態によれば、DCSを用いてALDによりSiO膜を形成するために、Si原子とO原子とを1層ずつ増やしてSiOを堆積させる。この場合、減圧下の炉内にOとHを導入し、酸素活性種Oを発生させるようにしている。
したがって、純度の低い水分を用いる場合と比べて、高品質な酸素活性種が得られ、高品質な膜生成を実現でき、半導体素子の性能を向上でき生産性を高めることができる。また、炉内温度をHがOと反応を開始する500〜600℃としておけば、O及びHを処理室内に供給するだけで、酸素活性種Oを発生させることができるので、水分発生器もオゾン発生器も必要とせず、一般的に使用されるO、Hといった容易に入手でき且つ安価なガスを使用するので、低コスト化を実現できる。
特に本実施の形態によるSiOの成膜方法を、MOSFETのスペーサ部分に適用すれば、オフセットスペーサ及びスペーサの成膜の低温化、及びオフセットスペーサ及びスペーサの薄膜化を実現できる。
As described above, according to the present embodiment, in order to form a SiO 2 film by ALD using DCS, Si 2 and O 2 atoms are increased by one layer and SiO 2 is deposited. In this case, O 2 and H 2 are introduced into a furnace under reduced pressure to generate oxygen active species O * .
Therefore, compared with the case where moisture with low purity is used, high-quality oxygen active species can be obtained, high-quality film formation can be realized, semiconductor device performance can be improved, and productivity can be increased. Also, if the furnace temperature H 2 is the O 2 and the start 500 to 600 ° C. The reaction, only supplies the O 2 and H 2 into the processing chamber, it is possible to generate oxygen active species O * Further, since neither a moisture generator nor an ozone generator is required, and a gas that is easily available and inexpensive such as generally used O 2 and H 2 is used, cost reduction can be realized.
In particular, if the SiO 2 film forming method according to the present embodiment is applied to the spacer portion of the MOSFET, it is possible to realize a low temperature of the film formation of the offset spacer and the spacer and a thin film of the offset spacer and the spacer.

上述した実施の形態では、酸素を含む薄膜としてSiO膜を形成する場合について説明した、本発明はこれに限定されない。例えば、HfOやZrOなどについても上述した装置及び方法を用いて適用可能である。 In the above-described embodiment, the case where the SiO 2 film is formed as a thin film containing oxygen has been described, but the present invention is not limited to this. For example, HfO 2 and ZrO 2 can also be applied using the above-described apparatus and method.

ここに、HfO、ZrOの成膜条件を共通に例示すれば次の通りである。
炉内温度:450℃〜600℃(但し、O/H供給時の炉内温度:50℃〜600℃)
炉内圧力:13Pa(0.1Torr)〜1333Pa(10Torr)(但し、O/H供給時の炉内圧力は266Pa以下)
HfCl/ZrCl:10sccm〜300slm(昇華時のガス流量)
流量:10sccm〜30slm
流量:10sccm〜30slm
パージN流量:10sccm〜100slm
また、1サイクル当り各ガスを流す時間は次の通りである。
HfCl/ZrCl:0.1秒〜500秒
パージガス(N):0.1秒〜180秒
/O:0.1秒〜180秒
パージガス(N):0.1秒〜120秒
Here, the film forming conditions of HfO 2 and ZrO 2 are exemplified as follows.
Furnace temperature: 450 ° C. to 600 ° C. (however, furnace temperature when O 2 / H 2 is supplied: 50 ° C. to 600 ° C.)
Furnace pressure: 13 Pa (0.1 Torr) to 1333 Pa (10 Torr) (however, the furnace pressure when supplying O 2 / H 2 is 266 Pa or less)
HfCl 4 / ZrCl 4 : 10 sccm to 300 slm (gas flow rate during sublimation)
H 2 flow rate: 10sccm~30slm
O 2 flow rate: 10 sccm to 30 slm
Purge N 2 flow rate: 10 sccm to 100 slm
The time for each gas to flow per cycle is as follows.
HfCl 4 / ZrCl 4 : 0.1 seconds to 500 seconds Purge gas (N 2 ): 0.1 seconds to 180 seconds H 2 / O 2 : 0.1 seconds to 180 seconds Purge gas (N 2 ): 0.1 seconds to 120 seconds

このように酸化性ガスとしてO及びHを用いて酸素活性種Oを発生させ、これをウェハに吸着したHf原子やZr原子と表面反応させることにより、ウェハ上に高品質のHfOやZrOを堆積させることもできる。特に本実施の形態によるHfOやZrOの成膜方法を、MOSFETのゲート絶縁膜に適用すれば、ゲート絶縁膜の成膜の低温化、及びゲート絶縁膜の薄膜化を実現できる。 In this way, oxygen active species O * is generated using O 2 and H 2 as oxidizing gases, and this is surface-reacted with Hf atoms and Zr atoms adsorbed on the wafer, so that high-quality HfO 2 is formed on the wafer. Or ZrO 2 can be deposited. In particular, when the method for forming HfO 2 or ZrO 2 according to the present embodiment is applied to the gate insulating film of a MOSFET, the temperature of the gate insulating film can be lowered and the thickness of the gate insulating film can be reduced.

200 ウェハ(基板)
201 処理室
207 ヒータ(加熱手段)
232a 第1のガス供給配管(第1のガス供給手段)
232b 第2のガス供給配管(第2のガス供給手段)
231 排気配管(排気手段)
125 コントローラ(制御手段)
200 wafer (substrate)
201 Processing chamber 207 Heater (heating means)
232a First gas supply pipe (first gas supply means)
232b Second gas supply pipe (second gas supply means)
231 Exhaust piping (exhaust means)
125 controller (control means)

Claims (4)

複数の基板を積層して収容する反応管と、
前記反応管内に第1の原料ガスを供給する第1のガス供給手段と、
前記反応管内にO含有ガスとH含有ガスとを含む第2の原料ガスを供給する第2のガス供給手段と、
前記反応管内を排気する排気手段と、
前記第1のガス供給手段、前記第2のガス供給手段および前記排気手段を制御する制御手段と、を有し、
前記第1のガス供給手段は、前記反応管の下部に接続され、前記反応管内に前記第1の原料ガスを供給する第1のガス供給配管と、前記第1のガス供給配管と接続されて前記基板の積層方向に沿って前記反応管内に立設され、複数のガス供給口を有するガスノズルと、を備え、
前記第2のガス供給手段は、前記反応管の頂部に接続され、前記反応管内に前記第2の原料ガスを供給する第2のガス供給管を備え、
前記制御手段は、前記第1のガス供給手段、前記第2のガス供給手段および前記排気手段を制御して、前記第1の原料ガスと前記第2の原料ガスとを互いに混合することなく交互に供給して前記基板上に酸化膜を形成する
ことを特徴とする基板処理装置。
A reaction tube for laminating and accommodating a plurality of substrates;
First gas supply means for supplying a first source gas into the reaction tube;
A second gas supply means for supplying a second source gas containing an O-containing gas and an H-containing gas in the reaction tube;
An exhaust means for exhausting the reaction tube;
Control means for controlling the first gas supply means, the second gas supply means and the exhaust means,
The first gas supply means is connected to a lower portion of the reaction tube, and is connected to a first gas supply pipe for supplying the first source gas into the reaction tube and the first gas supply pipe. A gas nozzle standing in the reaction tube along the stacking direction of the substrate and having a plurality of gas supply ports,
The second gas supply means includes a second gas supply pipe connected to the top of the reaction tube and supplying the second source gas into the reaction tube,
The control means controls the first gas supply means, the second gas supply means, and the exhaust means so that the first source gas and the second source gas are alternately mixed without being mixed with each other. And an oxide film is formed on the substrate.
前記排気手段は、前記反応管の下部であって、前記第1のガス供給管と反対側に接続されるガス排気配管を有する
ことを特徴とする請求項1に記載の基板処理装置。
The substrate processing apparatus according to claim 1, wherein the exhaust unit includes a gas exhaust pipe that is connected to the lower side of the reaction tube and opposite to the first gas supply tube.
反応管内に積層載置された複数の基板に、前記基板の積層方向に沿って立設されたガスノズルに開口する複数のガス供給口から第1の原料ガスを供給する工程と、
前記反応管内に残留する前記第1の原料ガスを排気する工程と、
前記反応管内の頂部からO含有ガスとH含有ガスとを含む第2の原料ガスを供給する工程と、
前記反応管内に残留する前記第2の原料ガスを排気する工程と、
を順に複数回行なうことで前記基板上に酸化膜を形成する
ことを特徴とする半導体デバイスの製造方法。
Supplying a first source gas to a plurality of substrates stacked in a reaction tube from a plurality of gas supply ports that open to gas nozzles erected along the stacking direction of the substrates;
Exhausting the first source gas remaining in the reaction tube;
Supplying a second source gas containing an O-containing gas and an H-containing gas from the top in the reaction tube;
Exhausting the second source gas remaining in the reaction tube;
A method of manufacturing a semiconductor device, wherein an oxide film is formed on the substrate by sequentially performing a plurality of times.
酸化膜を有する半導体デバイスであって、
前記酸化膜は、
反応管内に積層載置された複数の基板に、前記基板の積層方向に沿って立設されたガスノズルに開口する複数のガス供給口から第1の原料ガスを供給する工程と、
前記反応管内に残留する前記第1の原料ガスを排気する工程と、
前記反応管内の頂部からO含有ガスとH含有ガスとを含む第2の原料ガスを供給する工程と、
前記反応管内に残留する前記第2の原料ガスを排気する工程と、
を順に複数回行なうことで前記基板上に形成されている
ことを特徴とする半導体デバイス。
A semiconductor device having an oxide film,
The oxide film is
Supplying a first source gas to a plurality of substrates stacked in a reaction tube from a plurality of gas supply ports that open to gas nozzles erected along the stacking direction of the substrates;
Exhausting the first source gas remaining in the reaction tube;
Supplying a second source gas containing an O-containing gas and an H-containing gas from the top in the reaction tube;
Exhausting the second source gas remaining in the reaction tube;
The semiconductor device is formed on the substrate by sequentially performing a plurality of times.
JP2010151826A 2010-07-02 2010-07-02 Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method Active JP5204809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151826A JP5204809B2 (en) 2010-07-02 2010-07-02 Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151826A JP5204809B2 (en) 2010-07-02 2010-07-02 Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005000974A Division JP4694209B2 (en) 2005-01-05 2005-01-05 Substrate processing apparatus and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2011009752A true JP2011009752A (en) 2011-01-13
JP5204809B2 JP5204809B2 (en) 2013-06-05

Family

ID=43565971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151826A Active JP5204809B2 (en) 2010-07-02 2010-07-02 Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP5204809B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472393B2 (en) 2014-02-19 2016-10-18 Tokyo Electron Limited Method and apparatus for forming silicon oxide film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347531A (en) * 1989-07-11 1991-02-28 Tokyo Electron Sagami Ltd Fluid dispersing apparatus and treatment apparatus using the same
JPH04329631A (en) * 1991-05-01 1992-11-18 Matsushita Electron Corp Impurity diffusion furnace
JPH11121389A (en) * 1997-10-13 1999-04-30 Nec Kyushu Ltd Vertical type diffusion furnace and diffusion method
WO2002023614A1 (en) * 2000-09-18 2002-03-21 Tokyo Electron Limited Method for film formation of gate insulator, apparatus for film formation of gate insulator, and cluster tool
JP2004047624A (en) * 2002-07-10 2004-02-12 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2004228601A (en) * 2004-04-23 2004-08-12 Hitachi Kokusai Electric Inc Apparatus for processing substrate
WO2004093179A1 (en) * 2003-04-17 2004-10-28 Fujitsu Limited Method for forming high dielectric film
JP2006054432A (en) * 2004-07-15 2006-02-23 Tokyo Electron Ltd Film forming method, film-forming device, and storage medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347531A (en) * 1989-07-11 1991-02-28 Tokyo Electron Sagami Ltd Fluid dispersing apparatus and treatment apparatus using the same
JPH04329631A (en) * 1991-05-01 1992-11-18 Matsushita Electron Corp Impurity diffusion furnace
JPH11121389A (en) * 1997-10-13 1999-04-30 Nec Kyushu Ltd Vertical type diffusion furnace and diffusion method
WO2002023614A1 (en) * 2000-09-18 2002-03-21 Tokyo Electron Limited Method for film formation of gate insulator, apparatus for film formation of gate insulator, and cluster tool
JP2004047624A (en) * 2002-07-10 2004-02-12 Renesas Technology Corp Semiconductor device and its manufacturing method
WO2004093179A1 (en) * 2003-04-17 2004-10-28 Fujitsu Limited Method for forming high dielectric film
JP2004228601A (en) * 2004-04-23 2004-08-12 Hitachi Kokusai Electric Inc Apparatus for processing substrate
JP2006054432A (en) * 2004-07-15 2006-02-23 Tokyo Electron Ltd Film forming method, film-forming device, and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472393B2 (en) 2014-02-19 2016-10-18 Tokyo Electron Limited Method and apparatus for forming silicon oxide film

Also Published As

Publication number Publication date
JP5204809B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
TWI516631B (en) Batch cvd method and apparatus for semiconductor process
JP5097554B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
JP4694209B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
US9206931B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP4803578B2 (en) Deposition method
JP5541223B2 (en) Film forming method and film forming apparatus
US10553686B2 (en) Method and apparatus for forming silicon oxide film, and storage medium
JP5524785B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2006286716A (en) Method of manufacturing semiconductor device
WO2011093203A1 (en) Semiconductor device manufacturing method, substrate processing apparatus, and semiconductor device
JP5457287B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP4563113B2 (en) Silicon oxide film forming method, semiconductor device manufacturing method, and substrate processing apparatus
JP5286565B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
JPWO2006090645A1 (en) Semiconductor device manufacturing method and substrate processing apparatus
TWI578384B (en) A semiconductor device manufacturing method, a substrate processing method, and a substrate processing apparatus
JP2017069330A (en) Method of manufacturing semiconductor device, gas supply method, substrate processing device, and substrate holding tool
JP5204809B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP5350329B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP4716737B2 (en) Substrate processing equipment
JP2005243737A (en) Substrate processing apparatus
JP4509697B2 (en) Substrate processing equipment
JP2006269532A (en) Method of manufacturing semiconductor device
JP2009044088A (en) Method of manufacturing semiconductor device
JP2005197541A (en) Substrate processor
JP2006066593A (en) Substrate-processing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

R150 Certificate of patent or registration of utility model

Ref document number: 5204809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250