JP2011002297A - Residual magnetic flux measuring device, residual magnetic flux measuring method, and synchronous switching controller of circuit breaker - Google Patents

Residual magnetic flux measuring device, residual magnetic flux measuring method, and synchronous switching controller of circuit breaker Download PDF

Info

Publication number
JP2011002297A
JP2011002297A JP2009144319A JP2009144319A JP2011002297A JP 2011002297 A JP2011002297 A JP 2011002297A JP 2009144319 A JP2009144319 A JP 2009144319A JP 2009144319 A JP2009144319 A JP 2009144319A JP 2011002297 A JP2011002297 A JP 2011002297A
Authority
JP
Japan
Prior art keywords
phase
magnetic flux
residual magnetic
ground voltage
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009144319A
Other languages
Japanese (ja)
Other versions
JP5299109B2 (en
Inventor
Sadayuki Kinoshita
定之 木下
Hiroyuki Tsutada
広幸 蔦田
Hiromoto Ito
弘基 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009144319A priority Critical patent/JP5299109B2/en
Publication of JP2011002297A publication Critical patent/JP2011002297A/en
Application granted granted Critical
Publication of JP5299109B2 publication Critical patent/JP5299109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Protection Of Transformers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem wherein, in the case of a transformer having a non-grounded neutral point, a DC component sometimes remains superimposedly in a transformer voltage after being cut off by a circuit breaker, and a DC offset component remains in the transformer voltage, and thereby residual magnetic flux cannot be calculated accurately.SOLUTION: In a three-phase transformer provided in a power system, wherein a primary side has a Δ-connection, a secondary side has a Y-connection, and the neutral point is non-grounded, a current transformer is provided on a surge absorber in each phase on the primary side of the three-phase transformer, and a voltage to the ground in each phase is determined from a detected value of the current transformer, and a voltage to the ground in each phase on the secondary side is operated, to thereby determine the residual magnetic flux.

Description

この発明は、変圧器が遮断された時、鉄心内部が偏磁され発生する残留磁束を正確に計測する測定技術及び遮断器制御に関するものである。   The present invention relates to a measurement technique and a circuit breaker control for accurately measuring a residual magnetic flux generated when a transformer is interrupted and the iron core is demagnetized.

変圧器が停止のため遮断された時、鉄心内部が偏磁され残留磁束が残る。その結果、復旧後遮断器再投入時大きな励磁突入電流が流れる場合がある。この場合の異常電流検出を防止するために残留磁束に応じたタイミングで各相の電力投入を図るべきである。このため、遮断後の変圧器の残留磁束を、一次コイル電圧から算出するための残留磁束計測装置が提案されている。
従来の残留磁束検出装置では、三相変圧器を三相電源に接続/遮断するための遮断器下流側に、各相電圧を計測するための電圧検出器を設けている。
各相の鉄心脚に誘起する電圧は相電圧に比例し、鉄心脚内の磁束量の時間的変化がその鉄心脚の相の誘起電圧となる。よって磁束を求めるためには相電圧を積分すればよい。
残留磁束計測装置では、三相変圧器が遮断された時の、各相の電圧波形を測定し電圧値を積分して磁束を算出し、残留磁束が求められる。(例えば、特許文献1参照)
When the transformer is shut off to stop, the iron core is demagnetized and residual magnetic flux remains. As a result, a large magnetizing inrush current may flow when the circuit breaker is turned on again after recovery. In order to prevent detection of abnormal current in this case, power should be supplied to each phase at a timing corresponding to the residual magnetic flux. For this reason, a residual magnetic flux measuring device has been proposed for calculating the residual magnetic flux of the transformer after interruption from the primary coil voltage.
In the conventional residual magnetic flux detection device, a voltage detector for measuring each phase voltage is provided on the downstream side of the circuit breaker for connecting / cutting off the three-phase transformer to the three-phase power source.
The voltage induced in the iron core leg of each phase is proportional to the phase voltage, and the temporal change in the amount of magnetic flux in the iron core leg becomes the induced voltage of the iron core leg phase. Therefore, to obtain the magnetic flux, the phase voltage may be integrated.
In the residual magnetic flux measuring device, the residual magnetic flux is obtained by measuring the voltage waveform of each phase when the three-phase transformer is interrupted and calculating the magnetic flux by integrating the voltage value. (For example, see Patent Document 1)

特許 第2685574号 公報Japanese Patent No. 2685574

中性点が非接地の三相変圧器の場合、遮断器により遮断された後の三相変圧器電圧に直流成分が重畳して残留することがある。その結果、三相変圧器電圧に直流オフセット成分が残り、この電圧を積分することによって算出した残留磁束がドリフトしてゆき、残留磁束を正確に算定できない。
また,残留磁束を計測するための電圧検出回路を設置する必要がありコストが高くなっている。
In the case of a three-phase transformer whose neutral point is ungrounded, a DC component may remain superimposed on the three-phase transformer voltage after being interrupted by the circuit breaker. As a result, a DC offset component remains in the three-phase transformer voltage, the residual magnetic flux calculated by integrating this voltage drifts, and the residual magnetic flux cannot be calculated accurately.
Moreover, it is necessary to install a voltage detection circuit for measuring the residual magnetic flux, which increases the cost.

この発明は、上記の課題を解決する為になされたもので、三相変圧器において、低コストでかつ遮断後の直流オフセット成分の影響を排して電圧を積分し、各相の磁束を算出することにより正確に残留磁束を検出することができる残留磁束測定装置を得ることを目的とする。   The present invention has been made to solve the above-described problems. In a three-phase transformer, the voltage is integrated by eliminating the influence of the DC offset component after being cut off at low cost, and the magnetic flux of each phase is calculated. An object of the present invention is to obtain a residual magnetic flux measuring device that can accurately detect the residual magnetic flux.

この発明に係る残留磁束測定装置は、電力系統に設けられた一次側がΔ結線、二次側がY結線で中性点が非接地の三相変圧器において、三相変圧器の一次側の各相毎のサージアブゾーバに変流器を設けて変流器の検出値から各相の対地電圧を求め、二次側の各相の対地電圧を演算し残留磁束を求めるものである。 The residual magnetic flux measuring device according to the present invention is a three-phase transformer provided in an electric power system in which a primary side is Δ-connected, a secondary side is Y-connected, and a neutral point is ungrounded. A current transformer is provided in each surge absorber, the ground voltage of each phase is obtained from the detected value of the current transformer, and the residual magnetic flux is obtained by calculating the ground voltage of each phase on the secondary side.

この発明は、三相変圧器の各相毎に電圧を計測する為の分岐回路を新たに設置すること無しに、一次側の各相のサージアブゾーバに設けた変流器の出力から遮断器が開極した後の各相の対地電圧を求め、各相の残留磁束を正確に求めることが可能となる。   The present invention opens the circuit breaker from the output of the current transformer provided in the surge absorber of each phase on the primary side without newly installing a branch circuit for measuring the voltage for each phase of the three-phase transformer. It becomes possible to obtain the ground voltage of each phase after the pole and accurately obtain the residual magnetic flux of each phase.

この発明の実施の形態1の構成を示すブロック図である。It is a block diagram which shows the structure of Embodiment 1 of this invention. この発明の実施の形態1の三相変圧器の相毎の挙動(a)(b)を示す図である。It is a figure which shows the behavior (a) (b) for every phase of the three-phase transformer of Embodiment 1 of this invention. この発明の実施の形態1の三相変圧器の相毎の挙動(c)(d)(e)を示す図である。It is a figure which shows the behavior (c) (d) (e) for every phase of the three-phase transformer of Embodiment 1 of this invention. この発明の実施の形態2の構成を示すブロック図である。It is a block diagram which shows the structure of Embodiment 2 of this invention.

実施の形態1.
図1は、この発明の実施の形態1における残留磁束測定装置1の構成を示すブロック図である。残留磁束測定装置1は、三相変圧器30と三相遮断器10に接続されたサージアブゾーバ13に設置された変流器を含んで構成される。
三相変圧器30は、Δ結線された三相一次側巻線31と、Y結線され中性点が非接地の二次側巻線32を有し、三相遮断器10を介して発電機側の回線に接続されている。
三相遮断器10は、3つのスイッチ10R,10S,10Tを有し、R相1R,S相1S,T相1Tの各相の発電機側の回線と、三相変圧器30との間に接続される。3つのスイッチ10R,10S,10Tは、同時もしくは独立に開閉可能となっている。
三相変圧器30の一次側には、系統保護用のサージアブゾーバ13が相毎に13R,13S,13Tのように設置されている。このサージアブゾーバは、一次側(発電機側)のノイズによって系統の下流の電圧・電流が揺さぶられるのを防いでいる。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a residual magnetic flux measuring apparatus 1 according to Embodiment 1 of the present invention. The residual magnetic flux measuring apparatus 1 includes a current transformer installed in a surge absorber 13 connected to a three-phase transformer 30 and a three-phase circuit breaker 10.
The three-phase transformer 30 has a Δ-connected three-phase primary winding 31 and a Y-connected secondary winding 32 whose neutral point is ungrounded. Is connected to the other line.
The three-phase circuit breaker 10 includes three switches 10R, 10S, and 10T, and is arranged between the generator-side lines of the R phase 1R, S phase 1S, and T phase 1T and the three-phase transformer 30. Connected. The three switches 10R, 10S, and 10T can be opened or closed simultaneously or independently.
On the primary side of the three-phase transformer 30, a surge protector 13 for system protection is installed for each phase as 13R, 13S, and 13T. This surge absorber prevents the voltage and current downstream of the system from being shaken by noise on the primary side (generator side).

この相毎のサージアブゾーバ13R,13S,13Tに流れる電流の瞬時値は、三相変圧器30の一次側(発電機側)の母線11R,11S,11Tとサージアブゾーバ13R,13S,13Tとの間に設けた変流器12R,12S,12Tによって各相毎に測定される。
変流器12R,12S,12Tによって測定された電流値Isr,Iss,Istは、残留磁束測定装置1の三相変圧器一次側対地電圧演算手段4に伝達される。三相変圧器一時側対地電圧演算手段4は、遮断器が開極される前後における電流値を各相毎に積分して、その積分した値を各相毎のサージアブゾーバ13R,13S,13Tの静電容量Cr,Cs,Ctで除算することにより、各相毎の対地電圧Vδr,Vδs,Vδtを求めることができる。

Cr・Vδr=∫(Isr)dt ・・・ (1)
Cs・Vδs=∫(Iss)dt ・・・ (2)
Ct・Vδt=∫(Ist)dt ・・・ (3)

(1),(2),(3)より

Vδr=(1/Cr)∫(Isr)dt ・・・ (4)
Vδs=(1/Cs)∫(Iss)dt ・・・ (5)
Vδt=(1/Ct)∫(Ist)dt ・・・ (6)
The instantaneous value of the current flowing through the surge absorbers 13R, 13S, and 13T for each phase is provided between the primary-side (generator-side) buses 11R, 11S, and 11T of the three-phase transformer 30 and the surge absorbers 13R, 13S, and 13T. Measured for each phase by the current transformers 12R, 12S, and 12T.
The current values Isr, Iss, Ist measured by the current transformers 12R, 12S, 12T are transmitted to the three-phase transformer primary side ground voltage calculation means 4 of the residual magnetic flux measuring device 1. The three-phase transformer temporary side ground voltage calculation means 4 integrates the current value before and after the circuit breaker is opened for each phase, and the integrated value is static for the surge absorbers 13R, 13S, and 13T for each phase. By dividing by the capacitances Cr, Cs, and Ct, the ground voltages Vδr, Vδs, and Vδt for each phase can be obtained.

Cr · Vδr = ∫ (Isr) dt (1)
Cs · Vδs = ∫ (Iss) dt (2)
Ct · Vδt = ∫ (Ist) dt (3)

From (1), (2), (3)

Vδr = (1 / Cr) ∫ (Isr) dt (4)
Vδs = (1 / Cs) ∫ (Iss) dt (5)
Vδt = (1 / Ct) ∫ (Ist) dt (6)

変圧器一次側対地電圧演算手段4で求めた変圧器一次側の三相の対地電圧は、変圧器二次側対地電圧演算手段5へ伝達される。
変圧器二次側対地電圧演算手段5は、変圧器の一次側の対地電圧を差分演算して、Y結線された二次側の対地電圧Vyr,Vys,Vytを求める。

Vu=Vδr−Vδs ・・・ (7)
Vv=Vδs−Vδt ・・・ (8)
Vw=Vδt−Vδr ・・・ (9)

このようにして求められた変圧器二次側の対地電圧は、残留磁束演算手段6へ伝達される。
残留磁束演算手段6は、変圧器二次側対地電圧演算手段で求められた二次側対地電圧Vu,Vv,Vwを各相毎に積分して、各相の残留磁束を演算する。
The three-phase ground voltage on the primary side of the transformer determined by the transformer primary side ground voltage calculation means 4 is transmitted to the transformer secondary side ground voltage calculation means 5.
The transformer secondary side ground voltage calculation means 5 calculates the difference between the primary side ground voltages of the transformer and obtains Y-connected secondary side ground voltages Vyr, Vys, and Vyt.

Vu = Vδr−Vδs (7)
Vv = Vδs−Vδt (8)
Vw = Vδt−Vδr (9)

The ground voltage on the secondary side of the transformer thus obtained is transmitted to the residual magnetic flux calculation means 6.
The residual magnetic flux calculation means 6 integrates the secondary side ground voltages Vu, Vv, Vw obtained by the transformer secondary side ground voltage calculation means for each phase, and calculates the residual magnetic flux of each phase.

図5
残留磁束演算手段6によって三相変圧器30の残留磁束を相電圧から算出する方式は次の通りである。
三相変圧器30の各相の鉄心脚に誘起する電圧はこの三相変圧器30のY結線の相電圧に比例する。また、鉄心脚内の磁束量の時間的変化がその鉄心脚の相の誘起電圧となるので、相電圧から磁束を求めるためには相電圧を積分すればよい。ただし、積分を開始する時点によって磁束には計算上の直流成分が含まれるのでこれを消去する必要がある。
今、二次側コイル32の各相の対地電圧Vu,Vv,Vwに対して定常状態における電圧,磁束量を式で表すと次式となる。

Vu=Vm・sin(ωt) ・・・(10)
Vv=Vm・sin(ωt−2/3π) ・・・(11)
Vw=Vm・sin(ωt+2/3π) ・・・(12)

φu=−φm・cos(ωt) ・・・(13)
φv=−φm・cos(ωt―2/3π) ・・・(14)
φw=−φm・cos(ωt+2/3π) ・・・(15)

ここで、
Vm:相電圧波高値
ε:角周波数
t:時間
Φm:定常時の鉄心脚内磁束最大値
Vu,Vv,Vw:それぞれの相の相電圧
Φu,Φv,Φw:それぞれの相の鉄心脚の磁束
今、遮断器10による遮断開始の少なくとも1サイクル前から残留磁束計算のための相電圧データの演算手段6への取り込みを開始するものとする。そうすると、遮断開始後の相電圧の過渡的な変化が始まる前に相電圧,磁束ともに少なくとも1回ずつ交流波形の最大値と最小値とが存在することになる。
各相の遮断時の過渡的な相電圧,磁束をVut,Vvt,Vwt,Φut,Φvt,Φwtとし、Φutの場合を例にとると、次式よりΦutが時間関数として計算される。

φut(t)=∫Vut dt − φu0 ・・・(16)
t0

ここで、
t0:積分開始時間
t:時間
Φu0:積分開始時間t0によって変化する計算上の直流成分補正項
FIG.
The method of calculating the residual magnetic flux of the three-phase transformer 30 from the phase voltage by the residual magnetic flux calculating means 6 is as follows.
The voltage induced in the core leg of each phase of the three-phase transformer 30 is proportional to the phase voltage of the Y connection of the three-phase transformer 30. Further, since the temporal change in the amount of magnetic flux in the iron core leg becomes an induced voltage of the phase of the iron core leg, the phase voltage may be integrated in order to obtain the magnetic flux from the phase voltage. However, the magnetic flux contains a calculated DC component depending on the time point at which integration is started, and it is necessary to eliminate this.
Now, the voltage and the amount of magnetic flux in the steady state with respect to the ground voltages Vu, Vv, Vw of each phase of the secondary coil 32 are expressed by the following equations.

Vu = Vm · sin (ωt) (10)
Vv = Vm · sin (ωt−2 / 3π) (11)
Vw = Vm · sin (ωt + 2 / 3π) (12)

φu = −φm · cos (ωt) (13)
φv = −φm · cos (ωt−2 / 3π) (14)
φw = −φm · cos (ωt + 2 / 3π) (15)

here,
Vm: Phase voltage peak value
ε: Angular frequency
t: time
Φm: Maximum value of magnetic flux in the core leg during steady state
Vu, Vv, Vw: Phase voltage of each phase
Φu, Φv, Φw: Magnetic flux of the core leg of each phase
Now, it is assumed that the phase voltage data for calculating the residual magnetic flux is taken into the calculation means 6 at least one cycle before the breaker 10 starts breaking. Then, the maximum value and the minimum value of the AC waveform exist at least once for both the phase voltage and the magnetic flux before the transient change of the phase voltage after the start of the interruption starts.
Taking the transient phase voltage and magnetic flux at the time of interruption of each phase as Vut, Vvt, Vwt, Φut, Φvt, and Φwt, taking Φut as an example, Φut is calculated as a time function from the following equation.
t
φut (t) = ∫Vut dt−φu0 (16)
t0

here,
t0: Integration start time
t: time
Φu0: DC component correction term for calculation that changes depending on the integration start time t0

前述のように積分開始時間t0は遮断開始の少なくとも1サイクル前であるので、相電圧は勿論、磁束も定常状態の交流波形での最大値と最小値とが出現する筈であり、最大値と最小値とはその大きさが等しく符号が反対であるという特徴があるので、(16)式の積分を行うことによりΦut(t)を時間関数の形で求め、このΦut(t)の最大値と最小値とを、それぞれΦu2,Φu1とすると、前述の条件からΦU0を求めることができ、次式となる。
Φu0=(Φu2+Φu1)/2 ・・・(17)
Since the integration start time t0 is at least one cycle before the start of interruption as described above, the maximum value and the minimum value in the steady state AC waveform should appear as well as the phase voltage, and the maximum value Since the minimum value is equal in size and opposite in sign, Φut (t) is obtained in the form of a time function by integrating the equation (16), and the maximum value of Φut (t) is obtained. And Φu1 and Φu1, respectively, ΦU0 can be obtained from the above-described conditions, and the following equation is obtained.
Φu0 = (Φu2 + Φu1) / 2 (17)

このように、遮断による過渡現象的な波形になる少なくとも1サイクル前の任意の時間を積分開始時間にすることにより、相電圧を積分して鉄心脚の残留磁束を計算することができる。Φvt,Φwtもインデックスを変えるだけでΦUtと同じ式が成立する。
このような計算方式で実際に残留磁束を計算するのに大きく分けて2種類の方法があり、その一つはコンピュータによってディジタル演算として行う方法であり、もう一つの方法はアナログ演算回路により演算する方式である。対象とする回路の周波数が商用周波数である50Hzまたは60Hzであるのでコンピュータによるディジタル演算でも計算時間に支障を生ずることはなく、またアナログ演算を採用するにしても、既成のアナログ演算回路を組み合わせることにより比較的簡単に演算回路が製作できるので、いずれを選択するかは別の条件から検討する必要があるが、後述の最適投入位相の計算にはコンピュータによるディジタル演算の方がアナログ演算よりも優れている点が多いので、残留磁束計算もこれに合わせて第1図に示すように残留磁束演算も相電圧をA/D変換によってディジタル信号に変換してコンピュータによるディジタル演算とするのが妥当である。
In this way, by setting an arbitrary time before one cycle that becomes a transient phenomenon waveform due to interruption as the integration start time, it is possible to integrate the phase voltage and calculate the residual magnetic flux of the iron core leg. For Φvt and Φwt, the same equation as ΦUt is established by simply changing the index.
There are roughly two types of methods for actually calculating the residual magnetic flux by such a calculation method, one of which is a digital calculation by a computer, and the other is an analog calculation circuit. It is a method. Since the frequency of the target circuit is 50 Hz or 60 Hz, which is a commercial frequency, there is no problem in calculation time even with digital calculation by a computer, and even if analog calculation is adopted, existing analog calculation circuits should be combined. Since it is relatively easy to produce an arithmetic circuit, it is necessary to consider which one to select from different conditions. However, digital calculation by a computer is better than analog calculation for calculating the optimum input phase described later. As shown in Fig. 1, the residual magnetic flux calculation is also appropriate to convert the phase voltage into a digital signal by A / D conversion and make it a digital calculation by a computer. is there.

図2〜4は、サージアブゾーバの電流波形、変圧器一次側の対地電圧波形、変圧器二次側の対地電圧波形、変圧器磁束、変圧器二次側の電流波形を夫々示している。
図2(a)は、図1の変流器12R、12S、12Tの出力から求めた、サージアブゾーバ13R,13S,13Tへ流れ込んだ電流値Isr,Iss,Istが示されている。この電流値を積分してサージアブゾーバの静電容量Cr,Cs,Ctで式(4),(5),(6)のように除算することで、図2(b)に示す各相毎の一次側コイルの対地電圧Vδr,Vδs,Vδtを求めることができる。
これらの電圧値の差分から式(7),(8),(9)を用いて、二次側対地電圧を演算することができ、図3(c)に示すVu,Vv,Vwが求められる。
二次側コイルの対地電圧Vu,Vv,Vwを式(16)のように積分して、三相変圧器磁束を求めることができ、これを図3(d)に示している。
また、図3(e)は、二次側コイルに流れる電流である。
2 to 4 show a surge absorber current waveform, a transformer primary-side ground voltage waveform, a transformer secondary-side ground voltage waveform, a transformer magnetic flux, and a transformer secondary-side current waveform, respectively.
FIG. 2A shows current values Isr, Iss, and Ist flowing into the surge absorbers 13R, 13S, and 13T, which are obtained from the outputs of the current transformers 12R, 12S, and 12T in FIG. By integrating this current value and dividing by the electrostatic capacity Cr, Cs, Ct of the surge absorber as in the equations (4), (5), (6), the primary for each phase shown in FIG. The ground voltages Vδr, Vδs, and Vδt of the side coil can be obtained.
The secondary side ground voltage can be calculated from the difference between these voltage values using equations (7), (8), and (9), and Vu, Vv, and Vw shown in FIG. .
The ground voltage Vu, Vv, Vw of the secondary coil can be integrated as shown in equation (16) to obtain the three-phase transformer magnetic flux, which is shown in FIG.
Moreover, FIG.3 (e) is the electric current which flows into a secondary side coil.

よって、三相変圧器の各相毎に電圧を計測する為の分岐回路を新たに設置すること無しに、一次側の各相のサージアブゾーバに設けた変流器の出力から遮断器が開極した後の各相の対地電圧を求め、各相の残留磁束を正確に求めることが可能となる。   Therefore, without installing a new branch circuit for measuring the voltage for each phase of the three-phase transformer, the circuit breaker was opened from the output of the current transformer installed in the surge absorber of each phase on the primary side. The ground voltage of each subsequent phase is obtained, and the residual magnetic flux of each phase can be obtained accurately.

図2(a)のサージアブゾーバ電流を見れば判るように、開閉器が開放された後も、サージアブゾーバ電流はしばらく発振しながら流れ続けている。
従って、この発振電流の影響を免れるため、遮断後所定時間経過した後に発振電流が十分収束してから残留磁束を決定すれば、より正確な残留磁束演算値を得ることができる。
As can be seen from the surge absorber current in FIG. 2A, the surge absorber current continues to flow for a while even after the switch is opened.
Therefore, in order to avoid the influence of this oscillating current, a more accurate residual magnetic flux calculation value can be obtained by determining the residual magnetic flux after the oscillating current has sufficiently converged after a lapse of a predetermined time after the interruption.

また、図2(a)のサージアブゾーバ電流はしばらく発振しながら流れ続け、図2(b),図3(c)に示すように三相変圧器の一次側または二次側の対地電圧の発振となって現れている。
従って、この対地電圧の発振の影響を免れるため、遮断後発振電流が所定の振幅より小さくなり十分収束してから残留磁束を演算すれば、電源電圧や遮断タイミングなどにより発振電圧の振幅がばらついて、収束するまでの時間が変化する場合でも、十分収束したことを直接的に発振電圧の振幅より検出し、より正確な残留磁束演算値を最短の待ち時間で得ることができる。
Further, the surge absorber current of FIG. 2 (a) continues to flow while oscillating for a while, and as shown in FIG. 2 (b) and FIG. 3 (c), the oscillation of ground voltage on the primary side or secondary side of the three-phase transformer It appears.
Therefore, in order to avoid the influence of this ground voltage oscillation, if the residual magnetic flux is calculated after the oscillation current after interruption becomes smaller than the predetermined amplitude and sufficiently converges, the amplitude of the oscillation voltage varies depending on the power supply voltage, interruption timing, etc. Even when the time until convergence changes, it can be directly detected from the amplitude of the oscillation voltage that a sufficient convergence has occurred, and a more accurate residual magnetic flux calculation value can be obtained with the shortest waiting time.

また、各相コイルの発振振幅ではなく、各相のコイル電圧を比較し、これらの差分の絶対値が所定の値より小さくなってから残留磁束を決定すればより正確な残留磁束演算値を最短の待ち時間で得ることができる。   Also, comparing the coil voltage of each phase, not the oscillation amplitude of each phase coil, and determining the residual magnetic flux after the absolute value of these differences becomes smaller than a predetermined value, the more accurate residual magnetic flux calculation value is the shortest Can be obtained in a waiting time.

以上、実施の形態1では、以下の残留磁束測定方法について説明してきた。
電力系統に設けられ一次側がΔ結線、二次側がY結線で中性点が非接地の三相変圧器において、一次側給電回路と遮断器の間に設置された相毎のサージアブゾーバに流れる電流を変流器によって各相毎に測定する。この測定した各相の電流値を積分して各サージアブゾーバの静電容量で除することにより、一次側各相の対地電圧を演算する。この演算した一次側各相の対地電圧から二次側各相の対地電圧を差分演算によって求める。この演算の結果である二次側各相の対地電圧を各相毎に積分して三相変圧器の各相の鉄心に残留する残留磁束を測定することができる。
このような測定方法を実施することにより、三相変圧器の各相毎に電圧を計測する為の分岐回路を新たに設置すること無しに、一次側の各相のサージアブゾーバに設けた変流器の出力から遮断器が開極した後の各相の対地電圧を求め、各相の残留磁束を正確に求めることが可能となる。
As described above, in the first embodiment, the following residual magnetic flux measurement method has been described.
In a three-phase transformer installed in the power system, the primary side is Δ-connected, the secondary side is Y-connected, and the neutral point is ungrounded, the current flowing through the surge absorber for each phase installed between the primary-side power supply circuit and the circuit breaker Measure for each phase by current transformer. By integrating the measured current value of each phase and dividing by the capacitance of each surge absorber, the ground voltage of each primary side phase is calculated. The ground voltage of each phase on the secondary side is obtained from the calculated ground voltage of each phase on the primary side by difference calculation. The residual magnetic flux remaining in the iron core of each phase of the three-phase transformer can be measured by integrating the ground voltage of each phase on the secondary side, which is the result of this calculation, for each phase.
By implementing such a measurement method, a current transformer provided in the surge absorber of each phase on the primary side without newly installing a branch circuit for measuring the voltage for each phase of the three-phase transformer It is possible to obtain the ground voltage of each phase after the circuit breaker is opened from the output of, and accurately obtain the residual magnetic flux of each phase.

実施の形態2.
図5は、この発明の実施の形態2における遮断器の同期開閉制御装置7の構成を示すブロック図である。遮断器の同期開閉制御装置7は、残留磁束測定装置1、開閉制御装置8を包含し、発電機側回線1R,1S,1Tの電圧検出用配線9R,9S,9T及び三相遮断器10の3つのスイッチ10R,10S,10Tを動作させる開閉指令信号線14及び残留磁束演算手段6から残留磁束情報を受け取る情報線15を含んで構成される。
開閉制御装置8は、三相遮断器10の開放と投入を開閉指令信号線14を介して指令し、また発電機側回線1R,1S,1Tの電圧を電圧検出用配線を介してモニターし残留磁束測定装置1の残留磁束演算手段6から残留磁束情報を残留磁束情報線15を介して受け、三相遮断器11の最適な投入位相を決定し三相遮断器11の投入を指令する。
Embodiment 2. FIG.
FIG. 5 is a block diagram showing a configuration of a circuit breaker synchronous switching control device 7 according to Embodiment 2 of the present invention. The circuit breaker synchronous switching control device 7 includes a residual magnetic flux measuring device 1 and a switching control device 8, and includes voltage detection wirings 9 R, 9 S, 9 T of the generator side lines 1 R, 1 S, 1 T and a three-phase circuit breaker 10. An open / close command signal line 14 for operating the three switches 10R, 10S, and 10T and an information line 15 for receiving residual magnetic flux information from the residual magnetic flux calculation means 6 are configured.
The switching control device 8 commands the opening and closing of the three-phase circuit breaker 10 via the switching command signal line 14, and monitors the voltage of the generator side lines 1R, 1S, 1T via the voltage detection wiring and remains. The residual magnetic flux information is received from the residual magnetic flux calculation means 6 of the magnetic flux measuring device 1 through the residual magnetic flux information line 15, the optimum input phase of the three-phase circuit breaker 11 is determined, and the input of the three-phase circuit breaker 11 is commanded.

変圧器が停止のため遮断された後、復旧後遮断器再投入時に鉄心内部の残留磁束によって大きな励磁突入電流が流れる場合がある。
三相変圧器の鉄心の残留磁束を求めた後、各相毎の最適投入位相を求めることによってこれを防ぐことができる。三相変圧器の鉄心の残留磁束と、変圧器に定常状態で電圧が印加されたときの磁束が一致する位相で三相変圧器が投入されると、励磁突入電流は流れない。
各相操作型遮断器では、最初に遮断器を1相について最適の位相で投入させ、残りの2相は時間差を設けて投入させることによって、励磁突入電流を抑制することができる。
三相同時投入しかできない遮断器においても、最も励磁突入電流が少ない位相で3相同時投入することで、励磁突入電流を最小化することができる。
A large magnetizing inrush current may flow due to the residual magnetic flux in the iron core when the circuit breaker is turned on again after the transformer is shut off due to a shutdown.
After obtaining the residual magnetic flux of the iron core of the three-phase transformer, this can be prevented by obtaining the optimum input phase for each phase. When the three-phase transformer is turned on in a phase in which the residual magnetic flux in the iron core of the three-phase transformer and the magnetic flux when a voltage is applied to the transformer in a steady state, the inrush current does not flow.
In each phase operation type circuit breaker, first, the circuit breaker is turned on at an optimum phase for one phase, and the remaining two phases are turned on with a time difference, thereby suppressing the magnetizing inrush current.
Even in a circuit breaker that can only be turned on at the same time, the inrush current can be minimized by simultaneously turning on the three phases with the phase with the least exciting current.

残留磁束測定装置を用いた遮断器の同期開閉装置は、遮断動作後の三相変圧器の正確な残留磁束を求めることができ、三相遮断器の同期開閉装置を投入するとき正しい目標投入位相を設定が可能となり、三相遮断器の投入時の励磁突入電流を最小化することによって電力系統の三相遮断器の投入動作を安定して行うことが可能となる。   The circuit breaker synchronous switching device using the residual magnetic flux measuring device can determine the accurate residual magnetic flux of the three-phase transformer after the breaking operation, and the correct target closing phase when the three-phase circuit breaker synchronous switching device is turned on It is possible to set the three-phase circuit breaker of the power system stably by minimizing the magnetizing inrush current when the three-phase circuit breaker is turned on.

1 残留磁束測定装置
1R,1S,1T 発電機側回線
2U,2V,2W 電力系統側回線
4 変圧器一次側対地電圧演算手段
5 変圧器二次側対地電圧演算手段
6 残留磁束演算手段
7 遮断器の同期開閉制御装置
8 開閉制御装置
9R,9S,9T 電圧検出用配線
10 三相遮断器
10R,10S,10T スイッチ
11R,11S,11T 三相変圧器一次側母線
12R,12S,12T 変流器
13,13R,13S,13T サージアブゾーバ
14 開閉指令信号線
15 残留磁束情報線
30 三相変圧器
31 一次側コイル
32 二次側コイル
DESCRIPTION OF SYMBOLS 1 Residual magnetic flux measuring apparatus 1R, 1S, 1T Generator side line 2U, 2V, 2W Electric power system side line 4 Transformer primary side ground voltage calculation means 5 Transformer secondary side ground voltage calculation means 6 Residual magnetic flux calculation means 7 Breaker Synchronous switching control device 8 Switching control devices 9R, 9S, 9T Voltage detection wiring 10 Three-phase circuit breakers 10R, 10S, 10T Switches 11R, 11S, 11T Three-phase transformer primary buses 12R, 12S, 12T Current transformer 13 , 13R, 13S, 13T Surge absorber 14 Open / close command signal line 15 Residual magnetic flux information line 30 Three-phase transformer 31 Primary coil 32 Secondary coil

Claims (6)

電力系統に設けられ一次側がΔ結線、二次側がY結線で中性点が非接地の三相変圧器の一次側給電回路と遮断器の間に設置された相毎のサージアブゾーバに流れる電流を測定する測定手段と、前記電流から一次側各相の対地電圧を演算する一次側の対地電圧演算手段と、前記一次側各層の対地電圧から二次側各相の対地電圧を演算する二次側の対地電圧演算手段と、前記二次側各相の対地電圧から前記三相変圧器の各相の鉄心に残留する残留磁束を演算する残留磁束演算手段を備えた残留磁束測定装置。 Measures the current flowing through the surge absorber for each phase installed between the primary power supply circuit and the circuit breaker of the three-phase transformer, which is installed in the power system and the primary side is Δ-connected, the secondary side is Y-connected, and the neutral point is ungrounded Measuring means, a primary side voltage calculating means for calculating a ground voltage of each phase on the primary side from the current, and a secondary side calculating a ground voltage of each phase on the secondary side from the ground voltage of each layer on the primary side. A residual magnetic flux measuring device comprising: ground voltage calculating means; and residual magnetic flux calculating means for calculating residual magnetic flux remaining in the iron core of each phase of the three-phase transformer from the ground voltage of each phase on the secondary side. 遮断器が三相変圧器の給電回路への給電を遮断開始してから、所定時間経過後に、残留磁束演算手段が残留磁束を決定することを特徴とする、請求項1記載の残留磁束測定装置。   The residual magnetic flux measuring device according to claim 1, wherein the residual magnetic flux calculation means determines the residual magnetic flux after a predetermined time has elapsed since the circuit breaker started to interrupt the power supply to the power supply circuit of the three-phase transformer. . 遮断器が三相変圧器の給電回路への給電を遮断開始してから、一次側の対地電圧演算手段または二次側の対地電圧演算手段が出力する各相の電圧信号が、所定の振幅以下となった後に、残留磁束演算手段が残留磁束を決定することを特徴とする、請求項1記載の残留磁束測定装置。   The voltage signal of each phase output by the primary-side ground voltage calculation means or the secondary-side ground voltage calculation means after the circuit breaker starts to cut off the power supply to the power supply circuit of the three-phase transformer is less than a predetermined amplitude The residual magnetic flux measuring device according to claim 1, wherein the residual magnetic flux calculating means determines the residual magnetic flux after becoming. 遮断器が三相変圧器の給電回路への給電を遮断開始してから、一次側の対地電圧演算手段または二次側の対地電圧演算手段が出力する各相の電圧信号の差の絶対値が、所定の値以下となった後に、残留磁束演算手段が残留磁束を決定することを特徴とする、請求項1記載の残留磁束測定装置。   The absolute value of the difference between the voltage signals of the respective phases output from the primary side ground voltage calculation means or the secondary side ground voltage calculation means after the circuit breaker starts to cut off the power supply to the power supply circuit of the three-phase transformer. The residual magnetic flux measuring device according to claim 1, wherein the residual magnetic flux calculating means determines the residual magnetic flux after the predetermined value or less is reached. 電力系統に設けられ一次側がΔ結線、二次側がY結線で中性点が非接地の三相変圧器において、一次側給電回路と遮断器の間に設置された相毎のサージアブゾーバに流れる電流を測定し、前記電流から一次側各相の対地電圧を演算し、前記一次側各相の対地電圧から二次側各相の対地電圧を演算し、前記二次側各相の対地電圧から前記三相変圧器の各相の鉄心に残留する残留磁束を演算することを特徴とする残留磁束測定方法。 In a three-phase transformer provided in the power system, the primary side is Δ-connected, the secondary side is Y-connected, and the neutral point is ungrounded, the current flowing through the surge absorber for each phase installed between the primary-side power supply circuit and the circuit breaker Measure the ground voltage of each phase on the primary side from the current, calculate the ground voltage of each phase on the secondary side from the ground voltage of each phase on the primary side, and calculate the ground voltage from the ground voltage of each phase on the secondary side. A residual magnetic flux measuring method, comprising: calculating a residual magnetic flux remaining in an iron core of each phase of a phase transformer. 前記請求項1乃至4のいずれかに記載の残留磁束測定装置によって算出された残留磁束から目標投入位相を算出し、前記目標投入位相で遮断器を投入することを特徴とする遮断器の同期開閉制御装置。   Synchronous switching of a circuit breaker, characterized in that a target application phase is calculated from the residual magnetic flux calculated by the residual magnetic flux measuring device according to any one of claims 1 to 4 and the circuit breaker is inserted at the target application phase. Control device.
JP2009144319A 2009-06-17 2009-06-17 Residual magnetic flux measuring device, residual magnetic flux measuring method, and circuit breaker synchronous switching control device Active JP5299109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009144319A JP5299109B2 (en) 2009-06-17 2009-06-17 Residual magnetic flux measuring device, residual magnetic flux measuring method, and circuit breaker synchronous switching control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144319A JP5299109B2 (en) 2009-06-17 2009-06-17 Residual magnetic flux measuring device, residual magnetic flux measuring method, and circuit breaker synchronous switching control device

Publications (2)

Publication Number Publication Date
JP2011002297A true JP2011002297A (en) 2011-01-06
JP5299109B2 JP5299109B2 (en) 2013-09-25

Family

ID=43560371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144319A Active JP5299109B2 (en) 2009-06-17 2009-06-17 Residual magnetic flux measuring device, residual magnetic flux measuring method, and circuit breaker synchronous switching control device

Country Status (1)

Country Link
JP (1) JP5299109B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157082A (en) * 2011-01-21 2012-08-16 Nissan Motor Co Ltd Wheel power supply device
CN104638635A (en) * 2013-11-08 2015-05-20 中国石油化工股份有限公司 Power grid neutral point active resistor grounding method
CN106093811A (en) * 2016-06-01 2016-11-09 国网河北省电力公司电力科学研究院 A kind of transformer core remanent magnetism detection method based on method of least square
CN110993251A (en) * 2019-11-06 2020-04-10 中国电力科学研究院有限公司 Phase selection and switching-off based transformer core demagnetization method and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551302B2 (en) 2007-02-21 2013-10-08 Samsung Electro-Mechanics Co., Ltd. Hydrogen generating apparatus and fuel cell power generation system controlling amount of hydrogen generation
CN104459578B (en) * 2014-12-02 2017-04-05 西安交通大学 The remanent magnetism method of estimation of Yyn0 type three-phase group formula transformator non-faulting tripping operations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040566A (en) * 2004-07-22 2006-02-09 Mitsubishi Electric Corp Phase-control switching device
WO2007088588A1 (en) * 2006-01-31 2007-08-09 Mitsubishi Denki Kabushiki Kaisha Residual magnetic flux determining apparatus
JP2008140580A (en) * 2006-11-30 2008-06-19 Toshiba Corp Exciting rush-in current suppressing device of three-phase transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040566A (en) * 2004-07-22 2006-02-09 Mitsubishi Electric Corp Phase-control switching device
WO2007088588A1 (en) * 2006-01-31 2007-08-09 Mitsubishi Denki Kabushiki Kaisha Residual magnetic flux determining apparatus
JP2008140580A (en) * 2006-11-30 2008-06-19 Toshiba Corp Exciting rush-in current suppressing device of three-phase transformer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157082A (en) * 2011-01-21 2012-08-16 Nissan Motor Co Ltd Wheel power supply device
CN104638635A (en) * 2013-11-08 2015-05-20 中国石油化工股份有限公司 Power grid neutral point active resistor grounding method
CN106093811A (en) * 2016-06-01 2016-11-09 国网河北省电力公司电力科学研究院 A kind of transformer core remanent magnetism detection method based on method of least square
CN106093811B (en) * 2016-06-01 2018-10-19 国网河北省电力公司电力科学研究院 A kind of transformer core remanent magnetism detection method based on least square method
CN110993251A (en) * 2019-11-06 2020-04-10 中国电力科学研究院有限公司 Phase selection and switching-off based transformer core demagnetization method and system
CN110993251B (en) * 2019-11-06 2022-12-13 中国电力科学研究院有限公司 Phase selection and switching-off based transformer core demagnetization method and system

Also Published As

Publication number Publication date
JP5299109B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5299109B2 (en) Residual magnetic flux measuring device, residual magnetic flux measuring method, and circuit breaker synchronous switching control device
CA2670907C (en) Magnetizing inrush current suppression device and method for transformer
JP4835870B2 (en) Inrush current suppression device
JP5208593B2 (en) Inrush current suppressing device for transformer and control method thereof
JP4825648B2 (en) Switch control device
CN105203911B (en) Three phase mains open phase fault detection method, device and a kind of automatic change-over
US20130155553A1 (en) Magnetizing inrush current suppression apparatus
WO2013084531A1 (en) Magnetizing inrush current suppression device
JP4549436B1 (en) Inrush current suppressing device and inrush current suppressing method
JP4651751B1 (en) Inrush current suppressing device and inrush current suppressing method
JP2008140580A (en) Exciting rush-in current suppressing device of three-phase transformer
JP5713848B2 (en) Excitation current suppression device
AU2013291046B2 (en) Excitation inrush current suppressing apparatus and excitation inrush current suppressing method
JP5444162B2 (en) Excitation current suppression device
JP2010130849A (en) Excitation rush current restrainer of transformer and method
JP5908336B2 (en) Excitation inrush current suppression device and excitation inrush current suppression method
JP3582520B2 (en) Static var compensator
JP5740240B2 (en) Excitation current suppression device
JP2012069351A (en) Rush current suppressor
JP5221238B2 (en) Reactive power compensator ground fault detector
US9490627B2 (en) Magnetizing inrush current suppressing device
JP6202897B2 (en) Excitation current suppression device and method
JP3199940B2 (en) Transformer protection relay device
CN110535110B (en) Phase selection switching-on and switching-off control method and device for extra-high voltage alternating current transformer
JP2014143049A (en) Excitation rush current suppression device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R151 Written notification of patent or utility model registration

Ref document number: 5299109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250