JP2011000115A - Method for controlling plant growth - Google Patents

Method for controlling plant growth Download PDF

Info

Publication number
JP2011000115A
JP2011000115A JP2009165105A JP2009165105A JP2011000115A JP 2011000115 A JP2011000115 A JP 2011000115A JP 2009165105 A JP2009165105 A JP 2009165105A JP 2009165105 A JP2009165105 A JP 2009165105A JP 2011000115 A JP2011000115 A JP 2011000115A
Authority
JP
Japan
Prior art keywords
green
light
blue
plant
strawberry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009165105A
Other languages
Japanese (ja)
Other versions
JP5505830B2 (en
JP2011000115A5 (en
Inventor
Nobuyuki Takahashi
信之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009165105A priority Critical patent/JP5505830B2/en
Publication of JP2011000115A publication Critical patent/JP2011000115A/en
Publication of JP2011000115A5 publication Critical patent/JP2011000115A5/ja
Application granted granted Critical
Publication of JP5505830B2 publication Critical patent/JP5505830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for suppressing the occurrence of powdery mildew by giving green and blue beams to plants to increase protein conducting the body nutrient concentration of plants.SOLUTION: The method for relieving powdery mildew includes giving green and blue beams to night plants to increase protein in the plant body, and keeping the balance of the body nutrient concentration even when the bad weather continues.

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

本発明は、植物が夜間の呼吸作用の時間帯に青色、緑色光を与え植物の体内栄養濃度をつかさどるタンパク質をいちご植物の体内に増加させて、うどんこ病を制御方法に関する。The present invention relates to a method for controlling powdery mildew by causing a plant to give blue and green light during nighttime respiratory action and increase protein in the body of the strawberry plant that controls the nutrient concentration in the plant.

従来、植物のうどんこ病対策として、育成期間中に肥培管理による窒素コントロール処理を行ないながら、農薬の防除をおこなってきた、しかし農薬中心の防除のみに頼る防除技術であった。Conventionally, as a countermeasure against powdery mildew of plants, it has been pesticide control while performing nitrogen control treatment by fertilizer management during the growing period, but it is a control technique that relies only on pesticide control.

発明が解決しようとする課題Problems to be solved by the invention

上記の従来、植物の育成期間中における、うどんこ病の防除方法は、農薬防除に頼っていた、又天候不順が、続くと次から次へと、うどんこ病が発生し、繰り返し、農薬防除のために、植物の生育時の成長を阻害する事が多くなり苦慮している。Conventionally, the method for controlling powdery mildew during the plant growth period described above relied on pesticide control, and if the weather continued to be bad, powdery mildew occurred from one to the next, and repeated pesticide control. For this reason, it is difficult to prevent growth during plant growth.

課題を解決するための手段Means for solving the problem

天候不順時期にも影響されずに緑色、青色の単独光線や、青色、緑色の複合させた光線を夜間に照射し、いちご植物植物体内の栄養濃度である、タンパク質濃度を増加させ、うどんこ病を制御することを特徴とする。Irradiation with green and blue single rays or blue and green combined rays at night without being affected by unseasonable weather, the protein concentration, which is the nutrient concentration in the strawberry plant body, is increased, and powdery mildew It is characterized by controlling.

作用Action

収穫期や、育苗中の植物の同化作用、呼吸作用に無理することなく、タンパク質を増加制御出来る。The protein can be increased and controlled without being forced into the harvesting period, assimilation and respiration of the plants being raised.

発明の効果The invention's effect

本発明によれば、緑色、青色の単独光線、青と緑色複合色光線利用処理することにより、無理なく且つ、自然な方法で天候に左右されることなく、タンパク質を増加させることにより、うどんこ病を抑制軽減でき、生産者にとって、多大の利益となる。According to the present invention, by using green, blue single light, blue and green composite light ray treatment, it is possible to increase the protein without increasing the protein in a natural and natural manner. The disease can be suppressed and reduced, which is a great benefit for producers.

本発明の実施形態を、タンパク質の定量法としては、精度の高い方法として燃焼後に窒素量を測定するデルマ法と、硫酸分解後にアンモニア量を測定するケルダール法等があります。当発明の基準になった測定法は、後者の方法でいちごの葉柄、葉体をHACH社製ダイジェスタール23130−20型で強酸の硫酸にて440度Cにて煮沸させながら強酸化剤過酸化水素水を点滴し、2段階分解後にサンプルを取り出し、HACH社製分光光度計3000Rにてアンモニア量を測定するゲルタール法に基ずくものであり,精度の高いタンパク質の定量法にて測定を行なっています。
いちご植物の育成中の葉柄、葉体内のケルダール窒素の量すなわち、タンパク質の量が、無照射、緑色のみの光線の照射、青色のみの光線の照射、緑色の光線と青色の光線の組み合わせによる光線の照射等の組み合わせの違いによるいちご植物の体内にタンパク質の増大する効果が、いちご植物に発生するうどんこ病発生の多い、少いの違いの比較を調べた。
下記別表1は、緑色蛍光灯の緑色光線のみの光線をいちご植物のサンプル苗50本に照射をした。
青色蛍光灯の青色光線のみ光線をいちご植物のサンプル苗50本に照射をした。
緑色蛍光灯の緑色光線の上面に青色蛍光灯設置し、青色光線と緑色光線とを、同時に光線をいちご植物のサンプル苗50本に照射をした。
青色蛍光灯の青色光線の上面に緑色蛍光灯を設置し、緑色光線と青色光線とを、同時に光線をいちご植物のサンプル苗50本に照射をした。
蛍光灯無しは、光線照射なしにて、いちご植物サンプル苗50本を用意した。
いちご植物50本当たりの、緑色光線、青色光線の組み合わせ別による、いちご植物に照射の違いよる、ケルダール窒素量と、うどんこ病発生数の比較を別表1にて表示した。
尚、ケルダール窒素量は、各サンプル50本の平均値を別表1にて表示した。
別表2には、緑色LEDの緑色光線のみの光線を、いちご植物のサンプル苗50本に照射をした。
青色LEDの青色光線のみ光線をいちご植物のサンプル苗50本に照射をした。
緑色LEDの緑色光線の上面に青色LED設置し、青色光線と緑色光線とを、同時に光線をいちご植物のサンプル苗50本に照射をした。
青色LEDの青色光線の上面に緑色LEDを設置し、緑色光線と青色光線とを、同時に光線をいちご植物のサンプル苗50本に照射をした。
LED無しは、光線照射なしにて、いちご植物サンプル苗50本を用意した。
いちご植物50本当たりの、緑色光線、青色光線の組み合わせ別による、いちご植物に照射の違いよる、ケルダール窒素量と、うどんこ病発生数の比較を別表1にて表示した。
尚、ケルダール窒素量は、各サンプル50本の平均値を別表1にて表示した。いちご植物に照射の違いよる、うどんこ病は、50本当たりの発生数の比較を表示した。
表3は、いちご生産農家の育苗パイプハウス内の実施に基ずき、緑色、青色蛍光灯を育苗ハウス内にて、苗より1mの高さに設置し、日没から日の出前までの30日間による照射の効果が、ケルダール窒素の量すなわちタンパク質の多い、少ないが本圃に定植後の当該いちご植物苗の、うどんこ病発生数を比較を表示した。
In the embodiment of the present invention, protein quantification methods include a derma method for measuring the amount of nitrogen after combustion and a Kjeldahl method for measuring the amount of ammonia after sulfuric acid decomposition as a highly accurate method. The measurement method used as the standard of the present invention is the strong oxidizing agent peroxidation while boiling the strawberry petiole and leaf body with HACH's Digestal 23130-20 in strong acid sulfuric acid at 440 ° C. It is based on the gel tar method, which measures the amount of ammonia with HACH spectrophotometer 3000R, and is measured by a highly accurate protein quantification method. The
The amount of Kjeldahl nitrogen in the growth of strawberry plants, the amount of Kjeldahl in the leaf body, that is, the amount of protein is no irradiation, irradiation of only green light, irradiation of only blue light, light by combination of green light and blue light The effect of increasing the protein in the strawberry plant due to the difference in the combination of irradiation, etc., was compared with the small difference in the incidence of powdery mildew that occurs in strawberry plants.
In Table 1 below, 50 sample seedlings of strawberry plants were irradiated with only the green light from the green fluorescent lamp.
50 sample seedlings of strawberry plants were irradiated with only blue light from a blue fluorescent lamp.
A blue fluorescent lamp was installed on the upper surface of the green light beam of the green fluorescent lamp, and the blue light beam and the green light beam were simultaneously irradiated to 50 sample seedlings of strawberry plants.
A green fluorescent lamp was installed on the upper surface of the blue light of the blue fluorescent lamp, and green light and blue light were simultaneously irradiated to 50 sample seedlings of strawberry plants.
Without fluorescent light, 50 strawberry plant sample seedlings were prepared without light irradiation.
A comparison of the amount of Kjeldahl nitrogen and the number of powdery mildew caused by the difference in irradiation of the strawberry plants by the combination of green light and blue light per 50 strawberry plants is shown in Table 1.
As for Kjeldahl nitrogen amount, an average value of 50 samples is shown in Table 1.
In Table 2, 50 sample seedlings of strawberry plants were irradiated with only green light from the green LED.
50 sample seedlings of strawberry plants were irradiated with only blue light from the blue LED.
A blue LED was installed on the upper surface of the green light of the green LED, and blue light and green light were simultaneously irradiated to 50 sample seedlings of strawberry plants.
Green LED was installed on the upper surface of blue light of blue LED, and green light and blue light were simultaneously irradiated to 50 sample seedlings of strawberry plants.
Without LED, 50 strawberry plant sample seedlings were prepared without light irradiation.
A comparison of the amount of Kjeldahl nitrogen and the number of powdery mildew caused by the difference in irradiation of the strawberry plants by the combination of green light and blue light per 50 strawberry plants is shown in Table 1.
As for Kjeldahl nitrogen amount, an average value of 50 samples is shown in Table 1. Powdery mildew caused by differences in irradiation on strawberry plants is shown in comparison of the number of occurrences per 50.
Table 3 shows that the green and blue fluorescent lamps are installed at a height of 1m above the seedlings in the nursery house based on the implementation in the nursery pipehouse of the strawberry-producing farmers. A comparison of the number of powdery mildew occurrences of the strawberry plant seedlings after planting in this field, although the effect of irradiation is Keldar nitrogen, that is, protein is high but low, is shown.

図面及び実施例、表1、表2、表3に基ずき説明する。
図5は、ビニールハウス内にて、育成中の植物いちごの株13に、1m高さの位置に日没後から日の出までの夜間に緑色の蛍光灯20W、2を照射し、連続30日照射した後に、ケルダール窒素量を測定147ppmを表示した。
図4は、ビニールハウス内にて、育成中の植物いちごの苗13に1m高さの位置に日没後から日の出までの夜間に青色蛍光灯20W、1を照射し、連続30日照射した後に、ケルダール窒素量を測定135ppmを表示した。
図1は、ビニールハウス内にて、育成中の植物いちごの株13に、1m高さの位置に日没後から日の出までの夜間に緑色の蛍光灯20W、2の緑色光線を照射させ、当該緑色蛍光灯の上面部より0.5mの高さより青色蛍光灯20W、1を設置し、上部の青色光線と下部の緑色光線を同時に30日間連続植物いちご株13を、照射した後ケルダール窒素量を測定159ppmを表示した。
図2は、ビニールハウス内にて、育成中の植物いちごの株13に1m高さの位置に日没後から日の出までの夜間に青色蛍光灯20W、1の青色光を照射させ、当該青色蛍光灯の上面部より0.5mの高さより緑色蛍光灯20W、2を設置し、上部の緑色光線と下部の青色光線を同時に30日間連続植物いちご株13を、照射した後ケルダール窒素量を測定140ppmを表示した。
図3は、ビニールハウス内にて、育成中の植物いちごの株13に1m高さの位置に日没後から日の出までの夜間に緑色蛍光灯20W、2と青色蛍光灯20W、1とを一平面状に並べ緑色光線と青色光線を連続30日照射した後ケルダール窒素量を測定175ppmを表示した。
植物いちごの株13の、育成中のビニールハウス内にて、蛍光灯による光線を照射せずに、30日後ケルダール窒素量を測定81ppmを表示した。
以上、蛍光灯光線照射無しの条件にて測定したケルダール窒素81ppmと比較すると、緑色のみの光線照射によるケルダール窒素量147ppm、次に緑色の光線の上面部から青色光線を与え同時照射したケルダール窒素量159ppm、緑色光線と青色光線を平面状に与え複合させて照射したケルダール窒素量175ppm、いちご植物いちご株13に1m高さより、緑色蛍光灯の緑色光線の照射と同時に緑色蛍光灯の上面又は、同一平面状に青色蛍光灯の青色光線を同時に、照射すると、緑色光線効果に、青色光線を含ませる事により、多くケルダール窒素量、すなわちタンパク質が増える事がわかる。
Description will be made based on the drawings and examples, Table 1, Table 2, and Table 3.
FIG. 5 shows that in the greenhouse, a growing plant strawberry strain 13 was irradiated with green fluorescent lamps 20W and 2 at a position of 1 m height from sunset to sunrise at night for 30 consecutive days. Later, the Kjeldahl nitrogen amount was measured and displayed as 147 ppm.
FIG. 4 shows that after irradiating the growing plant strawberry seedling 13 with a blue fluorescent lamp 20W, 1 at night from sunset to sunrise at a position of 1 m in height, The amount of Kjeldahl nitrogen was measured and displayed as 135 ppm.
FIG. 1 shows that a green strawberry plant 20W is irradiated with green fluorescent light 20W and 2 green light at night from sunset to sunrise at a position of 1m height in a greenhouse of a growing plant strawberry. Blue fluorescent lamps 20W and 1 are installed from a height of 0.5 m above the upper surface of the fluorescent lamp, and the upper blue light and the lower green light are simultaneously irradiated for 30 days to the plant strawberry strain 13 and then the Kjeldahl nitrogen amount is measured. 159 ppm was displayed.
FIG. 2 shows a blue fluorescent lamp 20W, which is irradiated with blue light 20W and 1 at night from sunset to sunrise at a position of 1m height on a growing plant strawberry stock 13 in a greenhouse. Green fluorescent lamps 20W and 2 are installed from a height of 0.5 m above the upper surface of the plant, and the upper green light and the lower blue light are simultaneously irradiated for 30 consecutive days to the plant strawberry strain 13, and the amount of Kjeldahl nitrogen is measured 140 ppm. displayed.
FIG. 3 is a plan view of green fluorescent lamps 20W, 2 and blue fluorescent lamps 20W, 1 at night from sunset to sunrise at a height of 1 m on a growing plant strawberry stock 13 in a greenhouse. After irradiating green light and blue light continuously for 30 days, the Kjeldahl nitrogen amount was measured and displayed as 175 ppm.
In the growing greenhouse of the plant strawberry strain 13, 30 days after irradiation with light from a fluorescent lamp, the Kjeldahl nitrogen amount was measured and displayed as 81 ppm.
As described above, when compared with 81 ppm of Kjeldahl nitrogen measured under the condition without irradiation with fluorescent lamp light, the amount of Kjeldahl nitrogen by irradiation with only green light is 147 ppm, and then the Kjeldahl nitrogen amount simultaneously irradiated with blue light from the upper surface of green light. 159 ppm, Kjeldahl nitrogen amount 175 ppm irradiated with green light and blue light in a plane and combined, 1 m height from strawberry plant strawberry strain 13 From the top of green fluorescent light or the same as green fluorescent light irradiation It can be seen that when the blue light of a blue fluorescent lamp is simultaneously irradiated in a planar shape, the amount of Kjeldahl nitrogen, that is, the protein is increased by including the blue light in the green light effect.

図10は、ビニールハウス内にて、育成中の植物いちごの株15に、0.1m高さの位置に日没後から日の出までの夜間に緑色のLED4にて緑色光線を照射し、連続して30日後ケルダール窒素量を測定108ppmを表示した。
図9は、ビニールハウス内にて、育成中の植物いちごの株15に、0.1m高さの位置に日没後から日の出までの夜間青色LED3の青色光線を照射し、連続して30日後ケルダール窒素量を測定98ppmを表示した。
図6は、ビニールハウス内にて、育成中の植物いちごの株15に0.1m高さの位置に日没後から日の出までの夜間緑色LED4の緑色光線を照射し、上面部より0.1mの高さから、青色LED3にて青色光を照射し、連続して30日後ケルダール窒素量を測定112ppmを表示した。
図7は、ビニールハウス内にて、育成中の植物いちごの株15に0.1m高さの位置に日没後から日の出までの夜間に、青色LED1の青色光を照射し、当該青色光線の青色LEDの上面部より 0,1m高さより、緑色LED4にて緑色光を照射し、連続して30日後にケルダール窒素量を測定109ppmを表示した。
図8は、ビニールハウス内にて、育成中の植物いちごの株15に0.1m高さの位置に日没後から日の出までの夜間に、緑色LEDと青色LEDとを、一平面状に並べ緑色光線と青色光線との光線を複合させて照射し、連続して30日後ケルダール窒素量を測定125ppmを表示した。
ビニールハウス内にて、LEDによる育成中の植物いちごの株15に青色、緑色LEDによる光線を照射せずに、30日後ケルダール窒素量を測定81ppmを表示した。
以上、日没後から日の出までの夜間に、緑色、青色LEDの光線照射無しの条件にて30日後ケルダール窒素量を測定81ppmを表示した、ケルダール窒素量との比較をすると、緑色LED4の緑色光線照射による30日後ケルダール窒素量108ppm、次に緑色LED4の緑色光線の上面部から青色LED3の青色光線を同時に照射した30日後ケルダール窒素量112ppm、緑色LED光線と青色LED光線を一平面状に設置し、緑色光線と青色光線を同時に照射した30日後ケルダール窒素量125ppmを表示した。
緑色光線効果が植物いちご株にとってビニールハウス内にて、育成中の植物いちごの株5に0.1m高さの位置に日没後から日の出までの夜間に緑色光線の照射による、ケルダール窒素量の増加した。
緑色LED効果に青色LED光線を含ませると、より多くケルダール窒素量が増してくる。
しかしながら、前記〔0008〕項に記載の蛍光灯の光量と、〔0009〕項記載のLEDの光量との光量差がケルダール窒素量に大きな比較差が見受けられた。以上、ケルダール窒素量の差すなわち、いちご植物の体内のタンパク質量が、うどんこ病の発生の多い少ないの差として表示された。
FIG. 10 shows that a green LED 4 is continuously irradiated to a growing plant strawberry stock 15 in a greenhouse at a position 0.1 m high at night from sunset to sunrise. After 30 days, the Kjeldahl nitrogen amount was measured and displayed as 108 ppm.
FIG. 9 shows that the plant strawberry strain 15 in the greenhouse is irradiated with blue light from the blue LED 3 at night from sunset to sunrise at a height of 0.1 m, and after 30 days Kjeldahl. The amount of nitrogen measured was 98 ppm.
FIG. 6 shows that in the greenhouse, the growing plant strawberry strain 15 is irradiated with green light from the green LED 4 at night from sunset to sunrise at a height of 0.1 m, and 0.1 m from the top surface. From the height, the blue LED 3 was irradiated with blue light, and after 30 days, the Kjeldahl nitrogen amount was measured and displayed 112 ppm.
FIG. 7 shows that the blue light of the blue LED 1 is irradiated on the growing plant strawberry stock 15 at a position 0.1 m high at night from sunset to sunrise in the greenhouse. The green LED 4 was irradiated with green light from a height of 0.1 m from the upper surface of the LED, and after 30 days, the Kjeldahl nitrogen amount was measured and displayed as 109 ppm.
FIG. 8 shows that green LED and blue LED are arranged in a single plane in a green house at night from sunset to sunrise at a height of 0.1 m on a growing plant strawberry stock 15 Irradiation was performed by combining light rays and blue light rays, and after 30 days, the Kjeldahl nitrogen amount was measured and displayed as 125 ppm.
In the greenhouse, the plant strawberry strain 15 being grown by LED was irradiated with blue and green LEDs and the Kjeldahl nitrogen content was measured and displayed 81 ppm after 30 days.
As described above, at the night from sunset to sunrise, the measurement of the Kjeldahl nitrogen amount after 30 days under the condition of no light irradiation of the green and blue LEDs was performed. 30 days after the Kjeldahl nitrogen amount 108 ppm, then 30 days after the blue LED 3 blue light was simultaneously irradiated from the upper surface of the green LED 4 green light Keldar nitrogen amount 112 ppm, the green LED light and the blue LED light were installed in one plane, After 30 days of simultaneous irradiation with green and blue light, the Kjeldahl nitrogen content of 125 ppm was displayed.
Increased Kjeldahl nitrogen amount due to green light irradiation at night from sunset to sunrise at 0.1m height on the growing plant strawberry strain 5 in the greenhouse for the plant strawberry strain did.
Inclusion of blue LED light in the green LED effect increases the amount of Kjeldahl nitrogen more.
However, there was a large comparison difference in the Kjeldahl nitrogen amount between the light amount of the fluorescent lamp described in [0008] and the light amount of the LED described in [0009]. As described above, the difference in the amount of Kjeldahl nitrogen, that is, the amount of protein in the body of the strawberry plant, was displayed as the difference in which the powdery mildew is frequently generated.

いちごの育苗ハウスにて、実施例に基ずき説明する。
間口5.4m長さ40mの育苗パイプハウスにて、図11は、パイプハウスの立面図である。ハウス内に置かれたいちご植物苗16の上面より1mの高さに緑色の20Wの蛍光灯7をパイプハウスに対し平行に2列設置し、又2列設置した中央に青色の20Wの蛍光灯8をハウスの長手方向に、1列設置した。両側2列に設置した蛍光灯7の緑色の光線と、中央1列に設置した蛍光灯8の青色の光線が、出来るだけ均一にいちご植物苗に緑色光線と青色光線との複合した緑と青の光線としていちご株16を照射させる為に、平面図12にて表示のごとく、両側2列に設置した緑色20W蛍光灯1の間隔を4mに設置し、中央1列に設置した青色20W蛍光灯8の間隔を8m間隔に設置し、いちご株16の上面より1mの高さに、青色、緑色の全ての蛍光灯を設置した。育苗のパイプハウス立面図、図11、育苗のパイプハウス平面図、図12表示の育苗ハウス内には、本圃に定植する苗を8500本置き並べた。
又前記当該育苗パイプハウス間口5.4m長さ40mのハウスより2M離れた隣の同等の面積を保持したパイプハウス間口5.4m長さ40mハウスには、蛍光灯は、設置せずに、本圃に定植する株を8500本置き並べた。
上記記載の蛍光灯を設置したパイプハウスのいちご植物苗に全ての緑色蛍光灯、青色蛍光灯にて、7月30日〜8月31日までの約30日間、日没から日の出までの夜間に緑色蛍光灯の緑色光線と青色蛍光灯の青色の光線を同時に点灯させ、いちご植物苗に照射した。昼間には、当該蛍光灯を設置したパイプハウスも、2m離れた隣の同等の面積を保持した、パイプハウスは共に、日中、昼間は7月30日〜8月31日までの約1月間自然の太陽光に準じた育苗管理を保持した。その後8月31日以降は日没から日の出までの夜間の緑色、青色の蛍光灯は全て消灯した。
本圃ハウスに育苗完了苗定植は、9月10日〜9月16日までに定植完了した。
以上30日間実施例育苗パイプハウス間口5.4m長さ40mハウスにて蛍光灯の緑色光線と青色光線との照射処理したいちご植物苗と蛍光灯の照射無しのいちご植物苗の葉柄、葉体内のケルダール窒素の量すなわち、タンパク質の量とうどんこ病発生いちご植物苗の比較対照区分を設け圃場に当該いちご植物苗をサンプル1、2、3、4、5、6の各20本ずつを定植した。
各サンプル1,2,3,4,5,6いちご植物苗として、本圃にいちご植物苗として定植後20日目に、ケルダール法に基ずきケルダール窒素量を調べ各サンプル1,2,3,4,5,6ごとに、いちご植物苗20本ずつの平均値を別表3にて表示した。
又、当該いちご植物苗である、各サンプル1,2,3,4,5,6いちご植物苗として、本圃にいちご植物苗として定植後20日目に、うどんこ病発生数をチェックし、別表3に表示した。
At the Strawberry Nursery House, explanation will be given based on examples.
FIG. 11 is an elevation view of the pipe house in the nursery pipe house having a length of 5.4 m and a length of 40 m. Two rows of green 20 W fluorescent lamps 7 are installed in parallel to the pipe house at a height of 1 m above the upper surface of the strawberry plant seedling 16 placed in the house, and a blue 20 W fluorescent lamp 8 is installed in the center of the two rows. One row was installed in the longitudinal direction of the house. The green light of the fluorescent light 7 installed in the two rows on both sides and the blue light of the fluorescent light 8 installed in the center one row are as uniform as possible on the strawberry plant seedlings. In order to irradiate the strawberry strain 16 as the light beam, as shown in the plan view 12, the distance between the green 20 W fluorescent lamps 1 installed in two rows on both sides is set to 4 m, and the blue 20 W fluorescent lamp installed in the central row. The interval of 8 was installed at intervals of 8 m, and all blue and green fluorescent lamps were installed at a height of 1 m from the upper surface of the strawberry strain 16. In the nursery house shown in Fig. 11, the seedling pipe house elevation, Fig. 11, the nursery pipe house plan view, and the seedling house shown in Fig. 12, 8500 seedlings to be planted in this farm were arranged.
In addition, there is no fluorescent lamp installed in the 5.4m long 40m house, which is 2M away from the 5.4m long 40m long house. 8500 stocks to be arranged were arranged.
Pipe house strawberry plant seedlings with the above-mentioned fluorescent lamps are all green fluorescent lamps and blue fluorescent lamps for about 30 days from July 30 to August 31, green at night from sunset to sunrise The green light from the fluorescent light and the blue light from the blue fluorescent light were turned on simultaneously, and the strawberry plant seedlings were irradiated. In the daytime, the pipe house where the fluorescent lamp was installed also maintained the same area next to it 2m away. Both pipe houses were natural during the day and daytime from July 30th to August 31st. Maintained seedling management according to sunlight. After August 31, all the green and blue fluorescent lights at night from sunset to sunrise turned off.
The seedling completion planting in the main house was completed from September 10 to September 16.
Example of 30 days above Seedling pipe house frontage 5.4m in length 40m house Strawberry plant seedling treated with green and blue light from fluorescent lamp and strawberry plant seedling without fluorescent light, petal of Keldar A comparative amount of the amount of nitrogen, that is, the amount of protein and the strawberry plant seedlings with powdery mildew disease was provided, and 20 strawberry plant seedlings of samples 1, 2, 3, 4, 5, and 6 were planted in each field.
Each sample 1, 2, 3, 4, 5, 6 As a strawberry plant seedling, on the 20th day after planting as a strawberry plant seedling in the mainland, the Kjeldahl nitrogen amount was examined based on the Kjeldahl method, and each sample 1, 2, 3, The average value of 20 strawberry plant seedlings every 4, 5, and 6 is shown in Appendix 3.
In addition, each sample 1, 2, 3, 4, 5, 6 strawberry plant seedlings, which are the strawberry plant seedlings, were checked for the number of powdery mildew on the 20th day after being planted as strawberry plant seedlings in this field. 3 is displayed.

いちごの育成中の葉柄、葉体内のケルダール窒素の量すなわち、タンパク質の量が、無照射、緑色のみの光線の照射、青色のみの光線の照射、緑色の光線照射の上面に青色の光線を同時に照射、青色光線の照射の上面に緑色光線を同時に照射、緑色光線の照射と同一平面上に青色光線を同時に照射した。
組み合わせによる光線の照射の組み合わせの違いによる効果が、いちご苗のうどんこ病発生の多少の違いの表示の比較を、下記別表1は、蛍光灯の照射による比較、表2は、LEDの照射による比較を表示した。
以上、無照射、緑色のみの光線の照射、青色のみの光線の照射、緑色光線の上面より同時に青色の光線照射、青色光線の上面より同時に緑色の光線照射、緑色光線と同一平面上より同時に青色光線を照射した。
別表1及び別表2の表示の如く、照射の組み合わせによる、蛍光灯及びLEDの各光線照射をした当該いちご植物苗株と蛍光灯の無照射いちご植物苗株とを本圃に定植して後、20日後にうどんこ病の発生した本数である。
The amount of Kjeldahl nitrogen in the pedicle of the strawberry growing, the leaf body, that is, the amount of protein is no irradiation, irradiation of only green light, irradiation of only blue light, blue light irradiation on the upper surface of green light irradiation at the same time The upper surface of the irradiation and blue light irradiation was simultaneously irradiated with green light, and blue light was simultaneously irradiated on the same plane as the green light irradiation.
The effect of the combination of light irradiation due to the combination is a comparison of the display of some differences in the occurrence of powdery mildew in strawberry seedlings, the following Attached Table 1 is the comparison by the irradiation of the fluorescent lamp, Table 2 is by the irradiation of the LED A comparison was displayed.
As described above, no irradiation, irradiation of only green light, irradiation of only blue light, irradiation of blue light simultaneously from the upper surface of the green light, irradiation of green light simultaneously from the upper surface of the blue light, and blue simultaneously from the same plane as the green light Irradiated with light.
As shown in Attached Table 1 and Attached Table 2, after the planting of the strawberry plant seedlings that have been irradiated with fluorescent light and LED light and the non-irradiated strawberry plant seedlings of fluorescent lamps according to the combination of irradiation, The number of powdery mildew that occurred after a day.

別表3にて表示のうどんこ病発生本数の中において、サンプル2のデータにて1本と、サンプル3のデータにて1本のうどんこ病発生したいちご植物のうどんこ病は、サンプル2、サンプル3の各々20本の圃場に定植後20日後の、いちご植物苗平均ケルダール窒素はサンプル2において、156PPM、サンプル3においては、160PPMの高い値を表示している。
サンプル2、サンプル3のうどんこ病が、発生したいちご植物苗を定植した圃場にて、農薬を散布しないのに、農薬を散布し、防除後、うどんこ病の発生後12日目で、白い胞子が茶色に渇変化の症状になり、農薬防除後の効果と同じ効果となった。
圃場に定植したいちご植物苗のサンプル1のいちご植物苗の、うどんこ病の白い胞子が、農薬防除後と同じく茶色く渇変化の症状になり、うどんこ病の発生から15日目で、白い胞子が消えた。
うどんこ病の白く付着していた、いちご植物苗の白い胞子の部分は、農薬散布後にうどんこ病の白い胞子が茶色に渇変化し、周りのいちご植物にはうどんこ病が感染しなかった。
サンプル2、におけるケルダール窒素156PPM、サンプル3におけるケルダール窒素160PPMの高い値は、蛍光灯の緑色と青色との光線による効果がはっきりとわかる。
別表3にてうどんこ病発生本数の中において、サンプル4のデータにて5本と、サンプル5のデータにて10本、サンプル6のデータにて12本の、うどんこ病が発生。別表3にてケルダール窒素及びうどんこ病発生本数を表示後、その後10日後には、かなり多くうどんこ病が対照区のサンプル4、サンプル5、サンプル6のいちご植物苗に発生した為に農薬防除に頼らざる状態になるほど隣の定植苗に、感染しながら大量に発生した為に農薬防除を行なった。
別表3にて表示、サンプル4、サンプル5、サンプル6の各々20本の圃場に定植後20日後の、いちご植物苗平均ケルダール窒素はサンプル4において、111PPM、サンプル5においては、98PPM、サンプル6においては、80PPMが、別表3にて表示。
又、サンプル1、136PPMサンプル2、156PPM、サンプル3、160PPMのケルダール窒素の各20本の平均値に対しかなり低い値を別表3に表示されている。サンプル1、サンプル2、サンプル3は、蛍光灯の緑色光線と青色光線との照射による、ケルダール窒素の値と、サンプル4、サンプル5、サンプル6は、蛍光灯による照射無しによる、ケルダール窒素の値とに大きな値の差として、別表3にて表示。
Among the number of powdery mildew occurrences shown in Attached Table 3, the powdery mildew of the strawberry plant where one powdery mildew occurred in the data of sample 2 and one powdery mildew in the data of sample 3 is sample 2, The strawberry plant seedling average Kjeldahl nitrogen 20 days after planting in 20 fields of each sample 3 shows a high value of 156 PPM in sample 2 and 160 PPM in sample 3.
In the field where powdery mildew of sample 2 and sample 3 is planted with strawberry plant seedlings, the pesticide is not sprayed, but the pesticide is sprayed and controlled. The spore turned brown and became a symptom of drought, which was the same as the effect after pesticide control.
The white spore of powdery mildew of the strawberry plant seedling of sample 1 of the strawberry plant seedling planted in the field became the same as the brown dry thirsty after the pesticide control, and on the 15th day from the occurrence of powdery mildew, Disappeared.
The white spores of the strawberry plant seedlings that had been attached to the white powdery mildew disease, the white spores of the powdery mildew were drowned brown after the application of pesticides, and the surrounding strawberry plants were not infected with powdery mildew. .
The high values of Kjeldahl nitrogen 156 PPM in sample 2 and Kjeldahl nitrogen 160 PPM in sample 3 clearly show the effect of the green and blue light of the fluorescent lamp.
Among the number of powdery mildew occurrences in Attached Table 3, powdery mildew occurred in the sample 4 data, 5 in the sample 5 data, 10 in the sample 5 data, and 12 in the sample 6 data. After showing the number of Kjeldahl nitrogen and powdery mildew occurrence in Attached Table 3, pesticide control because 10 years later, there were quite a lot of powdery mildew on the strawberry plant seedlings in Sample 4, Sample 5 and Sample 6 The planting seedlings that were next to the plant were so infected that they were infected in large quantities.
The strawberry plant seedling average Kjeldahl nitrogen, which is indicated in Attached Table 3 and 20 days after planting in 20 fields of Sample 4, Sample 5 and Sample 6, respectively, is 111 PPM in Sample 4, 98 PPM in Sample 5 and in Sample 6 Shows 80PPM in Attached Table 3.
In Table 3, a considerably low value is displayed with respect to the average value of 20 Kjeldahl nitrogens of Sample 1, 136 PPM Sample 2, 156 PPM, Sample 3, and 160 PPM. Sample 1, sample 2 and sample 3 are values of Kjeldahl nitrogen by irradiation with green light and blue light of a fluorescent lamp, and samples 4, sample 5 and sample 6 are values of Kjeldahl nitrogen without irradiation by a fluorescent light Displayed in Attached Table 3 as the difference between the two values.

以上、〔0010〕〔0011〕〔0012〕にて実施例にて説明した様に、緑色光線、青色光線を日没から日の出前の夜間に照射することにより、いちご植物の体内にケルダール窒素が増加する、すなわち、タンパク質が、いちご植物の体内に高濃度に蓄積されることによる、タンパク質効果による、うどんこ病を、発生を抑える効果が立証できた。

Figure 2011000115
Figure 2011000115
Figure 2011000115
As described above in Examples in [0010], [0011] and [0012], Kjeldahl nitrogen is increased in the strawberry plant body by irradiating green light and blue light from sunset to night before sunrise. In other words, the effect of suppressing the occurrence of powdery mildew caused by the protein effect due to the high concentration of protein accumulated in the body of the strawberry plant has been proved.
Figure 2011000115
Figure 2011000115
Figure 2011000115

は、緑色蛍光灯2の上面に青色蛍光灯1を設置しいちご株13に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic diagram in which the blue fluorescent lamp 1 is installed on the upper surface of the green fluorescent lamp 2 and the strawberry stock 13 is irradiated with green and blue light. は、緑色蛍光灯2の上面に青色蛍光灯1を設置しいちご株13に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic diagram in which the blue fluorescent lamp 1 is installed on the upper surface of the green fluorescent lamp 2 and the strawberry stock 13 is irradiated with green and blue light. は、青色蛍光灯1緑色蛍光灯2を一平面上に並べ設置し、いちご株13に緑色と青色光線とを照射する模式図。FIG. 3 is a schematic diagram in which blue fluorescent lamps 1 and green fluorescent lamps 2 are arranged side by side on a single plane and the strawberry stock 13 is irradiated with green and blue light rays. は、青色蛍光灯1をいちご株13の上面に設置し、青色光線を照射する模式図。FIG. 2 is a schematic diagram in which the blue fluorescent lamp 1 is installed on the upper surface of the strawberry strain 13 and irradiated with blue light. は、緑色蛍光灯2をいちご株13上面に設置し、緑色光線を照射する模式図。FIG. 2 is a schematic diagram in which the green fluorescent lamp 2 is installed on the upper surface of the strawberry stock 13 and irradiated with green light. は、緑色LED4の上面に青色LED3を設置しいちご株15に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic diagram in which a blue LED 3 is installed on the upper surface of the green LED 4 and the strawberry strain 15 is irradiated with green and blue light. は、青色LED3の上面に緑色LED4を設置しいちご株15に緑色と青色光線とを照射する模式図。FIG. 3 is a schematic view in which a green LED 4 is installed on the upper surface of the blue LED 3 and the strawberry strain 15 is irradiated with green and blue light. は、青色LED3と緑色LED4を一平面上に並べ設置し、いちご株15に緑色と青色光線とを照射する模式図。FIG. 3 is a schematic diagram in which blue LEDs 3 and green LEDs 4 are arranged side by side on one plane and the strawberry stock 15 is irradiated with green and blue light rays. は、青色LED3をいちご株15の上面に設置し、青色光線を照射する模式図。FIG. 2 is a schematic diagram in which a blue LED 3 is installed on the upper surface of the strawberry strain 15 and irradiated with blue light. は、緑色LED4をいちご株15上面に設置し、緑色光線を照射する模式図。Fig. 2 is a schematic diagram in which a green LED 4 is installed on the upper surface of the strawberry strain 15 and irradiated with green light. は、パイプハウスの内部両脇に平行に設置した緑色蛍光灯7と中央部に設置した青色の蛍光灯8の配置の立面図。These are the elevation views of arrangement | positioning of the green fluorescent lamp 7 installed in parallel with the both sides inside a pipe house, and the blue fluorescent lamp 8 installed in the center part. は、パイプハウスの内部両脇に平行に設置した緑色蛍光灯7と中央部に設置した青色の蛍光灯8の配置の平面図。These are the top views of arrangement | positioning of the green fluorescent lamp 7 installed in parallel with the both sides inside a pipe house, and the blue fluorescent lamp 8 installed in the center part.

1・・・青色蛍光灯、2・・・緑色蛍光灯、3・・・青色LED
4・・・緑色LED,13・・・いちご植物苗、15・・・いちご植物苗、
16・・・いちご植物苗、7・・・緑色蛍光灯 8・・・青色蛍光灯、
9・・・パイプハウス、
1 ... Blue fluorescent lamp, 2 ... Green fluorescent lamp, 3 ... Blue LED
4 ... Green LED, 13 ... Strawberry plant seedling, 15 ... Strawberry plant seedling,
16 ... Strawberry plant seedling, 7 ... Green fluorescent lamp 8 ... Blue fluorescent lamp,
9 ... pipe house,

Claims (10)

緑色蛍光灯の緑色光線上面部に青色蛍光灯の青色光線を加え植物に照射し、植物を育成制御方法。A method for controlling the growth of a plant by adding the blue light of a blue fluorescent light to the upper surface of the green light of the green fluorescent light and irradiating the plant. 青色蛍光灯の青色光線上面部に緑色蛍光灯の緑色光線を加え植物に照射し、植物を育成制御方法。A method for controlling the growth of a plant by irradiating a plant with the green light of a green fluorescent light added to the upper surface of the blue light of the blue fluorescent light. 緑色蛍光灯の緑色光線と青色蛍光灯の青色光線を一平面状に並べ、植物に照射し、植物を育成制御方法。A method for controlling the growth of plants by aligning the green light of a green fluorescent light and the blue light of a blue fluorescent light in a single plane and irradiating the plant. 緑色LEDの緑色光線上面部に青色LEDの青色光線を加え植物に照射し、植物を育成制御方法。A method for cultivating a plant by adding a blue light beam of a blue LED to the upper surface of a green light beam of a green LED and irradiating the plant. 青色LEDの青色光線上面部に緑色LEDの緑色光線を加え植物に照射し、植物を育成制御方法。A method for cultivating a plant by adding a green light beam of a green LED to an upper surface portion of a blue light beam of a blue LED and irradiating the plant. 緑色LEDの緑色光線と青色LEDの青色光線を一平面状に並べ、植物に照射し、植物を育成制御方法。A method for cultivating a plant by arranging a green ray of a green LED and a blue ray of a blue LED in a plane and irradiating the plant. 緑色蛍光灯の緑色光線を植物に照射し、植物を育成制御方法。A method for cultivating plants by irradiating a plant with green light from a green fluorescent lamp. 青色蛍光灯の青色光線を植物に照射し、植物を育成制御方法。A plant growth control method by irradiating a plant with blue light from a blue fluorescent lamp. 緑色LEDの緑色光線を植物に照射し、植物を育成制御方法。A method for cultivating a plant by irradiating the plant with green light from a green LED. 青色LEDの緑色光線を植物に照射し、植物を育成制御方法。A method for growing a plant by irradiating the plant with green light from a blue LED.
JP2009165105A 2009-06-22 2009-06-22 Method for controlling powdery mildew control using light rays Active JP5505830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009165105A JP5505830B2 (en) 2009-06-22 2009-06-22 Method for controlling powdery mildew control using light rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009165105A JP5505830B2 (en) 2009-06-22 2009-06-22 Method for controlling powdery mildew control using light rays

Publications (3)

Publication Number Publication Date
JP2011000115A true JP2011000115A (en) 2011-01-06
JP2011000115A5 JP2011000115A5 (en) 2012-09-06
JP5505830B2 JP5505830B2 (en) 2014-05-28

Family

ID=43558604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009165105A Active JP5505830B2 (en) 2009-06-22 2009-06-22 Method for controlling powdery mildew control using light rays

Country Status (1)

Country Link
JP (1) JP5505830B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131517A (en) * 2012-12-03 2014-07-17 Nobuyuki Takahashi Method for controlling concentration of phenolic substance and kjeldahl nitrogen in plant leaves by using light rays
CN111133936A (en) * 2018-11-05 2020-05-12 浙江省农业科学院 Cultivation method for reducing acidity of waxberry fruits by using colored greenhouse film
US11517007B2 (en) 2016-08-18 2022-12-06 Panasonic Intellectual Property Management Co., Ltd. Pest control apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138845A (en) * 1977-05-11 1978-12-04 Nippon Carbide Kogyo Kk Cultivation of strawberry
JP2001037334A (en) * 1999-06-07 2001-02-13 Roo Zeesungu Green nutrient soybean sprout cultured by using colored light and its culturing method
JP3088226U (en) * 2002-02-27 2002-09-06 伯幸 湯浅 Strawberry cultivation equipment
JP2004337058A (en) * 2003-05-15 2004-12-02 Sumika Plastech Co Ltd Plant cultivation method and agricultural facilities
JP2005328702A (en) * 2004-05-18 2005-12-02 Matsushita Electric Works Ltd Lighting device for growing plant
WO2007105599A1 (en) * 2006-03-08 2007-09-20 Shikoku Research Institute Incorporated Disease control method and disease control device
JP2009022175A (en) * 2007-07-17 2009-02-05 Panasonic Electric Works Co Ltd Plant disease damage preventing lighting device
JP2009261311A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Plant disease damage-preventing lighting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138845A (en) * 1977-05-11 1978-12-04 Nippon Carbide Kogyo Kk Cultivation of strawberry
JP2001037334A (en) * 1999-06-07 2001-02-13 Roo Zeesungu Green nutrient soybean sprout cultured by using colored light and its culturing method
JP3088226U (en) * 2002-02-27 2002-09-06 伯幸 湯浅 Strawberry cultivation equipment
JP2004337058A (en) * 2003-05-15 2004-12-02 Sumika Plastech Co Ltd Plant cultivation method and agricultural facilities
JP2005328702A (en) * 2004-05-18 2005-12-02 Matsushita Electric Works Ltd Lighting device for growing plant
WO2007105599A1 (en) * 2006-03-08 2007-09-20 Shikoku Research Institute Incorporated Disease control method and disease control device
JP2009022175A (en) * 2007-07-17 2009-02-05 Panasonic Electric Works Co Ltd Plant disease damage preventing lighting device
JP2009261311A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Plant disease damage-preventing lighting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131517A (en) * 2012-12-03 2014-07-17 Nobuyuki Takahashi Method for controlling concentration of phenolic substance and kjeldahl nitrogen in plant leaves by using light rays
US11517007B2 (en) 2016-08-18 2022-12-06 Panasonic Intellectual Property Management Co., Ltd. Pest control apparatus
CN111133936A (en) * 2018-11-05 2020-05-12 浙江省农业科学院 Cultivation method for reducing acidity of waxberry fruits by using colored greenhouse film
CN111133936B (en) * 2018-11-05 2022-03-25 浙江省农业科学院 Cultivation method for reducing acidity of waxberry fruits by using colored greenhouse film

Also Published As

Publication number Publication date
JP5505830B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
CN104584975A (en) Grape cultivating technology
CN104620788A (en) Planting method of blueberry seedlings
CN106718183B (en) Water culture seedling culture light environment and seedling culture method for lettuce vegetables
EP3479684A1 (en) Method for hydroponic culture of plant of family asteraceae
WO2023155840A1 (en) Application of 2-amino-3-phenyl butanoic acid or derivative thereof as plant growth regulator
Elramady et al. Nano-Nutrients for carbon sequestration: A short communication
JP5783476B2 (en) A method of controlling the concentration of phenolic substances and Kjeldahl nitrogen in plant leaves using light.
JP2011055816A (en) Method for controlling growth of plant utilizing light ray
Rakutko et al. Influence of light quality on fluctuating asymmetry of bilateral traits of forced parsley leaves
JP2011000115A (en) Method for controlling plant growth
CN114946856A (en) Application of 2-amino-3-hydroxy-3-methylbutyric acid in promoting plant growth
JP2011055816A5 (en)
Pepin et al. Beneficial effects of using a 3-D LED interlighting system for organic greenhouse tomato grown in Canada under low natural light conditions
JP2014131506A5 (en)
JP2014131517A5 (en)
KR101438393B1 (en) Method of Sparassis crispa hypa cultivating by LED light
CN108093932A (en) A kind of intelligent leaf class crops soilless culture production frame
JP2011055834A (en) Method for increasing amount of protein in body of food plant utilizing light ray
JPS62408A (en) Novel plant growth regulator
KR0160086B1 (en) The method of cultivating ginger seedlings
JP2011000115A5 (en)
CN107873518B (en) A kind of tissue culture method of Fourstamen Stephania Root seedling
JP5481968B2 (en) Control method for increasing the number of flowers using light
CN111418380B (en) Illumination culture method for promoting green stalk vegetable and Chinese cabbage heart to increase green
Mofunanya et al. Physiological and morphological responses of Amaranthus hybridus L.(green) to simulated nitric and sulphuric acid rain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5505830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250