JP2011001936A - ターボ機械及び水車ランナ - Google Patents

ターボ機械及び水車ランナ Download PDF

Info

Publication number
JP2011001936A
JP2011001936A JP2009147683A JP2009147683A JP2011001936A JP 2011001936 A JP2011001936 A JP 2011001936A JP 2009147683 A JP2009147683 A JP 2009147683A JP 2009147683 A JP2009147683 A JP 2009147683A JP 2011001936 A JP2011001936 A JP 2011001936A
Authority
JP
Japan
Prior art keywords
shaft
shroud
section
moving blade
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009147683A
Other languages
English (en)
Other versions
JP5248422B2 (ja
Inventor
Kenji Shintani
賢司 新谷
Satoru Nomoto
悟 野本
Kiyoto Tani
清人 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009147683A priority Critical patent/JP5248422B2/ja
Priority to CN2010102088377A priority patent/CN101929414A/zh
Publication of JP2011001936A publication Critical patent/JP2011001936A/ja
Application granted granted Critical
Publication of JP5248422B2 publication Critical patent/JP5248422B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

【課題】動翼のシュラウド側端部におけるはく離、逆流、漏れ、及びキャビテーションを抑制しつつも、全体としてエネルギー効率に優れたターボ機械を提供すること。
【解決手段】シュラウド4の内周側に間隔を介して設置された水車ランナ3において、回転自在に支持された軸6と、軸6の周囲に複数取り付けられ、軸6からシュラウド4に向かう方向にかけてねじれた動翼1とを備え、シュラウド4付近における動翼1のねじれの方向71を、軸6付近における動翼1のねじれの方向70に対して逆転させる。
【選択図】図3

Description

本発明は羽根車を介して流体からエネルギーを得るターボ機械及び水車ランナに関する。
羽根車を介して流体からエネルギーを得るターボ機械には、軸の周囲に複数取り付けられた動翼を有する羽根車と、羽根車の外周側に設置されたシュラウド(外ケーシング)とを備え、羽根車の軸方向又は軸の斜め方向から流入する流体を羽根車の軸方向へ流出させるものがある。
この種のターボ機械における動翼は、羽根車の径方向においてシュラウド近傍まで伸びている。そのため、回転時の動翼の周方向速度は、羽根車の径方向外側(すなわちシュラウド側)に向かうほど大きくなる。一般的に、動翼は、動翼の表面全域に亘って負荷が均等にかかるように、その形状が流体の流れに沿うように設計される。そのため、この思想に基づいて動翼を設計すると、動翼の翼弦と羽根車の回転方向(周方向)とのなす角は羽根車の径方向外側に向かうほど小さくなる。すなわち、動翼は、羽根車の径方向外側に向かうほど羽根車の回転方向に沿うようにねじれている。
例えば、特開平7−54752号公報には、上記のような形状の動翼を備えるターボ機械の1つとして、回転自在に支持されたランナ(羽根車)と、ランナの外周側からランナを覆うシュラウドとを備える軸流水車が記載されている。
特開平7−54752号公報
ところで、上記のような形状を有する動翼のシュラウド側端部(チップ部)では、動翼を通過する流体の速度が速いため、回転軸側の部分と比較して大きな負荷を得やすいというメリットがある。しかし、その一方で、流体の速度が速い上にシュラウドと近接しているため、はく離や逆流が生じ易い傾向がある。また、動翼のシュラウド側端部とシュラウドとの間には間隙があるので、漏れによる損失やキャビテーションが発生するおそれもある。
本発明の目的は、動翼のシュラウド側端部におけるはく離、逆流、漏れ、及びキャビテーションを抑制しつつも、全体としてエネルギー効率に優れたターボ機械を提供することにある。
本発明は、上記目的を達成するために、回転自在に支持された軸、及び当該軸の周囲に設置された複数の動翼を有する羽根車と、この羽根車の外周側に前記動翼と間隔を介して設置されたシュラウドとを備え、前記動翼は、前記軸から前記シュラウドに向かう方向にかけてねじれており、前記シュラウド付近における前記動翼のねじれの方向は、前記軸付近における前記動翼のねじれの方向と逆になっているものとする。
本発明によれば、動翼のシュラウド側における翼負荷が低減されるので、動翼のシュラウド側端部における漏れ、はく離、キャビテーション及び逆流を抑制しつつも、ターボ機械の全体としてのエネルギー効率を向上することができる。
本発明の第1の実施の形態である水車において、水車ランナの径方向から水車ランナ周辺を見た図。 本発明の第1の実施の形態における動翼を水車ランナの軸方向から見た図。 本発明の第1の実施の形態における動翼を水車ランナの径方向から見た図。 本発明の第1の実施の形態における動翼の任意の位置における断面図。 従来の水車ランナにおける動翼を水車ランナの径方向から見た図。 従来の水車ランナにおける動翼の翼表面の圧力分布図。 本発明の第1の実施の形態における動翼の任意の位置における断面について、流体が流入する際に働く力を示した図。 本発明の第1の実施の形態における動翼の翼表面の圧力分布図。 本発明の第2の実施の形態である水車において、水車ランナの径方向から水車ランナ周辺を見た図。 本発明の第2の実施の形態における動翼の任意の位置における断面図。
以下、本発明の実施の形態を図面を用いて説明する。まず、本発明を実施するためのターボ機械として軸流水車を例に挙げて説明する。軸流水車とは、水車ランナの軸に対して略直角に取り付けられた動翼を有し、水車ランナの軸方向から流入する流体を動翼を介して軸方向に流出させる水車である。
図1は、本発明の第1の実施の形態である水車(水力機械)において、水車ランナの径方向から水車ランナ周辺を見た側面図である。この図に示す水車は、いわゆる横軸バルブ水車であり、水車ランナ(羽根車)3と、水車ランナ3の外周側に水車ランナ3と間隔を介して設置されたシュラウド(外ケーシング)4と、シュラウド4の内側にシュラウド4と間隔を介して設置された内ケーシング5を備えている。
水車ランナ3は、内ケーシング5内に収納され、中心軸40を中心に回転自在に支持された軸6と、軸6の先端に固定されたボス(ハブ)2と、ボス2の周囲に複数設置された動翼1を備えており、図中の矢印20の方向(回転方向)に回転する。本実施の形態におけるボス2は略円筒形状で形成されており、そのボス2の円筒側面には中心軸40に対して略直角方向から複数の動翼1が取り付けられている。このようにボス2に取り付けられた動翼1はボス2の周方向において間隔を介して配置されており、中心軸40に対して放射状に固定されている。動翼1におけるシュラウド側端部(チップ部)7はシュラウド4と対向しており、シュラウド側端部7とシュラウド4との間には動翼1とシュラウド4を接触させないように間隙(図示せず)が形成されている。
図2は本発明の第1の実施の形態における動翼1を水車ランナ3の軸方向から見た上面図である。この図では、簡単のため、複数ある動翼1のうち、1枚だけを拡大して表記している。なお、先の図と同じ部分には同じ符号を付して説明は省略する(後の図も同様とする)。
ここで、図2に示すように、シュラウド4と略平行な面であってシュラウド4からの距離の異なる複数の面10,11,12,13を設定し、さらに、中心軸40から動翼1のシュラウド側端部7までの径方向距離を基準径R1とする。本実施の形態では軸流水車を対象としているため、面10,11,12,13は、それぞれ、軸6と中心軸40を共有し、軸6(中心軸40)からの距離の異なる円筒面となっている。面11は軸6に最も近い面(すなわち、動翼1の軸側端部における面)であり、面13はシュラウド4に最も近い面(すなわち、動翼1のシュラウド側端部7における面)である。面12は、中心軸40とシュラウド側端部7の略中央に位置し、基準径R1を利用して表現すると中心軸40からの距離が基準径R1の約50%の位置にある。面10は面12よりもシュラウド4側に位置し、面10から中心軸40までの距離は基準径R1の50%より大きくなっている。
水車ランナ3が回転方向20に回転すると、その回転による動翼1の速度は、中心軸40からの距離に応じて変化し、中心軸40からの距離が大きくなるほど大きくなる。そのため、水車ランナ3の翼間入口に流体が流入する際の相対的な速度(流入速度)を考えると、シュラウド4に近づくほど流体の周方向速度が大きくなる。例えば、面11,12,13における流入速度の周方向成分21,22,23を比較すると、図2に示すように、面13における流入速度の周方向成分23が最も大きくなり、面11における流入速度の周方向成分21が最も小さくなる。
図3は本発明の第1の実施の形態における動翼1を水車ランナ3の径方向から見た側面図である。この図では、図2に示した面10,11,12,13で動翼1を切断したときの断面(翼型)をそれぞれ断面10a,11a,12a,13aとして示しており、特に動翼1を面10で切断した断面10aには斜線を付している。
図3における矢印27,28,29は、水車ランナ3が回転方向20に回転したときの、各面11,12,13における流体の流入方向(流体が水車ランナ3に流入する際の方向)をそれぞれ示している。流体の流入方向は、流体が水車ランナ3に流入する際の周方向速度及び軸方向速度から求めることができるが、このうち、流体の周方向速度は、図2で説明したように、中心軸40からシュラウド4に近づくほど大きくなる。そこで、図3に示すように、各面11,12,13における流体の軸方向速度24,25,26が概ね等しいと仮定し、各面11,12,13における流体の流入方向27,28,29を中心軸40に対する角度30で表現すると、流体の流入角度30は中心軸40からの距離に比例して大きくなる。すなわち、流体は、面11から面13に向かってその流入角度30が大きくなるように動翼1に流入する。
図3における動翼1は、その断面10a,11a,12a,13aが互いに重なることなく示されていることから分かるように、軸6からシュラウド4に向かう方向(すなわち、水車ランナ3の径方向)にかけてねじれている。ここで、水車ランナ3の径方向において、軸6に最も近い断面11aからシュラウド4に向かって断面10aに至るまでの区間を第1区間とし、断面10aからシュラウド4に向かって断面13aに至るまでの区間を第2区間とする。
動翼1は、第1区間において、流体の流入角度30の変化に合わせて動翼1の翼弦54(後述の図4参照)の方向が変化するように、矢印70の方向(図3上で左周り)にねじれている。なお、このとき、第1区間のすべてに亘って動翼1の迎え角57が一定に保持されるように、翼弦54の方向を変化させることが好ましい。このように迎え角57を一定にすると、第1区間において動翼1に作用する翼負荷を均等にすることができる。
一方、動翼1は、第2区間において、翼弦54が流体の流入角度30の変化と逆に変化するように、矢印71の方向(図3上で右回り)にねじれており、シュラウド4に向かって迎え角57が小さくなるようにねじれている。すなわち、本実施の形態の動翼1では、断面10aを境界にして、シュラウド4付近に位置する第2区間のねじれの方向71と、軸6付近に位置する第1区間のねじれの方向70とが逆になっている。
次に、翼弦角度という語句を用いて、動翼1のねじれを他の言い方で言い換える。図4は、本発明の第1の実施の形態における動翼1の任意の位置における断面図であり、図3と同じ方向から動翼をみている。この図に示す動翼1の断面15aは、先の説明と同様にシュラウド4と略平行な面で動翼を切断したときに表れる断面である。この図において、断面15a上で動翼の前縁8と後縁9を結んだ線を翼弦54とし、断面15a上で軸6の回転方向20に描いた円(又は円弧)を基準線58とし、翼弦54と基準線58とのなす角60を翼弦角度とする。なお、水車ランナ3(前縁8)への流体の流入方向31と翼弦54とのなす角は迎え角57である。
このように設定した翼弦角度60を用いると、図3に示す動翼1は、第1区間では、翼弦角度60が次第に小さくなる方向にねじれており、第2区間では、翼弦角度60が次第に大きくなる方向にねじれていると換言できる。このように動翼1を形成すると、翼弦角度60は、動翼1の軸側端部からシュラウド側端部7に至るまでの全区間(第1区間及び第2区間)に位置するいずれかの断面において、当該全区間における最小値をとる。なお、より具体的には、図3における動翼1の翼弦角度60は、軸6側に位置する第1区間では単調に減少しており、その後、シュラウド4側に位置する第2区間では単調に増加している。すなわち、動翼1の翼弦角度60は断面10aで最小値をとっており、動翼1のねじれの方向は先に説明したように断面10aの前後で逆転している。なお、本実施の形態では、断面10aのみで最小値をとるように動翼1を形成したが、2つ以上の断面(点)で同一の最小値をとるように動翼1を形成しても良いし、水車ランナ3の径方向における所定の範囲に亘って最小値をとり続けるように動翼1を形成しても良い。
次に本実施の形態の効果を従来技術と対比しながら説明する。
図5は一般的な従来の水車ランナにおける動翼100を水車ランナの径方向から見た側面図である。この図では、図3と同様に、図2の面10,11,12,13で動翼100を切断したときの断面(翼型)をそれぞれ断面10b,11b,12b,13bとして示しており、特に動翼100を面10で切断した断面10bには斜線を付している。
この図に示す動翼100は、翼全域に亘って迎え角57がほぼ一定になるように設計されている。したがって、動翼100は、流体の流入角度30の変化に合わせて、断面11bから断面13bに至る第1区間及び第2区間の全区間において矢印70の方向のみにねじれている。言い換えると、動翼100の翼弦角度60は、断面11bから断面13bに至るまでの全区間で単調に減少している。
図6は、汎用ソフトウェアを用いて動翼100について流体解析を実施し、その翼表面の圧力分布を示した図である。なお、図中の動翼100上に付された曲線80は等圧線であり、図中右側から左側に向かって圧力が高くなっている。動翼100は、すべての半径位置において均等に負荷がかかるように形成されているが、外周に向かうにつれて流体の速度が速くなるため、図6のように翼100の外周ほど高圧領域81が大きくなっている。すなわち、上記のように動翼100を形成すると、軸6側と比較してシュラウド4側で大きな負荷を得やすいというメリットが得られるが、その一方で、動翼100のシュラウド側端部は、流体の速度が速い上にシュラウド4と近接しているため、はく離や逆流が生じ易い傾向がある。また、動翼100のシュラウド側端部とシュラウド4との間には間隙があるので、漏れによる損失やキャビテーションが発生するおそれもある。
これに対して、本実施の形態における動翼1は、軸6からシュラウド4に向かう方向にかけてねじれており、軸6付近に位置する第1区間では、流体の流入角度30に合わせて矢印70の方向にねじれており、シュラウド4付近の第2区間では、第1区間と逆の矢印71の方向にねじれている。このように第2区間で動翼1のねじれの方向を逆転させると、第1区間では通常の動翼100と同様の迎え角57を保ったまま、第2区間では通常の動翼100よりも迎え角57を小さくすることができる。ここで、迎え角57を小さくすることによって生じる効果を図7を用いて説明する。
図7は、任意の位置における動翼1の断面50について、流体51が流入する際に動翼に働く力を示したものである。図7(a)に示した例は、図7(b)に示した例と比較して、翼弦角度60が小さくなっており、迎え角57は大きくなっている。
図7(a)のように迎え角57が大きい場合には、動翼1における圧力面側の流れの経路53に比べて負圧面側の流れの経路52が長くなる。そのため、負圧面側と圧力面側の圧力差が大きくなり、その結果、揚力56が増大する。また、この場合、圧力面側に流れ51が衝突するため、その衝突に伴う力55も揚力を増大させる方向に働く。他方、図7(b)のように迎え角57が小さい場合には、負圧面側の流れの経路52と圧力面側の流れの経路53との差が小さくなるため、図7(a)の場合と比較して揚力56が小さくなる。また、衝突に伴う力55も揚力方向とほぼ直交する方向に作用するため、揚力56の増加に寄与しない。よって、動翼1の姿勢を迎え角57が小さくなるように傾けると、動翼1に働く揚力56を抑制することができる。
したがって、本実施の形態のように動翼1を形成して第2区間における迎え角を小さくすると、動翼1の第2区間に働く揚力を抑制することができるので、動翼1の軸6側(第1区間)に作用する負荷を通常の動翼100と同等に保持すると同時に、動翼2のシュラウド4側(第2区間)に作用する負荷を通常の動翼100よりも低減することができる。
また、本実施の形態のように動翼1を形成することで、第2区間の前縁での衝突損失や、剥離に伴う損失を低減できる点もメリットとなる。
図8は、汎用ソフトウェアを用いて本実施の形態に係る動翼1について流体解析を実施し、その翼表面の圧力分布を示した図である。本実施の形態に係る動翼1では、動翼1のシュラウド側端部に達する前に翼断面の迎え角57が小さくなるので、シュラウド4側で動翼1にかかる負荷が軽減される。その結果、この図に示すように、高圧領域81は動翼1の径方向における中央付近からシュラウド側端部まで略均等になる。したがって、本実施の形態によれば、動翼1のシュラウド側における翼負荷が低減されるので、動翼1のシュラウド側端部7における漏れ、はく離、キャビテーション及び逆流を抑制しつつも、全体としてエネルギー効率を向上させることができる。
なお、上記において、翼弦角度60が最小となる断面10aは、基準径R1の60%以上から90%以内の区間に設定することが好ましい。ここで、基準径R1の60%以上とするのは、基準径R1が50%となる翼中央付近では可能な限り翼負荷を稼ぐことが好ましいからであり、他方、基準形R1の90%以下とするのは、これよりシュラウド4側で迎え角57を小さくしても実質的な翼負荷低減効果が得られ難いからである。
次に、本発明を実施するためのターボ機械として斜流水車を例に挙げて説明する。斜流水車とは、水車ランナの軸に対して斜めに取り付けられた動翼を有し、水車ランナの軸の斜め方向から流入する流体を動翼を介して軸方向に流出させる水車である。
図9は、本発明の第2の実施の形態である水車において、水車ランナの径方向から水車ランナ周辺を見た側面図である。この図に示す水車は、いわゆる縦軸斜流水車(デリア水車)であり、略円錐状のボス2A及び動翼1Aを有する水車ランナ3Aと、シュラウド4Aを備えている。動翼1Aは、ボス2Aの円錐面に対して略直角に取り付けられており、水車ランナ3Aの中心軸40に対しては斜めに取り付けられている。動翼1Aにおけるシュラウド側端部はシュラウド4Aと対向しており、シュラウド側端部とシュラウド4Aとの間には軸流水車の場合と同様に間隙(図示せず)が形成されている。
ここで、図9に示すように、シュラウド4と略平行な面であってシュラウド4からの距離の異なる複数の面90,91,92,93を設定し、さらに、動翼1Aの略中心を通り面90,91,92,93に直交する直線上における距離であって、中心軸40から動翼1Aのシュラウド側端部までの距離を基準径R2とする。本実施の形態では斜流水車を対象としているため、面90,91,92,93は、それぞれ、軸6の中心軸40上に位置する頂点及び動翼1Aと略直交する側面を有する円錐面となっており、動翼1の周囲における等流量面と略一致する。面91は動翼1Aの軸側端部における面であり、面93は動翼1Aのシュラウド側端部における面である。面92は、基準径R2を利用して表現すると中心軸40からの距離が基準径R2の約50%の位置にある。面90は面92よりもシュラウド4側に位置し、面90から中心軸40までの距離は基準径R2の50%より大きくなっている。
本実施の形態では、上記の面90,91,92,93で動翼1Aを切断し、その各断面を、第1の実施の形態における図3に示した断面10a,11a,12a,13aのように配置することで、ボス2Aからシュラウド4Aに向かう方向(すなわち、基準径R2の方向)にかけて動翼1Aをねじるものとする。すなわち、本実施の形態における動翼1は、面91から面92を介して面90に至る第1区間では、流体の流入角度変化に合わせてねじれており、面90から面93に至る第2区間では、第1区間と逆方向に向かってねじれている。
ところで、図10は、任意の位置における動翼1Aの断面図であり、図9と同じ方向から動翼1Aをみている。この図に示す動翼1Aの断面95aは、先に説明した面90等と同様、シュラウド4Aと略平行な面95で動翼1Aを切断したときに表れる断面である。この図において、断面95a上で軸6の回転方向20に描いた円(又は円弧)基準線58とし、翼弦54と基準線58のなす角を翼弦角度60とする。このように定義した翼弦角度60を用いると、本実施の形態における動翼1Aは、第1の実施の形態における動翼1と同様に、第1区間では、翼弦角度60が次第に小さくなる方向にねじれており、第2区間では、翼弦角度60が次第に大きくなる方向にねじれていると換言できる。すなわち、このように動翼1Aを形成すると、翼弦角度60は、動翼1Aの軸側端部からシュラウド側端部に至るまでの全区間(第1区間及び第2区間)に位置するいずれかの断面において、当該全区間における最小値をとる。より具体的には、動翼1Aの翼弦角度60は面90による断面で最小値をとり、動翼1Aのねじれの方向は面90による断面の前後で逆転している。
上記のように動翼1Aを形成すると、第1の実施の形態と同様に、第1区間では通常の動翼と同様の迎え角57を保ったまま、第2区間では通常の動翼よりも迎え角57を小さくすることができる。したがって、斜流水車に係る本実施の形態においても、動翼1Aのシュラウド4A側における翼負荷が低減されるので、全体としてエネルギー効率を向上させることができる。なお、上記において、翼弦角度60が最小となる面90は、第1の実施の形態と同様の理由から、基準径R2の60%以上から90%以内の区間に設定することが好ましい。
1 動翼
3 水車ランナ
4 シュラウド
5 内ケーシング
6 軸
7 シュラウド型端部
8 前縁
9 後縁
10,11,12,13 円筒面
10b,11b,12b,13b 翼断面
20 水車ランナの回転方向
30 流入角度
40 中心軸(水車ランナの回転軸)
57 迎え角
58 基準線
60 翼弦角度
70 第1区間における動翼1のねじれの方向
71 第2区間における動翼1のねじれの方向
90,91,92,93 円錐面
R1,R2 基準径

Claims (9)

  1. 回転自在に支持された軸、及び当該軸の周囲に設置された複数の動翼を有する羽根車と、
    この羽根車の外周側に前記動翼と間隔を介して設置されたシュラウドとを備え、
    前記動翼は、前記軸から前記シュラウドに向かう方向にかけてねじれており、
    前記シュラウド付近における前記動翼のねじれの方向は、前記軸付近における前記動翼のねじれの方向と逆になっていることを特徴とするターボ機械。
  2. 回転自在に支持された軸、及び当該軸の周囲に設置された複数の動翼を有する羽根車と、
    この羽根車の外周側に前記動翼と間隔を介して設置されたシュラウドとを備え、
    前記シュラウドと略平行な面であって前記シュラウドからの距離の異なる面でもって、前記動翼の軸側端部からシュラウド側端部に至るまで前記動翼を切断し、当該各断面上において、前記動翼の前縁と後縁を結んだ翼弦と前記軸の回転方向に描いた円とのなす角を翼弦角度とするとき、
    前記翼弦角度は、前記各断面のうち、前記動翼の前記軸側端部からシュラウド側端部に至るまでの区間に位置するいずれかの断面において、前記区間における最小値をとることを特徴とするターボ機械。
  3. シュラウドの内周側に間隔を介して設置された水車ランナであって、
    回転自在に支持された軸と、
    この軸の周囲に複数取り付けられた動翼とを備え、
    前記動翼は、前記軸から前記シュラウドに向かう方向にかけてねじれており、
    前記シュラウド付近における前記動翼のねじれの方向は、前記軸付近における前記動翼のねじれの方向と逆になっていることを特徴とする水車ランナ。
  4. シュラウドの内周側に間隔を介して設置された水車ランナであって、
    回転自在に支持された軸と、
    この軸の周方向に複数配置され、前記軸に対して略直角に取り付けられた動翼とを備え、
    前記軸と中心軸を共有する円筒面であって前記シュラウドからの距離の異なる円筒面でもって、前記動翼の軸側端部からシュラウド側端部に至るまで前記動翼を切断し、当該各断面上において、前記動翼の前縁と後縁を結んだ翼弦と前記軸の回転方向に描いた円とのなす角を翼弦角度とするとき、
    前記翼弦角度は、前記各断面のうち、前記動翼の前記軸側端部からシュラウド側端部に至るまでの区間に位置するいずれかの断面において、前記区間における最小値をとることを特徴とする水車ランナ。
  5. シュラウドの内周側に設置された水車ランナであって、
    回転自在に支持された軸と、
    この軸の周方向に複数配置され、前記軸に対して斜めに取り付けられた動翼とを備え、
    前記軸の中心軸上に位置する頂点及び前記動翼と略直交する側面を有する円錐面であって、前記シュラウドからの距離の異なる円錐面でもって、前記動翼の軸側端部からシュラウド側端部に至るまで前記動翼を切断し、当該各断面上において、前記動翼の前縁と後縁を結んだ翼弦と前記軸の回転方向に描いた円とのなす角を翼弦角度とするとき、
    前記翼弦角度は、前記各断面のうち、前記動翼の前記軸側端部からシュラウド側端部に至るまでの区間に位置するいずれかの断面において、前記区間における最小値をとることを特徴とする水車ランナ。
  6. 請求項4又は5に記載の水車ランナにおいて、
    前記動翼の迎え角は、前記動翼の軸側端部から前記翼弦角度が最小となる断面に至るまでの区間において、一定に保持されていることを特徴とする水車ランナ。
  7. 請求項4から6いずれかに記載の水車ランナにおいて、
    前記翼弦角度は、前記動翼の軸側端部から前記翼弦角度が最小となる断面に至るまでの区間では単調に減少し、前記翼弦角度が最小となる断面から前記動翼の前記シュラウド側端部に至るまでの区間では単調に増加することを特徴とする水車ランナ。
  8. 請求項4記載の水車ランナにおいて、
    前記軸の中心軸から前記動翼におけるシュラウド側端部までの距離を基準径とするとき、
    前記翼弦角度が最小となる断面は、前記基準径の60%以上から90%以内の区間に位置することを特徴とする水車ランナ。
  9. 請求項5記載の水車ランナにおいて、
    前記動翼の中心を通り前記円錐面に直交する直線上における距離であって、前記軸の中心軸から前記動翼におけるシュラウド側端部までの距離を基準径とするとき、
    前記翼弦角度が最小となる断面は、前記基準径の60%以上から90%以内の区間に位置することを特徴とする水車ランナ。
JP2009147683A 2009-06-22 2009-06-22 ターボ機械及び水車ランナ Active JP5248422B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009147683A JP5248422B2 (ja) 2009-06-22 2009-06-22 ターボ機械及び水車ランナ
CN2010102088377A CN101929414A (zh) 2009-06-22 2010-06-21 涡轮机及水轮机转子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147683A JP5248422B2 (ja) 2009-06-22 2009-06-22 ターボ機械及び水車ランナ

Publications (2)

Publication Number Publication Date
JP2011001936A true JP2011001936A (ja) 2011-01-06
JP5248422B2 JP5248422B2 (ja) 2013-07-31

Family

ID=43368781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147683A Active JP5248422B2 (ja) 2009-06-22 2009-06-22 ターボ機械及び水車ランナ

Country Status (2)

Country Link
JP (1) JP5248422B2 (ja)
CN (1) CN101929414A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105909450A (zh) * 2015-02-24 2016-08-31 株式会社东芝 轴流式水力机械、其叶轮及其叶轮叶片

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754752A (ja) * 1993-08-10 1995-02-28 Toshiba Corp 軸流水車のランナ羽根

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB757471A (en) * 1953-10-23 1956-09-19 Szydlowski Joseph Improvements in or relating to axial flow compressors
JPS6254280U (ja) * 1985-09-25 1987-04-03
US5924842A (en) * 1996-10-17 1999-07-20 Voith Hydro, Inc. Hydraulic turbine for enhancing the level of dissolved gas in water
CA2488714A1 (en) * 2004-11-30 2006-05-30 General Electric Canada Runner for francis type hydraulic turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754752A (ja) * 1993-08-10 1995-02-28 Toshiba Corp 軸流水車のランナ羽根

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105909450A (zh) * 2015-02-24 2016-08-31 株式会社东芝 轴流式水力机械、其叶轮及其叶轮叶片
JP2016156313A (ja) * 2015-02-24 2016-09-01 株式会社東芝 軸流水力機械のランナベーン、軸流水力機械のランナおよび軸流水力機械
EP3093484A1 (en) * 2015-02-24 2016-11-16 Kabushiki Kaisha Toshiba Runner vane of axial hydraulic machine, runner of axial hydraulic machine, and axial hydraulic machine
US10012206B2 (en) 2015-02-24 2018-07-03 Kabushiki Kaisha Toshiba Runner vane of axial hydraulic machine, runner of axial hydraulic machine, and axial hydraulic machine

Also Published As

Publication number Publication date
JP5248422B2 (ja) 2013-07-31
CN101929414A (zh) 2010-12-29

Similar Documents

Publication Publication Date Title
JP5946707B2 (ja) 軸流タービン動翼
EP3056741B1 (en) Impeller of a compressor and compressor provided with same
JP5373036B2 (ja) 遠心ポンプ用のインペラ
JP2018532065A (ja) 高い剛性のターボ機械インペラ、前記インペラを含むターボ機械、および製造の方法
WO2010150567A1 (ja) タービンロータ
CN102365464A (zh) 叶轮和旋转机械
JPWO2017168766A1 (ja) 回転機械翼、過給機、および、これらの流れ場の形成方法
JP5314441B2 (ja) 遠心型水力機械
JP4882939B2 (ja) 可動翼軸流ポンプ
WO2019172422A1 (ja) ディフューザベーン及び遠心圧縮機
JP4918455B2 (ja) ターボチャージャー
JP6019794B2 (ja) ラジアルタービンロータ、及びこれを備えた可変容量ターボチャージャ
JP6620440B2 (ja) 遠心圧縮機
JP5248422B2 (ja) ターボ機械及び水車ランナ
JP2006307843A5 (ja)
JP2013204422A (ja) タービン
EP3686439B1 (en) Multi-stage centrifugal compressor
JP5582802B2 (ja) 流体流通構造
JP3927887B2 (ja) 軸流圧縮機の静翼
JP6239258B2 (ja) 軸流水車
JP7386333B2 (ja) インペラ、及び遠心圧縮機
EP3839263B1 (en) Shrouded impeller with shroud reinforcing struts in the impeller suction eye
EP3550152B1 (en) Impeller and centrifugal compressor
JP6758924B2 (ja) 羽根車
JP2022184085A (ja) 遠心圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Ref document number: 5248422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250