JP2010505288A - デジタル加入者線における雑音を分析しかつ低減する方法及び装置 - Google Patents

デジタル加入者線における雑音を分析しかつ低減する方法及び装置 Download PDF

Info

Publication number
JP2010505288A
JP2010505288A JP2009522833A JP2009522833A JP2010505288A JP 2010505288 A JP2010505288 A JP 2010505288A JP 2009522833 A JP2009522833 A JP 2009522833A JP 2009522833 A JP2009522833 A JP 2009522833A JP 2010505288 A JP2010505288 A JP 2010505288A
Authority
JP
Japan
Prior art keywords
noise
dsl link
dsl
failure
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009522833A
Other languages
English (en)
Other versions
JP5179495B2 (ja
JP2010505288A5 (ja
Inventor
ジョン エム. チオッフィ、
ウォンジョン リー、
ジョージ ジニス、
スマンス ジャガンナサン、
Original Assignee
アダプティブ スペクトラム アンド シグナル アラインメント インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アダプティブ スペクトラム アンド シグナル アラインメント インコーポレイテッド filed Critical アダプティブ スペクトラム アンド シグナル アラインメント インコーポレイテッド
Publication of JP2010505288A publication Critical patent/JP2010505288A/ja
Publication of JP2010505288A5 publication Critical patent/JP2010505288A5/ja
Application granted granted Critical
Publication of JP5179495B2 publication Critical patent/JP5179495B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/2209Arrangements for supervision, monitoring or testing for lines also used for data transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/0213Standardised network management protocols, e.g. simple network management protocol [SNMP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/26Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
    • H04M3/28Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor
    • H04M3/30Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Telephonic Communication Services (AREA)
  • Monitoring And Testing Of Exchanges (AREA)
  • Interface Circuits In Exchanges (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract


DSLリンクの安定性のレベルを示すデータが受信される。受信されたデータに基づいて、データが最小閾値を上回る又は下回るDSLリンクの安定性のレベルを示すかどうかを決定する。DSLリンクの安定性のレベルが最小閾値を下回る場合、故障時の前のDSLリンクと関係付けられた雑音は、故障時の後のDSLリンクと関係付けられた雑音と比較される。故障時の前及び後の間の雑音の差異が閾値を超える場合、次いで雑音の差異はDSLリンクと関連付けられた固定雑音として特性化される。しかし、故障時の前及び後の間の雑音の差異が閾値を下回る場合、故障がDSLリンクへの電力損失又は重大なインパルス雑音イベントと関連付けられるかどうかが決定され、それに従って、雑音の差異が特性化される。最後に、DSLリンクと関連付けられる雑音の特性化はリンクの安定性を向上させるために、その後に起こりうるDSLリンクの再構成のために保存される。

Description

本発明は、概してデジタル通信システムの品質と安定性を分析し改善するための方法及び装置に関する。より詳細には、本発明は、DSLシステムにおけるリンク故障及びエラーを分析しかつ低減させることに関する。
(関連出願の相互参照)
本願は、2006年7月31日に提出され、DSL Systemと題された米国仮特許出願第60/834436号への優先権を主張する。
本願は、2004年3月8日に提出され、Adaptive Codeword Managementと題された米国特許出願第10/795593号に関連する。
本願は、2004年4月2日に提出され、DSL System Estimation and Parameter Recommendationと題された米国特許出願第10/817128号に関連する。
本願は、2006年7月8日に提出され、Adaptive Margin and Band Controlと題された特許協力条約(PCT)出願第US2006/026796号に関連する。
デジタル加入者回線(DSL)技術は、既存の電話加入者回線(ループ及び/又は銅設備(copper plant)とも呼ばれる)上でのデジタル通信のために、潜在的に大きな帯域幅を提供する。加入電話回線は、音声帯域のアナログ通信だけのための当初の設計にもかかわらず、この帯域幅を提供することが出来る。特に、非対称DSL(ADSL)及びVDSL(very−high−speed DSL)は、加入者回線の各端において、モデム(通常は、トランスミッタ及びレシーバの両方として機能するトランシーバ)のトレーニング及び初期化の間に決定されたチャネル状態に合わせて調整可能な、複数のビットを各トーン(又は、副搬送波)に割り当てる、ディスクリートマルチトーン(DMT)回線コードを使用することによって、加入者回線の特性に合わせて調整することが可能である。DSLシステムはベクトル化技術を使用することが出来る。すなわち、結合トランスミッタ及び/又は結合レシーバの信号処理は複数のペアの間で実行され、クロストーク干渉の影響を低減させることが出来、ひいては性能を改善することが出来る。
DSLシステムはさらに、DSLリンク故障又はリンクエラーを引き起こし得るDSLリンクの不安定性及び/又は低いリンクの品質の発生の原因を決定し、リンクの安定性及び/又はリンクの品質を改善するための手段を講じることにより利益を享受するであろう。
本発明の実施形態は、データを収集し、DSLリンク故障又はDSLリンクエラーを引き起こす原因を特性化するためのデータの解析を行い、原因が決定されると、故障及び/又はエラーを低減させるためにDSLリンクを再構成する手段及び方法を備える。
本発明の実施形態は、例示の方法であって、添付の図面に限定の方法で説明されるのではない。添付の図面では、同じ参照は同様の要素を示す。この開示における「1の(an)」又は「1つの(one)」実施形態への参照は必ずしも同じ実施形態に対するものではなく、このような参照は「少なくとも1つの」を意味するものであることに留意すべきである。
ITU−T G.997.1標準からのDSLシステムのための参照モデル略図を示す。 DSLシステムの一般的な概念図の説明であって、システムの配置と動作を示す。 本発明の実施形態によるDSLシステムと連通して結合されるDSLオプティマイザの説明である。 本発明の実施形態によるDSLAMと結合して動作するDSLオプティマイザの説明である。 本発明の1の実施形態による流れ図の説明である。 経時的なインパルス雑音の特性の説明である。 本発明の1の実施形態による流れ図の説明である。 本発明の実施形態による、インパルス雑音によって破損した可能性が高いRS符号語内のバイトの位置の説明である。 本発明の1以上の実施形態によるユーザ及び/又はコントローラによって使用されるコンピュータシステムの説明である。
図1は、G.997.1標準(G.ploam)による参照モデルシステムを示す。このモデルは、ADSL1(G.992.1)、ADSL−Lite(G.992.2)、ADSL2(G.992.3)、ADSL2−Lite G.992.4、ADSL2+(G.992.5)及びG.993.1及びG.9932VDSL標準、さらにG.991.1及びG.991.2SHDSL標準、全ての結合及び非結合のような、スプリッタを有し又は有し得ない様々な標準に適合する全てのADSLシステムに適用される。このモデルは、当業者には周知のものである。
G.997.1標準は、G.997.1で定義されたクリア・エンベデッド・オペレーション・チャネル(EOC)に基づく、ADSL転送システムのための物理層管理と、G.992.x及びG.993.x標準で定義されたインジケータビット及びEOCメッセージの使用とを規定する。さらに、G.997.1は、構成、故障、及び性能管理のための、ネットワーク管理要素の内容も規定する。これらの機能の実行において、システムは、アクセスノード(AN)において入手可能な、様々な動作データを利用する。
図1では、ユーザの端末装置110はホームネットワーク112に結合される。ホームネットワーク112は、同様にネットワーク終端装置(NT)120に結合される。NT120は、xTU−R122(例えば、ADSL標準の1つによって定義されるトランシーバ)又は他の任意の適切なネットワーク終端モデム、トランシーバ又は他の通信装置を有する。NT120はまた、管理エンティティ(ME)124も有する。ME124は、任意の適用可能な標準及び/又は他の基準に従って実行することが出来る、任意の適切なハードウェア装置、例えば、マイクロプロセッサ、マイクロコントローラ、又はファームウェア若しくはハードウェアの回路状態機械(circuit state machine)であり得る。ME124は、その管理情報ベース(MIB)に性能データを収集し、保存する。MIBは、各MEによって維持される情報のデータベースである。MIBには、SNMP(Simple Network Management Protocol)、管理者コンソール/プログラムへ提供するためにネットワーク装置から情報を集めるために使用される管理プロトコルのようなネットワーク管理プロトコルを介して、又はプログラム応答のために使用される周知のコマンド言語であるTL1コマンド及び通信ネットワーク要素間のコマンドを介してアクセスすることが出来る。
システム内の各xTU−Rは、セントラルオフィス(CO)又は他の中央位置のxTU−Cに結合される。図1では、xTU−C142は、CO146内のアクセスノード(AN)140に位置する。ME144は同様に、xTU−C142に関する性能データのMIBを維持する。AN140は、当業者には理解されるように、広帯域ネットワーク170又は他のネットワークに結合されてもよい。xTU−R122及びxTU−C142は、ループ130によって互いに結合される。通常、ループ130は、ADSL及びVDSLの場合には、他の通信サービスも搬送する電話ツイストペア線である。
図1に示すインタフェースのうちのいくつかは、性能データの決定及び収集のために使用される。Qインタフェース155は、オペレータのネットワーク管理局(NMS)150及びAN140内のME144との間のインタフェースを提供する。G.997.1標準で規定される全てのパラメータは、Qインタフェース155において適用される。ME144内でサポートされる近端パラメータは、xTU−C142から得ることが出来る。一方、xTU−R122からの遠端パラメータは、Uインタフェース上の2つのインタフェースのうちのいずれかによって得ることが出来る。エンベデッドチャネル132を使用して送信され、かつPMD層において提供される、インジケータビット及びEOCメッセージは、xTU−R122パラメータをME144内で生成するために使用することが出来る。あるいは、ME144によって要求された場合に、xTU−R122からパラメータを取得するために、オペレーション・アドミニストレーション・マネジメント(OAM)チャネル及び適切なプロトコルを使用することが出来る。同様に、xTU−C142からの遠端パラメータは、Uインタフェース上の2つのインタフェースのうちのいずれかによって得ることが出来る。PMD層において提供される、インジケータビット及びEOCメッセージは、xTU−C142パラメータをNT120のME122内で生成するために使用することが出来る。あるいは、ME124によって要求された場合に、xTU−C142からパラメータを取得するために、OAMチャネル及び適切なプロトコルを使用することが出来る。
(本質的にループ130である)Uインタフェースにおいて、2つの管理インタフェースが、1つはxTU−C142(U−Cインタフェース157)において、かつ1つはxTU−R122(U−Rインタフェース158)において存在する。インタフェース157は、xTU−C近端パラメータを、xTU−R122がUインタフェース130を越えて取得するために提供する。同様に、インタフェース158は、xTU−R近端パラメータを、xTU−C142がUインタフェース130を越えて取得するために提供する。該当するパラメータは、使用されるトランシーバ標準(例えば、G.992.1又はG.992.2)に依存してもよい。
G.997.1標準は、Uインタフェースを横切る任意選択のOAM通信チャネルを規定する。このチャネルが実装されている場合、xTU−C及びxTU−Rのペアは、物理層OAMメッセージを伝送するためにこのチャネルを使用してもよい。このようにして、このようなシステムのトランシーバ122、142は、これらの各々のMIB内に維持される様々な動作及び性能データを共有する。
ADSL NMSに関するさらなる情報は、「ADSL Network Element Management」と題されたDSL Forum Technical Report TR−005(ADSL Forum、1998年3月付け)に見出すことが出来、これは当業者には周知である。また上述のように、「CPE WAN Management Protocol」と題されたDSL Forum Technical Report TR−069(2004年5月付け)も当業者には周知である。最後に、「LAN−Side DSL CPE Configuration Specification」と題されたDSL Forum Technical Report TR−064(2004年5月付け)は当業者には周知である。これらの文献は、CPE側管理のための様々な状況に対処する。VDSLに関するさらなる情報は、ITU標準G.993.1(「VDSL1」と呼ばれることもある)、及びITU標準G.993.2(「VDSL2」と呼ばれることもある)、並びに、進行中のいくつかのDSL Forum作業テキストに見出すことが出来、これらは全て当業者に知られている。追加情報は、「VDSL Network Element Management」と題されたDSL ForumのTechnical Report TR−057(旧WT−068v5)(2003年2月)、及び「FS−VDSL EMS to NMS Interface Functional Requirements」と題されたTechnical Report TR−065(2004年3月)、並びに、VDSL1及びVDSL2 MIB要素のためのITU標準G.997.1の改訂版、又はATIS Dynamic Spectrum Management Report、ATIS−0600007で入手可能である。さらなる情報は、DSL Forum草稿作業テキストである、「Testing & Interoperability: ADSL2/ADSL2plus Functionality Test Plan」と題されたWT−105及び「Testing & Interoperability: VDSL2 Functionality Test Plan」と題されたWT−115及び「DSL Home Technical: TR−069 Implementation Guidelines」と題されたWT−121に見出すことが出来る。
当業者には理解されるように、これらの文書に記載されたパラメータのうちの少なくともいくつかは、本発明の実施形態と関連して使用される。さらに、システムの記載のうちの少なくともいくつかは、本発明の実施形態に同様に適用することが出来る。DSL NMSから入手可能な様々なタイプの動作データ及び情報は、それらの中に見出すことが出来る。その他のことが当業者に知られていてもよい。多数のトランシーバのペアが動作中で及び/又は利用可能である、DSL設備の典型的な接続形態では、各加入者ループの一部は、複数ペアのバインダ(又はバンドル)内の他のユーザのループと共に用いられる。ペデスタルの後、カスタマ構内設備(CPE)の非常に近くで、ループは引き込み線の形態を取り、バンドルを出る。従って、加入者ループは、2つの異なる環境を横切る。ループの一部はバインダの内部に配置されてもよく、そこでは、ループは外部の電磁インタフェースからは遮蔽される場合があるが、バインダ内の他のループへの近接のためクロストークが発生しやすい。ペデスタルの後、引き込み線のほとんどが他のペアから遠く離れているため、引き込み線はクロストークには影響されないことが多いが、引き込み線は遮蔽されていないため、伝送は電磁妨害によって、より大きく損なわれる可能性もある。多くの引き込み線は、それらの中に2〜8本のツイストペア線を有し、家庭への複数のサービス、又はそれらの回線の結合(1つのサービスの多重化及び逆多重化)の状況においては、引き込み線セグメント内で、それらの回線間に、追加の相当量のクロストークが発生する可能性がある。
一般的な、例示的DSL配置シナリオを、図2に示す。合計(L+M)個のユーザ291、292の全ての加入者ループは、少なくとも1つの共通バインダを通過する。各ユーザは、専用線を介してセントラルオフィス210、220に接続される。ただし、各加入者ループは、異なる環境及び媒体を通過してもよい。図2では、L個のユーザ291が、光ファイバ213と銅ツイストペア線217との組み合わせを使用して、CO210に接続されており、これは一般に、ファイバ・ツー・ザ・キャビネット(FTTCab)又はファイバ・ツー・ザ・カーブと呼ばれる。CO210内のトランシーバ211からの信号は、CO210及び光ネットワークユニット(ONU)218内の、光回線終端装置212及び光ネットワーク終端装置215によって変換される。ONU218内のモデム216は、ONU218及びユーザ291の間の信号のためのトランシーバとして機能を果たす。
残りのM個のユーザ292のループ227は、銅ツイストペア線のみであり、このシナリオは、ファイバ・ツー・ザ・エクスチェンジ(FTTEx)と呼ばれる。可能であり、かつ経済的に実現可能である限り、FTTCabの方がFTTExよりも好ましく、その理由は、それにより、加入者ループの銅部分の長さが減少し、従って、達成可能な速度が増加するからである。FTTCabループの存在は、FTTExループに問題を引き起こす可能性がある。さらに、FTTCabは、将来、ますます普及した接続形態となることが期待される。このタイプの接続形態は、相当量のクロストーク干渉を引き起こす可能性があり、また、様々なユーザの回線が、それらが動作する特定の環境のため、異なるデータ搬送及び実行能力を有することを意味する場合がある。接続形態は、ファイバ供給の「キャビネット」回線及び交換回線が、同じバインダ内で混合されることが可能であるようなものであってもよい。
図2から分かるように、CO220からユーザ292への回線は、CO210及びユーザ291間の回線によって使用されていない、バインダ222を共有する。さらに、別のバインダ240が、CO210及びCO220、並びにそれらの各ユーザ291、292の間の全ての回線に共通している。
図3Aに示す本発明の1実施形態によれば、アナライザ300は、システムの使用を最適化し、場合によっては制御するに当たって、ユーザ及び/又は1つ以上のシステムのオペレータ若しくはプロバイダを支援するコントローラ310(例えば、DSLオプティマイザ、動的スペクトルマネージャ、又は動的スペクトル管理センタ)として1つ以上のDSLシステムを監視する独立したエンティティの一部であってもよい。(動的スペクトルマネージャは、動的スペクトル管理センタ、DSMセンタ、DSLオプティマイザ、スペクトルメンテナンスセンタ、又はSMCと呼ばれることもある)。いくつかの実施形態では、コントローラ310は、CO又は他の場所からの複数のDSL回線を操作するインカンベント・ローカル・エクスチェンジ・キャリア(ILEC)又はコンペティティブ・ローカル・エクスチェンジ・キャリア(CLEC)によって操作されてもよい。他の実施形態では、「スマート」モデム装置が、ユーザ位置、セントラルオフィス又は他の何らかの単独の位置でモデムと統合される(例えば、プロセッサ又はメモリを有する)コントローラを有してもよい。図3Aの破線346から分かるように、コントローラ310はCO146内にあり、若しくは一部であってもよく、又はCO146及びシステム内で動作する任意の企業の外部にあってこれらから独立してもよい。さらに、コントローラ310は、複数のCOに結合され、及び/又はそれを制御することが出来る。同様に、コントローラ310の構成部品は、同じ場所にあり、かつ/又は同じ装備であってもよく、かつ/又は代わりに異なる場所でコントローラによってアクセスされてもよい。
図3Aの例示的な実施形態では、アナライザ300は(所望の場合には監視も行ってよい)収集手段320及び解析手段340を有する。図3Aで分かるように、収集及び/又は監視手段320は、例えば、NMS150、AN140におけるME144、及び/又はME144によって維持されるMIB148のような、DSLシステムへの内部のソースに結合されてよく、かつそれらを通じて、かつそれらからデータを収集してもよい。データはまた、広帯域ネットワーク170(例えば、TCP/IPプロトコル又は所定のDSLシステム内の通常の内部データ通信システムの外部の他の手段)を通じて手段320によって外部ソースから収集されてもよい。また、収集手段320は、配置情報、接続形態情報、クロストーク結合などのバインダレベルの情報、又はビットローディング及び電力割当のようなモデム能力に関する情報、並びにサービス優先度を記憶する、1つ以上のデータベース又は他のソース348へのアクセスを有してもよい。EMS帯域幅が制限されている場合、又はEMSが非協力的な場合(例えば、設備製造業者がその設備の内部で管理を行うことを望むため、報告される管理データを遮ることにより)、コントローラは、インターネット上でxTU−Rから、又はインターネット上でxTU−Cからでさえ、動作データを収集してもよい。動作データは、様々なソース自身から収集している可能性があるサービスプロバイダのNMSから収集することも出来る。
解析手段340及び/又は監視/収集手段320はまた、アナライザ300又はコントローラ310の一部である又は一部でないかもしれないデータベース又はメモリのような、パラメータ履歴及び/又は他の関連する情報のソース345に結合されてもよい。1つ以上のアナライザの接続により、アナライザ300は動作データを収集することが出来る。データは、一度に(例えば、単独のトランシーバの訓練中に)又は経時的に収集されてもよい。場合によっては、監視手段320は、周期的にデータを収集してもよいが、データを要求に応じて又は他の何らかの非周期的な方式でデータを収集することも可能である。このようにして、所望の場合に、アナライザ300はそのユーザ及び回線データを更新することが出来る。
モデムが雑音効果を減少させるのを支援するため1つ以上のモデムに指示を送る必要があるかどうかを決定するために、解析手段340は送られてくるデータを解析する能力を有する。アナライザ300の解析手段340は、コントローラ310内の指示信号生成手段350に結合される。信号ジェネレータ350は、モデムに使用される解析手段340によって生成されるパラメータ値を受け入れるように構成される。そのパラメータ値は、動作データに基づき、かつ1つ以上のモデムが、雑音を低減させ、安定性を改善し、故障を排除し、エラーを減少させるのを支援するために計算される。信号ジェネレータ350は、通信システム(例えば、ATU−CのようなADSLトランシーバ)のユーザへ指示信号を送信するように構成される。破線347によって示されるように、指示信号生成手段350は、アナライザ300の一部であり又はなくてもよく、かつ/又はコンピュータシステムのような同じハードウェア内に実装されてもよい。指示信号ジェネレータ350はモデムペアにおける1つ以上のパラメータ値を調整する手段を構成する。
本発明の他の実施形態が図3Bに示される。DSLオプティマイザ365は、DSLAM385又は他のDSLシステム構成部品(例えば、RT、ONU/LTなど)上で及び/又はこれらと関連して動作する。これらのうちのどちらか又は両方は、電気通信会社(「テルコ」)の施設395上にあってもよい。DSLオプティマイザ365は、DSLオプティマイザ365について及びそれのために動作データを収集し、組立て、調整し、操作し、かつ/又は供給することが出来るデータモジュール380を有する。モジュール380は、PC又はワークステーションなどの1つ以上のコンピュータに実装することが出来る。モジュール380からのデータは、解析(例えば、所与の通信回線、通信システムへの制御及び動作の変化、報告されるモデム能力などに基づいて、プロファイルの可用性、実装される遷移など)のためにDSMサーバモジュール370に供給される。情報はまた、テルコに関連する又は関連しない場合があるライブラリ又はデータベース375から入手可能であってもよい。プロファイルセレクタ390は、通信システムの動作に影響を与える信号を実装するために使用されてもよい。このような決定は、当業者には理解されるように、DSMサーバ370又は他の何らかの適切な方法によって行われてもよい。セレクタ390によって選択される動作モードは、DSLAM385及び/又は他の何らかの適切なDSLシステム構成部品の設備に実装される。このような設備は、加入者宅内設備399のようなDSL設備に結合されてもよい。装置385は、DSLオプティマイザ365によって考慮される、許容されるプロファイル、性能強化などに基づいて任意の命令される変更を実装するために使用されてもよい。図3Bのシステムは、当業者には理解されるように図3Aのシステムに類似する方法で動作することが可能であるが、本発明の実施形態をさらに実装する間に、差分は達成することが出来る。
収集手段320又はデータモジュール380は、第2のコントローラ又はDSLオプティマイザの対応するモジュールに結合されてもよい。このようにして、他のDSL回線が同じDSLオプティマイザ、DSMセンタ又はSMCによって制御されない場合であっても、動作データを他のDSL回線から収集することが出来る。反対に、調整者、サービスプロバイダ及び/又は他のDSLオプティマイザによって適切に使用されるために、コントローラ310又はDSLオプティマイザ365は、公衆又は個人のデータベース(例えば、DSL管理エンティティが適切にデータを共有することが出来る公衆又は個人に制御されるウェブサイト又は接続)へのそれ自身のDSL回線の動作データを提供してもよい。当業者には理解されるように、コントローラが完全に独立したエンティティである場合(すなわち、CO内の企業所有のかつ/又は企業運用の回線によって所有されかつ/又は運用されるものではない場合)、DSLシステムの構成及び動作情報の大部分は入手出来ない可能性がある。CLEC又はILECがコントローラ310として動作及び/又は機能する場合であっても、このデータの大部分は不明である可能性がある。
本発明のいくつかの実施形態では、アナライザ300はPC又はワークステーションなど(これらの例の1つは、図8に関連して開示される)のようなコンピュータに実装される。収集手段320、解析手段340及び/又は指示信号生成手段350は、当業者には理解されるように、ソフトウェアモジュール、ハードウェアモジュール又は両者の組み合わせであってもよい。これらの構成部品は、全て同じコンピュータシステム内に存在してもよいし、例えば、別個の装置であってもよい。多数の回線の管理のために、データベースが、回線及びコントローラによって生成されるデータの量を管理するために導入され、かつ使用されてもよい。
本発明の実施形態は、雑音特性化及び雑音低減の2つの部分に特徴付けられ得る。雑音特性化の検討は次に提供され、雑音低減の検討はその後に続く。
(雑音特性化)
図4を参照して、本発明の1実施形態が説明される。モジュール405において、データが収集される。データ収集は、図3A及び図3Bを参照して上述のように行うことが出来る。データ収集は複数回行われる可能性がある。収集されるデータは、瞬時値(データ収集時の値)、又は値の履歴(データ収集以前の様々な時に取得される値)を有してもよい。カウンタを表すデータ(例えば、コード違反(CV)、エラー秒数(ES))は、ベクトルとして表されてもよく、ベクトルの各要素は既知の時間間隔内のカウントである。データは、セントラルオフィス(CO側、又は場合によっては近端、NEとも呼ばれる)、又は顧客宅内(CP側、又は場合によっては遠端、FEと呼ばれる)に関連するパラメータを有することが出来る。
本発明の1実施形態では、収集するパラメータは以下を有してもよい。
G.997.1から、
回線一覧(Line inventory)
− G.994.1 ベンダID
− システムベンダID
− バージョン番号
− シリアル番号
チャネルの試験、診断及び状態パラメータ
− 実際のデータ速度
− 実際のインターリーブ遅延
− 実際の構成者の設定
− NFEC、RS符号語サイズ
− RFEC、RSパリティバイト
− LSYMB、記号(symbol)ごとのビット
− INTLVDEPTH、インターリーバの深さ
− INTLVBLOCK、インターリーバのブロックサイズ
回線の試験、診断及び状態パラメータ
− LATN、回線減衰
− SATN、信号減衰
− SNRM、SNRマージン
− ACTPSD、実際のPSDレベル
− UPBOKLE、電気的長さ
− ACTATP、実際の集約送信電力
− HLIN、複合チャネル応答
− HLOG、チャネル応答の大きさ
− QLN、クワイエットライン雑音
− SNR
− BITS
− GAINS
− TSS、送信スペクトル形成
− MREFPSD、参照PSD
− TRELLIS
− ACTUALCE、巡回拡張長
チャネル性能監視パラメータ
− CV、コード違反
− FEC、前方誤り訂正
回線性能監視パラメータ
− FECS、FEC秒数
− ES、エラー秒数
− SES、重大なエラー秒数
− LOSS、信号損失(loss−of−signal)秒数
− UAS、無効時間秒数
− 完全初期化(又はREINIT)
− 初期化失敗
回線故障
− LOS、信号損失故障
− LOF、フレーム損失故障
− LPR、電力損失故障
− LINIT、回線初期化故障
WT−135第4改訂版から、
Object.STBService.{i}.AVStreams.−AVStream.{i}.IP.RTP.Stats
− PacketsReceived
− BytesRecieved
− PacketsLost
− FractionLost
− CorruptedPackets
− Overruns
− Underruns
− ReceiveInterarrivalJitter
Object.STBService.{i}.AVStream.−AVStream.{i}.MPEG2TS.Stats
− PacketsReceived
− PacketDiscontinuityCounter
− Overruns
− Underruns
ダイナミック・スペクトル・マネジメント・テクニカル・レポートからの追加のパラメータ
− MSE、トーンごとの平均2乗誤差(mean−square−error)
− Pb、トーンごとのエラーの可能性
− Xlog、Xlin、クロストーク結合
− MARGIN[i]、トーンごとのマージン
追加のパラメータ
− SOS通知/イベント/カウンタ(データ速度の突然の減少となる)
− SRA(シームレス・レート・アダプテーション)通知/イベント/カウンタ
− 故障原因
− ビットスワップ(bit−swap)カウント
− ビット分布の統計(例えば、トーンごとの最小最大中央値平均(min−max−median−average))
− 雑音ピーク対平均(peak−to−average)比(また時間領域内の雑音ピーク)
− エコー応答
− ループインピーダンス
− インパルス雑音幅(又は関連する統計)
− インパルス雑音期間(又は関連する統計)
− インパルス雑音イベント継続期間(又は関連する統計)
− 停止、欠落パケット、エラー潜在パケット、再送パケット、欠落/補間MPEGブロック、バッファオーバフロー/アンダーフロー、再送信などのような、IPTV又はMPEG配信統計
インパルス雑音は図5に示されるように経時的に特性化され、そこでは、イベント継続期間520内の各雑音パルス510は幅530及び期間540を有する。これらの量の統計(例えば、ヒストグラム、最小、最大、中央値、x%最悪状況)は、計算され、かつ報告されることが可能である。
モジュール410はリンクの安定性及びリンクの品質を評価する。リンクの安定性を評価するために、上記の回線故障、完全な/失敗した初期化(再訓練としても知られる)、及び無効時間秒数(UAS)のようなパラメータが、図3A及び3B並びに図4のモジュール405に関して記載されたように取得される。いくつかの実施形態では、経時的なこれらの量の分布が評価される。例えば、LOSが15分間隔でカウントされる場合、1日の総測定期間に対して、96個のLOSがカウントされる。LOSの分布を評価することは、どのくらいの間隔でLOSのカウントが0に等しかったか、どのくらいの間隔でLOSのカウントが1に等しかったか、などを評価することを意味する。
このような分布からリンクの安定性レベルは決定される。1実施形態では、例えば、以下の全ての条件が有効である場合、リンクの安定性は良好であると宣言される。
− 間隔の90%について、LOS=0
− 間隔の99%について、LOS<=1
− 間隔の100%について、LOS<=2
以下の全ての条件が有効である場合、リンクの安定性は中程度よりも良いと宣言される。
− 間隔の80%について、LOS=0
− 間隔の90%について、LOS<=1
− 間隔の95%について、LOS<=2
− 間隔の100%について、LOS<=4
他の全ての場合において、リンクの安定性は悪いと宣言される。
リンクの安定性は、複数のパラメータに対して上記のような条件を組み合わることによって決定されてもよい。
図4のモジュール420は、リンク故障の前及び後の雑音を比較する。リンクの安定性が不十分であると宣言される場合、次いで不十分なリンクの安定性を発生させている雑音/撹乱の種類に関してさらなる決定がなされる。雑音/撹乱の種類を決定する方法は、リンク故障の前及びリンク故障の後のDSLレシーバにおける雑音を比較することでなされる。(リンク故障は、いわゆる「SOSイベント」又はSRAイベントを有し、DSLレシーバ内のモデムは動作可能な状態を維持するが、データ速度が減少する。)測定された雑音の間の重大な差異は、雑音レベルの実質的な増大のためにリンク故障が生じたことを示唆する。リンク故障の前及び後の比較可能な雑音レベルは、雑音の増加以外の原因がリンク故障を導くことを示唆する。
より信頼出来る結論を出すために、このような比較は複数のリンク故障に対応する複数の期間にわたって行われる。例えば、LOS(又は完全初期化)の記録は、リンク故障の時間を特定するために使用することが出来る。複数の雑音の測定結果は、リンク故障の前及び後の時間において取得することが出来る。リンク故障の総数のうちの所定の割合について雑音レベルの実質的な変化が観測される場合、雑音レベルの変化がリンク故障の原因であるとみなすことが出来る。
リンク故障前の雑音測定は、好ましくはリンク故障が起こる少なくとも数秒前に行われる。リンク故障後の雑音測定は、DSLリンクが再初期化された後(又はデータ速度を減少させるSOS若しくはSRAプロシージャが終了した後)であり、かつ安定した状態(例えば、信号対雑音比(SNR)マージンが安定している、CVカウントが低いなど)にある場合に行われるべきである。
DSLレシーバの雑音を評価するための多くの技術が存在する。1つの方法は、レシーバが、そのデコーダの平均2乗誤差(MSE)を報告することである。このようなエラーは、スライサの出力、トレリスデコーダの出力、又はRSデコーダの出力に対応することが可能である。
代替として、雑音は他のパラメータを使用して間接的に計算されてもよい。例えば、SRN、HLOG(チャネル減衰)、MREFPSD(送信PSD)及びGAINS(ゲインスケーリング)がVDSL2モデムによって報告される場合、次いでレシーバの平均2乗誤差は次の式によって推定することが出来る。
MSE(dBm/Hz)=HLOG(dB)+MPREFPSD(dBm/Hz)+GAINS(dB)−SNR(dB)
さらに他の代替方法によれば、雑音の測定としてSNRマージンの報告される値を使用する。SNRマージンは、平均として又はトーンごとのどちらかを、及び故障前及び後の雑音を比較するためにそれを使用することが出来るどちらかの形式で報告されてもよい。
レシーバ雑音の推定のためのさらなる技術は、2004年4月2日に提出され、2005年7月9日に米国公報第2005/0123027号として公開され、「DSL System Estimation and Parameter Recommendation」と題された、関連する米国特許出願第10/817,128号に見出すことが出来る。
一般的には、雑音の前及び後の間の差異に基づいて、雑音レベルの実質的な変化が決定される。差異は、異なる周波数に対応する1つ以上の値のベクトルである。1実施形態では、差異が所定の数の周波数点についての所定の閾値を超えることが検出される場合、実質的な差異が宣言される。重み係数が所定の周波数の差異値に適用されてもよい。
実質的な雑音変化の決定は、「第3のワイヤ(third wire)」の既知の問題を診断するために使用することが出来る。一部の国/地域では、電話サービス用の内部配線は、3本のワイヤを有し、2本は電話通信信号の伝送用であり、かつ1本は呼出信号用である。このような運用は、近年陳腐化しているが、第3のワイヤを有する宅内設備は存在し続けている。残念ながら、この第3のワイヤはDSL信号伝送の平衡を悪化させるため、DSL伝送を深刻に損なう。その結果、外部の雑音源は特にDSLに強い干渉を引き起こす。さらに詳細には、時間変化する雑音源は、次いでリンク故障につながり得る実質的な雑音変化を引き起こす。このような雑音変化は本明細書に記載される実施形態を使用して検出することが可能であり、その結果として、第3のワイヤの存在は潜在的な主要因として示唆されことが可能である。
実質的な雑音変化の決定は、「屋内配線に関する問題」のより一般的な状態を診断するためにも使用することが出来る。場合によっては、屋内配線は不十分に取付けられ又は管理されており、それによりDSL信号伝送の平衡を悪化させ、かつDSL伝送は外部の雑音源により害を受ける可能性がある。かさねて、本明細書に記載されるように雑音変化を検出することは、屋内配線の問題を診断することを援助することが出来る。
次に図4のモジュール430を参照して、本発明の1実施形態は、リンク故障が電力損失と相関性があるかどうかを検査する。リンク故障の前及び後の雑音が実質的に相違しないことを検出する場合、次いでリンク故障は電力損失の結果、又は重大なインパルス雑音イベント(例えば、回線上の電圧サージ)の結果である可能性があると決定する。これらの状況の相互間の差異を明確にするために、いくつかの追加の検査を行うことが出来る。
− リンク故障が、報告されている電力損失(LPR)故障と相関性があるかを検査する。LPRが故障イベントと相関性がある場合、リンク故障は、停電のために発生した。
− CPEモデム(例えば、パーソナルコンピュータ(PC)のようなコンピュータによって駆動されるUSBCPEモデム)が、DSLリンク上で使用されるかどうかを検査する。このような方法が用いられる場合、次いで顧客宅内でPCの電源を切ってすぐに入れ直すこと又は電源を切ることは回線切断を生ずる。
− 隣接するリンクが、同時に又は同様の時間に故障を経験するかどうかを検査する。このような場合、複数のリンクは重大なインパルス雑音イベントにより害を受けていると推測され得る。
− DSLレシーバの飽和、受信される信号電力の増加、回路保護論理の起動、オーバフロービット又は同様の起動の表示を検査する。このような表示が存在する場合、次いで重大なインパルス雑音イベントが発生した可能性がある。
他の全ての場合において、リンク故障は重大なインパルス雑音イベントに起因する可能性がある。このようにして、不十分なリンクの安定性の原因は、電力損失イベント、又は重大なインパルスイベントのいずれかとして特定することが出来る。
モジュール440を参照して、リンク故障が電力損失と相関性があることが検出される場合、次いでリンク故障を特性化する情報が記録されてもよい。例えば、このようなイベントが生じる可能性が最も高い時間、日に関する統計的な情報を提供するために、リンク故障の時間/日を記録することが出来る。
モジュール450において、リンク故障が重大なインパルスイベントに起因することが検出される場合、次いでリンク故障を特性化する情報が記録される。例えば、このようなイベントが生じる可能性が最も高い時間、日に関する統計的な情報を提供するために、リンク故障の時間/日を記録することが出来る。
モジュール420に戻って、リンク故障の前及び後の雑音が実質的に異なることが検出される場合、受信される雑音強度の突然の変化がリンク故障の原因であることが推測される。リンク故障を特性化する情報が記録される。例えば、このようなイベントが生じる可能性が最も高い時間、日に関する統計的な情報を提供するために、リンク故障の時間/日を記録することが出来る。
リンク故障の前及び後の雑音における差異は、保存することが可能であり、かつこのような雑音変化の効果を低減させるリンクを再構成するための価値ある情報を提供する。この差異は、雑音変化を引き起こす雑音源の異なる周波数上の電力(電力スペクトル密度、PSD)を効果的に明らかにする。このような差異が複数のリンク故障について計算される場合、より高い信頼性を提供するために平均値を計算することが出来る。雑音の差異を測定するための代わりの方法として、ビット分布の差異のような量を用いることが出来る。
モジュール410に戻って、リンクの品質を評価するために、チャネル性能監視パラメータ及び/又は回線性能監視パラメータが、図3A及び図3Bを参照して上述したように取得される。本発明のいくつかの実施形態では、経時的なこれらの量の分布が評価される。上位層のパラメータは、IPTV又は他のビデオストリームの配信のような応用のために取得することが出来る。このようなパラメータのリストは、当業者には周知の、DSLフォーラム文書WT−135第4改訂版の中で提供される。
リンクの品質レベルは、このような分布の評価から決定される。1実施形態では、例えば、以下の全ての条件が有効である場合、リンクの品質は許容可能であると宣言される。
− 間隔の95%についてCV<=1
− 間隔の99%についてCV<=10
− 間隔の100%についてCV<=100
− 間隔の95%についてSES<=1
− 間隔の99%についてSES<=15
− 間隔の100%についてSES<=60
他の全ての場合には、リンクの品質は許容不可能であると宣言される。
他の量は上記のパラメータから導き出すことが出来る。これらは合計(例えば、UAS+SES)、又はより複雑な式(例えば、CV/(360e3−(SES+UAS)*400))を有する可能性がある。これらのような数式は、CO側若しくはCP側のどちらかに関連する、又はCO側及びCP側の双方に関連するパラメータについて構築されよもよい。このような数式は、ベンダ及び/又はシステムIDに依存してもよい。
410においてリンクの品質が不十分であると決定される場合、次いでモジュール470においてエラーについてさらなる分析が行われ、不十分な品質を引き起こすインパルス雑音イベントが断続的であるか又は持続的であるかを決定することが出来る。このような特性化の基本的な差異は、インパルス雑音イベントの継続期間である(図5を参照)。
このような特性化を行う方法は、コード違反(CV)カウンタを監視することである。かなりの割合の時間にわたるCVカウンタの大きな値は、インパルス雑音イベントの継続期間が長く、かつインパルス雑音は持続的又は反復性であると分類出来ることを示唆する。反復性のインパルス雑音を宣言する例示的な基準は、少なくとも1つの以下の条件を満足させることである。
− 間隔の10%についてCV>=100、又は
− 間隔の5%についてCV>=1000
代替のパラメータを使用することが可能であり、又は基準は規則と以下のような複数のパラメータとの組み合わせを使用して構築することが出来る。
− FEC、修正される符号語の数
− FECS、FEC秒数
− ES、エラー秒数
− SES、重大なエラー秒数
− LOSS、信号損失秒数
− UAS、無効時間秒数
CV及びFECは、秒数のカウントと比較してより細かい精度を有するため、好都合である。上記のようなパラメータから導き出されるいずれの条件も、データ速度及びマージンのような性能パラメータを組み込むことが可能である。
いくつかの実施形態では、DSLシステムによって、インパルス雑音に関するより詳細な情報が提供されてもよい。例えば、情報は以下を有してもよい。
− インパルス雑音幅の、平均値、統計、又は分布
− インパルス雑音期間の、平均値、統計、又は分布
− インパルス雑音継続期間の、平均値、統計、又は分布
インパルス雑音は、次いで、以下の全ての条件が満たされる場合、反復性として特性化されてもよい。
− インパルス雑音イベント継続期間>x秒(例えば、10秒)
− インパルス雑音期間<yミリ秒(例えば、1000ミリ秒)
− インパルス雑音幅>zDMTシンボル(例えば、0.5DMTシンボル)
これらの条件が満たされない場合、雑音は断続的なインパルス雑音と分類される。
他の実施形態では、インパルス雑音は、DSL物理層よりも上位のネットワーク層に関する情報を検査することにより特性化されてもよい。例えば、情報は以下を有してもよい。
− 損失又は破損パケット/MPEGフレームの、平均値、統計、又は分布
− パケット内部出現ジッタの、平均値、統計、又は分布
− MPEGバッファオーバーラン及びアンダーランの、平均値、統計、又は分布
例えば、インパルス雑音は、次いで、以下の全ての条件が満たされる場合、反復性として特性化されてもよい。
− 測定間隔の10%について、損失パケット>x1、又は
− 測定間隔の5%について、損失パケット>x2
上記の条件は何れも、ベンダ及び/又はシステムIDに依存してもよい。
次のステップ480として、反復性インパルス雑音であると不十分なリンクの品質の原因を宣言した後、さらなる分析を行ってもよい。
故障を特性化する情報は記録される。例えば、不十分な品質の時間/日は、このようなイベントが発生する可能性が最も高い時間、日に関する統計的な情報を提供するために、記録することが出来る。これは、例えば、CV又は他の何らかのチャネル/回線性能監視パラメータが所定の閾値を超える時に、間隔を記録することによって達成することが出来る。
チャネル又は回線性能監視パラメータを使用し、かつこれらのパラメータが所定の閾値を超える時間の長さを記録することにより、インパルス雑音イベント継続期間もまた推定することが出来る。
性能監視パラメータを測定する間隔が、ほぼマイクロ秒の程度に十分短くされる場合に、インパルス雑音幅及び期間もまた推定することが出来る。そのような短い間隔が不可能であっても、反復性インパルス雑音は、性能監視パラメータに基づいておおよそ特性化することが出来る。例えば、以下の場合、反復性インパルス雑音はレベル1であるとして特性化されてもよい。
− 間隔の10%についてCV>=100、又は
− 間隔の5%についてCV>=1000
又は、以下の場合、レベル2であるとして特性化されてもよい。
− 間隔の20%についてCV>=100、又は
− 間隔の10%についてCV>=1000
反復性インパルス雑音は、他のもの以上に所定の周波数に影響を及ぼす可能性がある。影響を受けた周波数を特定する方法が次に説明される。
反復性インパルス雑音は、DSLレシーバが受ける平均雑音に影響を有する可能性があることが観測されている。雑音測定が、インパルス雑音イベントの開始前、及びインパルス雑音イベントの進行中に行われる場合、次いでこれらの雑音測定結果は実質的に異なる可能性がある。(SNRマージン測定を行うことにより同じ効果を認めることが出来る。)雑音が実質的に異なる周波数を記録することにより、反復性インパルス雑音に最も影響を受ける周波数を特定することが出来る。このような知識を利用する方法は、以下により詳細に説明される。
470において、インパルス雑音が不十分なリンクの品質の原因であると宣言される場合、さらなる分析が行われてもよい。リンク故障を特性化する情報が記録される。例えば、不十分な品質の時間/日は、このようなイベントが発生する可能性が最も高い時間、又は日に関する統計的な情報を提供するために、記録することが出来る。これは、例えば、CV又は他の何らかのチャネル/回線性能監視パラメータが所定の閾値を超える時に、間隔を記録することによって達成することが出来る。
インパルス雑音イベント継続期間、インパルス雑音幅及びインパルス雑音期間はまた、反復性インパルス雑音に関するものと同様の方法を使用して推定してもよい。雑音特性化は、原因のその宣言に一意である必要はないことに留意しなければならない。例えば、リンクの不安定性の原因となる突然の雑音変化、及び不十分なリンクの品質の原因となる断続的インパルス雑音のために、リンクの安定性及びリンクの品質の両方が不十分であると決定されてもよい。このような場合、本発明の実施形態は、順番に又は同時に、ステップ420及び470に続くステップを実行してもよい。
(雑音低減)
図6を参照して、雑音低減作用は、上記で概説されたように雑音特性化605の結果に依存する。本発明の1実施形態では、雑音低減は、図3A及び図3Bに示されるようにDSLリンク再構成によって達成される。複数回のデータ収集及びリンク再構成が、適切な雑音低減を達成するために行われてもよい。
制御され得るパラメータのリストは以下を有する。
G.997.1より、
回線構成パラメータ
− MAXNOMPSD、最大公称(nominal)PSD
− MAXNOMATP、最大公称集約送信機電力
− MAXRXPWR、最大受信電力
− CARMASK、搬送波マスク
− PSDMASK、PSDマスク
− RFIBANDS、RFI帯域
− DPBOSHAPED、下流電力バックオフ
− UPBOSHAPED、上流電力バックオフ
− TARSNRM、ターゲットSNRマージン
− MAXSNRM、最大SNRマージン
− MINSNRM、最小SNRマージン
− MSGMIN、メッセージオーバヘッドチャネルの最小速度
チャネル構成パラメータ
− 最小データ速度
− 最大データ速度
− 最大インターリーブ遅延
− 最小インパルス雑音保護
− FEC冗長割合
DSM TRからの追加
− マージンキャップモード
− 帯域選択(band preference)
追加のパラメータ
− TARSNRM[n]、トーンごとのターゲットSNRマージン
− BCAP[n]、トーンごとのビットキャップ
− 再訓練閾値
− DSL層に対する再送信パラメータ
605において、固定雑音610がリンク不安定性の原因であると決定される場合、次いで615において、本発明の実施形態によるDSLリンクの1つ以上の特定の再構成が、問題を低減する可能性がある。固定雑音の解析は、リンク故障の前及び後の雑音変化の推定を生成する。新しい雑音の電力スペクトル密度の推定は、影響を受ける周波数に対する、かつそのような雑音変化が反復されるときのリンク故障を防ぐために、追加の保護を提供してもよい。
影響を受ける周波数に対する保護を増加させるために、615において用いることが出来る潜在的なカウンタ測定の概要は以下の通りである。
1.DSLリンクに対して追加のSNRマージンが提供される。その結果、雑音変化は、負の値へのSNRマージンの降下を生じさせない。これはDSLリンクの最大データ速度を減少させることにより、又はより大きなTARSNRM(ターゲットSNRマージン)を要求することにより達成することが出来る。
2.突然の雑音変化に最も影響を受ける周波数は無効にされてもよい。これは、これらの周波数が如何なるビットもロードされていないことを確認するために、CARMASK(搬送波マスク)、又はPSDMASK(PSDマスク)のどちらかを使用して達成することが出来る。
3.突然の雑音変化によって最も影響を受ける周波数は、追加のマージンを提供されてもよい。これは、例えば、Amati CommunicationsのJohn M. Cioffiによる標準寄稿T1E1.4/1992−203において記載されたトーン依存TARSNRM[n]パラメータを使用することによって、これらの周波数が他の周波数と比較してより大きなマージンを有することを確実にするために、構成パラメータを適切にプログラムすることによって、達成することが出来る。もう1つの非常に効果的な手法は、影響を受ける周波数が過多のビットをロードされることを防ぐために、トーン依存ビットキャップ(BCAP[n])を使用することである。このようにして、追加の保護を確実にする。
4.追加の保護を提供するための新しい手法は、トーン依存MAXSNRM[n]パラメータ、又は最大SNRマージンを使用することである。この手法により、超過のマージンによって特性化されるシステムは、所定のトーンが他のものよりも雑音に対してより大きな保護が可能であるように、電力削減を行うことが出来る。例えば、突然の雑音変化が影響を有することが観測されるトーンは、20dBのMAXSNRMが許容されてもよい。一方、そのような影響を有さないトーンは、6dBのみのMAXSNRMが許容されてもよい。この実施は、超過のマージンと関連する場合に電力削減を強いる、MAXSNRM設定を有する利点と、所定の周波数がより効果的に突然の雑音変化に対処出来るように、所定の周波数に対する優先的な措置を与える利点とを結合する。
5.突然の雑音変化を受けているそれらのトーンに対するよりよい保護を提供するためのもう1つの新しい手法は、ビットスワップ動作がそのようなトーンに対してより控えめであるように、そのようなトーンに印を付けることである。1実施形態では、印を付けられたトーンは、ビットスワップを使用して、ロードされるビットを増加させることが出来ないようにされる。このような手段は、時間可変雑音が、それらのトーンのロードされるビット数を減少させることのみが出来ることを保証する。このようにして、初期化後の雑音条件におけるいくつかの一時的な改良により、雑音が後に突然増加し、場合によっては望ましくない回線故障を引き起こす可能性があるそれらのトーンに対するより多数のビットを生じることとはならない。
6.もう1つの実施形態では、所定数のロードされたビットに到達するときにだけ、印を付けられたトーンは、ビットスワップを使用してロードされるビット数の増加を防ぐことが可能である。この手法はBCAP[n]の1種類とみなすことが出来るが、「ビットキャップ」制約がSHOWTIME中の動作にのみ適用され、必ずしも初期化中のロードアルゴリズムには適用されない点で大きく相違する。
605において、重大な雑音インパルス620がリンク不安定性の原因であると決定される場合、本発明の実施形態によれば、1つ以上の特定のステップ625が問題を減少させ得る。そのようなリンク不安定性を引き起こす重大な雑音インパルスは、一般的には、DSLモデムサージ保護回路の起動を引き起こすのに十分強力な電圧を有するインパルス雑音信号によって特性化される。その期間中、受信信号は深刻に破損し、かつ論理は再訓練を開始するために起動される可能性がある。再訓練のトリガはマージン損失(LOM)表示、短期間中の超過数のコード違反、及びその他のような基準に基づくことが可能である。考えられる低減の戦略は、重大な雑音インパルスが観測される場合に再訓練が即座に開始されないように、再訓練のためのトリガ条件を調整することである。リンクに影響を与える重大な雑音インパルスの情報がある場合、再訓練の条件をより厳しくすることにより、再訓練イベントはより生じにくくなるであろう。次いで、DSLシステムはShowtimeを保ち、かつShowtime適応技術を使用する間に、そのような重大な雑音インパルスから回復することが出来る場合がある。このようなトリガ条件を調整する例は以下の通りである。
− マージン損失(loss−of−margin)が再訓練のトリガとならないように、MINSNRMをより小さな値に調整する。
− 再訓練のトリガとなる、時間単位ごとのコード違反の閾値を調整する。
− 再訓練のトリガとなる、時間単位ごとのデコーダエラーの閾値を調整する。
これらのトリガ条件はSOSイベントに関連する場合もある。レシーバが信号の重大な劣化を検出するときに、対応するDSLモデムはデータ速度の実質的な減少を交渉するSOSプロトコルを使用してもよい。この手法は、DSLサービスの停止が全くない、又は最小限の停止を招く、完全な再訓練のプロセスと比較して相当に高速であることが可能である。このようなSOSイベントをトリガする条件は、マージン損失表示、期間内のコード違反の超過カウント、期間内のデコーダエラーの超過カウントなどのような、再訓練のための上述の記載と同様であってもよい。
重大な雑音インパルスの発生を検出するために、論理がモデムのアナログフロンドエンドに含まれる場合、これらの方法はさらに向上させることが可能である。このような論理の出力は、再訓練が、重大な雑音インパルスの期間中に、かつ雑音インパルスが消えた数秒後に行われるべきではないことを示すであろうモデムのコントローラ回路への信号であろう。
605において、電力損失イベント630が回線不安定性の原因であると決定される場合、次いで、635において、本発明の実施形態によれば、この効果を減少させるためにDSL再構成のステップは必要とされない。しかし、操作を通知する、又はこの問題の顧客に通知するような他の動作が必要とされてもよい。
605において、断続的なインパルス雑音イベント640が不十分な回線品質の原因であると決定される場合、本発明の実施形態によるDSLリンクの1つ以上の特定の再構成が問題を低減させる可能性がある。
インパルス雑音の幅及び期間の推定を知り又は有することは、適切なインパルス雑音保護を提供するためにDSLリンクを適切に構成するのを援助することが出来る。インパルス雑音の幅の推定は、最小のインパルス雑音保護のパラメータを選択するために役立つ。特に、最小インパルス雑音保護は、少なくとも推定されるインパルス雑音幅と同じ長さであるように選択されなければならない。同時に、符号語期間(codeword span)は推定されるインパルス雑音期間よりも短くされなければならない。符号語期間は、インターリーバ遅延の量によって近似することが出来る。DSLリンクを構成するための1組の条件は以下の通りである。
1.最小インパルス雑音保護 > 推定されるインパルス雑音幅
2.最大遅延 < 推定されるインパルス雑音期間
第2の条件を満たすことが出来ない場合、次いでRS符号が符号語期間内の複数のインパルス雑音の発生に対処出来るように、最小インパルス雑音保護がさらに増加されなければならない。
適切なインパルス雑音保護を提供するDSLシステムの再送信モジュールを構成するために、同様の基準を用いることが出来る。PHY層で再送信技術を実装する潜在的なDSLシステムにおいて、最小インパルス雑音保護、最大遅延、最小内部到達(inter−arrival)時間、及び最小RSオーバヘッドのような再送信のための構成パラメータが存在する。このような構成パラメータは以下のようにプログラムされてもよい。
1.最小インパルス雑音保護 > 推定インパルス雑音幅
2.最小内部到達時間 < 推定インパルス雑音期間
3.最大遅延 < 遅延バジェット(delay budget)
4.最小RSオーバヘッド > x * (RS符号語内の全バイト中の割合としてのエラーのあるバイトの推定数)、ここで、抹消デコード無しでx=2であり、かつ抹消デコード有りで1=<x<2である。(最小RSオーバヘッドは、直接的に、又は間接的に、例えばFECについてのパラメータの制御を介して、制御されてもよいことに留意しなければならない。)
構成パラメータを選択する上記の規則がさらに説明される。所定のDSLモデムは同時に、再送信モジュール並びに前方誤り訂正(FEC、例えば、RS符号化/復号化)及びインターリーブを実装するモジュールを用いてもよい。このような場合、構成パラメータは、再送信モジュール並びにFEC及びインターリーブモジュールの双方に関連するパラメータを有してもよい。このような実施形態には、インパルス雑音を訂正するために、再送信及びFECの使用の間に存在するトレードオフがある。一方に対する他方への相対的な選択は、インパルス雑音特性に依存する。
より詳細には、DMTシンボルの継続期間と比較して、推定インパルス雑音期間が相対的に短い場合、これは、インパルス雑音が持続的であり、かつ単独で使用される再送信スキームが適切な保護を提供することが出来ない可能性があることを示唆する。インパルス雑音が多数の連続するDMTシンボルに影響を与える場合、これらのシンボルを再送信する試行はさらなる失敗となり、かつ結果的に再送信バッファのオーバフローを引き起こす可能性がある。他方、RS符号化が連続的なDMTシンボル内のエラーのあるバイトを訂正することが可能な場合、再送信及びRS符号化の組み合わせはエラーの無い送信をもたらすであろう。このような場合、上記のような構成パラメータの選択が最も有益であろう。
最小インパルス雑音のための構成パラメータは、RSデコーダ(又は再送信モジュール)の入力点で提供されるのであって、モデムのティップ・ツー・リング(tip−to−ring)点ではない。ティップ・ツー・リングにおける所定長のインパルスは、レシーバプロセスを経た後、広がりかつより長い幅を有する。また、実用設計は、最小インパルス雑音保護、最大遅延、及びデータ速度についての可能な選択に限定を有することにも留意される。このような限定は、DSLリンクを構成するときに考慮に入れることが出来る。
断続的なインパルス雑音の影響を低減するためのさらなる技術は、そのような雑音によって強い影響を受けると知られ又は疑われるトーンにロードするビットを調整することである。例示の方法が、本明細書に概説される。
1.BCAP[n]を使用して、トーンにより少数のビットをロードさせる。このようなBCAP[n]のプログラミングにより、多数のビットを有するトーンの数を減少させ、場合によっては少数のビットを有するトーンの数を増加させる。これは、特にインパルス雑音がレシーバクリッピングの結果である場合に、インパルス雑音排除性の効果を有する。インパルス雑音が影響を受けるトーン上にほぼ同じ強度を有すると仮定すれば(レシーバクリッピングの場合のように)、多数のビットをロードされるトーンと比較して、小数のビットをロードされるトーンは改善された排除性を有する。このようにして、多数のビットがトーンにロードされることを許容しないことにより、全体的なインパルス雑音排除性は改善される。
2.インパルス雑音に強い影響を受ける可能性があるトーン上の保護を増加させる。これを達成するための例示の技術は以下を有する。
a.CARMASK、PSDMASK又は他の同等のパラメータを使用してのそれらのトーンの無効化。
b.少数のビットを強いるそれらのトーンに対するBCAP[n]の使用。
c.少数のビットを強いるそれらのトーンに対するPSDMASK又はTARSNRM[n]の使用。
インパルス雑音に対するDSLリンクの堅牢性を改善するための、以下でより詳細に説明される、さらにもう1つの技術は、DSLレシーバのリードソロモン(RS)デコーダを支援するために、このような雑音によって最も影響を受けるトーンについての情報を使用することである。
RS符号化は、RS符号語を形成するために所定数の「パリティ」バイトを「ペイロード」バイト数に加える。RSデコーダにおいて、RS符号語ごとに訂正することが出来るエラーを有するバイト数は、一般的にパリティバイト数の半分に等しい。しかし、エラーを有するバイトの場所に関する情報が利用可能な場合は、エラー訂正能力は2倍になり、かつパリティバイト数と等しくなる。この後者の場合、「抹消(erasure)」復号化が行われると言われる。レシーバに抹消デコーダを実装する上での課題は、エラーを有するバイトの場所、又は抹消についての情報が必要な点である。
しかし、インパルス雑音が最も強い影響を有するトーンの情報は抹消復号化に役立つ。本発明の実施形態によって提供されるトーン情報から開始して、インパルス雑音によって破損される可能性が高いRS符号語内のバイトの場所を特定することが可能な、信頼出来る抹消予測プロセスを構築することが出来る。これは図7で例示される。
605において、反復性インパルス雑音イベント650は回線不安定性の原因であると決定される場合、次いでステップ655において、所定のDSL再構成がこの効果の低減に役立つことが出来る。
断続的なインパルス雑音について記載される同様の技術を適用することが可能であるが、1つの重大な差異を有する。すなわち、反復性インパルス雑音のために、平均レシーバ雑音(又は同等に測定されるマージン、若しくは測定されるSNRレベル)がインパルスによる影響を受ける。この効果は、インパルス雑音が最も強力な効果を有する周波数をより正確に特定するための雑音特性化の間に好都合に用いることが出来る。
これらの周波数を知ることにより、ビットロードを調整することによるインパルス雑音の影響を減少させる技術が、より効果的となることが出来る。例示的な方法は次に概説される。
1.影響を受ける周波数に対応するnの値について、BCAP[n]=BITS[n]−2に設定する。BITS[n]は前もって取得されるビット分布である。
2.影響を受ける周波数に対応するnの値について、BCAP[n]=0に設定する(又はCARMASK[n]=1に設定する、又はPSDMASK[n]=−100dBm/Hzに設定する)。
3.影響を受ける周波数に対応するnの値について、PSDMASK[n]=−70dBm/Hzに設定する(又はTARSNRM[n]=40dBに設定する)。
図8は、本発明の1つ以上の実施形態によるユーザ及び/又はコントローラによって使用され得る典型的なコンピュータシステムの例示である。コンピュータシステム800は、1次記憶装置806(典型的にはランダムアクセスメモリ、又はRAM)、1次記憶装置804(典型的には読み出し専用メモリ、又はROM)を有する記憶装置に結合される任意の数のプロセッサ802(中央処理装置、又はCPUとも呼ばれる)を有する。当業者には周知なように、1次記憶装置804はデータ及び命令を単方向的にCPUに転送するように動作し、1次記憶装置806は一般的に双方向的にデータ及び命令を転送するために使用される。これらの1次記憶装置は両者共に、上述の任意の適切なコンピュータ可読媒体を有してもよい。大容量記憶装置808もまた、CPU802に双方向的に結合され、かつ追加のデータ記憶容量を提供し、上述の任意のコンピュータ可読媒体を有してもよい。大容量記憶装置808はプログラム、データなどを記憶するのに使用されてもよく、典型的には1次記憶装置よりも低速であるハードディスクのような2次記憶媒体である。大容量記憶装置808内に保持される情報は、適切な場合には、標準的な方法で仮想メモリとして1次記憶装置806の一部として組み入れられることが理解されるであろう。CD−ROM814のような特定の大容量記憶装置もまたCPUに双方向的にデータを渡すことが可能である。
CPU802はまた、1つ以上のビデオモニタ、トラックボール、マウス、キーボード、マイクロホン、タッチセンサ式のディスプレイ、トランスデューサカードリーダ、磁気又は穿孔テープリーダ、タブレット、スタイラス、音声又は手書き認識、又は言うまでもなく他のコンピュータのような他の周知の入力装置を有するインタフェース810に結合される。最後に、812において概略的に示されるように、CPU802はネットワーク接続を使用して、選択的にコンピュータ又は通信ネットワークに結合されてもよい。このようなネットワーク接続を用いて、CPUは上述の方法のステップを実行する過程でネットワークから情報を受信し、又はネットワークへ情報を出力する可能性が考えられる。上述の装置及び構成要素はコンピュータハードウェア及びソフトウェアの分野における当業者にはよく知られているであろう。上述のハードウェア要素は、本発明の動作を実行するための複数のソフトウェアモジュールを定義してもよい。例えば、符号語構成コントローラを実行するための命令が大容量記憶装置808又は814に記憶され、かつ1次メモリ806と連動してCPU802で実行されてもよい。好ましい実施形態では、コントローラはソフトウェアサブモジュールに分解される。
本発明の多くの特徴及び利点は明細書から明らかであり、それ故に、添付の特許請求の範囲は本発明の全てのこのような特徴及び利点を包含することを意図するものである。さらに、当業者は多くの修正及び変更を容易に思いつくため、本発明は例示されかつ記載された正確な構造及び動作に限定されない。従って、記載された実施形態は例示的であり、限定的に解釈されるべきではなく、本発明は本明細書に記載されたその詳細に限定されるべきではなく以下の特許請求の範囲、及び、現在又は未来において予見可能であろうと予見不可能であろうと、その均等物の全範囲によって定義されるべきである。

Claims (39)

  1. DSLリンクに関連する雑音を特性化する方法であって、
    DSLリンクの安定性のレベルを示すデータを受信するステップと、
    前記データが、最小閾値を上回る又は下回る前記DSLリンクの安定性のレベルを示すかどうかを決定するステップと、
    前記DSLリンクの安定性の前記レベルが前記最小閾値を下回る場合、
    故障時の前の前記DSLリンクに関連する雑音と前記故障時の後の前記DSLリンクに関連する雑音とを比較するステップと、
    前記故障時の前及び後の前記雑音間の差異が閾値を超える場合、次いで雑音の前記差異を前記DSLリンクに関連する固定雑音として特性化するステップと、
    前記故障時の前及び後の前記雑音間の前記差異が前記閾値を下回る場合、前記故障が前記DSLリンクへの電力損失又は重大なインパルス雑音イベントに関連するかどうかを調査し、それに従って雑音の前記差異を特性化するステップと、
    前記DSLリンクに関連する前記雑音の前記特性化を記録するステップと、
    を備える、方法。
  2. 前記データに基づいて前記DSLリンクの故障時を推定するステップをさらに備え、かつ故障時の前の前記DSLリンクに関連する雑音と前記故障時の後の前記DSLリンクに関連する雑音とを比較するステップは、
    前記推定される故障時の前の前記DSLリンクに関連する雑音と前記推定される故障時の後の前記DSLリンクに関連する雑音とを比較するステップを備える、請求項1に記載の方法。
  3. 前記DSLリンクに関連する雑音を比較するステップは、前記関連するDSLリンクに結合されるDSLレシーバにおいて、前記故障時の前の雑音と前記故障時の後の雑音とを比較するステップを備える、請求項1に記載の方法。
  4. 経時的な前記受信されるデータの分布を評価するステップをさらに備え、かつ前記データが、最小閾値を上回る又は下回る前記DSLリンクの安定性のレベルを示すかどうかを決定するステップは、前記データの分布が、最小閾値を上回る又は下回る前記DSLリンクの安定性のレベルを示すかどうかを決定するステップを備える、請求項1に記載の方法。
  5. 故障時の前の前記DSLリンクに関連する雑音と前記故障時の後の前記DSLリンクに関連する雑音とを比較するステップは、故障時の前の前記DSLリンクに関連する雑音と、前記DSL回線が再初期化されかつ安定した状態である後の前記DSLリンクに関連する雑音とを比較するステップを備える、請求項1に記載の方法。
  6. 前記DSLリンクに結合されるDSLレシーバのデコーダの平均2乗誤差、及び信号対雑音比(SNR)マージンのうちの少なくとも1つに従って、前記雑音が測定される、請求項1に記載の方法。
  7. 前記故障時の前及び後の前記雑音間の前記差異は、複数の異なる周波数に対応する値のベクトルとして計算され、かつ前記雑音が前記閾値を超える又は下回るかどうかは、前記雑音が前記複数の異なる周波数の数に対して前記閾値を超える又は下回るかどうかを備える、請求項1に記載の方法。
  8. 前記故障が重大なインパルス雑音イベントに関連するかどうかを調査するステップは、前記故障時と同じ又は同様の時間の前及び後の前記DSLリンクに隣接する1つ以上のDSLリンクに関連する雑音を比較するステップを備える、請求項1に記載の方法。
  9. 前記DSLリンクに関連する前記雑音の前記記録される特性化に応答して前記DSLリンクを再構成するステップをさらに備える、請求項1に記載の方法。
  10. 前記雑音の差異が前記DSLリンクに関連する固定雑音として特性化される場合、前記DSLリンクを再構成するステップは、
    前記DSLリンクに関連する全ての周波数に対するターゲット又は最大SNRマージンを増加させるステップと、
    前記DSLリンクに関連する前記固定雑音によって影響を受ける雑音に対するターゲット又は最大SNRマージンを増加させるステップと、
    前記影響を受ける周波数を無効にするステップと、
    前記影響を受ける周波数が、ビットスワップを介してロードビットの関連する数を増加させることを防ぐステップと、
    前記影響を受ける周波数が、予め定められる閾値を超えてビットスワップを介してロードビットの前記関連する数を増加させることを防ぐステップと、
    のうちの少なくとも1つを備える、請求項9に記載の方法。
  11. 前記雑音の差異が重大なインパルス雑音イベントとして特性化される場合、前記DSLリンクを再構成するステップは、再訓練閾値を調整するステップを備える、請求項9に記載の方法。
  12. 再訓練閾値を調整するステップは、
    MINSNRMと、
    再訓練をトリガするコード違反に対する閾値と、
    再訓練をトリガするデコーダエラーに対する閾値と、
    のうちの少なくとも1つを備える、請求項11に記載の方法。
  13. 前記DSLリンクの品質のレベルを示す性能監視データの分布を受信するステップと、
    前記性能監視データの分布が、最小閾値を上回る又は下回る前記DSLリンクの前記品質のレベルを示すかどうかを決定するステップと、
    前記DSLリンクの前記品質のレベルが前記最小閾値を下回る場合、
    前記DSLリンクに関連する任意のインパルス雑音イベントが断続的または持続的であるかどうかを特性化するステップと、
    前記DSLリンクに関連する前記インパルス雑音イベントの前記特性化を記録するステップと、
    をさらに備える、請求項1に記載の方法。
  14. 前記性能監視データは、チャネル、回線、または上位層の性能監視データのうちの少なくとも1つを備える、請求項13に記載の方法。
  15. 前記性能監視データの分布が、最小閾値を上回る又は下回る前記DSLリンクの品質のレベルを示すかどうかを決定するステップは、前記性能監視データの分布に基づく導出が、最小閾値を上回る又は下回る前記DSLリンクの品質のレベルを示すかどうかを決定するステップを備える、請求項13に記載の方法。
  16. 前記性能監視データの分布が、最小閾値を上回る又は下回る前記DSLリンクの品質のレベルを示すかどうかを決定するステップは、前記分布に関して、CV、ES、SES、UAS、LOSS、UAS、またはそれらの導出のカウントのうちの少なくとも1つを測定するステップを備える、請求項13に記載の方法。
  17. 前記DSLリンクに関連する任意のインパルス雑音イベントが断続的または持続的であるかどうかを特性化するステップは、前記インパルス雑音イベントの継続期間を決定するステップを備える、請求項13に記載の方法。
  18. 前記DSLリンクに関連する前記インパルス雑音イベントの前記特性化を記録するステップは、前記インパルス雑音イベントの各々に関連する日付、時間、継続期間、及び影響を受ける周波数のうちの少なくとも1つを記録するステップをさらに備える、請求項13に記載の方法。
  19. インパルス雑音イベントの前記記録される特性化に応答して、前記DSLリンクを再構成するステップをさらに備える、請求項13に記載の方法。
  20. 前記DSLリンクに関連する前記インパルス雑音イベントが断続的として特性化される場合、前記DSLリンクを再構成するステップは、前記DSLリンクに対するインパルス雑音保護に関連する設定を増加させるステップを備える、請求項19に記載の方法。
  21. 前記DSLリンクに対するインパルス雑音保護に関する設定を増加させるステップは、
    推定されるインパルス雑音幅よりも大きく最小インパルス雑音保護を設定するステップと、
    推定されるインパルス雑音期間よりも小さく最大インターリーバ遅延を設定するステップと、
    遅延バジェットよりも小さく最大インターリーバ遅延を設定するステップと、
    RS符号語内の全バイトからの割合として推定エラーバイト数によって乗じられるxよりも大きく最小RSオーバヘッドを設定するステップであって、xは抹消復号化無しで2の値と等しく、かつxは抹消復号化有りで2より小さくかつ1以上の間の値と等しいステップと、
    のうちの少なくとも1つを備える、請求項20に記載の方法。
  22. 前記DSLリンクに対するインパルス雑音保護に関する設定を増加させるステップは、
    推定されるインパルス雑音幅よりも大きく最小インパルス雑音保護を設定するステップと、
    推定されるインパルス雑音期間よりも小さく最小内部到達時間を設定するステップと、
    遅延バジェットよりも小さく最大インターリーバ遅延を設定するステップと、
    最小RSオーバヘッド>x*(RS符号語内の全バイトからの割合としての推定エラーバイト数)に設定するステップであって、抹消復号化無しでx=2であり、かつ抹消復号化有りで1=<x<2であるステップと、
    のうちの少なくとも1つを備える、請求項20に記載の方法。
  23. 前記DSLリンクに関連する前記インパルス雑音イベントが持続的として特性化される場合、前記DSLリンクを再構成するステップは、前記DSLリンクに対するインパルス雑音保護に関連する設定を増加させるステップであって、
    影響を受ける周波数がより小さいビット数(BCAP[n])をロードするように強いるステップと、
    影響を受けるトーンを無効にするステップと、
    影響を受けるトーンに対するPSDMASKまたはターゲットマージンを増加させるステップと、
    を有するステップを備える、請求項19に記載の方法。
  24. コンピュータ可読媒体を備える製造業者の物品であって、前記コンピュータ可読媒体はコンピュータシステムによって実行されるときに、前記コンピュータシステムに以下の、
    DSLリンクの安定性のレベルを示すデータを受信するステップと、
    前記データが、最小閾値を上回る又は下回る前記DSLリンクの安定性のレベルを示すかどうかを決定するステップと、
    前記DSLリンクの安定性の前記レベルが前記最小閾値を下回る場合、
    故障時の前の前記DSLリンクに関連する雑音と前記故障時の後の前記DSLリンクに関連する雑音とを比較するステップと、
    前記故障時の前及び後の前記雑音間の差異が閾値を超える場合、次いで雑音の前記差異を前記DSLリンクに関連する固定雑音として特性化するステップと、
    前記故障時の前及び後の前記雑音間の差異が前記閾値を下回る場合、前記故障が前記DSLリンクへの電力損失又は重大なインパルス雑音イベントに関連するかどうかを調査し、それに従って雑音の前記差異を特性化するステップと、
    前記DSLリンクに関連する前記雑音の前記特性化を記録するステップと、
    を実行させる命令を含む、物品。
  25. 前記コンピュータシステムによって実行されるときに、前記コンピュータシステムに前記データに基づいて前記DSLリンクの故障時を推定するステップを実行させる命令をさらに備え、かつ故障時の前の前記DSLリンクに関連する雑音と前記故障時の後の前記DSLリンクに関連する雑音とを比較するステップに関する命令は、前記推定される故障時の前の前記DSLリンクに関連する雑音と前記推定される故障時の後の前記DSLリンクに関連する雑音とを比較するステップに関する命令を備える、請求項24に記載の製造業者の物品。
  26. 前記コンピュータシステムによって実行されるときに、前記コンピュータシステムに経時的な前記受信されるデータの分布を評価するステップを実行させる命令をさらに備え、かつ前記データが、最小閾値を上回る又は下回る前記DSLリンクの安定性のレベルを示すかどうかを決定するステップは、前記データの分布が、最小閾値を上回る又は下回る前記DSLリンクの安定性のレベルを示すかどうかを決定するステップを備える、請求項24に記載の製造業者の物品。
  27. 前記コンピュータシステムによって実行されるときに、前記コンピュータシステムに前記DSLリンクに関連する前記雑音の前記記録される特性化に応答して前記DSLリンクを再構成するステップを実行させる命令をさらに備る、請求項24に記載の製造業者の物品。
  28. 前記コンピュータシステムによって実行されるときに、前記コンピュータシステムに以下の、
    性能監視データの前記分布が、最小閾値を上回る又は下回る前記DSLリンクの品質のレベルを示すかどうかを決定するステップと、
    前記DSLリンクの前記品質のレベルが前記最小閾値を下回る場合、
    前記DSLリンクに関連する任意のインパルス雑音イベントが断続的または持続的であるかどうかを特性化するステップと、
    前記DSLリンクに関連する前記インパルス雑音イベントの前記特性化を記録するステップと、
    を実行させる命令をさらに備る、請求項24に記載の製造業者の物品。
  29. 前記DSLリンクに関連する前記インパルス雑音イベントの前記特性化を記録するステップに関する命令は、前記インパルス雑音イベントの各々に関連する日付、時間、継続期間、及び影響を受ける周波数のうちの少なくとも1つを記録するステップに関する命令をさらに備える、請求項28に記載の製造業者の物品。
  30. 前記コンピュータシステムによって実行されるときに、前記コンピュータシステムにインパルス雑音イベントの前記記録される特性化に応答して前記DSLリンクを再構成するステップを実行させる命令をさらに備る、請求項28に記載の製造業者の物品。
  31. DSLリンクに関連する雑音を特性化する装置であって、
    DSLリンクの安定性のレベルを示すデータを受信する収集手段と、
    前記データが、最小閾値を上回る又は下回る前記DSLリンクの安定性のレベルを示すかどうかを決定し、
    前記DSLリンクの安定性の前記レベルが前記最小閾値を下回る場合、
    故障時の前の前記DSLリンクに関連する雑音と前記故障時の後の前記DSLリンクに関連する雑音とを比較し、
    前記故障時の前及び後の前記雑音間の差異が閾値を超える場合、次いで雑音の前記差異を前記DSLリンクに関連する固定雑音として特性化し、
    前記故障時の前及び後の前記雑音間の差異が前記閾値を下回る場合、前記故障が前記DSLリンクへの電力損失又は重大なインパルス雑音イベントに関連するかどうかを調査し、それに従って雑音の前記差異を特性化し、かつ
    前記DSLリンクに関連する前記雑音の前記特性化を記録する解析手段と、
    を備える、装置。
  32. 前記解析手段は、前記データに基づいて前記DSLリンクの故障時を推定する手段をさらに備え、かつ故障時の前の前記DSLリンクに関連する雑音と前記故障時の後の前記DSLリンクに関連する雑音とを比較する前記解析手段は、前記推定される故障時の前の前記DSLリンクに関連する雑音と前記推定される故障時の後の前記DSLリンクに関連する雑音とを比較する解析手段を備える、請求項31に記載の装置。
  33. 前記DSLリンクに結合されるDSLレシーバのデコーダの平均2乗誤差、及び信号対雑音比(SNR)マージンのうちの少なくとも1つに従って、前記雑音が測定される、請求項31に記載の装置。
  34. 前記DSLリンクに関連する前記雑音の前記記録される特性化に応答して前記DSLリンクを再構成する手段をさらに備える、請求項31に記載の装置。
  35. 前記収集手段はさらに、前記DSLリンクの品質のレベルを示す性能監視データの分布を受信し、
    前記解析手段はさらに、
    前記性能監視データの分布が、最小閾値を上回る又は下回る前記DSLリンクの前記品質のレベルを示すかどうかを決定し、
    前記DSLリンクの前記品質のレベルが前記最小閾値を下回る場合、
    前記DSLリンクに関連する任意のインパルス雑音イベントが断続的または持続的であるかどうかを特性化し、
    前記DSLリンクに関連する前記インパルス雑音イベントの前記特性化を記録する、請求項31に記載の装置。
  36. 前記性能監視データは、チャネル、回線、または上位層の性能監視データのうちの少なくとも1つを備える、請求項35に記載の装置。
  37. 前記DSLリンクに関連する任意のインパルス雑音イベントが断続的または持続的であるかどうかを特性化する前記解析手段は、前記インパルス雑音イベントの継続期間を断続的又は持続的インパルス雑音イベントと決定する、請求項35に記載の装置。
  38. インパルス雑音イベントの前記記録される特性化に応答して前記DSLリンクを再構成する手段をさらに備える、請求項35に記載の装置。
  39. 前記DSLリンクに関連する前記インパルス雑音イベントが断続的として特性化される場合、前記DSLリンクを再構成する前記手段は、前記DSLリンクに対するインパルス雑音保護に関連する設定を増加させる、請求項38に記載の装置。
JP2009522833A 2006-07-31 2007-07-31 デジタル加入者線における雑音を分析しかつ低減する方法及び装置 Expired - Fee Related JP5179495B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US83443606P 2006-07-31 2006-07-31
US60/834,436 2006-07-31
PCT/US2007/017077 WO2008016585A2 (en) 2006-07-31 2007-07-31 Method and apparatus for analyzing and mitigating noise in a digital subscriber line

Publications (3)

Publication Number Publication Date
JP2010505288A true JP2010505288A (ja) 2010-02-18
JP2010505288A5 JP2010505288A5 (ja) 2010-09-16
JP5179495B2 JP5179495B2 (ja) 2013-04-10

Family

ID=38961884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009522833A Expired - Fee Related JP5179495B2 (ja) 2006-07-31 2007-07-31 デジタル加入者線における雑音を分析しかつ低減する方法及び装置

Country Status (5)

Country Link
US (3) US8428225B2 (ja)
EP (1) EP2055086B1 (ja)
JP (1) JP5179495B2 (ja)
CN (2) CN103312536A (ja)
WO (1) WO2008016585A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502560A (ja) * 2008-09-07 2012-01-26 イカノス テクノロジー リミテッド インパルスノイズ特徴付けのためのシステムと方法
JP2016001898A (ja) * 2011-01-31 2016-01-07 アルカテル−ルーセント ホームネットワークインフラストラクチャを改善するためのデバイスおよび方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1593002B1 (en) 2003-02-14 2014-07-16 Eulitha AG Method for generating a circular periodic structure on a basic support material
US8428225B2 (en) 2006-07-31 2013-04-23 Adaptive Spectrum And Signal Alignment, Inc. Method and apparatus for analyzing and mitigating noise in a digital subscriber line
JP5248677B2 (ja) 2008-07-01 2013-07-31 イカノス テクノロジー リミテッド メモリ削減されたベクトル化されたdsl
CN101729094B (zh) * 2008-10-31 2013-04-17 华为技术有限公司 数字用户线中上行功率下调方法、装置及系统
CA2744040A1 (en) * 2008-11-24 2010-05-27 Aware, Inc. Detecting faults affecting communications links
JP5612089B2 (ja) 2009-07-01 2014-10-22 アダプティブ スペクトラム アンド シグナル アラインメント インコーポレイテッド Dslネットワークにおけるdsl性能強化のための方法及び装置
US8488663B2 (en) 2009-09-23 2013-07-16 Maxlinear, Inc. Impulse noise mitigation under out-of-band interference conditions
BR112012012628A2 (pt) * 2009-11-25 2019-09-24 At&T Intelectual Property I L P método e aparelho para detectar defeitos de fiação em uma linha de assinante digital.
US20110134983A1 (en) * 2009-12-07 2011-06-09 Arvind Ramdas Mallya Methods, apparatus and articles of manufacture to limit data rates of digital subscriber lines
EP2383899B1 (en) * 2010-04-30 2013-03-06 Alcatel Lucent A method for determining a noise level on a data transmission line, and associated devices
US8989239B2 (en) 2010-05-10 2015-03-24 Ikanos Communications, Inc. Systems and methods for retransmission with on-line reconfiguration
US8363789B2 (en) 2010-12-15 2013-01-29 At&T Intellectual Property I, L.P. Apparatus, methods, and articles of manufacture to predict vectored digital subscriber line (DSL) performance gains
EP2686966B1 (en) 2011-03-18 2016-03-16 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for supporting transmission over digital subscriber lines
JP5693734B2 (ja) 2011-08-25 2015-04-01 三菱電機株式会社 信号伝送装置
EP2847914B1 (en) 2012-05-07 2019-08-21 Assia Spe, Llc Apparatus and method for impulse noise detection and mitigation
US10128905B2 (en) 2012-06-26 2018-11-13 Alarm.Com Incorporated Method and system for impulsive noise classification and mitigation
US8843169B2 (en) * 2012-08-06 2014-09-23 Microsoft Corporation Signal-aware data transfer in cellular networks
EP2712160B1 (en) * 2012-09-24 2014-06-18 Alcatel Lucent Method and device for testing subscriber premises equipment
EP2907045A4 (en) * 2012-10-15 2016-05-25 Ikanos Communications Inc METHOD AND DEVICE FOR DETECTING AND ANALYZING NOISE AND OTHER EVENTS RESULTING IN A COMMUNICATION SYSTEM
US9166651B2 (en) 2012-10-17 2015-10-20 Ikanos Communications, Inc. Method and apparatus for sensing noise signals in a wireline communications environment
US10475440B2 (en) * 2013-02-14 2019-11-12 Sony Corporation Voice segment detection for extraction of sound source
EP2782261A1 (en) * 2013-03-20 2014-09-24 British Telecommunications public limited company Identifying line faults using near and far end errors
WO2015041699A1 (en) * 2013-09-23 2015-03-26 Adaptive Spectrum And Signal Alignment, Inc. Apparatus, systems and methods for implementing impulse noise mitigation via soft switching
US9584395B1 (en) * 2013-11-13 2017-02-28 Netflix, Inc. Adaptive metric collection, storage, and alert thresholds
TW201613298A (en) * 2014-09-26 2016-04-01 Chunghwa Telecom Co Ltd Impulse Noise management device and method
US10512000B2 (en) * 2014-12-04 2019-12-17 Assia Spe, Llc Method and apparatus for predicting successful DSL line optimization
US10425285B2 (en) * 2015-05-21 2019-09-24 Centurylink Intellectual Property Llc Automatic noise profile generation
TWI569594B (zh) * 2015-08-31 2017-02-01 晨星半導體股份有限公司 突波干擾消除裝置及突波干擾消除方法
CN107370892B (zh) * 2016-05-11 2021-06-04 中兴通讯股份有限公司 数字用户线路的优化方法
EP3249901A1 (en) * 2016-05-23 2017-11-29 Thomson Licensing Device and method for dsl maintenance
US10348410B1 (en) * 2018-04-24 2019-07-09 Ciena Corporation Adaptive optical modem configuration based on operating conditions
WO2020172676A1 (en) 2019-02-24 2020-08-27 Promptlink Communications, Inc. Noise detection and localization
CN112543039B (zh) * 2019-09-23 2023-01-24 上海诺基亚贝尔软件有限公司 提高铜线传输网络抗噪性的方法、装置与系统
US11350424B2 (en) * 2019-11-07 2022-05-31 Federated Wireless, Inc. Systems and methods for determining channel availability by an automated frequency coordination system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023402A (ja) * 2001-07-09 2003-01-24 Nec Corp xDSL伝送速度測定装置
JP2003338878A (ja) * 2002-05-22 2003-11-28 Nec Corp 通信システム、そのシステムに含まれる多重化装置、回線伝送特性テスト方法ならびにプログラム
JP2005102202A (ja) * 2003-09-12 2005-04-14 Alcatel データ信号の品質制御方法、関連する受信機、および関連する送信機
JP2006507783A (ja) * 2002-11-19 2006-03-02 テルコーディア テクノロジーズ インコーポレイテッド デジタル加入者線の管理のための自動化されたシステムおよび方法
JP2007329849A (ja) * 2006-06-09 2007-12-20 Nec Corp 送信出力制御装置、マルチキャリア伝送システム、送信出力制御方法及び送信出力制御プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679227A (en) * 1985-05-20 1987-07-07 Telebit Corporation Ensemble modem structure for imperfect transmission media
US5361294A (en) * 1992-12-23 1994-11-01 Motorola, Inc. Method and apparatus for noise quieting during resynchronization of a digital communication system
US7287096B2 (en) * 2001-05-19 2007-10-23 Texas Instruments Incorporated Method for robust, flexible reconfiguration of transceive parameters for communication systems
EP1349355A1 (en) * 2002-03-28 2003-10-01 BRITISH TELECOMMUNICATIONS public limited company Fault detection method and apparatus for telephone lines
US7443916B2 (en) * 2003-11-24 2008-10-28 2Wire, Inc. Method and apparatus for communication in the presence of impulse noise
US7302379B2 (en) * 2003-12-07 2007-11-27 Adaptive Spectrum And Signal Alignment, Inc. DSL system estimation and parameter recommendation
EP2228936A1 (en) * 2004-03-03 2010-09-15 Aware, Inc. Adaptive fec coding in dsl systems according to measured impulse noise
US7593494B1 (en) * 2004-09-23 2009-09-22 Adtran, Inc. System and method for canceling impulse noise
US7400720B2 (en) 2004-10-05 2008-07-15 Sbc Knowledge Ventures, L.P. System and method for optimizing digital subscriber line based services
US8428225B2 (en) * 2006-07-31 2013-04-23 Adaptive Spectrum And Signal Alignment, Inc. Method and apparatus for analyzing and mitigating noise in a digital subscriber line

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023402A (ja) * 2001-07-09 2003-01-24 Nec Corp xDSL伝送速度測定装置
JP2003338878A (ja) * 2002-05-22 2003-11-28 Nec Corp 通信システム、そのシステムに含まれる多重化装置、回線伝送特性テスト方法ならびにプログラム
JP2006507783A (ja) * 2002-11-19 2006-03-02 テルコーディア テクノロジーズ インコーポレイテッド デジタル加入者線の管理のための自動化されたシステムおよび方法
JP2005102202A (ja) * 2003-09-12 2005-04-14 Alcatel データ信号の品質制御方法、関連する受信機、および関連する送信機
JP2007329849A (ja) * 2006-06-09 2007-12-20 Nec Corp 送信出力制御装置、マルチキャリア伝送システム、送信出力制御方法及び送信出力制御プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502560A (ja) * 2008-09-07 2012-01-26 イカノス テクノロジー リミテッド インパルスノイズ特徴付けのためのシステムと方法
JP2016001898A (ja) * 2011-01-31 2016-01-07 アルカテル−ルーセント ホームネットワークインフラストラクチャを改善するためのデバイスおよび方法

Also Published As

Publication number Publication date
EP2055086A2 (en) 2009-05-06
US20090323903A1 (en) 2009-12-31
US20140133539A1 (en) 2014-05-15
US20130230084A1 (en) 2013-09-05
CN101785202A (zh) 2010-07-21
JP5179495B2 (ja) 2013-04-10
US8428225B2 (en) 2013-04-23
WO2008016585A3 (en) 2010-04-29
EP2055086B1 (en) 2017-10-18
CN103312536A (zh) 2013-09-18
CN101785202B (zh) 2013-05-22
WO2008016585A2 (en) 2008-02-07
US9391744B2 (en) 2016-07-12

Similar Documents

Publication Publication Date Title
JP5179495B2 (ja) デジタル加入者線における雑音を分析しかつ低減する方法及び装置
US9106735B2 (en) Detection of wiring defects
JP4891995B2 (ja) デジタル加入者回線システムの推定
US7991122B2 (en) DSL system training
WO2007130877A2 (en) Methods and apparatus to combine data from multiple sources to characterize communication systems
US9369232B2 (en) Apparatus, systems and methods for impulse noise detection and mitigation
EP2659662A1 (en) Management center for communication system customer premises equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5179495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees