JP2011005569A - Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance - Google Patents

Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance Download PDF

Info

Publication number
JP2011005569A
JP2011005569A JP2009149350A JP2009149350A JP2011005569A JP 2011005569 A JP2011005569 A JP 2011005569A JP 2009149350 A JP2009149350 A JP 2009149350A JP 2009149350 A JP2009149350 A JP 2009149350A JP 2011005569 A JP2011005569 A JP 2011005569A
Authority
JP
Japan
Prior art keywords
layer
crystal
plane
inclination angle
layer thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009149350A
Other languages
Japanese (ja)
Other versions
JP5428569B2 (en
Inventor
Kohei Tomita
興平 冨田
Makoto Igarashi
誠 五十嵐
Akira Osada
晃 長田
Keiji Nakamura
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009149350A priority Critical patent/JP5428569B2/en
Priority to US13/256,867 priority patent/US8828527B2/en
Priority to EP10753306.9A priority patent/EP2409798B1/en
Priority to PCT/JP2010/001973 priority patent/WO2010106811A1/en
Priority to CN201080012240.3A priority patent/CN102355968B/en
Publication of JP2011005569A publication Critical patent/JP2011005569A/en
Application granted granted Critical
Publication of JP5428569B2 publication Critical patent/JP5428569B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool with a hard coating layer exerting excellent chipping resistance in high speed heavy cutting.SOLUTION: The surface-coated cutting tool has (a) a Ti compound layer as a lower layer, (b) an α type AlOlayer as an intermediate layer, and (c) a Y-containing α type AlOlayer, as an upper layer, having a crystal grain structure having a plane polygonal shape and a longitudinally long shape and containing Y, which are vapor-deposited at a surface of a tool base body. The intermediate layer and the upper layer are comprised of the α type AlOlayer with high (0001) plane orientation ratio and the Y-containing α type AlOlayer, respectively. Of the crystal grains in the upper layer, the inside of the crystal grains of ≥60% by an area ratio is divided by a crystal lattice interface comprising a constituent atom sharing lattice point form represented by at least one or more Σ3 s.

Description

この発明は、例えば、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の切削加工を、高い発熱を伴うとともに、切刃に対して断続的かつ衝撃的負荷が繰り返し作用する高速断続切削条件で行った場合でも、硬質被覆層がチッピングを発生することなく、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is a high-speed intermittent cutting condition in which cutting of high hardness steel such as hardened material of alloy tool steel and bearing steel, for example, is accompanied by high heat generation and intermittent and impact load repeatedly acts on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over a long period of use without causing chipping of the hard coating layer.

特許文献1に示すように、従来、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜80%である構成原子共有格子点分布グラフを示すα型Al23層(従来α型Al23層という)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具(従来被覆工具1という)が知られており、この従来被覆工具1は、α型Al23層がすぐれた高温強度を有することから、高速断続切削加工ですぐれた耐チッピング性を発揮することが知られている。
As shown in Patent Document 1, conventionally, a substrate composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet (hereinafter collectively referred to as a tool). On the surface of the substrate)
(A) a Ti compound layer in which the lower layer is composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and has an overall average layer thickness of 3 to 20 μm,
(B) The upper layer has an average layer thickness of 1 to 15 μm and has an α-type crystal structure in the state of chemical vapor deposition, and within the measurement range of the surface polished surface using a field emission scanning electron microscope. Each crystal grain having an existing hexagonal crystal lattice is irradiated with an electron beam, and the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grain, with respect to the normal line of the surface polished surface The inclination angle formed by the normal is measured. In this case, the crystal grains have a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al and oxygen are present at lattice points. Based on the tilt angle, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains is calculated, Share constituent atoms between the constituent atomic shared lattice points There are N lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 in terms of distribution frequency, 4, 8, 14, 24 In the constituent atomic shared lattice distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 when the existing constituent atomic shared lattice point form is expressed by ΣN + 1, the highest peak is at Σ3. An α-type Al 2 O 3 layer (conventional α-type Al 2 O 3 layer) showing a constituent atom shared lattice point distribution graph in which the distribution ratio of the Σ3 to the entire ΣN + 1 is 60 to 80%,
A coated tool (referred to as a conventional coated tool 1) formed by vapor-depositing a hard coating layer composed of the above (a) and (b) is known, and this conventional coated tool 1 has an α-type Al 2 O 3 layer. Since it has excellent high-temperature strength, it is known to exhibit excellent chipping resistance in high-speed intermittent cutting.

また、特許文献2に示すように、上記従来被覆工具1の上部層(b)の代わりに、Y(イットリウム)を少量含有するα型(Al,Y)23層(以下、従来AlYO層という)で構成した被覆工具(以下、従来被覆工具2という)も知られており、そして、この従来被覆工具2では、α型Al23の結晶粒の脱落が防止されるとともに、連続切削加工ですぐれた切削耐久性を示すことが知られている。 Further, as shown in Patent Document 2, instead of the upper layer (b) of the conventional coated tool 1, an α-type (Al, Y) 2 O 3 layer (hereinafter referred to as a conventional AlYO layer) containing a small amount of Y (yttrium). (Hereinafter referred to as the conventional coated tool 2) is also known, and the conventional coated tool 2 prevents the falling of α-type Al 2 O 3 crystal grains and is capable of continuous cutting. It is known to show excellent cutting durability in processing.

特開2006−198735号公報JP 2006-198735 A 特開2004−1154号公報JP 2004-1154 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化、高能率化する傾向にあるが、上記従来被覆工具1,2においては、これを低合金鋼や炭素鋼などの一般鋼、さらにねずみ鋳鉄などの普通鋳鉄の高速切削加工、高速断続切削加工に用いた場合には特に問題はないが、特にこれを、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高速断続切削加工に用いた場合には、前記従来α型Al23層、前記従来AlYO層は、高温強度および表面性状が満足できるものでないため、チッピングを発生しやすく、これを原因として、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been dramatically improved, while there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this trend, cutting tends to become even faster and more efficient. The conventional coated tools 1 and 2 are not particularly problematic when used for high-speed cutting and high-speed intermittent cutting of general steel such as low alloy steel and carbon steel, and ordinary cast iron such as gray cast iron. However, when this is used for high-speed intermittent cutting of hardened steel such as alloy tool steel and bearing steel, the conventional α-type Al 2 O 3 layer and the conventional AlYO layer have high-temperature strength. In addition, since the surface properties are not satisfactory, chipping is likely to occur, and due to this, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、高熱発生を伴い、かつ、切刃に対して、断続的かつ衝撃的負荷が繰り返し作用する高硬度鋼の高速断続切削加工に用いた場合にも、すぐれた耐チッピング性を備え、長期の使用に亘ってすぐれた切削性能を発揮する被覆工具を開発すべく、鋭意研究を行った結果、以下の知見を得た。   In view of the above, the present inventors, when used for high-speed intermittent cutting of high-hardness steel that involves high heat generation and intermittent and impact load acts repeatedly on the cutting edge, from the above viewpoint. In addition, as a result of earnest research to develop a coated tool that has excellent chipping resistance and exhibits excellent cutting performance over a long period of use, the following findings were obtained.

(a)上記の従来被覆工具1における従来α型Al23層は、
例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:6〜10%、CO2:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件で蒸着形成することができるが、
同じく通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C24:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で、下部層であるTi化合物層の表面にAl23核を形成し、この場合前記Al23核は20〜200nmの平均層厚を有するAl23核薄膜であるのが望ましく、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件で前記Al23核薄膜に加熱処理を施した状態で、硬質被覆層としてのα型Al23層を通常の条件で形成すると、この結果の前記加熱処理Al23核薄膜上に蒸着形成されたα型Al23層(以下、改質α型Al23層という)について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気圧力を、上記の通り5〜8kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の0〜10度の範囲内で変化すると共に、前記0〜10度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める((0001)面配向率が高い)ようになり、この結果の傾斜角度数分布グラフにおいて0〜10度の範囲内に傾斜角区分の最高ピークが現れる改質α型Al23層は、従来被覆工具1の従来α型Al23層が具備するすぐれた高温硬さと耐熱性に加えて、一段とすぐれた高温強度を有する。
(A) The conventional α-type Al 2 O 3 layer in the conventional coated tool 1 is
For example, in a normal chemical vapor deposition system,
Reaction gas composition: by volume%, AlCl 3: 6~10%, CO 2: 10~15%, HCl: 3~5%, H 2 S: 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
It can be formed under the conditions of
Similarly, using a normal chemical vapor deposition system,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Under these low temperature conditions, Al 2 O 3 nuclei are formed on the surface of the lower Ti compound layer. In this case, the Al 2 O 3 nuclei are Al 2 O 3 nuclei thin films having an average layer thickness of 20 to 200 nm. Subsequently, the reaction atmosphere is changed to a hydrogen atmosphere at a pressure of 3 to 13 kPa, and the reaction atmosphere temperature is raised to 1100 to 1200 ° C., and the Al 2 O 3 core thin film is heated. When an α-type Al 2 O 3 layer as a hard coating layer is formed under normal conditions, an α-type Al 2 O 3 layer (hereinafter referred to as “reform”) deposited on the heat-treated Al 2 O 3 core thin film is obtained. (Referred to as an α-type Al 2 O 3 layer), using a field emission scanning electron microscope, as shown in FIGS. Irradiate each individual crystal grain with an electron beam to obtain a normal to the polished surface In contrast, the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle in the range of 0 to 45 degrees out of the measurement inclination angles is 0.25. When it is divided into pitches of degrees and is represented by an inclination angle distribution graph obtained by summing up the frequencies existing in each division, as shown in FIG. 2, a sharp peak at a specific position of the inclination angle division According to the test results, when the reaction atmosphere pressure in the chemical vapor deposition apparatus is changed within the range of 5 to 8 kPa as described above, the position where the sharpest peak appears is 0 to 10 degrees of the inclination angle section. The total of the frequencies that vary within the range and within the range of 0 to 10 degrees occupies a ratio of 45% or more of the total degrees in the tilt angle frequency distribution graph (the (0001) plane orientation ratio is high). The resulting slope of Hot highest peak of the inclination angle segment within the range of 0 to 10 degrees in the frequency distribution graph is modified α type the Al 2 O 3 layer which appears, which is superior to conventional α type the Al 2 O 3 layer prior coated tool 1 is provided In addition to hardness and heat resistance, it has excellent high temperature strength.

(b)さらに、上記(a)のような条件で蒸着形成した改質α型Al23層を中間層として、その上に、上部層として、化学蒸着した状態でα型の結晶構造を有するY含有酸化アルミニウム層を更に蒸着形成することにより硬質被覆層を構成したところ、工具基体表面に、Ti化合物層からなる下部層、改質α型Al23層からなる中間層およびY含有酸化アルミニウム層からなる上部層を硬質被覆層として蒸着形成した被覆工具は、高熱発生を伴い、かつ、切刃に対して高切込み、高送りの高負荷が作用する高速重切削条件下においても、一段とすぐれた高温強度と表面性状を有することにより、すぐれた耐チッピング性を発揮することを見出した。 (B) Further, the modified α-type Al 2 O 3 layer formed by vapor deposition under the conditions as described in (a) above is used as an intermediate layer, and an upper layer is formed thereon with an α-type crystal structure in the state of chemical vapor deposition. When a hard coating layer is formed by further vapor-depositing a Y-containing aluminum oxide layer, a lower layer made of a Ti compound layer, an intermediate layer made of a modified α-type Al 2 O 3 layer, and a Y-containing layer are formed on the tool base surface. The coated tool formed by vapor-depositing the upper layer made of an aluminum oxide layer as a hard coating layer is accompanied by high heat generation, and even under high-speed heavy cutting conditions in which a high cutting depth and high load act on the cutting blade, It has been found that excellent chipping resistance is exhibited by having excellent high-temperature strength and surface properties.

(c)上記Y含有酸化アルミニウム層は、中間層である上記改質α型Al23層の上に、例えば、
まず、第1段階として、
(イ)反応ガス組成(容量%):
AlCl: 1〜5 %、
YCl: 0.05〜0.1 %、
CO2: 2〜6 %、
HCl: 1〜5 %、
S: 0.25〜0.75 %、
2:残り、
(ロ)反応雰囲気温度; 1020〜1050 ℃、
(ハ)反応雰囲気圧力; 3〜5 kPa、
の条件で第1段階の蒸着を1時間行った後、
次に、第2段階として、
(イ)反応ガス組成(容量%):
AlCl: 6〜10 %、
YCl: 0.4〜1.0 %、
CO2: 4〜8 %、
HCl: 3〜5 %、
S: 0.25〜0.6 %、
2:残り、
(ロ)反応雰囲気温度; 920〜1000 ℃、
(ハ)反応雰囲気圧力; 6〜10 kPa、
の条件で蒸着を行うことにより、1〜15μmの平均層厚を有し、かつ、Al成分との合量に占めるY成分の含有割合が0.0005〜0.01(但し、原子比)を満足し、化学蒸着した状態でα型の結晶構造を有するY含有酸化アルミニウム層(以下、改質AlYO層という)を形成することができる。
(C) The Y-containing aluminum oxide layer is formed on the modified α-type Al 2 O 3 layer, which is an intermediate layer, for example,
First, as the first step,
(B) Reaction gas composition (volume%):
AlCl 3 : 1 to 5%,
YCl 3 : 0.05 to 0.1%,
CO 2 : 2-6%,
HCl: 1-5%,
H 2 S: 0.25~0.75%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 1020 to 1050 ° C.,
(C) Reaction atmosphere pressure; 3-5 kPa,
After performing the first stage deposition for 1 hour under the conditions of
Next, as the second stage,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
YCl 3 : 0.4 to 1.0%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 920 to 1000 ° C.,
(C) Reaction atmosphere pressure; 6 to 10 kPa,
By carrying out vapor deposition under the conditions, the Y layer has a mean layer thickness of 1 to 15 μm, and the content ratio of the Y component in the total amount with the Al component is 0.0005 to 0.01 (however, the atomic ratio). A satisfactory Y-containing aluminum oxide layer (hereinafter referred to as a modified AlYO layer) having an α-type crystal structure can be formed in the state of chemical vapor deposition.

(d)そして、上記改質AlYO層を、電界放出型走査電子顕微鏡で組織観察すると、図3(a)に示されるように、層厚方向に垂直な面内で見た場合に、大粒径の平板多角形状であり、また、図3(b)に示されるように、層厚方向に平行な面内で見た場合に、層表面はほぼ平坦であり、層厚方向にたて長形状(以下、「平板多角形たて長形状」という)を有する結晶粒からなる組織構造を有する。
なお、前記改質AlYO層の蒸着形成に際して、より限定した蒸着条件(例えば、第1段階における反応ガス中のHSを0.50〜0.75容量%、反応雰囲気温度を1020〜1030℃とし、さらに、第2段階における反応ガス中のYClを0.6〜0.8容量%、HSを0.25〜0.4容量%、反応雰囲気温度を960〜980℃とした条件)で蒸着を行うと、図3(c)に示されるように、層厚方向に垂直な面内で見た場合に、大粒径の平坦六角形状であり、かつ、層厚方向に平行な面内で見た場合に、図3(b)に示されるのと同様、層表面はほぼ平坦であり、層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める組織構造が形成される。
(D) Then, when the microstructure of the modified AlYO layer is observed with a field emission scanning electron microscope, as shown in FIG. 3 (a), large grains are observed when viewed in a plane perpendicular to the layer thickness direction. As shown in FIG. 3B, when viewed in a plane parallel to the layer thickness direction, the layer surface is almost flat and long in the layer thickness direction. It has a textured structure composed of crystal grains having a shape (hereinafter, referred to as “long flat plate polygonal shape”).
In the vapor deposition formation of the modified AlYO layer, more limited vapor deposition conditions (for example, H 2 S in the reaction gas in the first stage is 0.50 to 0.75 vol%, and the reaction atmosphere temperature is 1020 to 1030 ° C. And, further, conditions in which YCl 3 in the reaction gas in the second stage is 0.6 to 0.8% by volume, H 2 S is 0.25 to 0.4% by volume, and the reaction atmosphere temperature is 960 to 980 ° C. 3), as shown in FIG. 3C, when viewed in a plane perpendicular to the layer thickness direction, it has a flat hexagonal shape with a large grain size and is parallel to the layer thickness direction. When viewed in-plane, as shown in FIG. 3B, the layer surface is substantially flat, and crystal grains having a long shape in the layer thickness direction are in-plane perpendicular to the layer thickness direction. In this case, a tissue structure occupying an area ratio of 35% or more of the whole is formed.

(e)また、上記改質α型Al23層の場合と同様に、上記改質AlYO層について、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成したところ、傾斜角区分の特定位置にシャープな最高ピークが現れ、傾斜角区分0〜10度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占め、即ち、(0001)面配向率が高い改質AlYO層が形成され、この改質AlYO層は、従来被覆工具の従来AlYO層に比して、(0001)面配向率が高められると同時に一段とすぐれた高温強度を有する。 (E) Further, as in the case of the modified α-type Al 2 O 3 layer, a hexagonal crystal existing in the measurement range of the surface polished surface of the modified AlYO layer using a field emission scanning electron microscope. By irradiating each crystal grain having a lattice with an electron beam, an inclination angle formed by a normal line of the (0001) plane which is a crystal plane of the crystal grain is measured with respect to a normal line of the surface polished surface, and the measurement Among the inclination angles, the measurement inclination angle within the range of 0 to 45 degrees is divided for each pitch of 0.25 degrees, and an inclination angle number distribution graph is created by counting the frequencies existing in each division. However, a sharp maximum peak appears at a specific position in the tilt angle section, and the total frequency existing in the range of the tilt angle section 0 to 10 degrees accounts for 60% or more of the entire frequency in the tilt angle frequency distribution graph. That is, modified AlY with a high (0001) plane orientation ratio An O layer is formed, and this modified AlYO layer has a higher (0001) plane orientation ratio and a higher high-temperature strength than the conventional AlYO layer of a conventional coated tool.

(f)更に、上記改質AlYO層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、
この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、
図4に示されるように、電界放出型走査電子顕微鏡で観察される改質AlYO層を構成する平板多角形たて長形状の結晶粒の内、面積比率で60%以上の上記結晶粒の内部は、少なくとも一つ以上の、Σ3で表される構成原子共有格子点形態からなる結晶格子界面(以下、Σ3対応界面という)で分断されている組織を示すようになる。
(F) Further, the modified AlYO layer is irradiated with an electron beam to each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Measure the angle at which each normal of the crystal lattice plane composed of crystal crystal lattice intersects the normal of the substrate surface,
From this measurement result, the crystal orientation relationship between adjacent crystal lattices is calculated, and each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices (constituent atom shared lattice point). ) And the number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the distribution frequency) In the case where the upper limit of N is 28 from this point, even numbers of 4, 8, 14, 24 and 26 do not exist)
As shown in FIG. 4, the inside of the above-mentioned crystal grains having an area ratio of 60% or more among the flat polygonal long crystal grains constituting the modified AlYO layer observed with a field emission scanning electron microscope. Indicates a structure separated by at least one crystal lattice interface (hereinafter referred to as Σ3 corresponding interface) having a configuration of shared atomic lattice points represented by Σ3.

(h)上記のとおり、改質AlYO層からなる上部層は、(0001)面配向率が高められ、その表面の結晶面が、該層の層厚方向に垂直な面内における結晶面(例えば、(0001))と同配向を有するため、(層厚方向に平行な面内で見た場合、)層表面はほぼ平坦な平板状に形成され、その表面性状の故にすぐれた耐チッピング性を示し、さらに、平板多角形たて長形状の結晶粒内部にΣ3対応界面が存在することによって結晶粒内強度が高められるため、従来AlYO層に比して、一段とすぐれた高温硬さ、高温強度を備え、すぐれた耐チッピング性を示す。 (H) As described above, the upper layer composed of the modified AlYO layer has an increased (0001) plane orientation ratio, and the crystal plane of the surface is a crystal plane in a plane perpendicular to the layer thickness direction of the layer (for example, , (0001)), the layer surface is formed in a substantially flat plate shape (when viewed in a plane parallel to the layer thickness direction), and has excellent chipping resistance due to its surface properties. In addition, the presence of the Σ3-compatible interface inside the long, flat plate-shaped crystal grains increases the strength within the crystal grains, so that the high-temperature hardness and high-temperature strength are superior to those of conventional AlYO layers. With excellent chipping resistance.

(i)したがって、硬質被覆層として、(0001)面配向率が高く、すぐれた高温強度を有する改質α型Al23層を中間層として備え、更に、すぐれた高温硬さ、高温強度、表面性状を有する改質AlYO層を上部層として備えるこの発明の被覆工具は、従来被覆工具1,2に比して、一段とすぐれた高温硬さ、耐熱性、高温強度を具備し、その結果として、高熱発生を伴い、かつ、切刃に対して、断続的かつ衝撃的負荷が繰り返し作用する高速断続切削に用いた場合にも、長期の使用に亘ってすぐれた耐チッピング性を発揮するのである。 (I) Therefore, as the hard coating layer, a modified α-type Al 2 O 3 layer having a high (0001) plane orientation ratio and excellent high-temperature strength is provided as an intermediate layer, and further excellent high-temperature hardness and high-temperature strength. The coated tool of the present invention, which has a modified AlYO layer having surface properties as an upper layer, has better high-temperature hardness, heat resistance, and high-temperature strength than the conventional coated tools 1 and 2, and as a result. As a result, even when used for high-speed intermittent cutting with high heat generation and intermittent and impact load acting repeatedly on the cutting edge, it exhibits excellent chipping resistance over a long period of use. is there.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)中間層が、1〜5μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
(c)上部層が、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するY含有酸化アルミニウム層、
上記(a)〜(c)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記(b)の中間層は、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、
上記(c)の上部層は、電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平板多角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒からなる組織構造を有するY含有酸化アルミニウム層であり、
また、上記(c)の上部層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、
さらに、上記(c)の上部層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、上記(c)の上部層を構成する結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているY含有酸化アルミニウム層である、
ことを特徴とする表面被覆切削工具。
(2) 前記(c)の上部層を電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平坦六角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める前記(1)に記載の表面被覆切削工具。
(3) 前記(c)の上部層は、0.05〜0.3μmの範囲内の表面粗さ(Ra)を有する前記(1)、(2)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) the lower layer is formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, all formed by chemical vapor deposition; And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) the intermediate layer has an average layer thickness of 1 to 5 μm, and an aluminum oxide layer having an α-type crystal structure in the state of chemical vapor deposition;
(C) The upper layer has an average layer thickness of 2 to 15 μm, and a Y-containing aluminum oxide layer having an α-type crystal structure in a chemical vapor deposited state;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) to (c) is formed by vapor deposition,
The intermediate layer (b) is irradiated with an electron beam on each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope, The inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is measured with respect to the normal line of the surface polished surface, and the measurement is in the range of 0 to 45 degrees of the measurement inclination angle. When the tilt angle is divided into pitches of 0.25 degrees and the frequency distribution in each section is aggregated, the slope angle distribution graph within the range of 0 to 10 degrees is the highest. An inclination angle number distribution graph in which the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire frequency in the inclination angle frequency distribution graph, with the presence of a peak,
The upper layer of (c) has a flat plate shape in a plane perpendicular to the layer thickness direction and a layer thickness direction in a plane parallel to the layer thickness direction when the structure is observed with a field emission scanning electron microscope. It is a Y-containing aluminum oxide layer having a structure composed of crystal grains having a vertically long shape,
Further, with respect to the upper layer of (c), an electron beam is irradiated to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope. The inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is measured with respect to the normal line of the surface polished surface, and is within the range of 0 to 45 degrees of the measured inclination angle. When a certain tilt angle is divided into pitches of 0.25 degrees, and the tilt angle distribution graph is formed by summing up the frequencies existing in each section, the tilt angle sections within the range of 0 to 10 degrees An inclination angle number distribution graph in which the highest peak is present and the total frequency within the range of 0 to 10 degrees occupies a ratio of 60% or more of the entire frequency in the inclination angle distribution graph,
Further, the upper layer of the above (c) is irradiated with an electron beam on each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, thereby obtaining a hexagonal crystal. Measures the angle at which each normal of the crystal lattice plane consisting of crystal lattices intersects the normal of the substrate surface, and calculates the crystal orientation relationship between adjacent crystal lattices from this measurement result, and configures the crystal lattice interface The distribution of lattice points (constituent atom shared lattice points) in which each atom shares one constituent atom between the crystal lattices is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated. (However, N is an even number of 2 or more due to the crystal structure of the corundum hexagonal close-packed crystal. However, when the upper limit of N is 28 from the point of distribution frequency, even numbers of 4, 8, 14, 24 and 26 exist. Without) sharing existing constituent atoms When the child dot form is represented by ΣN + 1, the crystal grains having an area ratio of 60% or more among the crystal grains constituting the upper layer of the above (c) are represented by at least one Σ3 It is a Y-containing aluminum oxide layer that is divided by a crystal lattice interface composed of atomic shared lattice points.
A surface-coated cutting tool characterized by that.
(2) When the upper layer of (c) is observed with a field emission scanning electron microscope, a flat hexagonal shape in a plane perpendicular to the layer thickness direction and a layer thickness in a plane parallel to the layer thickness direction The surface-coated cutting tool according to (1), wherein the crystal grains having a long shape in the direction occupy an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction.
(3) The surface-coated cutting tool according to any one of (1) and (2), wherein the upper layer of (c) has a surface roughness (Ra) in a range of 0.05 to 0.3 μm. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、より詳細に説明する。
(a)Ti化合物層(下部層)
Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層は、基本的には中間層である改質α型Al23層の下部層として存在し、自身の具備するすぐれた靭性及び耐摩耗性によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上にも寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生下で断続的な負荷が作用する高速断続切削条件ではチッピングを起し易くなり、これが異常摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
(A) Ti compound layer (lower layer)
Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbonate (hereinafter referred to as TiCO) layer and carbonitriding The Ti compound layer consisting of one or more of the material layers (hereinafter referred to as TiCNO) is basically present as a lower layer of the modified α-type Al 2 O 3 layer, which is an intermediate layer. Contributes to improving the high-temperature strength of the hard coating layer due to its excellent toughness and wear resistance, and firmly adheres to both the tool base and the modified α-type Al 2 O 3 layer, so that the tool of the hard coating layer Although it has the effect of contributing to the improvement in adhesion to the substrate, if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted, while if the total average layer thickness exceeds 20 μm, the heat is particularly high. Intermittent load acts under occurrence Easily cause chipping in a high-speed intermittent cutting conditions, which since it will cause abnormal wear, defining a total average layer thickness thereof and 3 to 20 [mu] m.

(b)改質α型Al23層(中間層)
中間層を構成する改質α型Al23層は、既に述べたように、
通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C24:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で、下部層であるTi化合物層の表面にAl23核を形成し、この場合前記Al23核は20〜200nmの平均層厚を有するAl23核薄膜であるのが望ましく、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件で前記Al23核薄膜に加熱処理を施した状態で、硬質被覆層としてのα型Al23層を通常の条件で形成し、前記加熱処理Al23核薄膜上にα型Al23層を蒸着することによって形成することができる。
そして、下部層の上に化学蒸着された改質α型Al23層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、図2に例示される通り、傾斜角区分0〜10度の範囲内にシャープな最高ピークが現れる。
そして、改質α型Al23層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置は、所定層厚のAl23核(薄膜)形成後に加熱処理を施すことによって変化させることができ、それと同時に、傾斜角区分0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す((0001)面配向率が高い)ようになるものであり、したがって、上記Al23核(薄膜)の層厚が小さい方に外れても、また大きい方に外れても、測定傾斜角の最高ピーク位置は0〜10度の範囲から外れてしまうと共に、これに対応して傾斜角度数分布グラフにおける前記0〜10度の範囲内に存在する度数の割合も度数全体の45%未満となってしまい、すぐれた高温強度を確保することができない。
改質α型Al23層は、従来被覆工具の従来α型Al23層のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するが、改質α型Al23層を、(0001)面配向率の高い中間層として構成しておくことにより、この上に蒸着形成される改質AlYO層の(0001)面配向率を高めることができ、その結果として、改質AlYO層からなる上部層の表面性状の改善を図るとともに高温強度の向上を図ることができる。
ただ、改質α型Al23層からなる中間層の平均層厚が1μm未満では改質α型Al23層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が5μmを越えると、切削時に発生する高熱と切刃への断続的衝撃の負荷によって、異常摩耗の原因となるチッピングが発生し易くなり、摩耗が加速するようになることから、その平均層厚は1〜5μmと定めた。
(B) Modified α-type Al 2 O 3 layer (intermediate layer)
As described above, the modified α-type Al 2 O 3 layer constituting the intermediate layer is
Using normal chemical vapor deposition equipment,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Under these low temperature conditions, Al 2 O 3 nuclei are formed on the surface of the lower Ti compound layer. In this case, the Al 2 O 3 nuclei are Al 2 O 3 nuclei thin films having an average layer thickness of 20 to 200 nm. Subsequently, the reaction atmosphere is changed to a hydrogen atmosphere at a pressure of 3 to 13 kPa, and the reaction atmosphere temperature is raised to 1100 to 1200 ° C., and the Al 2 O 3 core thin film is heated. The α-type Al 2 O 3 layer as a hard coating layer can be formed under normal conditions, and the α-type Al 2 O 3 layer can be deposited on the heat-treated Al 2 O 3 core thin film.
Then, with respect to the modified α-type Al 2 O 3 layer chemically vapor-deposited on the lower layer, measurement of the surface polished surface is performed using a field emission scanning electron microscope, as shown in FIGS. Each crystal grain having a hexagonal crystal lattice existing in the range is irradiated with an electron beam, and the normal line of the (0001) plane which is the crystal plane of the crystal grain is formed with respect to the normal line of the surface polished surface. The inclination angle is measured, and among the measurement inclination angles, the measurement inclination angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees, and the frequencies existing in each division are totaled. When represented by the inclination angle number distribution graph, as illustrated in FIG. 2, a sharp maximum peak appears in the range of the inclination angle section 0 to 10 degrees.
And the highest peak position of the measured inclination angle in the inclination angle number distribution graph of the modified α-type Al 2 O 3 layer is changed by performing a heat treatment after forming an Al 2 O 3 nucleus (thin film) having a predetermined layer thickness. At the same time, an inclination angle number distribution graph is shown in which the total number of frequencies existing in the inclination angle range of 0 to 10 degrees occupies a ratio of 45% or more of the entire frequency in the inclination angle distribution graph ((0001 Therefore, even if the layer thickness of the Al 2 O 3 nucleus (thin film) is smaller or larger, the highest peak of the measured tilt angle is obtained. The position deviates from the range of 0 to 10 degrees, and correspondingly, the ratio of the frequencies existing in the range of 0 to 10 degrees in the inclination angle frequency distribution graph is less than 45% of the entire frequencies. , Excellent high It is not possible to ensure the strength.
The modified α-type Al 2 O 3 layer has excellent high-temperature strength and heat resistance in addition to the excellent high-temperature hardness and heat resistance of the conventional α-type Al 2 O 3 layer of the conventional coated tool. By configuring the Al 2 O 3 layer as an intermediate layer having a high (0001) plane orientation ratio, the (0001) plane orientation ratio of the modified AlYO layer deposited on the Al 2 O 3 layer can be increased. As a result, it is possible to improve the surface properties of the upper layer made of the modified AlYO layer and improve the high temperature strength.
However, it is impossible to allowed to sufficiently equipped with the properties possessed by the modified α-type Al 2 O 3 layer to the hard coating layer has an average layer thickness of the intermediate layer made of the reformed α-type the Al 2 O 3 layer is less than 1μm On the other hand, if the average layer thickness exceeds 5 μm, chipping that causes abnormal wear is likely to occur due to high heat generated during cutting and intermittent impact load on the cutting edge, and wear is accelerated. Therefore, the average layer thickness was determined to be 1 to 5 μm.

(c)改質AlYO層(上部層)
中間層の上に化学蒸着された改質AlYO層からなる上部層は、その構成成分であるAl成分が、層の高温硬さおよび耐熱性を向上させ、また、層中に微量(Alとの合量に占める割合で、Y/(Al+Y)が0.0005〜0.01(但し、原子比))含有されたY成分が、改質AlYO層の結晶粒界面強度を向上させ、高温強度の向上に寄与するが、Y成分の含有割合が0.0005未満では、上記作用を期待することはできず、一方、Y成分の含有割合が0.01を超えた場合には、層中にY粒子が析出することによって粒界面強度が低下するため、Al成分との合量に占めるY成分の含有割合(Y/(Al+Y)の比の値)は0.0005〜0.01(但し、原子比)であることが望ましい。
(C) Modified AlYO layer (upper layer)
In the upper layer composed of the modified AlYO layer chemically vapor-deposited on the intermediate layer, the constituent Al component improves the high-temperature hardness and heat resistance of the layer, and a small amount (with Al) The Y component containing Y / (Al + Y) in the proportion of the total amount of 0.0005 to 0.01 (wherein the atomic ratio) improves the crystal grain interface strength of the modified AlYO layer, Although it contributes to the improvement, if the content ratio of the Y component is less than 0.0005, the above-described effect cannot be expected. On the other hand, if the content ratio of the Y component exceeds 0.01, Since the grain interface strength decreases due to precipitation of 2 O 3 particles, the content ratio of the Y component in the total amount with the Al component (value of the ratio of Y / (Al + Y)) is 0.0005 to 0.01 ( However, the atomic ratio is desirable.

上記改質AlYO層は、蒸着時の反応ガス組成、反応雰囲気温度および反応雰囲気圧力の各化学蒸着条件を、例えば、以下のとおり調整することによって蒸着形成することができる。
即ち、まず、
(イ)反応ガス組成(容量%):
AlCl: 1〜5 %、
YCl: 0.05〜0.1 %、
CO2: 2〜6 %、
HCl: 1〜5 %、
S: 0.25〜0.75 %、
2:残り、
(ロ)反応雰囲気温度; 1020〜1050 ℃、
(ハ)反応雰囲気圧力; 3〜5 kPa、
の条件で第1段階の蒸着を約1時間行った後、
次に、
(イ)反応ガス組成(容量%):
AlCl: 6〜10 %、
YCl: 0.4〜1.0 %、
CO2: 4〜8 %、
HCl: 3〜5 %、
S: 0.25〜0.6 %、
2:残り、
(ロ)反応雰囲気温度; 920〜1000 ℃、
(ハ)反応雰囲気圧力; 6〜10 kPa、
の条件で第2段階の蒸着を行うことによって、1〜15μmの平均層厚の蒸着層を成膜すると、Y/(Al+Y)の比の値が原子比で0.0005〜0.01である改質AlYO層を形成することができる。
The modified AlYO layer can be formed by vapor deposition by adjusting the chemical vapor deposition conditions of the reaction gas composition, the reaction atmosphere temperature, and the reaction atmosphere pressure during the vapor deposition, for example, as follows.
First of all,
(B) Reaction gas composition (volume%):
AlCl 3 : 1 to 5%,
YCl 3 : 0.05 to 0.1%,
CO 2 : 2-6%,
HCl: 1-5%,
H 2 S: 0.25~0.75%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 1020 to 1050 ° C.,
(C) Reaction atmosphere pressure; 3-5 kPa,
After performing the first stage deposition for about 1 hour under the conditions of
next,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
YCl 3 : 0.4 to 1.0%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 920 to 1000 ° C.,
(C) Reaction atmosphere pressure; 6 to 10 kPa,
When the vapor deposition layer having an average layer thickness of 1 to 15 μm is formed by performing the second stage vapor deposition under the conditions, the value of the ratio Y / (Al + Y) is 0.0005 to 0.01 in atomic ratio. A modified AlYO layer can be formed.

そして、上記改質AlYO層について、電界放出型走査電子顕微鏡で組織観察すると、図3(a)に示されるように、層厚方向に垂直な面内で見た場合に、結晶粒径の大きい平板多角形状であり、また、図3(b)に示されるように、層厚方向に平行な面内で見た場合に、層表面はほぼ平坦であって、しかも、層厚方向にたて長形状を有する結晶粒(平板多角形たて長形状結晶粒)からなる組織構造が形成される。   When the microstructure of the modified AlYO layer is observed with a field emission scanning electron microscope, the crystal grain size is large when viewed in a plane perpendicular to the layer thickness direction as shown in FIG. As shown in FIG. 3B, the surface of the layer is substantially flat when viewed in a plane parallel to the layer thickness direction, as shown in FIG. A texture structure composed of crystal grains having a long shape (flat polygonal long crystal grains) is formed.

上記改質AlYO層について、中間層を構成する改質α型Al23層の場合と同様に、その表面研磨面の法線に対して、(0001)面の法線がなす傾斜角を測定することにより傾斜角度数分布グラフを作成すると、傾斜角区分0〜10度の範囲内にピーク存在するとともに、0〜10度の範囲内の度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、上部層を構成する改質AlYO層の(0001)面配向率が高いことがわかる。
即ち、改質AlYO層は、中間層である改質α型Al23層の(0001)面配向率が45%以上のものとして形成されていることから、改質AlYO層も(0001)面配向率の高い層((0001)面配向率は60%以上)として形成される。
そして、上記上部層を層厚方向に平行な面内で見た場合、層表面はほぼ平坦な平板状に形成され、すぐれた表面性状を呈し、その結果として、従来AlYO層に比して、一段とすぐれた耐チッピング性を示す。
As for the modified AlYO layer, as in the case of the modified α-type Al 2 O 3 layer constituting the intermediate layer, the inclination angle formed by the normal of the (0001) plane with respect to the normal of the surface polished surface is When an inclination angle distribution graph is created by measuring, a peak exists in the range of 0 to 10 degrees of the inclination angle section, and the total of the frequencies in the range of 0 to 10 degrees is the entire frequency in the inclination angle distribution graph. An inclination angle number distribution graph occupying a ratio of 60% or more of is shown, and it can be seen that the (0001) plane orientation ratio of the modified AlYO layer constituting the upper layer is high.
That is, the modified AlYO layer is formed such that the (0001) plane orientation ratio of the modified α-type Al 2 O 3 layer, which is an intermediate layer, is 45% or more. Therefore, the modified AlYO layer is also (0001). It is formed as a layer having a high plane orientation ratio (the (0001) plane orientation ratio is 60% or more).
And when the upper layer is viewed in a plane parallel to the layer thickness direction, the layer surface is formed in a substantially flat plate shape and exhibits excellent surface properties, and as a result, compared to the conventional AlYO layer, Excellent chipping resistance.

また、上記改質AlYO層の蒸着において、より限定した条件(例えば、第1段階における反応ガス中のHSを0.50〜0.75容量%、反応雰囲気温度を1020〜1030℃とし、さらに、第2段階における反応ガス中のYClを0.6〜0.8容量%、HSを0.25〜0.4容量%、反応雰囲気温度を960〜980℃とした条件)で蒸着を行うと、図3(c)に示されるように、層厚方向に垂直な面内で見た場合に、大粒径の平坦六角形状であり、かつ、層厚方向に平行な面内で見た場合に、図3(b)に示されるのと同様、層表面はほぼ平坦であり、層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める組織構造が形成される。 Further, in the deposition of the modified AlYO layer, more limited conditions (for example, H 2 S in the reaction gas in the first stage is 0.50 to 0.75 vol%, the reaction atmosphere temperature is 1020 to 1030 ° C., Further, in the second stage, YCl 3 in the reaction gas is 0.6 to 0.8% by volume, H 2 S is 0.25 to 0.4% by volume, and the reaction atmosphere temperature is 960 to 980 ° C. When vapor deposition is performed, as shown in FIG. 3 (c), when viewed in a plane perpendicular to the layer thickness direction, it is a flat hexagonal shape with a large grain size and in a plane parallel to the layer thickness direction. As shown in FIG. 3B, the layer surface is substantially flat, as shown in FIG. 3B, and the crystal grains having a long shape in the layer thickness direction are entirely within a plane perpendicular to the layer thickness direction. A tissue structure occupying an area ratio of 35% or more is formed.

さらに、上記改質AlYO層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、
この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表すと、
図4に示すように、電界放出型走査電子顕微鏡で観察される改質AlYO層を構成する平板多角形たて長形状の結晶粒の内、上記平板多角形(平坦六角形を含む)たて長形状結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上の、Σ3対応界面で分断されていることがわかる。
そして、改質AlYO層の平板多角形(平坦六角形を含む)たて長形状結晶粒の内部に、上記のΣ3対応界面が存在することによって、結晶粒内強度の向上が図られ、その結果として、高負荷が作用する高速重切削加工時に、改質AlYO層中にクラックが発生することが抑えられ、また、仮にクラックが発生したとしても、クラックの成長・伝播が妨げられ、耐チッピング性、耐欠損性、耐剥離性の向上が図られる。
Further, the modified AlYO layer was irradiated with an electron beam on each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, and a hexagonal crystal lattice Measure the angle at which each normal of the crystal lattice plane consisting of intersects with the normal of the surface polished surface,
From this measurement result, the crystal orientation relationship between adjacent crystal lattices is calculated, and each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices (constituent atom shared lattice point). ) And the number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the distribution frequency) When the upper limit of N is 28 from this point, the even number of 4, 8, 14, 24 and 26 does not exist.)
As shown in FIG. 4, among the flat polygonal long crystal grains constituting the modified AlYO layer observed with a field emission scanning electron microscope, the above flat plate polygons (including flat hexagons) are formed. It can be seen that among the long crystal grains, the interior of the crystal grains having an area ratio of 60% or more is divided by at least one Σ3-compatible interface.
Further, the presence of the above-mentioned Σ3-corresponding interface inside the long polygonal crystal grains (including flat hexagonal) of the modified AlYO layer improves the strength within the grains, and as a result As a result, cracks are prevented from occurring in the modified AlYO layer during high-speed heavy cutting with high loads, and even if cracks occur, crack growth and propagation are hindered, and chipping resistance In addition, chipping resistance and peeling resistance can be improved.

したがって、(0001)面配向率が高く表面平坦な表面性状を備え、かつ、平板多角形(平坦六角形を含む)たて長形状の結晶粒の内部にΣ3対応界面が存在する改質AlYO層からなる本発明の上部層は、高熱発生を伴うとともに、切刃に対して断続的な負荷が作用する高速断続切削加工においても、チッピング、欠損、剥離等を発生することなく、また、偏摩耗等の発生もなく、すぐれた耐チッピング性及び耐摩耗性を長期に亘って発揮する。
ただ、改質AlYO層からなる上部層の層厚が2μm未満では、上記上部層のすぐれた特性を十分に発揮することができず、一方、上部層の層厚が15μmを超えると偏摩耗の原因となるチッピングが発生しやすくなることから、上部層の平均層厚を2〜15μmと定めた。
Therefore, a modified AlYO layer having a high (0001) plane orientation ratio and a flat surface property, and having a Σ3-compatible interface inside a long plate crystal polygon (including a flat hexagon) The upper layer of the present invention is accompanied by high heat generation, and does not cause chipping, chipping, peeling, etc. even in high-speed intermittent cutting where an intermittent load is applied to the cutting edge, and uneven wear No chipping or the like occurs, and excellent chipping resistance and wear resistance are exhibited over a long period of time.
However, if the thickness of the upper layer composed of the modified AlYO layer is less than 2 μm, the excellent characteristics of the upper layer cannot be fully exhibited, while if the thickness of the upper layer exceeds 15 μm, uneven wear is not achieved. The average layer thickness of the upper layer is determined to be 2 to 15 μm because the chipping that causes it is likely to occur.

参考のため、従来AlYO層(前記特許文献2に記載のもの)について、電界放出型走査電子顕微鏡、電子後方散乱回折像装置を用い、上部層の結晶粒の組織構造および構成原子共有格子点形態を調べたところ、結晶粒の組織構造については、図5(a)、(b)に示されるような角錐状の凹凸を有し、多角形たて長形状の結晶粒からなる組織構造を有しているため、改質AlYO層に比して、耐摩耗性は不十分であった。
また、結晶粒の構成原子共有格子点形態については、従来AlYO層を構成する凹凸多角形たて長形状の結晶粒の内部にΣ3対応界面が存在する結晶粒の面積比率は40%以下と少なく、結晶粒内強度の向上が図られているとはいえなかった。
したがって、硬質被覆層の上部層が従来AlYO層で構成された従来被覆工具2は、高熱発生を伴うとともに、切刃に対して断続的な衝撃が繰り返し作用する高速断続切削加工において、チッピング、欠損、剥離等の発生を防止することはできず、また、偏摩耗等も発生し、工具性能は劣るものであった。
For reference, a conventional AlYO layer (described in the above-mentioned Patent Document 2) is obtained by using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, and the structure structure of the upper layer crystal grains and the configuration of constituent atomic shared lattice points. As a result of the examination, the structure of the crystal grains has a pyramid-like unevenness as shown in FIGS. 5 (a) and 5 (b), and has a structure composed of polygonal long crystal grains. Therefore, the wear resistance was insufficient as compared with the modified AlYO layer.
In addition, regarding the configuration of the constituent atomic shared lattice points of the crystal grains, the area ratio of the crystal grains in which the Σ3-corresponding interface exists within the concave and convex polygonal long crystal grains constituting the conventional AlYO layer is as low as 40% or less. However, it cannot be said that the strength within the crystal grains has been improved.
Therefore, the conventional coated tool 2 in which the upper layer of the hard coating layer is composed of the conventional AlYO layer is accompanied by high heat generation, and chipping and chipping in high-speed intermittent cutting processing in which intermittent impact is repeatedly applied to the cutting edge. The occurrence of peeling or the like cannot be prevented, and uneven wear or the like also occurs, resulting in poor tool performance.

また、本発明の被覆工具においては、上部層の改質AlYO層を形成した後、その表面に対して、砥石による研磨処理あるいはウエットブラストによる研磨処理等を施し、改質AlYO層の表面粗さをさらに調整することができる。例えば、改質AlYO層の表面粗さを、Ra0.05〜0.3μmに調整することにより、切削時の表面被覆工具への溶着発生を抑制することができる。
なお、本発明でいう表面粗さRaとは、JIS B0601(1994)で規定される算術平均粗さRaの値をいい、また、その測定法については特段限定されるものではない。
Further, in the coated tool of the present invention, after the modified AlYO layer of the upper layer is formed, the surface is subjected to polishing treatment with a grindstone or polishing treatment with wet blasting, etc., and the surface roughness of the modified AlYO layer Can be further adjusted. For example, by adjusting the surface roughness of the modified AlYO layer to Ra 0.05 to 0.3 μm, it is possible to suppress the occurrence of welding to the surface-coated tool during cutting.
In addition, surface roughness Ra as used in the field of this invention means the value of arithmetic mean roughness Ra prescribed | regulated by JISB0601 (1994), and the measuring method is not specifically limited.

上記のとおり、この発明の被覆工具は、(0001)面配向率が高く、すぐれた高温硬さ、耐熱性に加えて、すぐれた高温強度を有する改質α型Al23層を中間層とするとともに、上部層を構成する改質AlYO層の(0001)面配向率を高くすることにより、表面平坦性を備えた平板多角形(平坦六角形を含む)たて長形状の結晶粒からなる組織構造とし、さらに、上記結晶粒の内部にΣ3対応界面を形成し、結晶粒内強度を強化したことにより、凹凸多角形たて長形状の結晶粒からなり、結晶粒内に、Σ3対応界面の少ない従来AlYO層に比して、一段とすぐれた表面性状、高温強度を具備し、その結果、高熱発生を伴い、切刃に対して断続的な衝撃が繰り返し作用する高速断続切削加工においても、硬質被覆層がすぐれた耐チッピング性、耐欠損性、耐剥離性とすぐれた耐摩耗性を発揮し、使用寿命の一層の延命化が可能となる。 As described above, the coated tool according to the present invention has a modified α-type Al 2 O 3 layer having a high (0001) plane orientation ratio and excellent high-temperature hardness and heat resistance as well as excellent high-temperature strength as an intermediate layer. In addition, by increasing the (0001) plane orientation ratio of the modified AlYO layer constituting the upper layer, it is possible to obtain a flat plate polygon (including a flat hexagonal) vertically long crystal grains having surface flatness. Furthermore, by forming an interface corresponding to Σ3 inside the above crystal grain and strengthening the strength within the crystal grain, it consists of long and narrow polygonal crystal grains. Compared to conventional AlYO layers with few interfaces, it has superior surface properties and high-temperature strength. As a result, it generates high heat, and even in high-speed intermittent cutting with intermittent impact on the cutting edge. Excellent chip resistance with hard coating layer Ing property, fracture resistance, and exhibits excellent abrasion resistance and peel resistance, it is possible to further extend the life of the service life.

硬質被覆層を構成するα型Al23層の結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle in the case of measuring the (0001) plane crystal grains of the α-type the Al 2 O 3 layer constituting the hard coating layer. 本発明被覆工具1の硬質被覆層の中間層を構成する改質α型Al23層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the modified α-type Al 2 O 3 layer constituting the intermediate layer of the hard coating layer of the coated tool 1 of the present invention. (a)は、本発明被覆工具1〜9の改質AlYO層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平板多角形状の結晶粒組織構造を示す模式図であり、(b)は、同じく、層厚方向に平行な面内での電界放出型走査電子顕微鏡による観察で得られた、層表面がほぼ平坦であり、層厚方向にたて長形状を有する結晶粒組織構造を示す模式図であり、(c)は、本発明被覆工具10〜15の改質AlYO層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平坦六角形状の結晶粒組織構造を示す模式図である。(A) is a flat plate polygonal shape obtained by observation with a field emission scanning electron microscope in a plane perpendicular to the layer thickness direction of the upper layer composed of the modified AlYO layer of the coated tools 1 to 9 of the present invention. It is a schematic diagram which shows a crystal grain structure | tissue structure, (b) is a layer surface obtained by observation with a field emission type | mold scanning electron microscope in the plane parallel to a layer thickness direction similarly, and a layer is substantially flat. It is a schematic diagram which shows the crystal grain structure which has a long shape in the thickness direction, (c) is a surface perpendicular to the layer thickness direction of the upper layer made of the modified AlYO layer of the present coated tool 10-15 1 is a schematic diagram showing a flat hexagonal crystal grain structure obtained by observation with a field emission scanning electron microscope. 本発明被覆工具1〜9の改質AlYO層からなる上部層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて測定した、層厚方向に垂直な面における粒界解析図であり、実線は、電界放出型走査電子顕微鏡で観察される平板多角形状の結晶粒界を示し、破線は、電子後方散乱回折像装置により測定された結晶粒内のΣ3対応界面を示す。In the grain boundary analysis figure in the surface perpendicular to the layer thickness direction, measured using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, for the upper layer composed of the modified AlYO layer of the coated tools 1 to 9 of the present invention. Yes, a solid line indicates a flat-plate polygonal crystal grain boundary observed with a field emission scanning electron microscope, and a broken line indicates a Σ3-corresponding interface in the crystal grain measured by an electron backscatter diffraction image apparatus. (a)は、比較被覆工具1〜15の従来AlYO層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、多角形状の結晶粒組織構造を示す模式図であり、(b)は、同じく、層厚方向に平行な面内での電界放出型走査電子顕微鏡による観察で得られた、層表面で角錐状の凹凸を有し、層厚方向にたて長形状を有する結晶粒組織構造を示す模式図である。(A) is a polygonal crystal grain structure obtained by observation with a field emission scanning electron microscope in a plane perpendicular to the layer thickness direction of the upper layer made of the conventional AlYO layer of the comparative coated tools 1 to 15. It is a schematic diagram which shows a structure, (b) has a pyramid-shaped unevenness | corrugation in the layer surface similarly obtained by observation with the field emission type | mold scanning electron microscope in the surface parallel to a layer thickness direction, It is a schematic diagram which shows the crystal grain structure structure which has a long shape in the thickness direction.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408MAに規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to E made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG120408MA were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408MAのチップ形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to e made of TiCN base cermet having a standard / CNMG120408MA chip shape were formed.

ついで、これらの工具基体A〜Eおよび工具基体a〜eのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表7に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、表4に示される条件にて、表8に示される目標層厚の改質α型Al23層を硬質被覆層の中間層として蒸着形成し、
(c)次に、表5に示される蒸着条件により、同じく表8に示される目標層厚の改質AlYO層を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜15をそれぞれ製造した。
Then, each of these tool bases A to E and tool bases a to e is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 7), the Ti compound layer having the target layer thickness shown in Table 7 is deposited as the lower layer of the hard coating layer.
(B) Next, under the conditions shown in Table 4, the modified α-type Al 2 O 3 layer having the target layer thickness shown in Table 8 is formed by vapor deposition as an intermediate layer of the hard coating layer.
(C) Next, according to the vapor deposition conditions shown in Table 5, the coated tools 1 to 15 of the present invention are formed by vapor-depositing the modified AlYO layer having the target layer thickness shown in Table 8 as the upper layer of the hard coating layer. Each was manufactured.

また、比較の目的で、硬質被覆層の下部層を表3に示される条件にて形成し、上部層を表6に示される条件(特許文献2に開示された従来AlYO層の蒸着条件に相当)にて形成することにより、表9に示される目標層厚のTi化合物層と従来AlYO層からなる硬質被覆層を設けた比較被覆工具1〜10(従来被覆工具2に相当)をそれぞれ製造した。
なお、比較被覆工具1〜10の工具基体種別、下部層種別及び下部層厚は、それぞれ、本発明被覆工具1〜10のそれと同じである。
In addition, for comparison purposes, the lower layer of the hard coating layer is formed under the conditions shown in Table 3, and the upper layer is formed under the conditions shown in Table 6 (corresponding to the conventional AlYO layer deposition conditions disclosed in Patent Document 2). ) To produce comparative coated tools 1 to 10 (corresponding to conventional coated tool 2) provided with a hard coating layer composed of a Ti compound layer having a target layer thickness shown in Table 9 and a conventional AlYO layer, respectively. .
The tool base type, the lower layer type, and the lower layer thickness of the comparative coated tools 1 to 10 are the same as those of the inventive coated tools 1 to 10, respectively.

さらに、参考のために、硬質被覆層の下部層を表3に示される条件にて形成し、α型Al23層を表6に示される条件(特許文献1に開示された従来α型Al23層の蒸着条件に相当)にて形成することにより、表9に示される目標層厚のTi化合物層と従来α型Al23層からなる硬質被覆層を設けた参考被覆工具11〜15(従来被覆工具1に相当)をそれぞれ製造した。
なお、参考被覆工具11〜15の工具基体種別、下部層種別及び下部層厚は、それぞれ、本発明被覆工具11〜15のそれと同じである。
Further, for reference, the lower layer of the hard coating layer is formed under the conditions shown in Table 3, and the α-type Al 2 O 3 layer is formed under the conditions shown in Table 6 (the conventional α-type disclosed in Patent Document 1). by forming at Al 2 corresponds to the deposition conditions of the O 3 layer), reference coated tool having a hard coating layer comprising a target layer Ti compound layer having a thickness in the conventional α-type Al 2 O 3 layer as shown in Table 9 11-15 (equivalent to the conventional coated tool 1) were manufactured, respectively.
The tool base type, the lower layer type, and the lower layer thickness of the reference coated tools 11 to 15 are the same as those of the coated tools 11 to 15 of the present invention, respectively.

また、本発明被覆工具のうちのいくつかの改質AlYO層、比較被覆工具のうちのいくつかの従来AlYO層の表面には、投射圧0.15MPa,200メッシュのAl23粒子でウエットブラスト処理からなる後処理を施した。なお、後処理としては、弾性砥石による研磨処理でも構わない。
表8、表9には、後処理を施した上記本発明被覆工具の改質AlYO層(表8中で、*印を付したもの)、比較被覆工具の従来AlYO層(表9中で、*印を付したもの)の表面粗さ(Ra(μm))の値を示す。
(参考のために、後処理を施していない本発明被覆工具、比較被覆工具についてのRaの値も表8、表9に示す。)
Further, the surface of some modified AlYO layers of the coated tool of the present invention and the conventional AlYO layers of some of the comparative coated tools are wetted with Al 2 O 3 particles having a projection pressure of 0.15 MPa and 200 mesh. A post-treatment consisting of a blast treatment was applied. Note that the post-processing may be a polishing process using an elastic grindstone.
Tables 8 and 9 show the modified AlYO layer of the present invention coated tool subjected to post-treatment (indicated by * in Table 8), the conventional AlYO layer of the comparative coated tool (in Table 9, The value of the surface roughness (Ra (μm)) of those marked with * is shown.
(For reference, the Ra values for the inventive coated tool and comparative coated tool that have not been post-processed are also shown in Tables 8 and 9.)

ついで、上記の本発明被覆工具1〜15の硬質被覆層の中間層を構成する改質α型Al23層、同上部層を構成する改質AlYO層、および、比較被覆工具1〜10の従来AlYO層、参考被覆工具11〜15の従来α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆工具1〜15、比較被覆工具1〜10、参考被覆工具11〜15の各層について、それぞれの表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフ作成した。
傾斜角度数分布グラフの一例として、図2に、本発明被覆工具1の硬質被覆層の中間層を構成する改質α型Al23層について作成した(0001)面の傾斜角度数分布グラフを示す。
なお、この発明でいう“表面”とは、基体表面に平行な面ばかりでなく、基体表面に対して傾斜する面、例えば、層の切断面、をも含む。
Subsequently, the modified α-type Al 2 O 3 layer constituting the intermediate layer of the hard coating layer of the present invention coated tools 1 to 15, the modified AlYO layer constituting the upper layer, and the comparative coated tools 1 to 10 With respect to the conventional AlYO layer and the conventional α-type Al 2 O 3 layers of the reference coating tools 11 to 15, gradient angle distribution graphs were respectively prepared using a field emission scanning electron microscope.
That is, the gradient angle number distribution graph shows the field emission with the respective surfaces of the present invention coated tools 1 to 15, the comparative coated tools 1 to 10, and the reference coated tools 11 to 15 being polished surfaces. A hexagon that is set in a lens barrel of a scanning electron microscope and exists in the measurement range of each surface polished surface with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA on the polished surface Each crystal grain having a crystal lattice is irradiated, and an electron backscatter diffraction image apparatus is used, and the crystal grain is 30 × 50 μm at a spacing of 0.1 μm / step with respect to the normal of the polished surface. The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane, is measured, and based on this measurement result, the measured tilt angle within the range of 0 to 45 degrees of the measured tilt angle is 0.25. As well as dividing each pitch By aggregating the frequencies present in each segment was created inclination angle frequency distribution graph.
As an example of the inclination angle number distribution graph, the inclination angle number distribution graph of the (0001) plane prepared for the modified α-type Al 2 O 3 layer constituting the intermediate layer of the hard coating layer of the coated tool 1 of the present invention is shown in FIG. Indicates.
The “surface” in the present invention includes not only a surface parallel to the substrate surface but also a surface inclined with respect to the substrate surface, for example, a cut surface of a layer.

この結果得られた本発明被覆工具の改質α型Al23層、改質AlYO層、および、比較被覆工具1〜10の従来AlYO層、参考被覆工具11〜15の従来α型Al23層の傾斜角度数分布グラフにおいて、表8、表9にそれぞれ示される通り、本発明被覆工具の改質α型Al23層、改質AlYO層は、(0001)面の測定傾斜角の分布が、それぞれ0〜10度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すのに対して、比較被覆工具1〜10の従来AlYO層、参考被覆工具11〜15の従来α型Al23層は、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すものであった。
また、表8、表9には、0〜10度の範囲内の傾斜角区分に存在する度数の、傾斜角度数分布グラフ全体に占める割合を示した。
As a result, the modified α-type Al 2 O 3 layer, the modified AlYO layer of the inventive coated tool, the conventional AlYO layer of the comparative coated tools 1 to 10, and the conventional α-type Al 2 of the reference coated tools 11 to 15 are obtained. In the inclination angle number distribution graph of the O 3 layer, as shown in Table 8 and Table 9, respectively, the modified α-type Al 2 O 3 layer and the modified AlYO layer of the coated tool of the present invention are measured in the (0001) plane. While the angle distribution shows an inclination angle number distribution graph in which the highest peak appears in each inclination angle range within the range of 0 to 10 degrees, the conventional AlYO layer of the comparative coating tools 1 to 10 and the reference coating tools 11 to 11 Fifteen conventional α-type Al 2 O 3 layers show an inclination angle number distribution graph in which the distribution of measured inclination angles on the (0001) plane is unbiased within the range of 0 to 45 degrees and there is no highest peak. It was.
Tables 8 and 9 show the ratio of the frequency existing in the tilt angle section within the range of 0 to 10 degrees to the entire tilt angle number distribution graph.

ついで、上記の本発明被覆工具1〜15の上部層を構成する改質AlYO層および比較被覆工具1〜10の従来AlYO層について、電界放出型走査電子顕微鏡、電子後方散乱回折像装置を用いて、結晶粒組織構造および構成原子共有格子点形態を調査した。
すなわち、まず、上記の本発明被覆工具1〜15の改質AlYO層および比較被覆工具1〜10の従来AlYO層について、電界放出型走査電子顕微鏡を用いて観察したところ、本発明被覆工具1〜15では、図3(a)、(b)で代表的に示される平板多角形(平坦六角形を含む)状かつたて長形状の大きな粒径の結晶粒組織構造が観察された(なお、図3(a)は、層厚方向に垂直な面内で見た本発明被覆工具1〜9の組織構造模式図、また、図3(c)は、層厚方向に垂直な面内で見た本発明被覆工具10〜15の、平坦六角形状かつたて長形状の大きな粒径の結晶粒からなる組織構造模式図)。
一方、比較被覆工具1〜10では、図5(a)、(b)で代表的に示されるように、多角形状かつたて長形状の結晶粒組織が観察されたが、各結晶粒の粒径は本発明のものに比して小さく、かつ、図5(b)からも明らかなように、層表面には角錐状の凹凸が形成されていた(なお、図5(a)、(b)は、比較被覆工具1〜15の組織構造模式図)。
Next, with respect to the modified AlYO layer constituting the upper layer of the inventive coated tools 1 to 15 and the conventional AlYO layer of the comparative coated tools 1 to 10, using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Then, the grain structure and the constituent atomic shared lattice point morphology were investigated.
That is, first, the modified AlYO layer of the present invention-coated tools 1 to 15 and the conventional AlYO layer of the comparative coating tools 1 to 10 were observed using a field emission scanning electron microscope. 15, a large-grained crystal grain structure of a flat plate polygon (including a flat hexagon) and a long shape typically shown in FIGS. 3A and 3B was observed (note that 3A is a schematic diagram of the structure of the coated tools 1 to 9 of the present invention viewed in a plane perpendicular to the layer thickness direction, and FIG. 3C is a diagram viewed in a plane perpendicular to the layer thickness direction. The structure structure schematic diagram which consists of a crystal grain of a flat hexagonal shape and long shape of a large grain size of the present invention coated tools 10-15).
On the other hand, in the comparative coated tools 1 to 10, a polygonal and long crystal grain structure was observed as representatively shown in FIGS. 5 (a) and 5 (b). The diameter was smaller than that of the present invention, and as is clear from FIG. 5B, pyramidal irregularities were formed on the surface of the layer (note that FIGS. 5A and 5B). ) Is a schematic diagram of the structure of comparative coated tools 1 to 15).

つぎに、上記の本発明被覆工具1〜15の改質AlYO層、比較被覆工具1〜10の従来AlYO層について、それぞれの層を構成する結晶粒の内部にΣ3対応界面が存在する結晶粒の面積割合を測定した。
まず、上記の本発明被覆工具1〜15の改質AlYO層について、その表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記表面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記結晶粒の各結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、改質AlYO層の測定範囲内に存在する全結晶粒のうちで、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率を求め、その値を、Σ3対応界面割合(%)として表8に示した。
次に、比較被覆工具1〜10の従来AlYO層についても、本発明被覆工具の場合と同様な方法により、従来AlYO層の測定範囲内に存在する全結晶粒のうちで、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率を求め、その値を、Σ3対応界面割合(%)として表9に示した。
Next, with respect to the modified AlYO layer of the present invention coated tools 1 to 15 and the conventional AlYO layer of the comparative coated tools 1 to 10, the crystal grains having a Σ3-compatible interface exist inside the crystal grains constituting the respective layers. The area ratio was measured.
First, the modified AlYO layers of the above-described coated tools 1 to 15 of the present invention are set in a lens barrel of a field emission scanning electron microscope in a state where the surface is a polished surface, and the surface polished surface is set to 70 degrees. Electron backscattering is performed by irradiating an electron beam with an electron beam with an acceleration voltage of 15 kV at an incident angle with an irradiation current of 1 nA on each crystal grain having a hexagonal crystal lattice existing within the measurement range of each surface polished surface. Using a diffractive image apparatus, a 30 × 50 μm region is measured at an interval of 0.1 μm / step, and the angle at which each normal line of each crystal lattice plane of the crystal grain intersects the normal line on the substrate surface is measured. From the crystal orientation relationship between adjacent crystal lattices, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices is calculated. Calculate the previous N lattice points that do not share constituent atoms between constituent atomic shared lattice points (however, N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is 28 in terms of distribution frequency) In this case, the even number of 4, 8, 14, 24 and 26 does not exist.) When the constituent atomic shared lattice point form which is present is represented by ΣN + 1, all the crystal grains existing within the measurement range of the modified AlYO layer Among these, the area ratio of the crystal grains in which at least one Σ3-corresponding interface exists inside the crystal grains was determined, and the value is shown in Table 8 as the Σ3-compatible interface ratio (%).
Next, with respect to the conventional AlYO layers of the comparative coated tools 1 to 10, among the whole crystal grains existing within the measurement range of the conventional AlYO layer, by the same method as in the coated tool of the present invention, The area ratio of crystal grains in which at least one Σ3-compatible interface exists was determined, and the value is shown in Table 9 as the Σ3-compatible interface ratio (%).

表8、9に示される通り、本発明被覆工具1〜15の改質AlYO層において、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率は60%以上であるのに対して、比較被覆工具1〜10の従来AlYO層において、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率は40%以下であって、結晶粒の内部にΣ3対応界面が存在する率は非常に小さいことがわかる。   As shown in Tables 8 and 9, in the modified AlYO layers of the coated tools 1 to 15 of the present invention, the area ratio of the crystal grains in which at least one Σ3 corresponding interface exists in the crystal grains is 60% or more. On the other hand, in the conventional AlYO layers of the comparative coated tools 1 to 10, the area ratio of the crystal grains in which at least one Σ3 corresponding interface exists in the crystal grains is 40% or less, and the inside of the crystal grains It can be seen that the rate at which Σ3 corresponding interfaces exist is very small.

また、本発明被覆工具1〜15の改質AlYO層および比較被覆工具1〜10の従来AlYO層について、電界放出型走査電子顕微鏡を用いて、層厚方向に垂直な面内に存在する、大粒径の平坦六角形状の結晶粒の面積割合を求めた。この値を表8、表9に示す。
なお、ここで言う「大粒径の平坦六角形状」の結晶粒とは、
「電界放出型走査電子顕微鏡により観察される層厚方向に垂直な面内に存在する粒子の直径を計測し、10粒子の平均値が3〜8μmであり、頂点の角度が100〜140°である頂角を6個有する多角形状である。」
と定義する。
In addition, the modified AlYO layer of the present coated tool 1-15 and the conventional AlYO layer of the comparative coated tool 1-10 are present in a plane perpendicular to the layer thickness direction using a field emission scanning electron microscope. The area ratio of flat hexagonal crystal grains with a grain size was determined. These values are shown in Tables 8 and 9.
In addition, the crystal grains of the “large hexagonal flat hexagonal shape” mentioned here are:
“The diameter of particles existing in a plane perpendicular to the layer thickness direction observed by a field emission scanning electron microscope is measured, the average value of 10 particles is 3 to 8 μm, and the vertex angle is 100 to 140 °. It is a polygonal shape with six apex angles. "
It is defined as

ついで、本発明被覆工具1〜15、比較被覆工具1〜10および参考被覆工具11〜15の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したが、いずれもの場合も、目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Next, the thickness of each constituent layer of the hard coating layer of the present coated tool 1-15, comparative coated tool 1-10, and reference coated tool 11-15 was measured using a scanning electron microscope (longitudinal section measurement). However, in any case, the average layer thickness (average value of five-point measurement) substantially the same as the target layer thickness was shown.

つぎに、上記の本発明被覆工具1〜15、比較被覆工具1〜10および参考被覆工具11〜15について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUJ2(HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250 m/min.、
切り込み:1.5 mm、
送り:0.15 mm/rev.、
切削時間:5 分、
の条件(切削条件Aという)での軸受鋼の乾式高速断続切削試験(通常の切削速度は、200m/min.)、
被削材:JIS・SKD11(HRC58)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300 m/min.、
切り込み:1.5 mm、
送り:0.15 mm/rev.、
切削時間:5 分、
の条件(切削条件Bという)での合金工具鋼の乾式高速断続切削試験(通常の切削速度は、200m/min.)、
被削材:JIS・SK3(HRC61)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250 m/min.、
切り込み:1.5 mm、
送り:0.15 mm/rev.、
切削時間:5 分、
の条件(切削条件Cという)での炭素工具鋼の乾式高速断続切削試験(通常の切削速度は、150m/min.)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表10に示した。
Next, for the above-described inventive coated tools 1-15, comparative coated tools 1-10, and reference coated tools 11-15, all are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SUJ2 (HRC62) lengthwise equidistant four round grooved round bars,
Cutting speed: 250 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed intermittent cutting test of bearing steel under the conditions (cutting condition A) (normal cutting speed is 200 m / min.),
Work material: JIS · SKD11 (HRC58) lengthwise equidistant four round grooved round bars,
Cutting speed: 300 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed intermittent cutting test of alloy tool steel under the conditions (cutting condition B) (normal cutting speed is 200 m / min.),
Work material: JIS · SK3 (HRC61) lengthwise equidistant four round grooved round bars,
Cutting speed: 250 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 150 m / min.) Of carbon tool steel under the following conditions (referred to as cutting conditions C),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 10.

Figure 2011005569
Figure 2011005569

Figure 2011005569
Figure 2011005569

Figure 2011005569
Figure 2011005569

Figure 2011005569
Figure 2011005569

Figure 2011005569
Figure 2011005569

Figure 2011005569
Figure 2011005569

Figure 2011005569
Figure 2011005569

Figure 2011005569
Figure 2011005569

Figure 2011005569
Figure 2011005569

Figure 2011005569
Figure 2011005569

表8〜10に示される結果から、本発明被覆工具1〜15は、硬質被覆層の中間層である改質α型Al23層の(0001)面配向率が45%以上の高い比率を示し、すぐれた高温強度を有することに加えて、上部層を構成する改質AlYO層が、平板多角形(平坦六角形)たて長形状の結晶粒の組織構造を有し、(0001)面配向率が60%以上の高い比率を示し、また、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率が60%以上と高いことによって、あるいは、さらに、改質AlYO層に後処理が施され、その表面平滑性が向上されていることによって、改質AlYO層が一段とすぐれた高温強度と結晶粒内強度を有し、また、一段とすぐれた表面平坦性とを兼備する結果、高熱発生を伴い、かつ、切刃に対して断続的に衝撃的負荷が作用する高速断続切削加工で、硬質被覆層が一段とすぐれた耐チッピング性を発揮するとともに、長期の使用にわたってすぐれた切削性能を示し、使用寿命の一層の延命化を可能とするものである。
これに対して、硬質被覆層がTi化合物層と従来AlYO層からなる比較被覆工具1〜10、および、硬質被覆層がTi化合物層と従来α型Al23層からなる参考被覆工具11〜15においては、チッピング発生、摩耗促進等によって、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 8 to 10, the present coated tools 1 to 15 have a high ratio in which the (0001) plane orientation ratio of the modified α-type Al 2 O 3 layer which is an intermediate layer of the hard coating layer is 45% or more. In addition to having excellent high-temperature strength, the modified AlYO layer constituting the upper layer has a textured structure of flat polygonal (flat hexagonal) and long crystal grains (0001) The plane orientation ratio shows a high ratio of 60% or more, and the area ratio of the crystal grains in which at least one Σ3-compatible interface exists in the crystal grains is as high as 60% or more, or further As a result, the modified AlYO layer has excellent high-temperature strength and in-grain strength, and has improved surface flatness. As a result of having combined, with high heat generation, and In high-speed intermittent cutting where impact loads are intermittently applied to the blade, the hard coating layer exhibits even better chipping resistance, shows excellent cutting performance over a long period of use, and further improves the service life Life extension is possible.
On the other hand, the comparative coating tools 1 to 10 in which the hard coating layer is composed of a Ti compound layer and a conventional AlYO layer, and the reference coating tools 11 to 11 in which the hard coating layer is composed of a Ti compound layer and a conventional α-type Al 2 O 3 layer. In No. 15, it is apparent that the service life is reached in a relatively short time due to the occurrence of chipping, acceleration of wear, and the like.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常条件の切削加工は勿論のこと、高熱発生を伴うとともに切刃に対して断続的に衝撃的負荷が作用する高速断続切削加工でも、チッピングの発生を抑えることができ、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool according to the present invention is not only for cutting under normal conditions such as various steels and cast iron, but also for high-speed intermittent operation in which high heat generation is generated and an impact load is intermittently applied to the cutting blade. Even in the cutting process, the occurrence of chipping can be suppressed, and excellent cutting performance can be demonstrated over a long period of time. It can respond satisfactorily.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)中間層が、1〜5μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
(c)上部層が、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するY含有酸化アルミニウム層、
上記(a)〜(c)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記(b)の中間層は、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、
上記(c)の上部層は、電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平板多角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒からなる組織構造を有するY含有酸化アルミニウム層であり、
また、上記(c)の上部層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、
さらに、上記(c)の上部層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、上記(c)の上部層を構成する結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているY含有酸化アルミニウム層である、
ことを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) the lower layer is formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, all formed by chemical vapor deposition; And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) the intermediate layer has an average layer thickness of 1 to 5 μm, and an aluminum oxide layer having an α-type crystal structure in the state of chemical vapor deposition;
(C) The upper layer has an average layer thickness of 2 to 15 μm, and a Y-containing aluminum oxide layer having an α-type crystal structure in a chemical vapor deposited state;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) to (c) is formed by vapor deposition,
The intermediate layer (b) is irradiated with an electron beam on each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope, The inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is measured with respect to the normal line of the surface polished surface, and the measurement is in the range of 0 to 45 degrees of the measurement inclination angle. When the tilt angle is divided into pitches of 0.25 degrees and the frequency distribution in each section is aggregated, the slope angle distribution graph within the range of 0 to 10 degrees is the highest. An inclination angle number distribution graph in which the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire frequency in the inclination angle frequency distribution graph, with the presence of a peak,
The upper layer of (c) has a flat plate shape in a plane perpendicular to the layer thickness direction and a layer thickness direction in a plane parallel to the layer thickness direction when the structure is observed with a field emission scanning electron microscope. It is a Y-containing aluminum oxide layer having a structure composed of crystal grains having a vertically long shape,
Further, with respect to the upper layer of (c), an electron beam is irradiated to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope. The inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is measured with respect to the normal line of the surface polished surface, and is within the range of 0 to 45 degrees of the measured inclination angle. When a certain tilt angle is divided into pitches of 0.25 degrees, and the tilt angle distribution graph is formed by summing up the frequencies existing in each section, the tilt angle sections within the range of 0 to 10 degrees An inclination angle number distribution graph in which the highest peak is present and the total frequency within the range of 0 to 10 degrees occupies a ratio of 60% or more of the entire frequency in the inclination angle distribution graph,
Further, the upper layer of the above (c) is irradiated with an electron beam on each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, thereby obtaining a hexagonal crystal. Measures the angle at which each normal of the crystal lattice plane consisting of crystal lattices intersects the normal of the substrate surface, and calculates the crystal orientation relationship between adjacent crystal lattices from this measurement result, and configures the crystal lattice interface The distribution of lattice points (constituent atom shared lattice points) in which each atom shares one constituent atom between the crystal lattices is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated. (However, N is an even number of 2 or more due to the crystal structure of the corundum hexagonal close-packed crystal. However, when the upper limit of N is 28 from the point of distribution frequency, even numbers of 4, 8, 14, 24 and 26 exist. Without) sharing existing constituent atoms When the child dot form is represented by ΣN + 1, the crystal grains having an area ratio of 60% or more among the crystal grains constituting the upper layer of the above (c) are represented by at least one Σ3 It is a Y-containing aluminum oxide layer that is divided by a crystal lattice interface composed of atomic shared lattice points.
A surface-coated cutting tool characterized by that.
前記(c)の上部層を電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平坦六角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める請求項1に記載の表面被覆切削工具。   When the upper layer of (c) was observed with a field emission scanning electron microscope, it was flat hexagonal in a plane perpendicular to the layer thickness direction, and in the layer thickness direction in a plane parallel to the layer thickness direction. The surface-coated cutting tool according to claim 1, wherein the crystal grains having a long shape occupy an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction. 前記(c)の上部層は、0.05〜0.3μmの範囲内の表面粗さ(Ra)を有する請求項1又は2のいずれか一項に記載の表面被覆切削工具。   The surface-coated cutting tool according to claim 1, wherein the upper layer of (c) has a surface roughness (Ra) in a range of 0.05 to 0.3 μm.
JP2009149350A 2009-03-18 2009-06-24 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Expired - Fee Related JP5428569B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009149350A JP5428569B2 (en) 2009-06-24 2009-06-24 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
US13/256,867 US8828527B2 (en) 2009-03-18 2010-03-18 Surface-coated cutting tool
EP10753306.9A EP2409798B1 (en) 2009-03-18 2010-03-18 Surface-coated cutting tool
PCT/JP2010/001973 WO2010106811A1 (en) 2009-03-18 2010-03-18 Surface-coated cutting tool
CN201080012240.3A CN102355968B (en) 2009-03-18 2010-03-18 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149350A JP5428569B2 (en) 2009-06-24 2009-06-24 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2011005569A true JP2011005569A (en) 2011-01-13
JP5428569B2 JP5428569B2 (en) 2014-02-26

Family

ID=43562838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149350A Expired - Fee Related JP5428569B2 (en) 2009-03-18 2009-06-24 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5428569B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526391A (en) * 2011-09-16 2014-10-06 バルター アクチェンゲゼルシャフト Cutting tools coated with alpha-alumina with manipulated grain boundaries
JPWO2020170570A1 (en) * 2019-02-19 2021-03-11 住友電工ハードメタル株式会社 Cutting tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160105A (en) * 2000-09-18 2002-06-04 Mitsubishi Materials Corp Cutting tool made of surface coating cemented carbide having high chipping resistance
JP2002263914A (en) * 2001-02-16 2002-09-17 Sandvik Ab alpha-ALUMINUM COATED CUTTER
JP2004001154A (en) * 2002-06-03 2004-01-08 Hitachi Tool Engineering Ltd Oxide film coating tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160105A (en) * 2000-09-18 2002-06-04 Mitsubishi Materials Corp Cutting tool made of surface coating cemented carbide having high chipping resistance
JP2002263914A (en) * 2001-02-16 2002-09-17 Sandvik Ab alpha-ALUMINUM COATED CUTTER
JP2004001154A (en) * 2002-06-03 2004-01-08 Hitachi Tool Engineering Ltd Oxide film coating tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010026244; S. Ruppi: '「Enhanced performance of alpha-Al2O3 coatings by control of crystal orientation」' Surface and Coatings Technology Vol.202, No.17, 20080525, p4257-4269, Elsevier *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526391A (en) * 2011-09-16 2014-10-06 バルター アクチェンゲゼルシャフト Cutting tools coated with alpha-alumina with manipulated grain boundaries
JPWO2020170570A1 (en) * 2019-02-19 2021-03-11 住友電工ハードメタル株式会社 Cutting tools
CN113226602A (en) * 2019-02-19 2021-08-06 住友电工硬质合金株式会社 Cutting tool
CN113226602B (en) * 2019-02-19 2024-04-09 住友电工硬质合金株式会社 Cutting tool

Also Published As

Publication number Publication date
JP5428569B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
WO2010106811A1 (en) Surface-coated cutting tool
JP5176659B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5440311B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5326707B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5739086B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5240668B2 (en) Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP5440269B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5454924B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5428569B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594572B2 (en) Surface-coated cutting tool with excellent peel resistance, chipping resistance, and wear resistance with excellent hard coating layer
JP5424097B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5454923B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176798B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594574B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5370919B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594571B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5440268B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440270B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5594573B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5370920B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594570B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5240667B2 (en) Surface coated cutting tool with excellent chipping resistance in high-speed continuous cutting of hard alloy steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees