JP2010130849A - Excitation rush current restrainer of transformer and method - Google Patents

Excitation rush current restrainer of transformer and method Download PDF

Info

Publication number
JP2010130849A
JP2010130849A JP2008305108A JP2008305108A JP2010130849A JP 2010130849 A JP2010130849 A JP 2010130849A JP 2008305108 A JP2008305108 A JP 2008305108A JP 2008305108 A JP2008305108 A JP 2008305108A JP 2010130849 A JP2010130849 A JP 2010130849A
Authority
JP
Japan
Prior art keywords
phase
transformer
circuit breaker
voltage
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008305108A
Other languages
Japanese (ja)
Other versions
JP5414254B2 (en
Inventor
Minoru Saito
実 齋藤
Sumimasa Sato
純正 佐藤
Takeshi Chigiri
健史 千切
Tadashi Koshizuka
正 腰塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008305108A priority Critical patent/JP5414254B2/en
Publication of JP2010130849A publication Critical patent/JP2010130849A/en
Application granted granted Critical
Publication of JP5414254B2 publication Critical patent/JP5414254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively restrain an excitation rush current of a transformer even when a residual magnetic flux of the transformer is not known. <P>SOLUTION: There are provided a transformer 300 and a circuit breaker 200 which connects the transformer 300 to a power supply 100 and cuts it from the power supply. When the circuit breaker 200 is closed to excite the transformer 300, the excitation rush current that occurs on the transformer is restrained. Before closing the circuit breaker 200, an AC voltage is applied to the transformer 300 for saturation of magnetic flux of an iron core of the transformer. While a voltage is applied after the circuit breaker is closed, the circuit breaker is closed assuming a timing that the magnetic flux, induced by the transformer in a normal state, almost agrees with the magnetic flux saturated as the result of application of DC voltage, as a power feeding trigger. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、変圧器を電源に接続する際に生じる励磁突入電流を抑制するための変圧器の励磁突入電流抑制装置および方法に関するものである。   The present invention relates to a transformer inrush current suppressing device and method for suppressing a magnetizing inrush current generated when a transformer is connected to a power source.

変圧器鉄心に残留磁束がある状態で電源投入により無負荷励磁を行うと、大きな励磁突入電流が流れる。この励磁突入電流の大きさは変圧器の定格負荷電流の数倍になることが一般に知られている。このように大きな励磁突入電流が流れると、系統電圧が変動し、その電圧変動が大きい場合需要者に影響を与えることがある。   When no-load excitation is performed by turning on the power in a state where there is residual magnetic flux in the transformer core, a large excitation inrush current flows. It is generally known that the magnitude of this magnetizing inrush current is several times the rated load current of the transformer. When such a large magnetizing inrush current flows, the system voltage fluctuates, and if the voltage fluctuation is large, the consumer may be affected.

従来、励磁突入電流を抑制する方法として、投入抵抗と接点とを直列に接続してなる抵抗体付き遮断器を、遮断器主接点のいずれかと並列接続し、当該抵抗体付き遮断器を遮断器主接点に先行して投入するようにした励磁突入電流抑制方法が知られている(例えば特許文献1を参照)。   Conventionally, as a method of suppressing the magnetizing inrush current, a breaker with a resistor formed by connecting a making resistor and a contact in series is connected in parallel with one of the main contacts of the breaker, and the breaker with a resistor is connected to the breaker There is known a method for suppressing an inrush current that is input before the main contact (see, for example, Patent Document 1).

また、他の抑制方法として、直接接地系の3相変圧器を3台の単相型遮断器で投入する際、任意の1相を先行投入し、その後に残りの2相を投入させるようにして励磁突入電流を抑制する方法も既に知られているところである(例えば、非特許文献1を参照)。   As another suppression method, when a direct grounding three-phase transformer is inserted with three single-phase circuit breakers, an arbitrary one phase is introduced in advance, and then the remaining two phases are introduced. A method of suppressing the magnetizing inrush current is already known (see, for example, Non-Patent Document 1).

また、特許文献2に示すように、非有効接地系の3相変圧器を3台の単相型遮断器で投入する際、任意の2相を先行投入し、その後に残りの1相を投入させるようにして励磁突入電流を抑制する方法も提案されている。
また、特許文献3に示すように、非有効接地系の3相変圧器を、一つの操作機構で3相の遮断器の投入・開極動作を同時に操作するようにした3相一括操作型遮断器によって投入する時の励磁突入電流の抑制方法についても提案されている。
In addition, as shown in Patent Document 2, when introducing a three-phase transformer of ineffective grounding system with three single-phase circuit breakers, any two phases are introduced in advance, and then the remaining one phase is introduced. A method for suppressing the magnetizing inrush current is also proposed.
In addition, as shown in Patent Document 3, a three-phase collective operation type breaker in which a non-effective grounding type three-phase transformer is operated simultaneously with a single operation mechanism for opening and opening a three-phase circuit breaker. There has also been proposed a method for suppressing the magnetizing inrush current when charging by means of a generator.

特開2002−75145JP 2002-75145 A 特願2008−162474Japanese Patent Application No. 2008-162474 特開2008−160100JP2008-160100 IEEE Trans. Vol.16、No.2 2001“Elimination of Transformer Inrush Currents by Controlled Switching -Part I: Theoretical Considerations”IEEE Trans. Vol.16, No.2 2001 “Elimination of Transformer Inrush Currents by Controlled Switching -Part I: Theoretical Considerations”

上述の特許文献1に記載されている抵抗体付き遮断器による励磁突入電流抑制方法では、通常の遮断器に対して抵抗体付き遮断器を特別に付加する必要があるため、遮断器全体としてみた場合、大型化は否めない。これに対して、遮断器を大型化することなく、効率的かつ経済的に励磁突入電流を抑制する方法として、非特許文献1、特許文献2に記載されている励磁突入電流の抑制方法が提案されている。   In the method for suppressing the inrush current by the circuit breaker with a resistor described in Patent Document 1 described above, it is necessary to add a circuit breaker with a resistor to a normal circuit breaker. In this case, it cannot be denied that the size is increased. On the other hand, as a method for efficiently and economically suppressing the magnetizing inrush current without increasing the size of the circuit breaker, the methods for suppressing the magnetizing inrush current described in Non-Patent Document 1 and Patent Document 2 are proposed. Has been.

ただし、周知のように遮断器には、一つの操作機構で3相の遮断器の投入・開極動作を同時に操作するようにした3相一括操作型遮断器が存在するが、この3相一括操作型遮断器は、非特許文献1に記載されている励磁突入電流抑制方法に適用できないという欠点がある。これを解決する手段としては、特許文献3に記載されている励磁突入電流の抑制方法が提案されている。   However, as is well known, there is a three-phase collective operation type circuit breaker in which the closing / opening operation of a three-phase circuit breaker is operated simultaneously by one operating mechanism. The operation type circuit breaker has a drawback that it cannot be applied to the excitation inrush current suppression method described in Non-Patent Document 1. As means for solving this problem, a method for suppressing the excitation inrush current described in Patent Document 3 has been proposed.

ところで、上述の非特許文献1、特許文献2、および特許文献3に記載されているように、変圧器投入時の励磁突入電流抑制には、変圧器を遮断したときの鉄心の残留磁束の大きさを把握しておくことが必要である。変圧器の残留磁束の大きさは、一般には変圧器を遮断した時の変圧器端子電圧を積分することによって得られることが知られている。   By the way, as described in Non-Patent Document 1, Patent Document 2, and Patent Document 3 described above, the magnitude of the residual magnetic flux of the iron core when the transformer is shut off is used to suppress the magnetizing inrush current when the transformer is turned on. It is necessary to understand this. It is known that the magnitude of the residual magnetic flux of the transformer is generally obtained by integrating the transformer terminal voltage when the transformer is cut off.

非特許文献1、特許文献2、および特許文献3に記載されている励磁突入電流の抑制方法は、いずれの方法においても、この残留磁束の大きさを考慮して励磁突入電流を抑制できる投入位相を決定している。従って、非特許文献1、特許文献2、および特許文献3に記載されている方法で励磁突入電流を抑制するためには、変圧器を遮断した時に計測した残留磁束が、次に変圧器を投入する時まで維持されていることが前提となる。   The inrush current suppression method described in Non-Patent Document 1, Patent Document 2, and Patent Document 3 can be applied to any of these methods in consideration of the magnitude of this residual magnetic flux. Is determined. Therefore, in order to suppress the magnetizing inrush current by the methods described in Non-Patent Document 1, Patent Document 2 and Patent Document 3, the residual magnetic flux measured when the transformer is shut off is then turned on. It is assumed that it is maintained until the time.

通常の変圧器の遮断・投入操作においては、変圧器を遮断した時に計測した残留磁束は、次に変圧器を投入する時まで維持されているので、非特許文献1、特許文献2、および特許文献3に記載されている方法で励磁突入電流を抑制することが可能である。しかしながら、変圧器の現地試験・点検などを実施した場合は、変圧器を遮断した時に計測した残留磁束は、次に変圧器を投入する時まで必ずしも維持されないことが知られている。   In a normal transformer shut-off / turn-in operation, since the residual magnetic flux measured when the transformer is shut off is maintained until the next time the transformer is turned on, Non-Patent Document 1, Patent Document 2, and Patent It is possible to suppress the magnetizing inrush current by the method described in Document 3. However, it is known that when a transformer field test / inspection is performed, the residual magnetic flux measured when the transformer is cut off is not necessarily maintained until the next time the transformer is turned on.

例えば、変圧器の現地試験・点検では、巻線抵抗測定や変流器の極性チェックを実施することがある。巻線抵抗測定や変流器の極性チェックは、一般には、変圧器の巻線に直流電圧を印加して実施する。このため、変圧器を遮断した時に生じた残留磁束は、直流電圧印加の影響を受けて変化する、もしくは無くなり、試験・点検終了時には、鉄心には何らかの直流磁束が残ることになる。   For example, in transformer field tests and inspections, winding resistance measurements and current transformer polarity checks may be performed. Winding resistance measurement and current transformer polarity check are generally performed by applying a DC voltage to the transformer winding. For this reason, the residual magnetic flux generated when the transformer is shut off changes or disappears under the influence of the DC voltage application, and some DC magnetic flux remains in the iron core at the end of the test / inspection.

従って、変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施した場合は、励磁突入電流抑制の方法として非特許文献1、および特許文献3に記載されている方法が必ずしも適用できない。また、変圧器を遮断したときの残留磁束を計測するためには、非特許文献1などに記載されているように、遮断前後の変圧器端子電圧を計測し、これを積分演算することで残留磁束を計測する必要があることは前述の通りである。   Therefore, when conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer, non-patent literature 1 and the method described in Patent Document 3 are not necessarily applicable. Moreover, in order to measure the residual magnetic flux when the transformer is shut off, as described in Non-Patent Document 1, etc., the transformer terminal voltage before and after the shut-off is measured, and this is integrated to calculate the residual magnetic flux. As described above, it is necessary to measure the magnetic flux.

残留磁束の計測において、変電設備に変圧器端子電圧を計測できる計器用変圧器(VT)等が付与されている場合は問題とならないが、計器用変圧器(VT)等が付与されていない場合は、例えば、点検のために変圧器を遮断する際に、一時的に簡易形の計器用変圧器(VT)等を付加する必要がある。しかし、一時的に簡易形の計器用変圧器(VT)等を付加することは、点検のための機器停止の時間的制約や、電力会社の運用上の制約、又は既設変電設備への取り付けスペースなどの物理的制約や安全上の制約などの理由により、必ずしも可能とは限らない。このような場合は、変圧器の残留磁束を把握できないため、非特許文献1、特許文献2、および特許文献3に記載されている方法で励磁突入電流を抑制することは出来ない。   In the measurement of residual magnetic flux, there is no problem if the transformer (VT) etc. that can measure the transformer terminal voltage is given to the substation equipment, but if the transformer (VT) etc. is not given For example, when a transformer is cut off for inspection, it is necessary to temporarily add a simple instrument transformer (VT) or the like. However, temporarily adding a simple instrument transformer (VT), etc. is limited in terms of time to stop the equipment for inspection, operational restrictions of the power company, or installation space for existing substation facilities. It is not always possible for reasons such as physical restrictions and safety restrictions. In such a case, since the residual magnetic flux of the transformer cannot be grasped, the excitation inrush current cannot be suppressed by the methods described in Non-Patent Document 1, Patent Document 2, and Patent Document 3.

さらに、特許文献3に記載されているように、変圧器を遮断する時の遮断位相を制御することにより残留磁束を制御し、変圧器端子電圧の測定を不要にする方法も提案されているが、変圧器の1次側容量が大きい場合などは、遮断時の磁束の挙動がランダムとなり、残留磁束を制御することが困難となる。このような場合も、変圧器の残留磁束を把握できないため、非特許文献1、特許文献2、および特許文献3に記載されている方法で励磁突入電流を抑制することは出来ない。   Furthermore, as described in Patent Document 3, a method has been proposed in which residual magnetic flux is controlled by controlling the cutoff phase when the transformer is shut off, and measurement of the transformer terminal voltage is not required. When the primary side capacity of the transformer is large, the behavior of the magnetic flux at the time of interruption becomes random, and it becomes difficult to control the residual magnetic flux. Even in such a case, since the residual magnetic flux of the transformer cannot be grasped, the inrush current cannot be suppressed by the methods described in Non-Patent Document 1, Patent Document 2, and Patent Document 3.

本発明の目的は、以上で述べた従来技術に鑑みて成されたもので、変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施した場合においても、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制する方法および励磁突入電流抑制装置を提供することにある。   The object of the present invention is made in view of the above-described conventional technology, and is a field test involving application of a DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. The object is to provide a method and a magnetizing inrush current suppressing device that suppress the magnetizing inrush current when the transformer is turned on without adding equipment such as a circuit breaker with a resistor even when inspection is performed.

本発明の他の目的は、変圧器を遮断するときに残留磁束を把握することが出来ない場合においても、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制する方法および励磁突入電流抑制装置を提供することにある。   Another object of the present invention is to provide a magnetizing inrush current at the time of turning on the transformer without adding equipment such as a breaker with a resistor even when the residual magnetic flux cannot be grasped when the transformer is cut off. And a magnetizing inrush current suppressing device.

前記の目的を達成するために、本発明は、変圧器と、前記変圧器の電源への投入および電源からの遮断を行う遮断器とからなる回路で、前記変圧器を励磁させるために前記遮断器が投入されたときに、前記変圧器に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑制方法において、前記遮断器を投入する前に、前記変圧器に直流電圧を印加して、変圧器の鉄心の磁束を飽和させ、前記遮断器投入後の課電状態で前記変圧器に定常状態で誘起される磁束と、前記直流電圧印加の結果飽和した磁束が略一致するタイミングを電気的な投入目標として、前記遮断器を投入させることを特徴とする。
また、このような方法を実現する励磁突入電流抑制装置も本発明の一態様である。
In order to achieve the above object, the present invention provides a circuit comprising a transformer and a circuit breaker for turning on and off the power supply of the transformer, and for cutting off the transformer to excite the transformer. In the method of suppressing the excitation inrush current generated in the transformer when the transformer is turned on, a DC voltage is applied to the transformer before turning on the circuit breaker. Then, when the magnetic flux of the iron core of the transformer is saturated, the magnetic flux induced in the steady state in the transformer in the applied state after turning on the circuit breaker and the magnetic flux saturated as a result of applying the DC voltage substantially coincide with each other The circuit breaker is turned on with the function as an electrical turn-on target.
Moreover, the magnetizing inrush current suppression apparatus which implement | achieves such a method is also 1 aspect of this invention.

本発明によれば、前記遮断器を投入する前に、前記変圧器に直流電圧を印加して、変圧器の鉄心の磁束を飽和させることにより、変圧器の残留磁束が不明な状態でも、効果的に変圧器の励磁突入電流を抑制することが可能になる。   According to the present invention, before applying the circuit breaker, by applying a DC voltage to the transformer and saturating the magnetic flux of the iron core of the transformer, the effect can be obtained even when the residual magnetic flux of the transformer is unknown. Therefore, it is possible to suppress the magnetizing inrush current of the transformer.

以下、本発明に係る変圧器の励磁突入電流抑制装置および方法の実施形態について、図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a transformer inrush current suppressing device and method for a transformer according to the present invention will be described with reference to the drawings.

(第1実施形態)
(構成)
図1は、本発明の第1実施形態における変圧器の励磁突入電流抑制装置と変圧器、および遮断器の接続関係を示すブロック図である。図1において、100は電源、200は遮断器、300は遮断器200によって電源100に投入または遮断される単相変圧器である。
(First embodiment)
(Constitution)
FIG. 1 is a block diagram showing a connection relationship between a magnetizing inrush current suppressing device for a transformer, a transformer, and a circuit breaker according to the first embodiment of the present invention. In FIG. 1, 100 is a power source, 200 is a circuit breaker, and 300 is a single-phase transformer that is turned on or off by the circuit breaker 200.

次に、励磁突入電流抑制装置600と主回路との接続関係について説明する。400は電源電圧を計測するための計器用変圧器(VT)等で構成された電源電圧計測用機器、600は遮断器200の主接点に対して閉極位相制御された投入指令を出力する励磁突入電流抑制装置である。   Next, the connection relationship between the magnetizing inrush current suppressing device 600 and the main circuit will be described. 400 is a power supply voltage measuring device composed of a voltage transformer (VT) or the like for measuring the power supply voltage, and 600 is an excitation for outputting a closing command with a closing phase controlled to the main contact of the circuit breaker 200. This is an inrush current suppressing device.

励磁突入電流抑制装置600において、601はVT等の電源電圧計測用機器400から出力された電源電圧を取り込んで計測する電源電圧計測手段である。602は投入位相設定手段で、投入位相制御手段603で制御対象となる所望の位相を設定・保持する機能を備えている。   In the magnetizing inrush current suppressing device 600, reference numeral 601 denotes power supply voltage measuring means for taking in and measuring the power supply voltage output from the power supply voltage measuring device 400 such as VT. Reference numeral 602 denotes a closing phase setting unit which has a function of setting and holding a desired phase to be controlled by the closing phase control unit 603.

603は投入位相制御手段である。投入位相制御手段603は、電源電圧の所望の投入位相で、遮断器を電気的に投入させる制御を行う。投入位相制御手段603は、電圧計測手段601の出力を参照して、この電圧の所望の投入位相において遮断器200が電気的に投入するように投入位相を制御する機能を備えている。604は投入指令出力手段で、投入位相制御手段603の出力信号を受けて遮断器200の主接点を駆動する操作機構に対して投入指令(遮断器の閉極指令信号)を出力する機能を備えている。   Reference numeral 603 denotes a making phase control means. The making-up phase control means 603 performs control to electrically turn on the circuit breaker at a desired making-up phase of the power supply voltage. The closing phase control means 603 has a function of referring to the output of the voltage measuring means 601 and controlling the closing phase so that the circuit breaker 200 is electrically turned on at a desired closing phase of this voltage. 604 is a closing command output means having a function of receiving a signal output from the closing phase control means 603 and outputting a closing command (breaker closing command signal) to an operating mechanism that drives the main contact of the breaker 200. ing.

本実施形態におけるこの投入位相制御手段603と投入指令出力手段604が、本発明の投入制御手段を構成している。ここで、投入位相制御手段603及び投入指令出力手段604は、遮断器の状態量、すなわち、遮断器の開閉状態、動作速度の少なくとも1つを考慮して、狙った位相で遮断器が投入されるように制御する。   The making phase control means 603 and the making command output means 604 in the present embodiment constitute the making control means of the present invention. Here, the closing phase control means 603 and the closing command output means 604 take into consideration the circuit breaker state quantity, that is, at least one of the circuit breaker open / close state and the operating speed, and the circuit breaker is turned on at a target phase. To control.

605は直流電圧印加手段で、結線606を介して、変圧器300の端子間に直流電圧を印加する機能を備えている。この直流電流印加手段605は、変圧器300の鉄心に対して、鉄心が磁気飽和するのに十分な時間の間、直流電流を印加する。   Reference numeral 605 denotes a DC voltage application means, which has a function of applying a DC voltage between the terminals of the transformer 300 via the connection 606. The direct current application means 605 applies direct current to the iron core of the transformer 300 for a time sufficient for the iron core to be magnetically saturated.

なお、本実施形態では、直流電圧印加手段605は、励磁突入電流抑制装置600と同一ユニット内に構成されているが、別ユニットとして構成しても良い。また、本実施形態では単相遮断器と単相変圧器からなる単相回路について説明したが、3相遮断器と3相変圧器とからなる3相回路においても同様のシステムの適用が可能なことは言うまでも無い。また、3相回路における遮断器は、各相操作型遮断器と3相一括操作型遮断器のいずれでも良い。   In the present embodiment, the DC voltage application unit 605 is configured in the same unit as the magnetizing inrush current suppression device 600, but may be configured as a separate unit. In the present embodiment, a single-phase circuit including a single-phase circuit breaker and a single-phase transformer has been described. However, the same system can be applied to a three-phase circuit including a three-phase circuit breaker and a three-phase transformer. Needless to say. In addition, the circuit breaker in the three-phase circuit may be either a phase operation type circuit breaker or a three-phase collective operation type circuit breaker.

(作用)
第1実施形態における変圧器の励磁突入電流抑制装置の作用について以下に説明する。
(Function)
The effect | action of the magnetizing inrush current suppression apparatus of the transformer in 1st Embodiment is demonstrated below.

本実施形態は、例えば、変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施したことにより、変圧器を遮断した時に生じた残留磁束が変化する、もしくは無くなり、試験・点検終了時には、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。また、その他の何らかの物理的影響により、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。更に、変圧器に何らかの物理的影響が生じた結果、残留磁束が変化する、もしくは無くなり、結果として残留磁束が把握出来なくなった場合も、これに準じるケースとして、同じく適用対象としている。   In this embodiment, for example, the transformer was cut off by conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. When the residual magnetic flux generated sometimes changes or disappears and the test / inspection ends, some DC magnetic flux remains in the transformer core. In addition, a case where some DC magnetic flux remains in the transformer core due to some other physical influence is applied. Furthermore, when the residual magnetic flux changes or disappears as a result of some physical influence on the transformer, and the residual magnetic flux cannot be grasped as a result, it is also applied as a similar case.

以上の前提における変圧器の状態(変圧器鉄心に何らかの直流磁束が残っている状態、又は残留磁束を把握できない場合)を初期状態として、本実施形態による励磁突入電流抑制方法のフローチャートを図2に示す。   FIG. 2 is a flowchart of the excitation inrush current suppression method according to the present embodiment, assuming the state of the transformer based on the above assumption (a state in which any DC magnetic flux remains in the transformer core or a case where the residual magnetic flux cannot be grasped) as an initial state. Show.

ステップ1:変圧器の端子間に直流電圧を印加する。
単相変圧器300の端子間に結線606を介して直流電圧印加手段605からの直流電圧を印加する。
Step 1 : Apply a DC voltage across the transformer terminals.
A DC voltage from the DC voltage applying means 605 is applied between the terminals of the single-phase transformer 300 via the connection 606.

ステップ2:変圧器鉄心が飽和するまで印加時間が経過したか?
直流電圧の印加は変圧器鉄心が飽和したと考えるのに十分な時間の間印加する。なお、直流電圧の印加時間は変圧器毎の固有条件である。
Step 2 : Has the applied time elapsed until the transformer core is saturated?
The DC voltage is applied for a time sufficient to consider that the transformer core is saturated. The DC voltage application time is a unique condition for each transformer.

ステップ3:遮断器の投入位相を設定する。
例えば、図1に示すように、単相変圧器300の鉄心磁束を約+100%の直流磁束になるように直流電圧印加を実施した場合は、遮断器投入後の課電状態で変圧器300に定常状態で誘起される磁束と、直流電圧印加の結果飽和した直流磁束が略一致するタイミングとして、遮断器の電気的な投入位相を約180°に設定する。なお、遮断器200の投入位相は、都度設定しても良いし、投入位相設定手段602に予め設定した位相を使用しても良い。また、直流電圧印加手段605と連動して、自動的に設定されるようにしても良い。
Step 3 : Set the circuit breaker closing phase.
For example, as shown in FIG. 1, when the DC voltage is applied so that the iron core magnetic flux of the single-phase transformer 300 becomes about + 100% DC magnetic flux, The electrical closing phase of the circuit breaker is set to about 180 ° as the timing at which the magnetic flux induced in the steady state substantially coincides with the DC magnetic flux saturated as a result of applying the DC voltage. The closing phase of the circuit breaker 200 may be set each time, or a phase preset in the closing phase setting means 602 may be used. Further, it may be automatically set in conjunction with the DC voltage application means 605.

ステップ4:ステップ3で設定した投入位相を電気的な投入タイミングとして、遮断器を位相制御投入する。
変圧器の位相制御投入のタイミングチャートを図3に示す。遮断器は「+100%の直流磁束=電源電圧により定常状態で誘起される磁束」のタイミング、すなわち、電源電圧の180°の位相で電気的に投入される。
Step 4 : The circuit breaker is phase-controlled using the input phase set in Step 3 as the electrical input timing.
A timing chart of the phase control input of the transformer is shown in FIG. The circuit breaker is electrically turned on at the timing of “+ 100% DC magnetic flux = magnetic flux induced in a steady state by the power supply voltage”, that is, at a phase of 180 ° of the power supply voltage.

以上の手順により、位相制御投入により、励磁突入電流を抑制して変圧器300を電源に投入することができる。すなわち、本実施形態では、変圧器の位相制御投入時に、変圧器鉄心の磁束は常に100%に設定されているので、鉄心の残留磁束の大きさを正確に把握することが可能になる。   By the above procedure, the transformer 300 can be turned on by suppressing the magnetizing inrush current by turning on the phase control. That is, in this embodiment, when the phase control of the transformer is turned on, the magnetic flux of the transformer core is always set to 100%, so that the magnitude of the residual magnetic flux of the iron core can be accurately grasped.

その結果、投入前の直流磁束と電源電圧により定常状態で誘起される磁束とが等しいタイミングを容易に把握することができ、その時点で遮断器が投入されるように、電源電圧の狙った位相で遮断器を投入する。その結果、図3に示すように、遮断器投入後における変圧器鉄心に誘起される磁束が過渡現象を伴わないため、励磁突入電流の効果的な抑制が可能になる。   As a result, it is possible to easily grasp the timing when the DC magnetic flux before being turned on and the magnetic flux induced in the steady state by the power supply voltage are equal, and the target phase of the power supply voltage is set so that the circuit breaker is turned on at that time. Turn on the circuit breaker. As a result, as shown in FIG. 3, the magnetic flux induced in the transformer core after turning on the circuit breaker is not accompanied by a transient phenomenon, so that the inrush current can be effectively suppressed.

なお、本実施形態において、遮断器の投入タイミングは、必ずしも、遮断器投入後の課電状態で変圧器に定常状態で誘起される磁束と直流電圧印加の結果飽和した磁束が完全に一致することに限定されるものではない。両者が略一致していても、励磁突入電流を大幅に抑制することができる。同様に、直流電圧印加による変圧器鉄心の磁束も、完全に飽和する必要はなく、略飽和する程度でも良い。その場合でも、遮断器投入後の課電状態で変圧器に定常状態で誘起される磁束と、直流電圧印加の結果変圧器鉄心に誘起される磁束とを近づけることができ、その位相で遮断器を投入することで、励磁突入電流を抑制できる。   In the present embodiment, the circuit breaker timing is not necessarily the same as the magnetic flux induced in the steady state in the transformer in the state of power application after the circuit breaker is turned on and the magnetic flux saturated as a result of DC voltage application. It is not limited to. Even if the two substantially match, the excitation inrush current can be significantly suppressed. Similarly, the magnetic flux in the transformer core due to the application of the DC voltage need not be completely saturated, and may be almost saturated. Even in such a case, the magnetic flux induced in the steady state in the transformer in the applied state after the circuit breaker is turned on can be brought close to the magnetic flux induced in the transformer core as a result of applying the DC voltage, and the circuit breaker is in that phase. By turning on, the magnetizing inrush current can be suppressed.

(効果)
以上の説明から明らかなように、第1実施形態における変圧器の励磁突入電流抑制装置および方法は、以下の効果を有する。
(effect)
As is apparent from the above description, the transformer inrush current suppressing device and method according to the first embodiment have the following effects.

すなわち、変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施した場合においても、いったん+100%の直流磁束を掛けることにより、変圧器鉄心の磁束を常に定常状態で誘起される磁束と等しい値とすることができる。そのため、抵抗体付き遮断器等の設備を付加したり、変圧器端子電圧を計測するための計器用変圧器(VT)などを設置せずに、適正な投入位相において遮断器が投入されるように制御することで、変圧器投入時の励磁突入電流を抑制することができる。   In other words, even when field tests and inspections involving the application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer, are performed, apply a + 100% DC magnetic flux once. Thus, the magnetic flux of the transformer core can always be equal to the magnetic flux induced in the steady state. Therefore, without adding equipment such as a breaker with a resistor, or installing a voltage transformer (VT) for measuring the voltage at the transformer terminal, the circuit breaker will be turned on at an appropriate closing phase. By controlling so that the magnetizing inrush current when the transformer is turned on can be suppressed.

(第2実施形態)
(構成)
図4は、本発明の第2実施形態における変圧器の励磁突入電流抑制装置と3相変圧器、および3相遮断器の接続関係を示すブロック図である。
(Second Embodiment)
(Constitution)
FIG. 4 is a block diagram showing a connection relationship between the transformer inrush current suppressing device, the three-phase transformer, and the three-phase circuit breaker in the second embodiment of the present invention.

図4において、110は電力系統の母線(電源母線ともいう)、210U〜Vは各相の主接点が個別に操作される各相操作型遮断器である。310は各相操作型遮断器210によって電源母線110に投入または遮断される3相変圧器であり、その1次巻線311はY結線され、2次巻線312および3次巻線313はΔ結線されている。   In FIG. 4, reference numeral 110 denotes a power system bus (also referred to as a power supply bus), and 210 U to V are phase-operating circuit breakers in which main contacts of the phases are individually operated. Reference numeral 310 denotes a three-phase transformer that is turned on or off from the power supply bus 110 by each phase operation type circuit breaker 210. The primary winding 311 is Y-connected, and the secondary winding 312 and the tertiary winding 313 are Δ Connected.

なお、1次巻線311および2次巻線312がY結線され、3次巻線313がΔ結線された3相変圧器など、図4以外の結線の3相変圧器を適用した構成としても良い。また、図4では直接接地変圧器を用いているが、非接地変圧器、非有効接地変圧器(抵抗接地変圧器)を適用した構成としても良い。   A configuration in which a three-phase transformer having a connection other than that shown in FIG. 4 is applied, such as a three-phase transformer in which the primary winding 311 and the secondary winding 312 are Y-connected and the tertiary winding 313 is Δ-connected. good. Further, although a direct grounding transformer is used in FIG. 4, a non-grounding transformer or a non-effective grounding transformer (resistance grounding transformer) may be applied.

すなわち、本実施形態における変圧器としては、有効接地系もしくは非有効接地系に設置され、各相が2巻線もしくは3巻線であり、2巻線の場合には2次巻線がΔ結線され、3巻線の場合には2次巻線もしくは3次巻線がΔ結線され、1次巻線がY結線に接続され、有効接地系に設置された場合にはY結線の中性点が接地され、非有効接地系に設置された場合には、Y結線の中性点が非接地もしくはインピーダンスを有する素子を介して接地された3相変圧器が使用できる。   That is, the transformer in the present embodiment is installed in an effective ground system or an ineffective ground system, and each phase has two windings or three windings. In the case of two windings, the secondary winding is Δ-connected. In the case of 3 windings, the secondary winding or tertiary winding is Δ-connected, the primary winding is connected to Y-connection, and when installed in an effective grounding system, the neutral point of Y-connection Is grounded and installed in an ineffective grounding system, a three-phase transformer in which the neutral point of the Y connection is grounded via an element that is not grounded or has an impedance can be used.

次に、励磁突入電流抑制装置610と主回路との接続関係について説明する。
410は前記電源母線110の各相(U、V、W)電圧を計測するための計器用変圧器(VT)等で構成された電源電圧計測用機器、610は各相操作型遮断器210の主接点に対して各相個別に閉極位相制御された投入指令を出力する励磁突入電流抑制装置である。
Next, the connection relationship between the magnetizing inrush current suppressing device 610 and the main circuit will be described.
Reference numeral 410 denotes a power supply voltage measuring device composed of a voltage transformer (VT) or the like for measuring each phase (U, V, W) voltage of the power supply bus 110, and 610 denotes each phase operation type circuit breaker 210. This is a magnetizing inrush current suppressing device that outputs a closing command in which the closing phase is controlled individually for each phase with respect to the main contact.

励磁突入電流抑制装置610において、611はVT等の電源電圧計測用機器410から出力された各相(U、V、W相)の電源電圧を取り込んで計測する電源電圧計測手段である。613は投入位相制御手段である。投入位相制御手段613は、電源電圧の所望の投入位相で、遮断器を電気的に投入させる制御を行う。投入位相制御手段613は、電圧計測手段611の出力を参照して、この電圧の所望の投入位相において各相個別に遮断器210U〜Wが電気的に投入するように投入位相を制御する機能を備えている。   In the magnetizing inrush current suppressing device 610, reference numeral 611 denotes power supply voltage measuring means for taking in and measuring the power supply voltage of each phase (U, V, W phase) output from the power supply voltage measuring device 410 such as VT. Reference numeral 613 denotes a making phase control means. The making-up phase control means 613 performs control to electrically turn on the circuit breaker at a desired making-up phase of the power supply voltage. The closing phase control means 613 refers to the output of the voltage measuring means 611, and has a function of controlling the closing phase so that the circuit breakers 210U to 210W are electrically turned on individually for each phase in the desired closing phase of this voltage. I have.

614は投入指令出力手段で、投入位相制御手段613の出力信号を受けて遮断器210の主接点を駆動する操作機構に対して各相個別に投入指令を出力する機能を備えている。612は投入位相設定手段で、投入位相制御手段613で制御対象となる所望の位相を設定・保持する機能を備えている。   Reference numeral 614 denotes a closing command output means that has a function of receiving an output signal from the closing phase control means 613 and outputting a closing instruction for each phase individually to an operating mechanism that drives the main contact of the circuit breaker 210. Reference numeral 612 denotes a closing phase setting unit which has a function of setting and holding a desired phase to be controlled by the closing phase control unit 613.

615は直流電圧印加手段で、結線616を介して、3相変圧器310のΔ結線である2次巻線312、又は3次巻線313の2つの端子間に直流電圧を印加する機能を備えている。図4の例では、2次巻線312のu−v端子間に直流電圧印加手段615が接続されている。なお、直流電圧印加手段615を2次巻線312のv−w端子間、w−u端子間、または3次巻線に接続しても良い。また、本実施形態では、直流電圧印加手段615は、励磁突入電流抑制装置610と同一ユニット内に構成されているが、別ユニットとして構成しても良い。   Reference numeral 615 denotes DC voltage application means, which has a function of applying a DC voltage between two terminals of the secondary winding 312 or the tertiary winding 313 which is the Δ connection of the three-phase transformer 310 via the connection 616. ing. In the example of FIG. 4, a DC voltage applying unit 615 is connected between the uv terminals of the secondary winding 312. Note that the DC voltage applying means 615 may be connected between the v-w terminals, the wu terminals, or the tertiary winding of the secondary winding 312. In the present embodiment, the DC voltage application unit 615 is configured in the same unit as the magnetizing inrush current suppression device 610, but may be configured as a separate unit.

(作用)
第2実施形態における変圧器の励磁突入電流抑制装置の作用について以下に説明する。本実施形態は、例えば、変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施したことにより、変圧器を遮断した時に生じた残留磁束が変化する、もしくは無くなり、試験・点検終了時には、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。
(Function)
The effect | action of the magnetizing inrush current suppression apparatus of the transformer in 2nd Embodiment is demonstrated below. In this embodiment, for example, the transformer was cut off by conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. When the residual magnetic flux generated sometimes changes or disappears and the test / inspection ends, some DC magnetic flux remains in the transformer core.

また、その他の何らかの物理的影響により、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。更に、変圧器に何らかの物理的影響が生じた結果、残留磁束が変化する、もしくは無くなり、結果として残留磁束が把握出来なくなった場合も、これに準じるケースとして、同じく適用対象としている。   In addition, a case where some DC magnetic flux remains in the transformer core due to some other physical influence is applied. Furthermore, when the residual magnetic flux changes or disappears as a result of some physical influence on the transformer, and the residual magnetic flux cannot be grasped as a result, it is also applied as a similar case.

以上の前提における変圧器の状態(変圧器鉄心に何らかの直流磁束が残っている状態、又は残留磁束を把握できない場合)を初期状態として、本実施形態による励磁突入電流抑制方法のフローチャートを図5に示す。   FIG. 5 shows a flowchart of the method for suppressing the inrush current according to the present embodiment, assuming the state of the transformer based on the above assumption (a state in which any DC magnetic flux remains in the transformer core or a case where the residual magnetic flux cannot be grasped) as an initial state. Show.

ステップ1:3相変圧器のΔ結線の端子間に直流電圧を印加する。
3相変圧器310のΔ結線の端子間に結線616を介して直流電圧印加手段615からの直流電圧を印加する。
Step 1 : A DC voltage is applied between the terminals of the Δ connection of the three-phase transformer.
A DC voltage from DC voltage applying means 615 is applied between terminals of Δ connection of three-phase transformer 310 via connection 616.

ステップ2:変圧器鉄心が飽和するまで印加時間が経過したか?
直流電圧の印加は、変圧器鉄心(直流電圧印加端子間に対応する相の鉄心)が飽和したと考えるのに十分な時間の間印加する。なお、直流電圧の印加時間は変圧器毎の固有条件である。図4の例では、2次巻線312のu−v端子間に直流電圧印加手段615からの直流電圧を印加する。この場合、図6に示すように、3相変圧器310のU相鉄心の直流磁束1010uは約+100%となり、V相鉄心の直流磁束1010vおよびW相鉄心の直流磁束1010wは各々約−50%になる。
Step 2 : Has the applied time elapsed until the transformer core is saturated?
The DC voltage is applied for a time sufficient to consider that the transformer core (corresponding phase core between the DC voltage application terminals) is saturated. The DC voltage application time is a unique condition for each transformer. In the example of FIG. 4, the DC voltage from the DC voltage applying unit 615 is applied between the u−v terminals of the secondary winding 312. In this case, as shown in FIG. 6, the DC magnetic flux 1010u of the U-phase iron core of the three-phase transformer 310 is about + 100%, and the DC magnetic flux 1010v of the V-phase iron core and the DC magnetic flux 1010w of the W-phase iron core are each about -50%. become.

ステップ3:3相遮断器の投入位相を各相個別に設定する。
閉極第1相を直流電圧印加端子間に対応する相、すなわち、鉄心を飽和させた相とする。残りの2相は予め設定した時間後に投入する閉極第2相、閉極第3相とする。
Step 3 : Set the input phase of the 3-phase circuit breaker individually for each phase.
The closed first phase is a phase corresponding to the DC voltage application terminal, that is, a phase in which the iron core is saturated. The remaining two phases are a closed second phase and a closed third phase that are input after a preset time.

例えば、図4に示すように、2次巻線312のu−v端子間に直流電圧印加した場合は、図6に示すように、3相変圧器310のU相鉄心の直流磁束1010uは約+100%となり、V相鉄心の直流磁束1010vおよびW相鉄心の直流磁束1010wは各々約−50%になっているので、U相遮断器210U投入後の課電状態で3相変圧器のU相に定常状態で誘起される磁束と、直流電圧印加の結果飽和したU相の直流磁束が略一致するタイミングとして、U相遮断器210Uの電気的な投入位相を180°に設定する。残りの2相、すなわち、V相遮断器210VとW相遮断器210Wの電気的な投入位相はU相電圧の0°(又は180°)に対応する位相に設定する。   For example, as shown in FIG. 4, when a DC voltage is applied between the u and v terminals of the secondary winding 312, the DC magnetic flux 1010u of the U-phase core of the three-phase transformer 310 is about Since the DC magnetic flux 1010v of the V-phase iron core and the DC magnetic flux 1010w of the W-phase iron core are each about -50%, the U-phase of the three-phase transformer is in the applied state after turning on the U-phase circuit breaker 210U. As the timing at which the magnetic flux induced in the steady state and the DC magnetic flux of the U phase saturated as a result of DC voltage application substantially coincide, the electrical application phase of the U-phase circuit breaker 210U is set to 180 °. The remaining two phases, that is, the electrical input phases of the V-phase circuit breaker 210V and the W-phase circuit breaker 210W are set to phases corresponding to 0 ° (or 180 °) of the U-phase voltage.

なお、遮断器の投入位相は、都度設定しても良いし、投入位相設定手段612に予め設定した位相を使用しても良い。また、直流電圧印加手段615と連動して、自動的に設定されるようにしても良い。要するに、残る2相は、予め設定した時間の後、先に投入された前記閉極第1相の相電圧零点で電気的に投入させるものであればよい。   The closing phase of the circuit breaker may be set each time, or a phase preset in the closing phase setting means 612 may be used. Further, it may be automatically set in conjunction with the DC voltage applying means 615. In short, the remaining two phases only have to be electrically charged at the phase voltage zero point of the closed first phase previously input after a preset time.

ステップ4:ステップ3で設定した投入位相を電気的な投入タイミングとして、3相遮断器210を各相個別に位相制御投入する。
閉極第1相の位相制御投入のタイミングチャートは、図3の変圧器の位相制御投入のタイミングチャートと同じである。図4に示すように、2次巻線312のu−v端子間に直流電圧印加した場合は、U相遮断器210Uは「U相の+100%の直流磁束=U相電源電圧により定常状態で誘起されるU相の磁束」のタイミング、すなわち、U相の電源電圧の180°の位相で電気的に投入される。
Step 4 : The three-phase circuit breaker 210 is phase-controlled individually for each phase using the input phase set in Step 3 as the electrical input timing.
The timing chart for turning on the phase control of the first closed phase is the same as the timing chart for turning on the phase control of the transformer in FIG. As shown in FIG. 4, when a DC voltage is applied between the uv terminals of the secondary winding 312, the U-phase circuit breaker 210 U is “steady state with + 100% DC magnetic flux of U phase = U phase power supply voltage. It is electrically supplied at the timing of the “induced U-phase magnetic flux”, that is, at a phase of 180 ° of the U-phase power supply voltage.

閉極第1相と残りの2相の投入タイミングの例を、図7に示す。図7の例では、U相が閉極第1相であり、位相180°のタイミング(図7のタイミングA)で電気的に投入される。続いて1サイクル後に、残りの2相、すなわちV相とW相がU相の180°のタイミング(図7のタイミングB)で電気的に投入される。   An example of the closing timing of the first closed phase and the remaining two phases is shown in FIG. In the example of FIG. 7, the U phase is a closed first phase and is electrically turned on at a phase of 180 ° (timing A in FIG. 7). Subsequently, after one cycle, the remaining two phases, that is, the V phase and the W phase are electrically turned on at the timing of 180 ° of the U phase (timing B in FIG. 7).

この場合、U相のみを見れば、前記第1実施形態と同様に、投入前の直流磁束と電源電圧により定常状態で誘起される磁束とが等しいタイミングを容易に把握することができ、その時点で遮断器が投入されるように、電源電圧の狙った位相で遮断器を投入する。その結果、図3と同様に、変圧器のU相鉄心に誘起されるU相磁束が過渡現象を伴わないため、変圧器のU相の励磁突入電流の効果的な抑制が可能になる。   In this case, if only the U phase is seen, as in the first embodiment, it is possible to easily grasp the timing when the DC magnetic flux before being applied and the magnetic flux induced in the steady state by the power supply voltage are equal. The circuit breaker is turned on at the target phase of the power supply voltage so that the circuit breaker is turned on. As a result, since the U-phase magnetic flux induced in the U-phase iron core of the transformer is not accompanied by a transient phenomenon as in FIG. 3, it is possible to effectively suppress the U-phase excitation inrush current of the transformer.

一方、残りの2相、すなわちV相とW相についても、U相の変圧器鉄心が磁気飽和した状態において、V相鉄心の直流磁束1010vおよびW相鉄心の直流磁束1010wは各々約−50%になっていることが把握できるので、励磁突入電流を抑制した適正なタイミングで遮断器を投入することができる。   On the other hand, for the remaining two phases, ie, the V phase and the W phase, the DC magnetic flux 1010v of the V-phase core and the DC magnetic flux 1010w of the W-phase core are about −50% in a state where the U-phase transformer core is magnetically saturated. Therefore, the circuit breaker can be turned on at an appropriate timing while suppressing the magnetizing inrush current.

特に、投入第1相であるU相投入後は、残りの2相であるV相とW相の直流磁束は、鉄心磁束の均一化現象により急速に抑制され、1サイクル、もしくは数サイクル後には、V相とW相の直流磁束は無視できるレベルとなる。この場合は、図7に示すように、投入第1相であるU相の180°のタイミングでV相、W相を投入することにより、変圧器の残りのV相、W相の励磁突入電流の効果的な抑制が可能になる。
以上に述べた3相変圧器の励磁突入電流抑制の考え方は、例えば非特許文献1に詳細に述べられているので、ここでの詳細な説明は省略する。
In particular, after the U phase, which is the first phase, is applied, the remaining two-phase V and W DC fluxes are rapidly suppressed due to the homogenization phenomenon of the iron core magnetic flux, and after one or a few cycles The V-phase and W-phase DC magnetic fluxes are negligible. In this case, as shown in FIG. 7, by turning on the V phase and the W phase at the timing of 180 ° of the U phase, which is the first input phase, the remaining V phase and W phase excitation inrush currents of the transformer It is possible to effectively suppress this.
The concept of suppressing the magnetizing inrush current of the three-phase transformer described above is described in detail, for example, in Non-Patent Document 1, and detailed description thereof is omitted here.

(効果)
以上の説明から明らかなように、第2実施形態における変圧器の励磁突入電流抑制装置および方法は、以下の効果を有する。
(effect)
As is apparent from the above description, the transformer inrush current suppressing device and method according to the second embodiment have the following effects.

変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施した場合においても、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制することができる。   Add equipment such as a breaker with a resistor even when conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. In addition, it is possible to suppress the magnetizing inrush current when the transformer is turned on.

特に、本実施の形態は、各相操作型遮断器210U〜Wの位相制御投入により、励磁突入電流を抑制して3相変圧器310を電源に投入することができ、各相操作型遮断器を適用している場合に、最適な励磁突入電流抑制方法を提供できる。また、本実施の形態によれば、2次巻線、もしくは3次巻線のΔ結線の端子間に直流電圧を印加して鉄心を飽和させるので、1次側のY結線の接地方式(直接接地、非接地方式、非有効接地方式(抵抗接地方式))によらず、類似の位相制御投入方式が適用できる。   In particular, according to the present embodiment, the phase control of each phase operation type circuit breaker 210U to W can suppress the magnetizing inrush current, and the three phase transformer 310 can be turned on. When the method is applied, it is possible to provide an optimal excitation inrush current suppression method. In addition, according to the present embodiment, since the iron core is saturated by applying a DC voltage between the terminals of the secondary winding or the Δ winding of the tertiary winding, the grounding method of the Y connection on the primary side (directly) Regardless of the grounding, non-grounding method, or non-effective grounding method (resistance grounding method), a similar phase control throwing method can be applied.

(第3実施形態)
(構成)
図8は、本発明の第3実施形態における変圧器の励磁突入電流抑制装置と3相変圧器、および3相遮断器の接続関係を示すブロック図である。第3実施形態の構成は、以下の点を除き、第2実施形態の構成と同じなので、詳細な説明を省略する。
(Third embodiment)
(Constitution)
FIG. 8 is a block diagram showing a connection relationship between the transformer inrush current suppression device, the three-phase transformer, and the three-phase circuit breaker according to the third embodiment of the present invention. Since the configuration of the third embodiment is the same as the configuration of the second embodiment except for the following points, detailed description is omitted.

図8において、220は各相の主接点が一括操作される3相一括操作型遮断器である。320は3相一括操作型遮断器220によって電源母線110に投入または遮断される3相変圧器であり、その1次巻線321はY結線され、2次巻線322および3次巻線323はΔ結線されている。Znは1次巻線321の中性点を接地するためのインピーダンスである。   In FIG. 8, 220 is a three-phase batch operation type circuit breaker in which the main contacts of each phase are batch operated. Reference numeral 320 denotes a three-phase transformer that is turned on or off from the power supply bus 110 by a three-phase collective operation type circuit breaker 220. The primary winding 321 is Y-connected, and the secondary winding 322 and the tertiary winding 323 are Δ is connected. Zn is an impedance for grounding the neutral point of the primary winding 321.

なお、3相一括操作型遮断220の代わりに各相操作遮断器を適用し、各相操作遮断器を3相同時に投入または遮断操作しても良い。また、1次巻線321および2次巻線322がY結線され、3次巻線323がΔ結線された3相変圧器など、図8以外の結線の3相変圧器を適用した構成としても良い。また、図8では非有効接地変圧器(抵抗接地変圧器)を用いているが、直接接地変圧器、非接地変圧器を適用した構成としても良い。   In addition, each phase operation circuit breaker may be applied instead of the three-phase collective operation type breaker 220, and each phase operation circuit breaker may be turned on or off simultaneously for three phases. Further, a configuration in which a three-phase transformer having a connection other than that shown in FIG. 8 is applied, such as a three-phase transformer in which the primary winding 321 and the secondary winding 322 are Y-connected and the tertiary winding 323 is Δ-connected. good. Moreover, although the non-effective grounding transformer (resistance grounding transformer) is used in FIG. 8, it is good also as a structure which applied a direct grounding transformer and a non-grounding transformer.

励磁突入電流抑制装置620と主回路との接続関係は、遮断器が3相一括操作型遮断器220になったことに伴い、投入指令を3相一括で出力することを除き、第2実施形態と同じである。また、励磁突入電流抑制装置620の構成は、投入指令出力手段624が投入位相制御手段623の出力信号を受けて遮断器220の主接点を駆動する操作機構に対して3相一括で投入指令を出力する機能を備えていることを除き、第2実施形態と同じである。   The connection relationship between the magnetizing inrush current suppressing device 620 and the main circuit is the second embodiment except that, when the circuit breaker is a three-phase collective operation type circuit breaker 220, a closing command is output in a three-phase package. Is the same. Further, the configuration of the magnetizing inrush current suppressing device 620 is such that the closing command output means 624 receives the output signal of the closing phase control means 623 and issues a closing command in a three-phase manner to the operation mechanism that drives the main contact of the circuit breaker 220. The second embodiment is the same as the second embodiment except that a function for outputting is provided.

(作用)
第3実施形態における変圧器の励磁突入電流抑制装置の作用について以下に説明する。本実施形態は、例えば、変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施したことにより、変圧器を遮断した時に生じた残留磁束が変化する、もしくは無くなり、試験・点検終了時には、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。また、その他の何らかの物理的影響により、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。
(Function)
The effect | action of the magnetizing inrush current suppression apparatus of the transformer in 3rd Embodiment is demonstrated below. In this embodiment, for example, the transformer was cut off by conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. When the residual magnetic flux generated sometimes changes or disappears and the test / inspection ends, some DC magnetic flux remains in the transformer core. In addition, a case where some DC magnetic flux remains in the transformer core due to some other physical influence is applied.

更に、変圧器に何らかの物理的影響が生じた結果、残留磁束が変化する、もしくは無くなり、結果として残留磁束が把握出来なくなった場合も、これに準じるケースとして、同じく適用対象としている。   Furthermore, when the residual magnetic flux changes or disappears as a result of some physical influence on the transformer, and the residual magnetic flux cannot be grasped as a result, it is also applied as a similar case.

以上の前提における変圧器の状態(変圧器鉄心に何らかの直流磁束が残っている状態、又は残留磁束を把握できない場合)を初期状態として、本実施形態による励磁突入電流抑制方法のフローチャートを図9に示す。   FIG. 9 is a flowchart of the method for suppressing the inrush current according to the present embodiment, assuming that the state of the transformer based on the above assumption (a state in which some DC magnetic flux remains in the transformer core or the case where the residual magnetic flux cannot be grasped) is an initial state. Show.

ステップ1:3相変圧器のΔ結線の端子間に直流電圧を印加する。
3相変圧器320のΔ結線の端子間に結線626を介して直流電圧印加手段625からの直流電圧を印加する。
Step 1 : A DC voltage is applied between the terminals of the Δ connection of the three-phase transformer.
A DC voltage from the DC voltage applying means 625 is applied between the terminals of the Δ connection of the three-phase transformer 320 via the connection 626.

ステップ2:変圧器鉄心が飽和するまで印加時間が経過したか?
直流電圧の印加は変圧器鉄心(直流電圧印加端子間に対応する相の鉄心)が飽和したと考えるのに十分な時間の間印加する。なお、直流電圧の印加時間は変圧器毎の固有条件である。図8の例では、2次巻線322のu−v端子間に直流電圧印加手段625からの直流電圧を印加する。この場合、第2実施形態と同様の直流磁束が残る。すなわち、図6と同様に、3相変圧器320のU相鉄心の直流磁束は約+100%となり、V相鉄心の直流磁束およびW相鉄心の直流磁束は各々約−50%になる。
Step 2 : Has the applied time elapsed until the transformer core is saturated?
The DC voltage is applied for a time sufficient to consider that the transformer core (corresponding phase core between the DC voltage application terminals) is saturated. The DC voltage application time is a unique condition for each transformer. In the example of FIG. 8, the DC voltage from the DC voltage applying means 625 is applied between the u−v terminals of the secondary winding 322. In this case, the same DC magnetic flux as in the second embodiment remains. That is, as in FIG. 6, the DC magnetic flux of the U-phase iron core of the three-phase transformer 320 is about + 100%, and the DC magnetic flux of the V-phase iron core and the DC magnetic flux of the W-phase iron core are each about -50%.

ステップ3:3相遮断器の投入位相を3相一括で設定する。
直流磁束が最大の相は、直流電圧印加端子間に対応する相、すなわち、鉄心を飽和させた相である(この相をX相とする)。したがって、直流電圧印加の結果飽和したX相の磁束と同極性から逆極性へ遷移するX相の電圧零点を電気的な投入目標として、3相の遮断器を同時に投入させる。
Step 3 : Set the input phase of the three-phase circuit breaker in three phases.
The phase having the maximum DC magnetic flux is a phase corresponding to the DC voltage application terminals, that is, a phase in which the iron core is saturated (this phase is referred to as X phase). Therefore, a three-phase circuit breaker is simultaneously turned on with an X-phase voltage zero point that transitions from the same polarity as the X-phase magnetic flux saturated as a result of DC voltage application to the opposite polarity as an electrical turn-on target.

例えば、図8に示すように、2次巻線322のu−v端子間に直流電圧印加した場合は、図6と同様に、3相変圧器320のU相鉄心の直流磁束は約+100%となり、V相鉄心の直流磁束およびW相鉄心の直流磁束は各々約−50%になる。したがって、図10に示すように、電圧が正極性から負極性へ遷移するU相電圧の180°(図10のタイミングC)を電気的な投入位相に設定する。なお、遮断器の投入位相は、都度設定しても良いし、投入位相設定手段622に予め設定した位相を使用しても良い。また、直流電圧印加手段625と連動して、自動的に設定されるようにしても良い。   For example, as shown in FIG. 8, when a DC voltage is applied between the uv terminals of the secondary winding 322, the DC magnetic flux of the U-phase iron core of the three-phase transformer 320 is about + 100% as in FIG. Thus, the DC magnetic flux of the V-phase iron core and the DC magnetic flux of the W-phase iron core are each about -50%. Therefore, as shown in FIG. 10, 180 ° (timing C in FIG. 10) of the U-phase voltage at which the voltage transitions from positive polarity to negative polarity is set as the electrical input phase. The closing phase of the circuit breaker may be set each time, or a phase preset in the closing phase setting means 622 may be used. Further, it may be automatically set in conjunction with the DC voltage applying means 625.

ステップ4:ステップ3で設定した投入位相を電気的な投入タイミングとして、3相一括操作型遮断器220を3相一括で位相制御投入する。なお、位相制御投入のタイミングチャートは、図3の変圧器の位相制御投入のタイミングチャートと同様である。以上の手順により、3相一括操作型遮断器220の位相制御投入により、励磁突入電流を抑制して3相変圧器320を電源に投入することができる。 Step 4 : The three-phase batch operation type circuit breaker 220 is phase-controlled in a three-phase batch with the closing phase set in Step 3 as an electrical closing timing. The timing chart for turning on phase control is the same as the timing chart for turning on phase control of the transformer of FIG. With the above procedure, the three-phase transformer 320 can be turned on by suppressing the magnetizing inrush current by turning on the phase control of the three-phase batch operation type circuit breaker 220.

(効果)
以上の説明から明らかなように、第3実施形態における変圧器の励磁突入電流抑制装置および方法は、以下の効果を有する。
(effect)
As is apparent from the above description, the transformer inrush current suppression device and method in the third embodiment have the following effects.

変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施した場合においても、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制することができる。特に、本実施の形態は、3相一括操作型遮断器を適用している場合に、最適な励磁突入電流抑制方法を提供できる。   Add equipment such as a breaker with a resistor even when conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. In addition, it is possible to suppress the magnetizing inrush current when the transformer is turned on. In particular, this embodiment can provide an optimum excitation inrush current suppression method when a three-phase collective operation type circuit breaker is applied.

また、本実施の形態によれば、2次巻線、もしくは3次巻線のΔ結線の端子間に直流電圧を印加して鉄心を飽和させるので、1次側のY結線の接地方式(直接接地、非接地方式、非有効接地方式(抵抗接地方式))によらず、類似の位相制御投入方式が適用できる。   In addition, according to the present embodiment, since the iron core is saturated by applying a DC voltage between the terminals of the secondary winding or the Δ winding of the tertiary winding, the grounding method of the Y connection on the primary side (directly) Regardless of the grounding, non-grounding method, or non-effective grounding method (resistance grounding method), a similar phase control throwing method can be applied.

(第4実施形態)
(構成)
図11は、本発明の第4実施形態における変圧器の励磁突入電流抑制装置と3相変圧器、および3相遮断器の接続関係を示すブロック図である。
(Fourth embodiment)
(Constitution)
FIG. 11: is a block diagram which shows the connection relation of the magnetizing inrush current suppression apparatus of a transformer in 3rd Embodiment of this invention, a three-phase transformer, and a three-phase circuit breaker.

図11において、110は電力系統の母線(電源母線ともいう)、210U〜Vは各相の主接点が個別に操作される各相操作型遮断器である。330は各相操作型遮断器210によって電源母線110に投入または遮断される3相変圧器であり、その1次巻線331はY結線され、2次巻線332および3次巻線333はΔ結線されている。3相変圧器330は1次巻線331のY結線の中性点が直接接地された直接接地変圧器である。   In FIG. 11, reference numeral 110 denotes a power system bus (also referred to as a power supply bus), and 210U to V are each phase operation type circuit breakers in which the main contacts of each phase are individually operated. Reference numeral 330 denotes a three-phase transformer which is turned on or off from the power supply bus 110 by each phase operation type circuit breaker 210. The primary winding 331 is Y-connected, and the secondary winding 332 and the tertiary winding 333 are Δ Connected. The three-phase transformer 330 is a direct grounding transformer in which the neutral point of the Y connection of the primary winding 331 is directly grounded.

なお、1次巻線331および2次巻線332がY結線され、3次巻線333がΔ結線された3相変圧器など、図11以外の結線の直接接地系の3相変圧器を適用した構成としても良い。励磁突入電流抑制装置630と主回路との接続関係は、第2実施形態と同じなので詳細な説明を省略する。また、励磁突入電流抑制装置630の構成は、直流電圧印加手段635の接続を除き、第2実施形態と同じであるので詳細な説明を省略する。   In addition, a direct grounding type three-phase transformer with a connection other than that shown in FIG. 11 is applied, such as a three-phase transformer in which the primary winding 331 and the secondary winding 332 are Y-connected and the tertiary winding 333 is Δ-connected. It is good also as the structure which carried out. Since the connection relationship between the magnetizing inrush current suppressing device 630 and the main circuit is the same as that of the second embodiment, detailed description thereof is omitted. Further, the configuration of the magnetizing inrush current suppressing device 630 is the same as that of the second embodiment except for the connection of the DC voltage applying means 635, and thus detailed description thereof is omitted.

直流電圧印加手段635は、結線636を介して、3相変圧器330のY結線である1次巻線331の3相の内のいずれか1相の端子と接地端子の間に直流電圧を印加する機能を備えている。図4の例では、1次巻線331のU相端子−中性点(接地)端子間に直流電圧印加手段635が接続されている。なお、直流電圧印加手段635を1次巻線331のV相端子−中性点(接地)端子間、W相端子−中性点(接地)端子間に接続しても良い。なお、本実施形態では、直流電圧印加手段635は、励磁突入電流抑制装置630と同一ユニット内に構成されているが、別ユニットとして構成しても良い。   The DC voltage applying means 635 applies a DC voltage between any one of the three phases of the primary winding 331 that is the Y connection of the three-phase transformer 330 and the ground terminal via the connection 636. It has a function to do. In the example of FIG. 4, a DC voltage application unit 635 is connected between the U-phase terminal of the primary winding 331 and the neutral point (ground) terminal. The DC voltage applying means 635 may be connected between the V phase terminal and the neutral point (ground) terminal of the primary winding 331 and between the W phase terminal and the neutral point (ground) terminal. In the present embodiment, the DC voltage application unit 635 is configured in the same unit as the magnetizing inrush current suppression device 630, but may be configured as a separate unit.

(作用)
第4実施形態における変圧器の励磁突入電流抑制装置の作用について以下に説明する。本実施形態は、例えば、変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施したことにより、変圧器を遮断した時に生じた残留磁束が変化する、もしくは無くなり、試験・点検終了時には、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。
(Function)
The effect | action of the magnetizing inrush current suppression apparatus of the transformer in 4th Embodiment is demonstrated below. In this embodiment, for example, the transformer was cut off by conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. When the residual magnetic flux generated sometimes changes or disappears and the test / inspection ends, some DC magnetic flux remains in the transformer core.

また、その他の何らかの物理的影響により、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。更に、変圧器に何らかの物理的影響が生じた結果、残留磁束が変化する、もしくは無くなり、結果として残留磁束が把握出来なくなった場合も、これに準じるケースとして、同じく適用対象としている。   In addition, a case where some DC magnetic flux remains in the transformer core due to some other physical influence is applied. Furthermore, when the residual magnetic flux changes or disappears as a result of some physical influence on the transformer, and the residual magnetic flux cannot be grasped as a result, it is also applied as a similar case.

以上の前提における変圧器の状態(変圧器鉄心に何らかの直流磁束が残っている状態、又は残留磁束を把握できない場合)を初期状態として、本実施形態による励磁突入電流抑制方法のフローチャートを図12に示す。   FIG. 12 is a flowchart of the excitation inrush current suppression method according to the present embodiment, assuming the state of the transformer based on the above premise (a state in which some DC magnetic flux remains in the transformer core or the case where the residual magnetic flux cannot be grasped) as an initial state. Show.

ステップ1:3相変圧器のY結線の端子−接地間に直流電圧を印加する。
3相変圧器330のY結線の3相の内のいずれか1相の端子と接地端子の間に結線636を介して直流電圧印加手段635からの直流電圧を印加する。
Step 1 : A DC voltage is applied between the Y-connection terminal of the three-phase transformer and the ground.
A DC voltage from the DC voltage applying means 635 is applied between the terminal of any one of the three phases of the Y connection of the three-phase transformer 330 and the ground terminal via the connection 636.

ステップ2:変圧器鉄心が飽和するまで印加時間が経過したか?
直流電圧の印加は変圧器鉄心(直流電圧印加端子に対応する相の鉄心)が飽和したと考えるのに十分な時間の間印加する。なお、直流電圧の印加時間は変圧器毎の固有条件である。図11の例では、1次巻線331のU相端子−中性点(接地)端子間に直流電圧印加手段635からの直流電圧を印加する。この場合、図13に示すように、3相変圧器330のU相鉄心の直流磁束1030Uは約+100%となり、V相鉄心の直流磁束1030VおよびW相鉄心の直流磁束1030Wは各々約−50%になる。
Step 2 : Has the applied time elapsed until the transformer core is saturated?
The DC voltage is applied for a time sufficient to consider that the transformer core (phase core corresponding to the DC voltage application terminal) is saturated. The DC voltage application time is a unique condition for each transformer. In the example of FIG. 11, the DC voltage from the DC voltage applying unit 635 is applied between the U-phase terminal of the primary winding 331 and the neutral point (ground) terminal. In this case, as shown in FIG. 13, the DC magnetic flux 1030U of the U-phase iron core of the three-phase transformer 330 is about + 100%, and the DC magnetic flux 1030V of the V-phase iron core and the DC magnetic flux 1030W of the W-phase iron core are each about -50%. become.

ステップ3:3相遮断器の投入位相を各相個別に設定する。
閉極第1相を直流電圧印加端子に対応する相、すなわち、鉄心を飽和させた相とする。残りの2相は予め設定した時間後に投入する閉極第2相、閉極第3相とする。
Step 3 : Set the input phase of the 3-phase circuit breaker individually for each phase.
The closed first phase is a phase corresponding to the DC voltage application terminal, that is, a phase in which the iron core is saturated. The remaining two phases are a closed second phase and a closed third phase that are input after a preset time.

例えば、図11に示すように、1次巻線331のU相端子−中性点(接地)端子間に直流電圧印加した場合は、図13に示すように、3相変圧器330のU相鉄心の直流磁束1030Uは約+100%となり、V相鉄心の直流磁束1030VおよびW相鉄心の直流磁束1030Wは各々約−50%になっているので、U相遮断器210U投入後の課電状態で3相変圧器のU相に定常状態で誘起される磁束と、直流電圧印加の結果飽和したU相の直流磁束が略一致するタイミングとして、U相遮断器210Uの電気的な投入位相を180°に設定する。残りの2相、すなわち、V相遮断器210VとW相遮断器210Wの電気的な投入位相はU相電圧の0°(又は180°)に対応する位相に設定する。   For example, as shown in FIG. 11, when a DC voltage is applied between the U-phase terminal and the neutral point (ground) terminal of the primary winding 331, the U-phase iron of the three-phase transformer 330 as shown in FIG. The DC magnetic flux 1030U of the core is about + 100%, and the DC magnetic flux 1030V of the V-phase iron core and the DC magnetic flux 1030W of the W-phase iron core are each about -50%. As the timing at which the magnetic flux induced in the steady state in the U phase of the three-phase transformer substantially coincides with the DC magnetic flux of the U phase saturated as a result of applying the DC voltage, the electrical application phase of the U phase breaker 210U is 180 °. Set to. The remaining two phases, that is, the electrical input phases of the V-phase circuit breaker 210V and the W-phase circuit breaker 210W are set to phases corresponding to 0 ° (or 180 °) of the U-phase voltage.

なお、遮断器の投入位相は、都度設定しても良いし、投入位相設定手段632に予め設定した位相を使用しても良い。また、直流電圧印加手段635と連動して、自動的に設定されるようにしても良い。   Note that the closing phase of the circuit breaker may be set each time, or a phase preset in the closing phase setting means 632 may be used. Further, it may be set automatically in conjunction with the DC voltage applying means 635.

ステップ4:ステップ3で設定した投入位相を電気的な投入タイミングとして、3相遮断器210を各相個別に位相制御投入する。
閉極第1相の位相制御投入のタイミングチャートは、図3の変圧器の位相制御投入のタイミングチャートと同じである。図11に示すように、1次巻線331のU相端子−中性点(接地)端子間に直流電圧印加した場合は、U相遮断器210Uは「U相の+100%の直流磁束=U相電源電圧により定常状態で誘起されるU相の磁束」のタイミング、すなわち、U相の電源電圧の180°の位相で電気的に投入される。
Step 4 : The three-phase circuit breaker 210 is phase-controlled individually for each phase using the input phase set in Step 3 as the electrical input timing.
The timing chart for turning on the phase control of the first closed phase is the same as the timing chart for turning on the phase control of the transformer in FIG. As shown in FIG. 11, when a DC voltage is applied between the U-phase terminal of the primary winding 331 and the neutral point (ground) terminal, the U-phase circuit breaker 210U indicates that “+ 100% DC magnetic flux of U phase = U The phase-phase power supply voltage is electrically applied at the timing of the “U-phase magnetic flux induced in a steady state by the phase power supply voltage”, that is, at a phase of 180 ° of the U-phase power supply voltage.

閉極第1相と残りの2相の投入タイミングは、図7に示すタイミングと同じである。
図7に示すように、U相が閉極第1相であり、位相180°のタイミング(図7のタイミングA)で電気的に投入される。続いて1サイクル後に、残りの2相、すなわちV相とW相がU相の180°のタイミング(図7のタイミングB)で電気的に投入される。
The closing timings of the first closed phase and the remaining two phases are the same as the timing shown in FIG.
As shown in FIG. 7, the U phase is a closed first phase, and is electrically turned on at a phase of 180 ° (timing A in FIG. 7). Subsequently, after one cycle, the remaining two phases, that is, the V phase and the W phase are electrically turned on at the timing of 180 ° of the U phase (timing B in FIG. 7).

以上の手順により、各相操作型遮断器210U〜Wの位相制御投入により、励磁突入電流を抑制して3相変圧器330を電源に投入することができる。   With the above procedure, the three-phase transformer 330 can be turned on while suppressing the magnetizing inrush current by turning on the phase control of each phase operation type breaker 210U-W.

(効果)
以上の説明から明らかなように、第4実施形態における変圧器の励磁突入電流抑制装置および方法は、以下の効果を有する。
(effect)
As is clear from the above description, the transformer inrush current suppressing device and method in the fourth embodiment have the following effects.

変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施した場合においても、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制することができる。特に本実施の形態は、設備上の都合で、Δ結線に直流電圧を印加できない場合に有効であり、直接接地系の3相変圧器において、各相操作型遮断器を適用している場合に、最適な励磁突入電流抑制方法を提供できる。   Add equipment such as a breaker with a resistor even when conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. In addition, it is possible to suppress the magnetizing inrush current when the transformer is turned on. In particular, this embodiment is effective when it is not possible to apply a DC voltage to the Δ connection for convenience of equipment, and in the case of applying each phase operation type circuit breaker to a direct grounding three-phase transformer. Thus, it is possible to provide an optimal excitation inrush current suppression method.

(第5実施形態)
(構成)
図14は、本発明の第5実施形態における変圧器の励磁突入電流抑制装置と3相変圧器、および3相遮断器の接続関係を示すブロック図である。第5実施形態の構成は、以下の点を除き、第4実施形態の構成と同じなので、詳細な説明を省略する。
(Fifth embodiment)
(Constitution)
FIG. 14: is a block diagram which shows the connection relation of the magnetizing inrush current suppression apparatus of a transformer in 3rd Embodiment of this invention, a three-phase transformer, and a three-phase circuit breaker. Since the configuration of the fifth embodiment is the same as the configuration of the fourth embodiment except for the following points, detailed description is omitted.

図14において、220は各相の主接点が一括操作される3相一括操作型遮断器である。330は3相一括操作型遮断器220によって電源母線110に投入または遮断される3相変圧器であり、その1次巻線331はY結線され、2次巻線332および3次巻線333はΔ結線されている。3相変圧器330は1次巻線331のY結線の中性点が直接接地された直接接地変圧器である。   In FIG. 14, 220 is a three-phase batch operation type circuit breaker in which the main contacts of each phase are batch operated. Reference numeral 330 denotes a three-phase transformer that is turned on or off by the three-phase collective operation type circuit breaker 220. The primary winding 331 is Y-connected, and the secondary winding 332 and the tertiary winding 333 are Δ is connected. The three-phase transformer 330 is a direct grounding transformer in which the neutral point of the Y connection of the primary winding 331 is directly grounded.

なお、3相一括操作型遮断220の代わりに各相操作遮断器を適用し、各相操作遮断器を3相同時に投入または遮断操作しても良い。また、1次巻線331および2次巻線332がY結線され、3次巻線333がΔ結線された3相変圧器など、図14以外の結線の直接接地系の3相変圧器を適用した構成としても良い。   In addition, each phase operation circuit breaker may be applied instead of the three-phase collective operation type breaker 220, and each phase operation circuit breaker may be turned on or off simultaneously for three phases. In addition, a direct-phase three-phase transformer with a connection other than that shown in FIG. 14, such as a three-phase transformer in which the primary winding 331 and the secondary winding 332 are Y-connected and the tertiary winding 333 is Δ-connected, is applied. It is good also as the structure which carried out.

励磁突入電流抑制装置640と主回路との接続関係は、遮断器が3相一括操作型遮断器220になったことに伴い、投入指令を3相一括で出力することを除き、第4実施形態と同じである。また、励磁突入電流抑制装置640の構成は、投入指令出力手段644が投入位相制御手段643の出力信号を受けて遮断器220の主接点を駆動する操作機構に対して3相一括で投入指令を出力する機能を備えていることを除き、第4実施形態と同じである。   The connection relationship between the magnetizing inrush current suppression device 640 and the main circuit is the same as that of the fourth embodiment, except that a closing command is output in a three-phase batch when the circuit breaker is a three-phase batch operation type circuit breaker 220. Is the same. In addition, the configuration of the magnetizing inrush current suppressing device 640 is such that the closing command output means 644 receives the output signal of the closing phase control means 643 and issues a closing command in three phases to the operating mechanism that drives the main contact of the circuit breaker 220. It is the same as that of 4th Embodiment except having the function to output.

(作用)
第5実施形態における変圧器の励磁突入電流抑制装置の作用について以下に説明する。本実施形態は、例えば、変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施したことにより、変圧器を遮断した時に生じた残留磁束が変化する、もしくは無くなり、試験・点検終了時には、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。
(Function)
The effect | action of the magnetizing inrush current suppression apparatus of the transformer in 5th Embodiment is demonstrated below. In this embodiment, for example, the transformer was cut off by conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. When the residual magnetic flux generated sometimes changes or disappears and the test / inspection ends, some DC magnetic flux remains in the transformer core.

また、その他の何らかの物理的影響により、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。更に、変圧器に何らかの物理的影響が生じた結果、残留磁束が変化する、もしくは無くなり、結果として残留磁束が把握出来なくなった場合も、これに準じるケースとして、同じく適用対象としている。   In addition, a case where some DC magnetic flux remains in the transformer core due to some other physical influence is applied. Furthermore, when the residual magnetic flux changes or disappears as a result of some physical influence on the transformer, and the residual magnetic flux cannot be grasped as a result, it is also applied as a similar case.

以上の前提における変圧器の状態(変圧器鉄心に何らかの直流磁束が残っている状態、又は残留磁束を把握できない場合)を初期状態として、本実施形態による励磁突入電流抑制方法のフローチャートを図15に示す。   FIG. 15 is a flowchart of the excitation inrush current suppression method according to the present embodiment, assuming the state of the transformer based on the above assumption (a state in which any DC magnetic flux remains in the transformer core or a case where the residual magnetic flux cannot be grasped) as an initial state. Show.

ステップ1:3相変圧器のY結線の端子−接地間に直流電圧を印加する。
3相変圧器330のY結線の3相の内のいずれか1相の端子と接地端子の間に結線646を介して直流電圧印加手段645からの直流電圧を印加する。
Step 1 : A DC voltage is applied between the Y-connection terminal of the three-phase transformer and the ground.
A DC voltage from the DC voltage applying means 645 is applied between the terminal of any one of the three phases of the Y connection of the three-phase transformer 330 and the ground terminal via the connection 646.

ステップ2:変圧器鉄心が飽和するまで印加時間が経過したか?
直流電圧の印加は変圧器鉄心(直流電圧印加端子に対応する相の鉄心)が飽和したと考えるのに十分な時間の間印加する。なお、直流電圧の印加時間は変圧器毎の固有条件である。図14の例では、1次巻線331のU相端子−中性点(接地)端子間に直流電圧印加手段645からの直流電圧を印加する。
Step 2 : Has the applied time elapsed until the transformer core is saturated?
The DC voltage is applied for a time sufficient to consider that the transformer core (phase core corresponding to the DC voltage application terminal) is saturated. The DC voltage application time is a unique condition for each transformer. In the example of FIG. 14, the DC voltage from the DC voltage applying means 645 is applied between the U-phase terminal of the primary winding 331 and the neutral point (ground) terminal.

この場合、第4実施形態と同様に、図13に示すように、3相変圧器330のU相鉄心の直流磁束1030Uは約+100%となり、V相鉄心の直流磁束1030VおよびW相鉄心の直流磁束1030Wは各々約−50%になる。   In this case, as in the fourth embodiment, as shown in FIG. 13, the DC magnetic flux 1030U of the U-phase iron core of the three-phase transformer 330 is about + 100%, and the DC magnetic flux 1030V of the V-phase iron core and the direct current of the W-phase iron core. Each of the magnetic fluxes 1030W is about -50%.

ステップ3:3相遮断器の投入位相を3相一括で設定する。
直流磁束が最大の相は、直流電圧印加端子に対応する相、すなわち、鉄心を飽和させた相である(この相をX相とする)。したがって、直流電圧印加の結果飽和したX相の磁束と同極性から逆極性へ遷移するX相の電圧零点を電気的な投入目標として、3相の遮断器を同時に投入させる。例えば、図14に示すように、1次巻線331のU相端子−中性点(接地)端子間に直流電圧印加した場合は、第4実施形態と同様に、図13に示すように、3相変圧器330のU相鉄心の直流磁束は約+100%となり、V相鉄心の直流磁束およびW相鉄心の直流磁束は各々約−50%になる。したがって、第3実施形態と同様に、図10に示すように、電圧が正極性から負極性へ遷移するU相電圧の180°(図10のタイミングC)を電気的な投入位相に設定する。
Step 3 : Set the input phase of the three-phase circuit breaker in three phases.
The phase with the maximum DC magnetic flux is the phase corresponding to the DC voltage application terminal, that is, the phase in which the iron core is saturated (this phase is defined as the X phase). Therefore, a three-phase circuit breaker is simultaneously turned on with an X-phase voltage zero point that transitions from the same polarity as the X-phase magnetic flux saturated as a result of DC voltage application to the opposite polarity as an electrical turn-on target. For example, as shown in FIG. 14, when a DC voltage is applied between the U-phase terminal and the neutral point (ground) terminal of the primary winding 331, as shown in FIG. The DC magnetic flux of the U-phase iron core of the three-phase transformer 330 is about + 100%, and the DC magnetic flux of the V-phase iron core and the DC magnetic flux of the W-phase iron core are each about -50%. Therefore, as in the third embodiment, as shown in FIG. 10, the electrical phase is set to 180 ° (timing C in FIG. 10) of the U-phase voltage at which the voltage changes from positive polarity to negative polarity.

なお、遮断器の投入位相は、都度設定しても良いし、投入位相設定手段642に予め設定した位相を使用しても良い。また、直流電圧印加手段645と連動して、自動的に設定されるようにしても良い。   The closing phase of the circuit breaker may be set each time, or a phase preset in the closing phase setting means 642 may be used. Further, it may be set automatically in conjunction with the DC voltage application means 645.

ステップ4:ステップ3で設定した投入位相を電気的な投入タイミングとして、3相一括操作型遮断器220を3相一括で位相制御投入する。なお、位相制御投入のタイミングチャートは、図3の変圧器の位相制御投入のタイミングチャートと同様である。 Step 4 : The three-phase batch operation type circuit breaker 220 is phase-controlled in a three-phase batch with the closing phase set in Step 3 as an electrical closing timing. The timing chart for turning on phase control is the same as the timing chart for turning on phase control of the transformer of FIG.

以上の手順により、3相一括操作型遮断器220の位相制御投入により、励磁突入電流を抑制して3相変圧器330を電源に投入することができる。   With the above procedure, the three-phase transformer 330 can be turned on by suppressing the magnetizing inrush current by turning on the phase control of the three-phase batch operation type circuit breaker 220.

(効果)
以上の説明から明らかなように、第5実施形態における変圧器の励磁突入電流抑制装置および方法は、以下の効果を有する。変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施した場合においても、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制することができる。
(effect)
As is clear from the above description, the transformer inrush current suppressing device and method in the fifth embodiment have the following effects. Add equipment such as a breaker with a resistor even when conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. In addition, it is possible to suppress the magnetizing inrush current when the transformer is turned on.

特に本実施の形態は、設備上の都合で、Δ結線に直流電圧を印加できない場合に有効であり、直接接地系の3相変圧器において、3相一括操作型遮断器を適用している場合に、最適な励磁突入電流抑制方法を提供できる。   In particular, this embodiment is effective when a DC voltage cannot be applied to the Δ connection for convenience of equipment, and when a three-phase collective operation type circuit breaker is applied to a direct grounding three-phase transformer. In addition, it is possible to provide an optimal excitation inrush current suppression method.

(第6実施形態)
(構成)
図16は、本発明の第6実施形態における変圧器の励磁突入電流抑制装置と3相変圧器、および3相遮断器の接続関係を示すブロック図である。
(Sixth embodiment)
(Constitution)
FIG. 16: is a block diagram which shows the connection relationship of the magnetizing inrush current suppression apparatus of a transformer in 3rd Embodiment of this invention, a three-phase transformer, and a three-phase circuit breaker.

図16において、110は電力系統の母線(電源母線ともいう)、220は各相の主接点が一括操作される3相一括操作型遮断器である。350は3相一括操作型遮断器220によって電源母線110に投入または遮断される3相変圧器であり、その1次巻線351はY結線され、2次巻線352および3次巻線353はΔ結線されている。Znは1次巻線351の中性点を接地するためのインピーダンスである。3相変圧器350は1次巻線351のY結線の中性点がインピーダンスを介して接地された非有効接地変圧器である。   In FIG. 16, 110 is a power system bus (also referred to as a power supply bus), and 220 is a three-phase batch operation type circuit breaker in which the main contacts of each phase are batch operated. Reference numeral 350 denotes a three-phase transformer that is turned on or off to the power supply bus 110 by the three-phase collective operation type circuit breaker 220. The primary winding 351 is Y-connected, and the secondary winding 352 and the tertiary winding 353 are Δ is connected. Zn is an impedance for grounding the neutral point of the primary winding 351. The three-phase transformer 350 is an ineffective grounding transformer in which the neutral point of the Y connection of the primary winding 351 is grounded via an impedance.

なお、1次巻線351および2次巻線352がY結線され、3次巻線353がΔ結線された3相変圧器など、図16以外の結線の非有効接地系の3相変圧器を適用した構成としても良い。また、非接地系の3相変圧器を適用した構成としても良い。   In addition, non-effective grounding type three-phase transformers other than those shown in FIG. 16 such as a three-phase transformer in which the primary winding 351 and the secondary winding 352 are Y-connected and the tertiary winding 353 is Δ-connected. An applied configuration may be used. Moreover, it is good also as a structure which applied the non-grounding type | system | group 3 phase transformer.

励磁突入電流抑制装置650と主回路との接続関係は、第3実施形態と同じなので詳細な説明を省略する。また、励磁突入電流抑制装置650の構成は、直流電圧印加手段655の接続を除き、第3実施形態と同じであるので詳細な説明を省略する。   Since the connection relationship between the magnetizing inrush current suppressing device 650 and the main circuit is the same as that of the third embodiment, detailed description thereof is omitted. Further, the configuration of the magnetizing inrush current suppressing device 650 is the same as that of the third embodiment except for the connection of the DC voltage applying means 655, and thus detailed description thereof is omitted.

直流電圧印加手段655は、結線656を介して、3相変圧器350のY結線である1次巻線351の3相の内のいずれか2相の端子間に直流電圧を印加する機能を備えている。図16の例では、1次巻線351のU相端子−V相端子間に直流電圧印加手段655が接続されている。なお、直流電圧印加手段655を1次巻線351のV相端子−W相端子間、W相端子−U相端子間に接続しても良い。なお、本実施形態では、直流電圧印加手段655は、励磁突入電流抑制装置650と同一ユニット内に構成されているが、別ユニットとして構成しても良い。   The DC voltage application means 655 has a function of applying a DC voltage between terminals of any two phases of the three phases of the primary winding 351 that is the Y connection of the three-phase transformer 350 via the connection 656. ing. In the example of FIG. 16, a DC voltage application unit 655 is connected between the U-phase terminal and the V-phase terminal of the primary winding 351. The DC voltage application means 655 may be connected between the V-phase terminal and the W-phase terminal of the primary winding 351 and between the W-phase terminal and the U-phase terminal. In the present embodiment, the DC voltage application unit 655 is configured in the same unit as the magnetizing inrush current suppression device 650, but may be configured as a separate unit.

(作用)
第6実施形態における変圧器の励磁突入電流抑制装置の作用について以下に説明する。本実施形態は、例えば、変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施したことにより、変圧器を遮断した時に生じた残留磁束が変化する、もしくは無くなり、試験・点検終了時には、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。
(Function)
The effect | action of the magnetizing inrush current suppression apparatus of the transformer in 6th Embodiment is demonstrated below. In this embodiment, for example, the transformer was cut off by conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. When the residual magnetic flux generated sometimes changes or disappears and the test / inspection ends, some DC magnetic flux remains in the transformer core.

また、その他の何らかの物理的影響により、変圧器鉄心に何らかの直流磁束が残った場合を適用対象としている。更に、変圧器に何らかの物理的影響が生じた結果、残留磁束が変化する、もしくは無くなり、結果として残留磁束が把握出来なくなった場合も、これに準じるケースとして、同じく適用対象としている。   In addition, a case where some DC magnetic flux remains in the transformer core due to some other physical influence is applied. Furthermore, when the residual magnetic flux changes or disappears as a result of some physical influence on the transformer, and the residual magnetic flux cannot be grasped as a result, it is also applied as a similar case.

以上の前提における変圧器の状態(変圧器鉄心に何らかの直流磁束が残っている状態、又は残留磁束を把握できない場合)を初期状態として、本実施形態による励磁突入電流抑制方法のフローチャートを図17に示す。   FIG. 17 is a flowchart of the excitation inrush current suppression method according to the present embodiment, assuming that the state of the transformer based on the above premise (a state in which some DC magnetic flux remains in the transformer core or a case where the residual magnetic flux cannot be grasped) is an initial state. Show.

ステップ1:3相変圧器のY結線の端子間に直流電圧を印加する。
3相変圧器350のY結線の3相の内のいずれか2相の端子間に結線656を介して直流電圧印加手段655からの直流電圧を印加する。
Step 1 : A DC voltage is applied between the Y connection terminals of the three-phase transformer.
A DC voltage from the DC voltage applying means 655 is applied between terminals of any two phases of the three phases of the Y connection of the three-phase transformer 350 via the connection 656.

ステップ2:変圧器鉄心が飽和するまで印加時間が経過したか?
直流電圧の印加は変圧器鉄心(直流電圧印加端子に対応する相の鉄心)が飽和したと考えるのに十分な時間の間印加する。なお、直流電圧の印加時間は変圧器毎の固有条件である。図16の例では、1次巻線351のU相端子−V相端子間に直流電圧印加手段655からの直流電圧を印加する。この場合、図18に示すように、3相変圧器330のU相鉄心の直流磁束1050Uは約+100%となり、V相鉄心の直流磁束1050Vは約−100%となり、W相鉄心の直流磁束1050Wは約0%になる。
Step 2 : Has the applied time elapsed until the transformer core is saturated?
The DC voltage is applied for a time sufficient to consider that the transformer core (phase core corresponding to the DC voltage application terminal) is saturated. The DC voltage application time is a unique condition for each transformer. In the example of FIG. 16, the DC voltage from the DC voltage applying unit 655 is applied between the U-phase terminal and the V-phase terminal of the primary winding 351. In this case, as shown in FIG. 18, the DC magnetic flux 1050U of the U-phase iron core of the three-phase transformer 330 is about + 100%, the DC magnetic flux 1050V of the V-phase iron core is about −100%, and the DC magnetic flux 1050W of the W-phase iron core. Becomes about 0%.

ステップ3:3相遮断器の投入位相を3相一括で設定する。
直流磁束の絶対値が最大の相は、直流電圧印加端子間に対応する2相、すなわち、鉄心をそれぞれ正極性と負極性に飽和させた2相である。ここでは磁束が正極性の相を選択し、これをX相とする。したがって、直流電圧印加の結果飽和したX相の磁束と同極性から逆極性へ遷移するX相の電圧零点を電気的な投入目標として、3相の遮断器を同時に投入させる。
Step 3 : Set the input phase of the three-phase circuit breaker in three phases.
The phase with the maximum absolute value of the DC magnetic flux is the two phases corresponding to the DC voltage application terminals, that is, the two phases in which the iron core is saturated to the positive polarity and the negative polarity, respectively. Here, a phase having a positive magnetic flux is selected, and this is designated as an X phase. Therefore, a three-phase circuit breaker is simultaneously turned on with an X-phase voltage zero point that transitions from the same polarity as the X-phase magnetic flux saturated as a result of DC voltage application to the opposite polarity as an electrical turn-on target.

例えば、図16に示すように、1次巻線351のU相端子−V相端子間に直流電圧印加した場合は、図18に示すように、3相変圧器330のU相鉄心の直流磁束1050Uは約+100%となり、V相鉄心の直流磁束1050Vは約−100%となり、W相鉄心の直流磁束1050Wは約0%になる。したがって、直流磁束が正極性の相を選択する場合、図19に示すように、電圧が正極性から負極性へ遷移するU相電圧の180°(図19のタイミングD)を電気的な投入位相に設定する。   For example, as shown in FIG. 16, when a DC voltage is applied between the U-phase terminal and the V-phase terminal of the primary winding 351, the DC magnetic flux of the U-phase iron core of the three-phase transformer 330 as shown in FIG. 1050U is about + 100%, the DC magnetic flux 1050V of the V-phase core is about -100%, and the DC magnetic flux 1050W of the W-phase core is about 0%. Accordingly, when a phase in which the DC magnetic flux is positive is selected, as shown in FIG. 19, the 180 ° U-phase voltage (timing D in FIG. 19) at which the voltage transitions from positive polarity to negative polarity is electrically applied. Set to.

なお、遮断器の投入位相は、都度設定しても良いし、投入位相設定手段652に予め設定した位相を使用しても良い。また、直流電圧印加手段655と連動して、自動的に設定されるようにしても良い。   The closing phase of the circuit breaker may be set each time, or a phase preset in the closing phase setting means 652 may be used. Further, it may be set automatically in conjunction with the DC voltage application means 655.

ステップ4:ステップ3で設定した投入位相を電気的な投入タイミングとして、3相一括操作型遮断器220を3相一括で位相制御投入する。なお、位相制御投入のタイミングチャートは、図3の変圧器の位相制御投入のタイミングチャートと同様である。 Step 4 : The three-phase batch operation type circuit breaker 220 is phase-controlled in a three-phase batch with the closing phase set in Step 3 as an electrical closing timing. The timing chart for turning on phase control is the same as the timing chart for turning on phase control of the transformer of FIG.

以上の手順により、3相一括操作型遮断器220の位相制御投入により、励磁突入電流を抑制して3相変圧器350を電源に投入することができる。なお、本実施形態では3相遮断器の投入位相を設定するに当たり、直流磁束が正極性の相を選択する場合について説明したが、負極性の相を選択しても良い。負極性の磁束を選択する場合について、図16、図18の場合を例にとり、以下に説明する。   With the above procedure, the three-phase transformer 350 can be turned on while suppressing the magnetizing inrush current by turning on the phase control of the three-phase batch operation type circuit breaker 220. In the present embodiment, the case where the DC magnetic flux is selected as the positive polarity phase has been described in setting the input phase of the three-phase circuit breaker. However, the negative polarity phase may be selected. The case of selecting a negative magnetic flux will be described below by taking the case of FIGS. 16 and 18 as an example.

図18では、3相変圧器330のU相鉄心の直流磁束1050Uは約+100%となり、V相鉄心の直流磁束1050Vは約−100%となり、W相鉄心の直流磁束1050Wは約0%になる。したがって、直流磁束が負極性の相を選択する場合は、図19に示すように、電圧が負極性から正極性へ遷移するV相電圧の0°(図19のタイミングE)を電気的な投入位相に設定する。V相の0°のタイミングで3相一括操作型遮断器220を位相制御投入すれば、励磁突入電流を抑制して3相変圧器350を電源に投入することができる。   In FIG. 18, the DC magnetic flux 1050U of the U-phase iron core of the three-phase transformer 330 is about + 100%, the DC magnetic flux 1050V of the V-phase iron core is about −100%, and the DC magnetic flux 1050W of the W-phase iron core is about 0%. . Therefore, when selecting a phase in which the DC magnetic flux has a negative polarity, as shown in FIG. 19, as shown in FIG. Set to phase. If the three-phase batch operation type circuit breaker 220 is phase-controlled at the 0 ° timing of the V phase, the three-phase transformer 350 can be turned on while suppressing the magnetizing inrush current.

(効果)
以上の説明から明らかなように、第6実施形態における変圧器の励磁突入電流抑制装置および方法は、以下の効果を有する。
(effect)
As is clear from the above description, the transformer inrush current suppressing device and method in the sixth embodiment have the following effects.

変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施した場合においても、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制することができる。特に本実施の形態は、設備上の都合で、Δ結線に直流電圧を印加できない場合に有効であり、非接地系、又は非有効接地系(抵抗接地系)の3相変圧器において、3相一括操作型遮断器を適用している場合に、最適な励磁突入電流抑制方法を提供できる。   Add equipment such as a breaker with a resistor even when conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. In addition, it is possible to suppress the magnetizing inrush current when the transformer is turned on. In particular, the present embodiment is effective when a DC voltage cannot be applied to the Δ connection for convenience of equipment, and in a three-phase transformer of a non-grounding system or a non-effective grounding system (resistance grounding system) When a batch operation type circuit breaker is applied, an optimum excitation inrush current suppression method can be provided.

(第7実施形態)
(構成)
本発明の第7実施形態の構成は、第6実施形態と同じなので、説明を省略する。
(Seventh embodiment)
(Constitution)
Since the structure of 7th Embodiment of this invention is the same as 6th Embodiment, description is abbreviate | omitted.

(作用)
第7実施形態における変圧器の励磁突入電流抑制装置の作用について以下に説明する。第7実施形態の励磁突入電流抑制方法のフローチャートは、ステップ3「3相遮断器の投入位相を3相一括で設定する」を除き、第6実施形態と同じ(図17を参照)なので、ステップ3についてのみ以下に詳細に説明する。
(Function)
The effect | action of the magnetizing inrush current suppression apparatus of the transformer in 7th Embodiment is demonstrated below. The flowchart of the magnetizing inrush current suppression method of the seventh embodiment is the same as that of the sixth embodiment (see FIG. 17) except for step 3 “set the three-phase circuit breaker closing phase in a three-phase batch” (see FIG. 17). Only 3 will be described in detail below.

ステップ3:3相遮断器の投入位相を3相一括で設定する。
直流電圧を印加していない端子に対応する相(この相をX相とする)のピーク電圧のタイミング(90°又は270°)が投入位相の候補となる。なお、一般には、直流磁束の絶対値が最小の相をX相として選択する。
Step 3 : Set the input phase of the three-phase circuit breaker in three phases.
The peak voltage timing (90 ° or 270 °) of the phase corresponding to the terminal to which no DC voltage is applied (this phase is assumed to be the X phase) is a candidate for the input phase. In general, the phase having the minimum absolute value of the DC magnetic flux is selected as the X phase.

2つあるX相ピーク電圧のうち、直流電圧を印加して鉄心を飽和させた残りの2相において、遮断器投入後の課電状態で3相変圧器の各々の相に定常状態で誘起される磁束の極性と、直流電圧印加の結果飽和した当該相の直流磁束の極性が各々同極性となる期間と一致する方のX相ピーク電圧を最終的な投入位相とし、このタイミングを電気的な投入目標として、3相の遮断器を同時に投入させる。   Of the two X-phase peak voltages, the remaining two phases, in which a DC voltage is applied to saturate the iron core, are induced in a steady state in each phase of the three-phase transformer in the applied state after the circuit breaker is turned on. The X-phase peak voltage that coincides with the period in which the polarity of the magnetic flux and the polarity of the DC magnetic flux of the relevant phase saturated as a result of DC voltage application are the same polarity is set as the final input phase, and this timing is electrically As an input target, a three-phase circuit breaker is simultaneously input.

例えば、図17に示すように、1次巻線351のU相端子−V相端子間に直流電圧印加した場合は、図18に示すように、3相変圧器330のU相鉄心の直流磁束1050Uは約+100%となり、V相鉄心の直流磁束1050Vは約−100%となり、W相鉄心の直流磁束1050Wは約0%になる。したがって、直流電圧を印加していないW相のピーク電圧のタイミング(90°又は270°)が投入位相の候補となる。   For example, as shown in FIG. 17, when a DC voltage is applied between the U-phase terminal and the V-phase terminal of the primary winding 351, the DC magnetic flux of the U-phase iron core of the three-phase transformer 330 as shown in FIG. 1050U is about + 100%, the DC magnetic flux 1050V of the V-phase core is about -100%, and the DC magnetic flux 1050W of the W-phase core is about 0%. Therefore, the timing (90 ° or 270 °) of the peak voltage of the W phase to which no DC voltage is applied is a candidate for the input phase.

次に、直流電圧を印加して鉄心を飽和させた残りの2相の状態を考慮する。図20に示すように、遮断器投入後の課電状態で3相変圧器のU相に定常状態で誘起される磁束の極性と、直流電圧印加の結果飽和したU相の直流磁束(+100%)の極性が同極性である期間は期間aである。一方、遮断器投入後の課電状態で3相変圧器のV相に定常状態で誘起される磁束の極性と、直流電圧印加の結果飽和したV相の直流磁束(−100%)の極性が同極性である期間は期間bである。   Next, the remaining two-phase state in which a DC voltage is applied to saturate the iron core is considered. As shown in FIG. 20, the polarity of the magnetic flux induced in the steady state in the U phase of the three-phase transformer in the applied state after the circuit breaker is turned on, and the DC magnetic flux of the U phase saturated as a result of applying the DC voltage (+ 100% ) Is a period a. On the other hand, the polarity of the magnetic flux induced in the steady state in the V phase of the three-phase transformer in the applied state after turning on the circuit breaker and the polarity of the DC magnetic flux (−100%) of the V phase saturated as a result of applying the DC voltage are The period having the same polarity is the period b.

従って、期間aと期間bが重なる期間におけるW相のピーク電圧のタイミングが最終的な投入位相になる。以上より、図20の投入タイミングF、すなわち、W相電圧の270°を電気的な投入位相に設定する。   Accordingly, the timing of the W-phase peak voltage in the period in which the period a and the period b overlap becomes the final input phase. From the above, the input timing F of FIG. 20, that is, the W-phase voltage of 270 ° is set as the electrical input phase.

以上の手順により、3相一括操作型遮断器220の位相制御投入により、励磁突入電流を抑制して3相変圧器350を電源に投入することができる。   With the above procedure, the three-phase transformer 350 can be turned on while suppressing the magnetizing inrush current by turning on the phase control of the three-phase batch operation type circuit breaker 220.

(効果)
以上の説明から明らかなように、第7実施形態における変圧器の励磁突入電流抑制装置および方法は、以下の効果を有する。
(effect)
As is apparent from the above description, the transformer inrush current suppressing device and method according to the seventh embodiment have the following effects.

変圧器の巻線抵抗測定や変流器の極性チェックなど、変圧器巻線への直流電圧印加を伴う現地試験・点検などを実施した場合においても、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制することができる。特に本実施の形態は、設備上の都合で、Δ結線に直流電圧を印加できない場合に有効であり、非接地系、又は非有効接地系(抵抗接地系)の3相変圧器において、3相一括操作型遮断器を適用している場合に、最適な励磁突入電流抑制方法を提供できる。   Add equipment such as a breaker with a resistor even when conducting on-site tests and inspections involving application of DC voltage to the transformer winding, such as measuring the winding resistance of the transformer and checking the polarity of the current transformer. In addition, it is possible to suppress the magnetizing inrush current when the transformer is turned on. In particular, the present embodiment is effective when a DC voltage cannot be applied to the Δ connection for convenience of equipment, and in a three-phase transformer of a non-grounding system or a non-effective grounding system (resistance grounding system) When a batch operation type circuit breaker is applied, an optimum excitation inrush current suppression method can be provided.

(変形例1)
第6実施形態、第7実施形態では、遮断器が3相一括操作型遮断器である場合について説明した。3相変圧器が非接地系、又は非有効接地系(抵抗接地系)の3相変圧器であり、かつ遮断器が各相操作型遮断器であって各相個別に遮断器を投入する場合においても、第3実施形態と類似の方法により変圧器投入時の励磁突入電流を抑制することができる。この場合は、投入位相の設定方法、投入位相制御の方法として、特許文献2に記載の方法を採用すればよい。
(Modification 1)
In the sixth embodiment and the seventh embodiment, the case where the circuit breaker is a three-phase collective operation type circuit breaker has been described. When the three-phase transformer is a non-grounded or non-effective grounding (resistive grounding) three-phase transformer, and the circuit breaker is a phase-operated circuit breaker, and each circuit breaker is turned on individually However, the magnetizing inrush current at the time of turning on the transformer can be suppressed by a method similar to that of the third embodiment. In this case, the method described in Patent Document 2 may be adopted as a method for setting the input phase and a method for controlling the input phase.

本変形例によれば、設備上の都合で、Δ結線に直流電圧を印加できない場合に有効であり、非接地系、又は非有効接地系(抵抗接地系)の3相変圧器において、各相操作型遮断器を適用している場合に、最適な励磁突入電流抑制方法を提供できる。   According to this modification, it is effective when a DC voltage cannot be applied to the Δ connection due to facilities, and each phase of the non-grounding system or non-effective grounding system (resistance grounding system) When an operation type circuit breaker is applied, an optimum excitation inrush current suppression method can be provided.

(変形例2)
変圧器の残留磁束の状態が不明の場合にも、前述の第1実施形態〜第7実施形態、および変形例1の手法を適用することにより、同様に、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制することができることは明らかである。
(Modification 2)
Similarly, when the state of the residual magnetic flux of the transformer is unknown, by applying the methods of the first to seventh embodiments and the first modification, the equipment such as a breaker with a resistor is provided. It is clear that the magnetizing inrush current at the time of turning on the transformer can be suppressed without adding.

従って、本実施形態によれば、点検のための機器停止の時間的制約や、電力会社の運用上の制約、又は既設変電設備への取り付けスペースなどの物理的制約や安全上の制約などの理由により、計器用変圧器(VT)等を付加することが不可能であり、変圧器の残留磁束を把握することが出来ない場合でも、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制することができる。   Therefore, according to the present embodiment, there are reasons such as time restrictions for equipment stoppage for inspection, operational restrictions of electric power companies, physical restrictions such as installation space for existing substations, and safety restrictions. Therefore, even if it is impossible to add a voltage transformer (VT) etc. and the residual magnetic flux of the transformer cannot be grasped, it is possible to transform without adding equipment such as a breaker with a resistor. The magnetizing inrush current when the device is turned on can be suppressed.

また、本変形例によれば、変圧器の遮断制御による残留磁束の制御が不可能な系統においても、抵抗体付き遮断器等の設備を付加せずに、変圧器投入時の励磁突入電流を抑制することができる。   Further, according to this modification, even in a system in which the residual magnetic flux cannot be controlled by the breaker control of the transformer, the magnetizing inrush current at the time of turning on the transformer is reduced without adding equipment such as a breaker with a resistor. Can be suppressed.

本発明の第1実施形態における変圧器の励磁突入電流抑制装置と変圧器、および遮断器の接続関係を示すブロック図。The block diagram which shows the connection relation of the magnetizing inrush current suppression apparatus of a transformer in 1st Embodiment of this invention, a transformer, and a circuit breaker. 本発明の第1実施形態における変圧器の励磁突入電流抑制方法のフローチャート。The flowchart of the magnetizing inrush current suppression method of the transformer in 1st Embodiment of this invention. 変圧器の位相制御投入のタイミングチャート。Timing chart of transformer phase control input. 本発明の第2実施形態における変圧器の励磁突入電流抑制装置と3相変圧器、および3相遮断器の接続関係を示すブロック図。The block diagram which shows the connection relationship of the magnetizing inrush current suppression apparatus of a transformer in 2nd Embodiment of this invention, a three-phase transformer, and a three-phase circuit breaker. 本発明の第2実施形態における変圧器の励磁突入電流抑制方法のフローチャート。The flowchart of the magnetizing inrush current suppression method of the transformer in 2nd Embodiment of this invention. 本発明の第2実施形態における直流電圧印加端子と直流磁束の関係。The relationship between the DC voltage application terminal and DC magnetic flux in 2nd Embodiment of this invention. 3相変圧器における各相操作型遮断器の位相制御投入のタイミングチャート。The timing chart of phase control injection | throwing-in of each phase operation type circuit breaker in a three-phase transformer. 本発明の第3実施形態における変圧器の励磁突入電流抑制装置と3相変圧器、および3相遮断器の接続関係を示すブロック図。The block diagram which shows the connection relationship of the magnetizing inrush current suppression apparatus of a transformer in 3rd Embodiment of this invention, a three-phase transformer, and a three-phase circuit breaker. 本発明の第3実施形態における変圧器の励磁突入電流抑制方法のフローチャート。The flowchart of the magnetizing inrush current suppression method of the transformer in 3rd Embodiment of this invention. 本発明の第3実施形態における3相変圧器の直流磁束に対する3相一括操作型遮断器の位相制御投入のタイミングチャート。The timing chart of the phase control injection | throwing-in of the three-phase collective operation type circuit breaker with respect to the DC magnetic flux of the three-phase transformer in 3rd Embodiment of this invention. 本発明の第4実施形態における変圧器の励磁突入電流抑制装置と3相変圧器、および3相遮断器の接続関係を示すブロック図。The block diagram which shows the connection relation of the magnetizing inrush current suppression apparatus of a transformer in 4th Embodiment of this invention, a three-phase transformer, and a three-phase circuit breaker. 本発明の第4実施形態における変圧器の励磁突入電流抑制方法のフローチャート。The flowchart of the magnetizing inrush current suppression method of the transformer in 4th Embodiment of this invention. 本発明の第4実施形態における直流電圧印加端子と直流磁束の関係を示す結線図。The connection diagram which shows the relationship between the DC voltage application terminal and DC magnetic flux in 4th Embodiment of this invention. 本発明の第5実施形態における変圧器の励磁突入電流抑制装置と3相変圧器、および3相遮断器の接続関係を示すブロック図。The block diagram which shows the connection relation of the magnetizing inrush current suppression apparatus of a transformer in 5th Embodiment of this invention, a three-phase transformer, and a three-phase circuit breaker. 本発明の第5実施形態における変圧器の励磁突入電流抑制方法のフローチャート。The flowchart of the magnetizing inrush current suppression method of the transformer in 5th Embodiment of this invention. 本発明の第6実施形態における変圧器の励磁突入電流抑制装置と3相変圧器、および3相遮断器の接続関係を示すブロック図。The block diagram which shows the connection relation of the magnetizing inrush current suppression apparatus of a transformer in 6th Embodiment of this invention, a three-phase transformer, and a three-phase circuit breaker. 本発明の第6実施形態における変圧器の励磁突入電流抑制方法のフローチャート。The flowchart of the magnetizing inrush current suppression method of the transformer in 6th Embodiment of this invention. 本発明の第6実施形態における直流電圧印加端子と直流磁束の関係を示す結線図。The connection diagram which shows the relationship between the DC voltage application terminal and DC magnetic flux in 6th Embodiment of this invention. 本発明の第6実施形態における3相変圧器の直流磁束に対する3相一括操作型遮断器の位相制御投入のタイミングチャート。The timing chart of the phase control injection | throwing-in of the three-phase collective operation type circuit breaker with respect to the DC magnetic flux of the three-phase transformer in 6th Embodiment of this invention. 本発明の第7実施形態における3相変圧器の直流磁束に対する3相一括操作型遮断器の位相制御投入のタイミングチャート。The timing chart of the phase control injection | throwing-in of the three-phase collective operation type circuit breaker with respect to the DC magnetic flux of the three-phase transformer in 7th Embodiment of this invention.

符号の説明Explanation of symbols

200、210、220…遮断器
300、310、320、330、350…変圧器
311、321、331、351…1次巻線
312、322、332、352…2次巻線
313、323、333、353…3次巻線
400、410…計器用変圧器
600、610、620、630、640、650…励磁突入電流抑制装置
601、611、621、631、641、651…電圧計測手段
602、612、622、632、642、652…投入位相設定手段
603、613、623、633、643、653…投入位相制御手段
605、615、624、634、644、654…直流電圧印加手段
200, 210, 220 ... Circuit breakers 300, 310, 320, 330, 350 ... Transformers 311, 321, 331, 351 ... Primary windings 312, 322, 332, 352 ... Secondary windings 313, 323, 333, 353 ... tertiary winding 400, 410 ... instrument transformer 600, 610, 620, 630, 640, 650 ... magnetizing inrush current suppression device 601, 611, 621, 631, 641, 651 ... voltage measuring means 602, 612, 622, 632, 642, 652 ... closing phase setting means 603, 613, 623, 633, 643, 653 ... closing phase control means 605, 615, 624, 634, 644, 654 ... DC voltage applying means

Claims (15)

変圧器と、前記変圧器の電源への投入および電源からの遮断を行う遮断器とを備え、前記変圧器を励磁させるために前記遮断器が投入されたときに、前記変圧器に発生する励磁突入電流を抑制する変圧器の励磁突入電流抑制方法において、
前記遮断器を投入する前に、前記変圧器に直流電圧を印加して、変圧器の鉄心の磁束を飽和させ、
前記遮断器投入後の課電状態で前記変圧器に定常状態で誘起される磁束と、前記直流電圧印加の結果飽和した磁束が略一致するタイミングを電気的な投入目標として、前記遮断器を投入させることを特徴とする変圧器の励磁突入電流抑制方法。
An excitation generated in the transformer when the circuit breaker is turned on to energize the transformer. In the method of suppressing the magnetizing inrush current of the transformer that suppresses the inrush current,
Before turning on the circuit breaker, a DC voltage is applied to the transformer to saturate the magnetic flux in the iron core of the transformer,
The circuit breaker is turned on with an electrical application target of the timing at which the magnetic flux induced in a steady state in the transformer in the applied state after the circuit breaker is turned on and the magnetic flux saturated as a result of applying the DC voltage substantially coincide. A method for suppressing the magnetizing inrush current of a transformer.
Y結線に接続された1次巻線と、△結線された2次巻線または3次巻線を有する3相変圧器と、この3相変圧器を3相電源へ投入および3相電源から遮断する3相遮断器とを備え、前記3相変圧器を励磁させるために前記3相遮断器が投入されたときに、前記3相変圧器に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑制方法において、
前記3相遮断器を投入する前に、前記3相変圧器のΔ結線の2端子間に直流電圧を印加して、このΔ結線の直流電圧印加端子に対応した前記3相変圧器の特定相の鉄心の磁束を飽和させ、
前記3相遮断器投入後の課電状態で鉄心を飽和させた前記特定相に定常状態で誘起される磁束と、直流電圧印加の結果飽和した前記特定相の磁束が略一致するタイミングを電気的な投入目標として、前記3相遮断器を投入させることを特徴とする変圧器の励磁突入電流抑制方法。
A primary winding connected to the Y connection, a three-phase transformer having a △ -connected secondary winding or tertiary winding, and the three-phase transformer is turned on and off from the three-phase power supply And a three-phase circuit breaker that suppresses excitation inrush current generated in the three-phase transformer when the three-phase circuit breaker is turned on to excite the three-phase transformer. In the excitation inrush current suppression method of
Before turning on the three-phase circuit breaker, a DC voltage is applied between two terminals of the Δ connection of the three-phase transformer, and a specific phase of the three-phase transformer corresponding to the DC voltage application terminal of the Δ connection Saturate the magnetic flux of the iron core,
The timing at which the magnetic flux induced in a steady state in the specific phase in which the iron core is saturated in the applied state after turning on the three-phase circuit breaker and the magnetic flux in the specific phase saturated as a result of DC voltage application substantially coincide with each other. A method for suppressing the magnetizing inrush current of a transformer, characterized in that the three-phase circuit breaker is turned on as a proper turn-on target.
前記3相遮断器は各相操作型遮断器であり、
鉄心を飽和させた特定相を閉極第1相とし、前記閉極第1相の遮断器投入後の課電状態で前記3相変圧器の前記閉極第1相に定常状態で誘起される磁束と、直流電圧印加の結果飽和した前記閉極第1相の磁束が略一致するタイミングを電気的な投入目標として、前記3相遮断器の前記閉極第1相を投入させ、
残る2相は、予め設定した時間の後、先に投入された前記閉極第1相の相電圧零点で電気的に投入させることを特徴とする請求項2記載の変圧器の励磁突入電流抑制方法。
The three-phase circuit breaker is a phase operation type circuit breaker,
The specific phase with the iron core saturated is defined as a closed first phase, and is induced in the closed first phase of the three-phase transformer in a steady state in the applied state after turning on the breaker of the closed first phase. With the timing when the magnetic flux and the magnetic flux of the closed first phase saturated as a result of DC voltage application substantially coincide with each other as an electrical application target, the closed first phase of the three-phase circuit breaker is applied,
The remaining two phases are electrically turned on at a phase voltage zero point of the first phase of the first closed pole that has been previously turned on after a preset time, and the inrush current suppression of the transformer according to claim 2 Method.
鉄心を飽和させた特定相の相電圧が、直流電圧印加の結果飽和した当該相の磁束と同極性から逆極性へ遷移する電圧零点を電気的な投入目標として、3相の遮断器を同時に投入させることを特徴とする請求項2記載の変圧器の励磁突入電流抑制方法。   Three-phase circuit breakers are simultaneously turned on, with the voltage zero point at which the phase voltage of the specific phase that has saturated the iron core transitions from the same polarity to the opposite polarity as the magnetic flux of the relevant phase saturated as a result of DC voltage application as an electrical turn-on target The method according to claim 2, wherein the magnetizing inrush current is suppressed. Y結線に接続された1次巻線を有する3相変圧器と、前記3相変圧器の3相電源への投入および3相電源からの遮断を行う3相遮断器とからなる3相回路で、前記3相変圧器を励磁させるために前記3相遮断器が投入されたときに、前記3相変圧器に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑制方法において、
前記3相遮断器を投入する前に、前記3相変圧器の1次巻線であるY結線の3相の内の何れか1相の端子と接地端子の間に直流電圧を印加して、このY結線の直流電圧印加端子に対応した前記3相変圧器の特定相の鉄心の磁束を飽和させ、
前記3相遮断器投入後の課電状態で直流電圧印加時に選択した鉄心を飽和させた前記特定相に定常状態で誘起される磁束と、直流電圧印加の結果飽和した前記特定相の磁束が略一致するタイミングを電気的な投入目標として、前記3相遮断器を投入させることを特徴とする変圧器の励磁突入電流抑制方法。
A three-phase circuit comprising a three-phase transformer having a primary winding connected to a Y connection, and a three-phase circuit breaker for turning on and off the three-phase power supply of the three-phase transformer. In the method for suppressing the excitation inrush current of the transformer, the excitation inrush current generated in the three-phase transformer is suppressed when the three-phase circuit breaker is turned on to excite the three-phase transformer.
Before turning on the three-phase circuit breaker, a DC voltage is applied between any one of the three phases of the Y connection, which is the primary winding of the three-phase transformer, and the ground terminal, Saturate the magnetic flux of the iron core of the specific phase of the three-phase transformer corresponding to the DC voltage application terminal of this Y connection,
The magnetic flux induced in the steady state in the specific phase in which the iron core selected when the DC voltage is applied in the applied state after the three-phase circuit breaker is turned on and the magnetic flux in the specific phase saturated as a result of the DC voltage application are approximately A method for suppressing a magnetizing inrush current of a transformer, wherein the three-phase circuit breaker is turned on with the coincidence timing as an electrical turn-on target.
前記3相遮断器は各相操作型遮断器であり、
前記直流電圧印加時に選択した鉄心を飽和させた特定相を閉極第1相とし、前記閉極第1相の遮断器投入後の課電状態で前記3相変圧器の前記閉極第1相に定常状態で誘起される磁束と、直流電圧印加の結果飽和した前記閉極第1相の磁束が略一致するタイミングを電気的な投入目標として、前記3相遮断器の前記閉極第1相を投入させ、
残る2相は、予め設定した時間の後、先に投入された前記閉極第1相の相電圧零点で電気的に投入させることを特徴とする請求項5記載の変圧器の励磁突入電流抑制方法。
The three-phase circuit breaker is a phase operation type circuit breaker,
The specific phase in which the iron core selected at the time of applying the DC voltage is saturated is a closed first phase, and the closed first phase of the three-phase transformer is in an applied state after the circuit breaker of the closed first phase is turned on. The closed first phase of the three-phase circuit breaker is set to an electrical input target at which the magnetic flux induced in a steady state at approximately the same time as the magnetic flux of the closed first phase saturated as a result of applying a DC voltage. ,
6. The inrush current suppression of a transformer according to claim 5, wherein the remaining two phases are electrically turned on after a preset time at the phase voltage zero point of the closed first phase that was previously turned on. Method.
前記直流電圧印加時に選択した鉄心を飽和させた特定相の相電圧が、直流電圧印加の結果飽和した当該相の磁束と同極性から逆極性へ遷移する電圧零点を電気的な投入目標として、3相の遮断器を同時に投入させることを特徴とする請求項5記載の変圧器の励磁突入電流抑制方法。   The voltage zero point at which the phase voltage of the specific phase that has saturated the iron core selected when the DC voltage is applied transitions from the same polarity to the opposite polarity as the magnetic flux of the phase that is saturated as a result of the DC voltage application is 3 6. The method according to claim 5, wherein the phase breakers are turned on simultaneously. 1次巻線がY結線に接続され、Y結線の中性点が非接地もしくはインピーダンスを有する素子を介して接地された3相変圧器と、前記3相変圧器の3相電源への投入および3相電源からの遮断を行う3相遮断器とからなる3相回路で、前記3相変圧器を励磁させるために前記3相遮断器が投入されたときに、前記3相変圧器に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑制方法において、
前記3相遮断器を投入する前に、前記3相変圧器の1次巻線であるY結線の3相の内の何れか2相の端子間に直流電圧を印加して、このY結線の直流電圧印加端子に対応した前記3相変圧器の特定の2相の鉄心の磁束を飽和させ、
前記3相遮断器投入後の課電状態で直流電圧印加時に選択した鉄心を飽和させた前記特定の2相の内いずれか1相の相電圧が、直流電圧印加の結果飽和した当該相の磁束と同極性から逆極性へ遷移する電圧零点を電気的な投入目標として、3相の遮断器を同時に投入させることを特徴とする変圧器の励磁突入電流抑制方法。
A three-phase transformer in which a primary winding is connected to a Y-connection, and a neutral point of the Y-connection is grounded via an element that is not grounded or has an impedance; Occurs in the three-phase transformer when the three-phase circuit breaker is turned on to excite the three-phase transformer in a three-phase circuit comprising a three-phase circuit breaker that cuts off from a three-phase power source. In the transformer inrush current suppression method for suppressing the transformer inrush current,
Before turning on the three-phase circuit breaker, a DC voltage is applied between terminals of any two of the three phases of the Y connection, which is the primary winding of the three-phase transformer, Saturate the magnetic flux of a specific two-phase iron core of the three-phase transformer corresponding to the DC voltage application terminal,
Magnetic flux of the phase in which any one of the two specific phases obtained by saturating the iron core selected at the time of application of the DC voltage in the applied state after the three-phase circuit breaker is applied is saturated as a result of application of the DC voltage. A method for suppressing the inrush current of a transformer, wherein a three-phase circuit breaker is simultaneously turned on, with a voltage zero point transitioning from the same polarity to the opposite polarity as an electrical target.
1次巻線がY結線に接続され、Y結線の中性点が非接地もしくはインピーダンスを有する素子を介して接地された3相変圧器と、前記3相変圧器の3相電源への投入および3相電源からの遮断を行う3相遮断器とからなる3相回路で、前記3相変圧器を励磁させるために前記3相遮断器が投入されたときに、前記3相変圧器に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑制方法において、
前記3相遮断器を投入する前に、前記3相変圧器の1次巻線であるY結線の3相の内の何れか2相の端子間に直流電圧を印加して、このY結線の直流電圧印加端子に対応した前記3相変圧器の特定の2相の鉄心の磁束を飽和させ、
直流電圧印加時に選択した鉄心を飽和させた前記特定の2相において、遮断器投入後の課電状態で前記3相変圧器の各々の相に定常状態で誘起される磁束の極性と、直流電圧印加の結果飽和した当該相の磁束の極性が各々同極性となる期間であり、
かつ、前記3相変圧器の直流電圧印加時に選択しなかった残りの1相の相電圧がピークとなるタイミングを電気的な投入目標として、3相の遮断器を同時に投入させることを特徴とする変圧器の励磁突入電流抑制方法。
A three-phase transformer in which a primary winding is connected to a Y-connection, and a neutral point of the Y-connection is grounded via an element that is not grounded or has an impedance; Occurs in the three-phase transformer when the three-phase circuit breaker is turned on to excite the three-phase transformer in a three-phase circuit comprising a three-phase circuit breaker that cuts off from a three-phase power source. In the transformer inrush current suppression method for suppressing the transformer inrush current,
Before turning on the three-phase circuit breaker, a DC voltage is applied between terminals of any two of the three phases of the Y connection, which is the primary winding of the three-phase transformer, Saturate the magnetic flux of a specific two-phase iron core of the three-phase transformer corresponding to the DC voltage application terminal,
In the specific two phases in which the iron core selected at the time of applying the DC voltage is saturated, the polarity of the magnetic flux induced in the steady state in each phase of the three-phase transformer in the applied state after turning on the circuit breaker, and the DC voltage It is a period in which the polarity of the magnetic flux of the phase saturated as a result of application is the same polarity,
In addition, the three-phase circuit breaker is simultaneously turned on, with the timing at which the remaining one-phase phase voltage, which was not selected when the DC voltage is applied to the three-phase transformer applied, being a peak, is an electrical turn-on target. Method for suppressing magnetizing inrush current of transformer.
前記3相遮断器は、3相一括操作型遮断器であることを特徴とする請求項4、請求項7、請求項8、又は請求項9記載の変圧器の励磁突入電流抑制方法。   The method according to claim 4, 7, 8, or 9, wherein the three-phase circuit breaker is a three-phase collective operation type circuit breaker. 変圧器と、前記変圧器の電源への投入および電源からの遮断を行う遮断器とを備え、前記変圧器を励磁させるために前記遮断器が投入されたときに、前記変圧器に発生する励磁突入電流を抑制する変圧器の励磁突入電流抑制装置において、
前記遮断器を投入する前に、前記変圧器の鉄心の磁束を飽和させるための直流電圧印加手段と、
電源電圧と、遮断器の状態量と、遮断器の閉極指令信号とを入力し、当該電源電圧の所望の投入位相で、遮断器を電気的に投入させる制御を行う遮断器の投入制御手段と、
前記所望の投入位相として、前記遮断器投入後の課電状態で前記変圧器に定常状態で誘起される磁束と、前記直流電圧印加の結果飽和した磁束が略一致するタイミングを設定する投入位相設定手段と、
を有することを特徴とする変圧器の励磁突入電流抑制装置。
An excitation generated in the transformer when the circuit breaker is turned on to energize the transformer. In the transformer inrush current suppression device of the transformer that suppresses the inrush current,
DC voltage application means for saturating the magnetic flux of the iron core of the transformer before turning on the circuit breaker;
A circuit breaker closing control means for inputting a power supply voltage, a circuit breaker state quantity, and a circuit breaker closing command signal, and performing control to electrically turn on the circuit breaker at a desired power supply voltage applying phase. When,
As the desired closing phase, a closing phase setting for setting a timing at which the magnetic flux induced in the steady state in the transformer in the applied state after turning on the circuit breaker and the magnetic flux saturated as a result of applying the DC voltage substantially coincide with each other. Means,
An apparatus for suppressing an inrush current of a transformer, comprising:
Y結線に接続された1次巻線と、△結線された2次巻線または3次巻線を有する3相変圧器と、この3相変圧器を3相電源へ投入および3相電源から遮断する3相遮断器とを備え、前記3相変圧器を励磁させるために前記3相遮断器が投入されたときに、前記3相変圧器に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑制装置において、
前記3相遮断器を投入する前に、前記3相変圧器のΔ結線の2端子間に直流電圧を印加して、このΔ結線の直流電圧印加端子に対応した前記3相変圧器の特定相の鉄心の磁束を飽和させるための直流電圧印加手段と、
電源電圧と、遮断器の状態量と、遮断器の閉極指令信号とを入力し、当該電源電圧の所望の投入位相で、遮断器を電気的に投入させる制御を行う遮断器の投入制御手段と、
前記所望の投入位相として、前記3相遮断器投入後の課電状態で鉄心を飽和させた前記特定相に定常状態で誘起される磁束と、前記直流電圧印加の結果飽和した前記特定相の磁束が略一致するタイミングを設定する投入位相設定手段と、
を有することを特徴とする変圧器の励磁突入電流抑制装置。
A primary winding connected to the Y connection, a three-phase transformer having a △ -connected secondary winding or tertiary winding, and the three-phase transformer is turned on and off from the three-phase power supply And a three-phase circuit breaker that suppresses excitation inrush current generated in the three-phase transformer when the three-phase circuit breaker is turned on to excite the three-phase transformer. In the inrush current suppression device of
Before turning on the three-phase circuit breaker, a DC voltage is applied between two terminals of the Δ connection of the three-phase transformer, and a specific phase of the three-phase transformer corresponding to the DC voltage application terminal of the Δ connection DC voltage application means for saturating the magnetic flux of the iron core of
A circuit breaker closing control means for inputting a power supply voltage, a circuit breaker state quantity, and a circuit breaker closing command signal, and performing control to electrically turn on the circuit breaker at a desired power supply voltage applying phase. When,
As the desired input phase, a magnetic flux induced in a steady state in the specific phase in which the iron core is saturated in the applied state after the three-phase circuit breaker is input, and a magnetic flux in the specific phase that is saturated as a result of applying the DC voltage Closing phase setting means for setting the timing at which substantially matches,
An apparatus for suppressing an inrush current of a transformer, comprising:
Y結線に接続された1次巻線を有する3相変圧器と、前記3相変圧器の3相電源への投入および3相電源からの遮断を行う3相遮断器とからなる3相回路で、前記3相変圧器を励磁させるために前記3相遮断器が投入されたときに、前記3相変圧器に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑制装置において、
前記3相遮断器を投入する前に、前記3相変圧器の1次巻線であるY結線の3相の内の何れか1相の端子と接地端子の間に直流電圧を印加して、このY結線の直流電圧印加端子に対応した前記3相変圧器の特定相の鉄心の磁束を飽和させるための直流電圧印加手段と、
電源電圧と、遮断器の状態量と、遮断器の閉極指令信号とを入力し、当該電源電圧の所望の投入位相で、遮断器を電気的に投入させる制御を行う遮断器の投入制御手段と、
前記所望の投入位相として、前記3相遮断器投入後の課電状態で鉄心を飽和させた前記特定相に定常状態で誘起される磁束と、前記直流電圧印加の結果飽和した前記特定相の磁束が略一致するタイミングを設定する投入位相設定手段と、
を有することを特徴とする変圧器の励磁突入電流抑制装置。
A three-phase circuit comprising a three-phase transformer having a primary winding connected to a Y connection, and a three-phase circuit breaker for turning on and off the three-phase power supply of the three-phase transformer. In the transformer inrush current suppression device for a transformer, which suppresses the magnetizing inrush current generated in the three-phase transformer when the three-phase circuit breaker is turned on to excite the three-phase transformer,
Before turning on the three-phase circuit breaker, a DC voltage is applied between any one of the three phases of the Y connection, which is the primary winding of the three-phase transformer, and the ground terminal, DC voltage application means for saturating the magnetic flux of the iron core of the specific phase of the three-phase transformer corresponding to the DC voltage application terminal of the Y connection;
A circuit breaker closing control means for inputting a power supply voltage, a circuit breaker state quantity, and a circuit breaker closing command signal, and performing control to electrically turn on the circuit breaker at a desired power supply voltage applying phase. When,
As the desired input phase, a magnetic flux induced in a steady state in the specific phase in which the iron core is saturated in the applied state after the three-phase circuit breaker is input, and a magnetic flux in the specific phase that is saturated as a result of applying the DC voltage Closing phase setting means for setting the timing at which substantially matches,
An apparatus for suppressing an inrush current of a transformer, comprising:
1次巻線がY結線に接続され、Y結線の中性点が非接地もしくはインピーダンスを有する素子を介して接地された3相変圧器と、前記3相変圧器の3相電源への投入および3相電源からの遮断を行う3相遮断器とからなる3相回路で、前記3相変圧器を励磁させるために前記3相遮断器が投入されたときに、前記3相変圧器に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑制装置において、
前記3相遮断器を投入する前に、前記3相変圧器の1次巻線であるY結線の3相の内の何れか2相の端子間に直流電圧を印加して、このY結線の直流電圧印加端子に対応した前記3相変圧器の特定の2相の鉄心の磁束を飽和させるための直流電圧印加手段と、
電源電圧と、遮断器の状態量と、遮断器の閉極指令信号とを入力し、当該電源電圧の所望の投入位相で、3相の遮断器を同時に電気的に投入させる制御を行う遮断器の投入制御手段と、
前記所望の投入位相として、前記3相遮断器投入後の課電状態で直流電圧印加時に選択した鉄心を飽和させた前記特定の2相の内いずれか1相の相電圧が、直流電圧印加の結果飽和した当該相の磁束と同極性から逆極性へ遷移する電圧零点を設定する投入位相設定手段と、
を有することを特徴とする変圧器の励磁突入電流抑制装置。
A three-phase transformer in which a primary winding is connected to a Y-connection, and a neutral point of the Y-connection is grounded via an element that is not grounded or has an impedance; Occurs in the three-phase transformer when the three-phase circuit breaker is turned on to excite the three-phase transformer in a three-phase circuit comprising a three-phase circuit breaker that cuts off from a three-phase power source. In the transformer inrush current suppression device for the transformer that suppresses the magnetizing inrush current,
Before turning on the three-phase circuit breaker, a DC voltage is applied between terminals of any two of the three phases of the Y connection, which is the primary winding of the three-phase transformer, DC voltage application means for saturating the magnetic flux of a specific two-phase iron core of the three-phase transformer corresponding to a DC voltage application terminal;
A circuit breaker that performs control to input a power supply voltage, a circuit breaker state quantity, and a circuit breaker closing command signal to electrically turn on a three-phase circuit breaker simultaneously at a desired application phase of the power supply voltage. Input control means,
As the desired input phase, the phase voltage of any one of the two specific phases obtained by saturating the iron core selected at the time of applying the DC voltage in the applied state after applying the three-phase circuit breaker is the DC voltage applied The input phase setting means for setting a voltage zero point for transition from the same polarity to the opposite polarity as the magnetic flux of the phase saturated as a result,
An apparatus for suppressing an inrush current of a transformer, comprising:
1次巻線がY結線に接続され、Y結線の中性点が非接地もしくはインピーダンスを有する素子を介して接地された3相変圧器と、前記3相変圧器の3相電源への投入および3相電源からの遮断を行う3相遮断器とからなる3相回路で、前記3相変圧器を励磁させるために前記3相遮断器が投入されたときに、前記3相変圧器に発生する励磁突入電流を抑制するようにした変圧器の励磁突入電流抑制装置において、
前記3相遮断器を投入する前に、前記3相変圧器の1次巻線であるY結線の3相の内の何れか2相の端子間に直流電圧を印加して、このY結線の直流電圧印加端子に対応した前記3相変圧器の特定の2相の鉄心の磁束を飽和させるための直流電圧印加手段と、
電源電圧と、遮断器の状態量と、遮断器の閉極指令信号とを入力し、当該電源電圧の所望の投入位相で、3相の遮断器を同時に電気的に投入させる制御を行う遮断器の投入制御手段と、
前記所望の投入位相として、直流電圧印加時に選択した鉄心を飽和させた前記特定の2相において、遮断器投入後の課電状態で前記3相変圧器の各々の相に定常状態で誘起される磁束の極性と、直流電圧印加の結果飽和した当該相の磁束の極性が各々同極性となる期間であり、かつ、前記3相変圧器の直流電圧印加時に選択しなかった残りの1相の相電圧がピークとなるタイミングを設定する投入位相設定手段と、
を有することを特徴とする変圧器の励磁突入電流抑制装置。
A three-phase transformer in which a primary winding is connected to a Y-connection, and a neutral point of the Y-connection is grounded via an element that is not grounded or has an impedance; Occurs in the three-phase transformer when the three-phase circuit breaker is turned on to excite the three-phase transformer in a three-phase circuit comprising a three-phase circuit breaker that cuts off from a three-phase power source. In the transformer inrush current suppression device for the transformer that suppresses the magnetizing inrush current,
Before turning on the three-phase circuit breaker, a DC voltage is applied between terminals of any two of the three phases of the Y connection, which is the primary winding of the three-phase transformer, DC voltage application means for saturating the magnetic flux of a specific two-phase iron core of the three-phase transformer corresponding to a DC voltage application terminal;
A circuit breaker that performs control to input a power supply voltage, a circuit breaker state quantity, and a circuit breaker closing command signal to electrically turn on a three-phase circuit breaker simultaneously at a desired application phase of the power supply voltage. Input control means,
As the desired input phase, in the specific two phases in which the iron core selected at the time of applying the DC voltage is saturated, it is induced in a steady state in each phase of the three-phase transformer in an applied state after the circuit breaker is turned on. The remaining one-phase phase, which is a period in which the polarity of the magnetic flux and the polarity of the magnetic flux of the phase saturated as a result of applying the DC voltage are the same polarity, and which is not selected when the DC voltage is applied to the three-phase transformer An input phase setting means for setting the timing when the voltage reaches a peak,
An apparatus for suppressing an inrush current of a transformer, comprising:
JP2008305108A 2008-11-28 2008-11-28 Apparatus and method for suppressing magnetizing inrush current of transformer Active JP5414254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305108A JP5414254B2 (en) 2008-11-28 2008-11-28 Apparatus and method for suppressing magnetizing inrush current of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305108A JP5414254B2 (en) 2008-11-28 2008-11-28 Apparatus and method for suppressing magnetizing inrush current of transformer

Publications (2)

Publication Number Publication Date
JP2010130849A true JP2010130849A (en) 2010-06-10
JP5414254B2 JP5414254B2 (en) 2014-02-12

Family

ID=42330805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305108A Active JP5414254B2 (en) 2008-11-28 2008-11-28 Apparatus and method for suppressing magnetizing inrush current of transformer

Country Status (1)

Country Link
JP (1) JP5414254B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303043B6 (en) * 2010-12-15 2012-03-07 Technická univerzita v Liberci Method of eliminating three-phase transformer trigger current and device for magnetizing core of the three-phase transformer with direct current
JP2013037767A (en) * 2011-08-03 2013-02-21 Toshiba Corp Magnetization rush current suppression device
US9385525B2 (en) 2011-09-14 2016-07-05 Kabushiki Kaisha Toshiba Magnetizing inrush current suppression device
CN110988670A (en) * 2019-12-27 2020-04-10 中国人民解放军海军潜艇学院 Heavy current generating device and device for circuit breaker calibration
CN111600295A (en) * 2019-08-09 2020-08-28 青岛鼎信通讯股份有限公司 Power frequency transformer excitation inrush current suppression strategy applied to controllable inversion
CN116027245A (en) * 2023-02-01 2023-04-28 广州市德珑电子器件有限公司 Measuring method and system based on wide-range current transformer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154330A (en) * 1982-03-08 1983-09-13 富士電機株式会社 Control system for transformer
JPS58154331A (en) * 1982-03-08 1983-09-13 富士電機株式会社 Control system for transformer
JPS6055604A (en) * 1983-09-07 1985-03-30 Fuji Electric Co Ltd Control system of transformer
JP2006006092A (en) * 2004-06-16 2006-01-05 Oaks:Kk System for suppressing inrush current of large-sized transformer
JP2006040566A (en) * 2004-07-22 2006-02-09 Mitsubishi Electric Corp Phase-control switching device
JP2008140580A (en) * 2006-11-30 2008-06-19 Toshiba Corp Exciting rush-in current suppressing device of three-phase transformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154330A (en) * 1982-03-08 1983-09-13 富士電機株式会社 Control system for transformer
JPS58154331A (en) * 1982-03-08 1983-09-13 富士電機株式会社 Control system for transformer
JPS6055604A (en) * 1983-09-07 1985-03-30 Fuji Electric Co Ltd Control system of transformer
JP2006006092A (en) * 2004-06-16 2006-01-05 Oaks:Kk System for suppressing inrush current of large-sized transformer
JP2006040566A (en) * 2004-07-22 2006-02-09 Mitsubishi Electric Corp Phase-control switching device
JP2008140580A (en) * 2006-11-30 2008-06-19 Toshiba Corp Exciting rush-in current suppressing device of three-phase transformer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303043B6 (en) * 2010-12-15 2012-03-07 Technická univerzita v Liberci Method of eliminating three-phase transformer trigger current and device for magnetizing core of the three-phase transformer with direct current
JP2013037767A (en) * 2011-08-03 2013-02-21 Toshiba Corp Magnetization rush current suppression device
US9385525B2 (en) 2011-09-14 2016-07-05 Kabushiki Kaisha Toshiba Magnetizing inrush current suppression device
CN111600295A (en) * 2019-08-09 2020-08-28 青岛鼎信通讯股份有限公司 Power frequency transformer excitation inrush current suppression strategy applied to controllable inversion
CN111600295B (en) * 2019-08-09 2023-08-08 青岛鼎信通讯股份有限公司 Power frequency transformer excitation surge suppression strategy applied to controllable inversion
CN110988670A (en) * 2019-12-27 2020-04-10 中国人民解放军海军潜艇学院 Heavy current generating device and device for circuit breaker calibration
CN110988670B (en) * 2019-12-27 2022-05-10 中国人民解放军海军潜艇学院 Heavy current generating device and device for checking circuit breaker
CN116027245A (en) * 2023-02-01 2023-04-28 广州市德珑电子器件有限公司 Measuring method and system based on wide-range current transformer

Also Published As

Publication number Publication date
JP5414254B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5208593B2 (en) Inrush current suppressing device for transformer and control method thereof
CA2670907C (en) Magnetizing inrush current suppression device and method for transformer
US9291686B2 (en) Method of estimating the residual magnetic flux of transformer and residual magnetic flux estimation device
De Leon et al. Elimination of residual flux in transformers by the application of an alternating polarity DC voltage source
JP5148435B2 (en) Inrush current suppressing device for transformer and control method thereof
JP5414254B2 (en) Apparatus and method for suppressing magnetizing inrush current of transformer
US9065268B2 (en) Inrush-current suppressing device and inrush-current suppressing method
JP2008140580A (en) Exciting rush-in current suppressing device of three-phase transformer
JP2011154974A (en) Transformer inrush current suppression apparatus
CA2815464C (en) Inrush current suppressing device
JP5713848B2 (en) Excitation current suppression device
JP5444162B2 (en) Excitation current suppression device
JP5908336B2 (en) Excitation inrush current suppression device and excitation inrush current suppression method
Oliveira et al. Power transformers behavior under the occurrence of inrush currents and turn-to-turn winding insulation faults
JP6054163B2 (en) Excitation current suppression system
Bronzeado et al. Transformer controlled switching to eliminate inrush current-part II: field tests on a 100MVA three-phase transformer
JP6202897B2 (en) Excitation current suppression device and method
JP2006223083A (en) Device to control magnetic flux of transformer in each iron core using direct current
Adio et al. Field studies on the Inrush Current for 33/11kV transformer and the effect on voltage interruption during switching operation of 10MW wind farm
Yong et al. The application of inrush current restraining technology in transformer economic operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R151 Written notification of patent or utility model registration

Ref document number: 5414254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151