JP2010286476A - Highly sensitive gas analyzer, gas quantitative method and gas analyzer system - Google Patents

Highly sensitive gas analyzer, gas quantitative method and gas analyzer system Download PDF

Info

Publication number
JP2010286476A
JP2010286476A JP2010104211A JP2010104211A JP2010286476A JP 2010286476 A JP2010286476 A JP 2010286476A JP 2010104211 A JP2010104211 A JP 2010104211A JP 2010104211 A JP2010104211 A JP 2010104211A JP 2010286476 A JP2010286476 A JP 2010286476A
Authority
JP
Japan
Prior art keywords
gas
measured
manifold
valve
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010104211A
Other languages
Japanese (ja)
Other versions
JP5648992B2 (en
Inventor
Tetsuya Abe
哲也 阿部
Toshihisa Hatano
歳久 秦野
Hajime Hiratsuka
一 平塚
Soichiro Omachi
聡一郎 大間知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkin Flux Inc
Japan Atomic Energy Agency
Original Assignee
Nikkin Flux Inc
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkin Flux Inc, Japan Atomic Energy Agency filed Critical Nikkin Flux Inc
Priority to JP2010104211A priority Critical patent/JP5648992B2/en
Publication of JP2010286476A publication Critical patent/JP2010286476A/en
Application granted granted Critical
Publication of JP5648992B2 publication Critical patent/JP5648992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable measurement of a trace gas up to ppm order without upsizing a device and increasing a cost with an improved accuracy in measurement values. <P>SOLUTION: A highly-sensitive gas analyzer for quantitatively measuring a trace gas includes a gas-to-be measured reservoir 21 to store the gas, a small container 23 to connect the gas reservoir through a first opening and closing valve, a buffer tank 25 with a volume greater than 2,000 times of that of the small container, to connect the small container through a second opening and closing valve, a manifold 27 to connect the buffer tank through piping, a quadrupole type mass spectrometer 30 with an evacuation device composed of a turbo molecular pump and a diaphragm pump having a third opening and closing valve interposed on an inlet port side, to connect the manifold, an orifice to flow the gas in the quadrupole type mass spectrometer, and bypass piping 38 with a fourth opening and closing valve interposed, to connect the manifold and the turbo molecular pump. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、大気等に含まれる微量ガスを繰返し高感度で定量することができるガス分析装置、ガス定量方法及び分析装置システムに関する。詳しくは、大気中の特定ガス,自動車排気ガス中の有害ガス,呼気中の特定ガス,構造材に含まれる特定ガスなどの微量ガスを最高ppmオーダーの高い感度で測定することができる質量分析法によるガス分析装置、ガス定量方法及び分析装置システムに関する。   The present invention relates to a gas analyzer, a gas quantification method, and an analyzer system that can repeatedly quantify a minute amount of gas contained in the atmosphere or the like with high sensitivity. Specifically, mass spectrometry that can measure trace gases such as specified gases in the atmosphere, harmful gases in automobile exhaust gases, specified gases in exhaled breath, specified gases contained in structural materials with high sensitivity on the order of ppm The present invention relates to a gas analyzer, a gas determination method and an analyzer system.

大気等に含まれる微量ガスを質量分析法により測定する場合には、測定しようとするガス(対象ガス)を含む大気等(被測定ガス)を連続的に質量分析計のイオン源に流し込む必要がある。しかしながら、大気圧かそれに近い圧力の被測定ガス圧力と質量分析計が正常に作動する圧力の間には1億倍(10)以上の差を生じさせる必要があるため、数段の差動排気を行うとともに、質量分析計イオン源へのガス流入口の孔径を極度に小さくして質量分析計の作動に適した10−2Pa以下の測定圧力を創出している。 When measuring trace gases in the atmosphere by mass spectrometry, it is necessary to continuously flow the atmosphere (measuring gas) containing the gas to be measured (target gas) into the ion source of the mass spectrometer. is there. However, since it is necessary to make a difference of 100 million times (10 8 ) or more between the gas pressure to be measured at or near atmospheric pressure and the pressure at which the mass spectrometer operates normally, several stages of differentials are required. While evacuating, the pore diameter of the gas inlet to the mass spectrometer ion source is extremely reduced to create a measurement pressure of 10 −2 Pa or less suitable for the operation of the mass spectrometer.

即ち、従来のガス分析装置は、図3に示すような構成となっている。同装置は、被測定ガスリザーバ1と、可変リークバルブ2と、マニホールド3と、ターボ分子ポンプ4及びダイヤフラムポンプ5からなる真空排気装置6と、被測定ガスリザーバ1とマニホールド3を結ぶ配管7aと、マニホールド3とターボ分子ポンプ4を結ぶ配管7bと、ターボ分子ポンプ8とダイヤフラムポンプ9からなる真空排気装置10の付いた四極子型質量分析計11と、被測定ガスの一部をマニホールド3から使用済みのホースを構成する素材は、全てポリエステル系材である四極子型質量分析計11のイオン源12に流入させるためのオリフィス13と、マニホールド3に取り付けられた圧力計14から構成されている。   That is, the conventional gas analyzer is configured as shown in FIG. The apparatus includes a measured gas reservoir 1, a variable leak valve 2, a manifold 3, a vacuum exhaust device 6 including a turbo molecular pump 4 and a diaphragm pump 5, a pipe 7 a connecting the measured gas reservoir 1 and the manifold 3, and a manifold 3 and the turbo molecular pump 4, a quadrupole mass spectrometer 11 with a vacuum pumping device 10 comprising a turbo molecular pump 8 and a diaphragm pump 9, and part of the measured gas from the manifold 3 The material constituting the hose is composed of an orifice 13 for flowing into the ion source 12 of the quadrupole mass spectrometer 11, which is a polyester material, and a pressure gauge 14 attached to the manifold 3.

このような装置における被測定ガスの流れは、次のとおりである。即ち、まず、前記両真空排気装置6,10により可変リークバルブ2の下流側配管内と四極子型質量分析計11内を高真空に排気し、四極子型質量分析計11を作動状態にする。次に、可変リークバルブ2を適度に開き、マニホールド3に取り付けてある圧力計14の指示が所定の値になるようにする。この所定の値とは、四極子型質量分析計11のイオン源12の圧力がこの値とオリフィス13のコンダクタンスと排気装置の実効排気速度により測定に最適な値となるように予め設定された,本分析装置固有のものである。   The flow of the gas to be measured in such an apparatus is as follows. That is, first, both the vacuum exhaust devices 6 and 10 exhaust the downstream pipe of the variable leak valve 2 and the quadrupole mass spectrometer 11 to a high vacuum, and put the quadrupole mass spectrometer 11 into an operating state. . Next, the variable leak valve 2 is appropriately opened so that the indication of the pressure gauge 14 attached to the manifold 3 becomes a predetermined value. This predetermined value is set in advance so that the pressure of the ion source 12 of the quadrupole mass spectrometer 11 becomes an optimum value for measurement based on this value, the conductance of the orifice 13, and the effective exhaust speed of the exhaust device. This analyzer is unique.

この状態において、被測定ガスリザーバ1から放出された被測定ガスの一部がマニホールド3の近くに設けられたオリフィス13から四極子型質量分析計11のイオン源12に流れ込むので、そのガスのマススペクトルを分析することにより被測定ガス中の対象ガスの濃度を測定することができる。   In this state, a part of the measurement gas released from the measurement gas reservoir 1 flows into the ion source 12 of the quadrupole mass spectrometer 11 from the orifice 13 provided near the manifold 3, so that the mass spectrum of the gas By analyzing the above, the concentration of the target gas in the gas to be measured can be measured.

しかしながら、従来のガス分析装置では、可変リークバルブ2を絞って被測定ガスリザーバ1からのガス放出量を少なくするための流量微調整が難しいため、再現性に乏しくなる。また、反対に、可変リークバルブ2を開いて被測定ガスリザーバ1からのガス放出量を多くするとマニホールド部の圧力が上昇するため、オリフィス径を極端に小さくする必要があり、オリフィス13のコンダクタンスが変化したり、オリフィス13が詰まったりして、同様に再現性が悪くなるという難点がある。   However, in the conventional gas analyzer, it is difficult to finely adjust the flow rate in order to reduce the amount of gas released from the gas reservoir 1 to be measured by narrowing the variable leak valve 2, so that the reproducibility is poor. Conversely, if the variable leak valve 2 is opened and the amount of gas released from the gas reservoir 1 to be measured is increased, the pressure in the manifold portion increases, so that the orifice diameter must be made extremely small, and the conductance of the orifice 13 changes. Or the orifice 13 is clogged and the reproducibility is similarly deteriorated.

また、従来のガス分析装置では、基本的に被測定ガスを連続的に流して、定常状態にて測定する方式を採用している。そのため、流れの再現性が仮に確保されたとしても、通常被測定ガス中に多量に含まれる水蒸気等の吸着性ガスの影響により対象ガスの検出感度が著しく低下するという問題を有している。   Further, the conventional gas analyzer basically employs a method in which a gas to be measured is continuously flowed and measurement is performed in a steady state. Therefore, even if the reproducibility of the flow is ensured, there is a problem that the detection sensitivity of the target gas is remarkably lowered due to the influence of an adsorbing gas such as water vapor that is usually contained in a large amount in the gas to be measured.

即ち、例えば、被測定ガス中に存在する微量の水素を測定しようとする場合、イオンの質量数と電荷の比m/e=2(H )に着目して分析を行う。しかし、被測定ガス中に多量の水蒸気が存在すると、m/e=1(H)が生成し、m/e=1の値が大きくなるとこれに隣接するm/e=2の指示にも影響を与える。このため、対象ガスの水素に起因するm/e=2の正確な値が読めなくなり、結果的に検出感度の低下を招くことになる。なお、水蒸気等の吸着性ガスは、質量分析計の管壁や電極に吸着しやすく、いったん吸着すると高温に加熱しない限り簡単に脱離しない性質を有している。 That is, for example, when measuring a very small amount of hydrogen present in the gas to be measured, the analysis is performed by paying attention to the ratio of the mass number of ions to the charge m / e = 2 (H 2 + ). However, if a large amount of water vapor is present in the gas to be measured, m / e = 1 (H + ) is generated, and if the value of m / e = 1 increases, the indication of m / e = 2 adjacent thereto will also be given. Influence. For this reason, an accurate value of m / e = 2 due to hydrogen of the target gas cannot be read, resulting in a decrease in detection sensitivity. Note that an adsorptive gas such as water vapor is easily adsorbed on a tube wall or an electrode of a mass spectrometer, and once adsorbed, it does not easily desorb unless heated to a high temperature.

このようなことから、本出願人は、先に、測定値の精度(再現性)向上を図るとともに、水蒸気等の吸着性ガスの影響を最小限に抑えて最高ppmオーダーまでの微量ガスを測定できるようにしたガス分析装置を提案した(特許文献1)。しかしながら、こうした改良したガス分析装置では、マニホールドに配管を介して接続する,ターボ分子ポンプ及びダイヤフラムポンプからなる真空排気装置を備えているので、ガス分析装置が大型化するとともに、コスト高になるという問題があった。   For this reason, the applicant first improves the accuracy (reproducibility) of measured values and measures trace gases up to the highest ppm order while minimizing the influence of adsorbent gases such as water vapor. The gas analyzer which enabled it was proposed (patent document 1). However, such an improved gas analyzer is equipped with a vacuum exhaust device consisting of a turbo molecular pump and a diaphragm pump connected to the manifold via a pipe, so that the gas analyzer is increased in size and cost. There was a problem.

ここで、ガス分析装置を大型化せざるを得なかった理由について説明する。
1) 前記被測定ガス中に水蒸気等の吸着性ガスが含まれると、測定対象ガスの検出感度及び測定値の再現性が著しく低下する。この原因は以下に述べるとおりである。即ち、測定対象ガス中に含まれている例えば水素(H)等の非吸着性ガスは真空ポンプで直ちに測定後測定域外へ排出除去される。しかし、水蒸気等の吸着性ガスは、測定終了後も、マニホールド3、四極子型質量分析計11などの器壁、管壁面との吸脱着現象を繰り返し長時間に渡って測定域内に滞在する。そして、その一部は器壁面上に蓄積し、それが次の測定時に器壁面等から不定期に再放出して、測定対象ガス濃度の相対的希釈化(検出感度の低下)及びバックグラウンド値の不規則変動(再現性の低下)を引き起こしている。
Here, the reason why the gas analyzer has to be enlarged will be described.
1) If an adsorbing gas such as water vapor is contained in the gas to be measured, the detection sensitivity of the measurement target gas and the reproducibility of the measurement value are significantly reduced. The cause of this is as described below. That is, non-adsorbing gas such as hydrogen (H 2 ) contained in the measurement target gas is immediately discharged and removed from the measurement area after measurement by the vacuum pump. However, even after the measurement is completed, the adsorbing gas such as water vapor stays in the measurement area repeatedly for a long time by repeating the adsorption / desorption phenomenon with the walls of the manifold 3 and the quadrupole mass spectrometer 11 and the tube wall surface. And a part of it accumulates on the instrument wall surface, and it is re-released irregularly from the instrument wall surface etc. at the next measurement, relative dilution (decrease in detection sensitivity) and background value of the measurement target gas concentration Cause irregular fluctuations (decrease in reproducibility).

2) そのため、次の測定時にこれらの吸着性ガスの悪影響を残さないようにするための現実的な真空排気条件は、マニホールド3における実効排気速度が0.01〜0.1L/sで圧力減衰(図4参照)の時定数は10s前後である。この条件を実現するために、専用の真空排気装置6をマニホールド3への配管7bで結び、マニホールド3内の吸着性ガスを測定中も真空排気装置6で連続的に排出除去して、測定対象ガスの検出感度及び測定値の再現性を高品位に維持している。   2) Therefore, the realistic evacuation condition for avoiding the adverse effects of these adsorptive gases at the next measurement is that the effective evacuation speed in the manifold 3 is 0.01 to 0.1 L / s and the pressure is attenuated. The time constant (see FIG. 4) is around 10 s. In order to realize this condition, a dedicated vacuum exhaust device 6 is connected by a pipe 7b to the manifold 3, and the adsorptive gas in the manifold 3 is continuously discharged and removed by the vacuum exhaust device 6 even during measurement. Gas detection sensitivity and reproducibility of measured values are maintained at high quality.

3) ところで、真空排気装置6が設置されていない場合は、ガス分析装置の四極子型質量分析計11についている真空排気装置10のみで、これら吸着性ガスを排出除去しなければならない。具体的には、吸着性ガスがマニホールド3、オリフィス13及びイオン源12を経由して真空排気装置10で排気されることになる。また、オリフィス13は円形の孔(直径0.3mm前後、コンダクタンス8×10−3L/s)でコンダクタンスが最も小さい。この場合、マニホールド3における実効排気速度は8×10−3L/sで圧力減衰(図4参照)の時定数は120s前後である。なお、実効排気速度は、最も小さいコンダクタンス値と同じ値となることが理論的に知られている。 3) By the way, when the vacuum exhaust device 6 is not installed, these adsorptive gases must be discharged and removed only by the vacuum exhaust device 10 attached to the quadrupole mass spectrometer 11 of the gas analyzer. Specifically, the adsorptive gas is exhausted by the vacuum exhaust device 10 via the manifold 3, the orifice 13 and the ion source 12. The orifice 13 is a circular hole (diameter around 0.3 mm, conductance 8 × 10 −3 L / s) and has the smallest conductance. In this case, the effective exhaust speed in the manifold 3 is 8 × 10 −3 L / s, and the time constant of pressure decay (see FIG. 4) is around 120 s. It is theoretically known that the effective exhaust speed becomes the same value as the smallest conductance value.

4) 従って、専用の真空排気装置6を持たず、オリフィス13のみを経由して吸着性ガスを排気除去しようとした場合、圧力減衰の時定数は120s/10s=12倍程度長くなる。つまり、オリフィス13のみを経由しての吸着性ガスの排気除去は時間がかかり過ぎるため、現実的でない。   4) Therefore, when the adsorbing gas is exhausted and removed only through the orifice 13 without the dedicated vacuum exhaust device 6, the time constant of pressure decay becomes about 120s / 10s = 12 times longer. That is, the removal of the adsorptive gas through the orifice 13 alone takes too much time and is not realistic.

特許第4052597号公報Japanese Patent No. 4052597

本発明は、こうした事情を考慮してなされたもので、装置の大型化やコスト高を招くことなく、測定値の精度向上を図るとともに、水蒸気等の吸着性ガスの影響を最小限に抑えて最高ppmオーダーまでの微量ガスを測定できる高感度ガス分析装置、ガス定量方法及び分析装置システムを提供することを目的とする。   The present invention has been made in consideration of such circumstances, and while improving the accuracy of measured values without incurring an increase in the size and cost of the apparatus, the influence of an adsorbing gas such as water vapor is minimized. An object of the present invention is to provide a high-sensitivity gas analyzer, a gas determination method, and an analyzer system capable of measuring trace gases up to the highest ppm order.

本発明に係る高感度ガス分析装置は、微量ガスを定量測定する高感度ガス分析装置において、被測定ガスを収容する被測定ガスリザーバと、この被測定ガスリザーバと第1の開閉弁を介して接続する小容器と、この小容器と第2の開閉弁を介して接続する,容量が前記小容器の容量の2000倍以上のバッファタンクと、このバッファタンクと配管を介して接続するマニホールドと、このマニホールドと接続する,吸気口側に第3の開閉弁を介装したターボ分子ポンプ及びダイヤフラムポンプからなる真空排気装置の付いた四極子型質量分析計と、被測定ガスを四極子型質量分析計に流入させるためのオリフィスと、前記マニホールドとターボ分子ポンプとを接続する,第4の開閉弁を介装したバイパス配管とを具備することを特徴とする。   The high-sensitivity gas analyzer according to the present invention is a high-sensitivity gas analyzer for quantitatively measuring a trace gas, and is connected to a gas reservoir to be measured that contains the gas to be measured, and the gas reservoir to be measured and the first on-off valve. A small container, a buffer tank connected to the small container via a second on-off valve, having a capacity of 2000 times or more the capacity of the small container, a manifold connected to the buffer tank via a pipe, and the manifold A quadrupole mass spectrometer with a vacuum exhaust system consisting of a turbo molecular pump and a diaphragm pump with a third on-off valve on the inlet side, and a gas to be measured into a quadrupole mass spectrometer It is characterized by comprising an orifice for inflowing, and a bypass pipe connecting a manifold and a turbo-molecular pump and having a fourth on-off valve interposed therebetween.

また、本発明に係るガス定量方法は、前記高感度ガス分析装置を用いたガス定量方法であって、前記被測定ガスリザーバに収容されている被測定ガスを第1・第2の開閉弁を操作して小容器に一定容積の被測定ガスを採取する工程と、前記真空排気装置を作動させた後、第1の開閉弁を閉じてから第2の開閉弁を開いて小容器内の被測定ガスをバッファタンク内に拡散させる工程、拡散した被測定ガスを前記バッファタンクと前記マニホールド間の配管を介してマニホールドに移す工程と、マニホールド内の被測定ガスを、前記オリフィスを介して前記質量分析計のイオン源に供給して被測定ガスをイオン化する工程、イオン化した被測定ガスのイオン電流を測定することにより被測定ガス中の対象ガスの定量を行う工程とを具備し、前記マニホールド内の被測定ガス圧が前記質量分析計の正常動作圧力の上限値を超えた場合に、バイパス配管を経由して余分な量の被測定ガスを系外へ排出することを特徴とする。   The gas quantification method according to the present invention is a gas quantification method using the high-sensitivity gas analyzer, and operates the first and second on-off valves for the measurement gas stored in the measurement gas reservoir. The process of collecting a constant volume of gas to be measured in a small container, and after operating the vacuum exhaust device, the first on-off valve is closed and then the second on-off valve is opened to measure the inside of the small container. A step of diffusing the gas into the buffer tank, a step of transferring the diffused gas to be measured to the manifold via a pipe between the buffer tank and the manifold, and a mass analysis of the gas to be measured in the manifold via the orifice Supplying the ion source of the meter to ionize the gas to be measured, and measuring the ion current of the ionized gas to be measured to measure the target gas in the gas to be measured. If the measured gas pressure in the hold exceeds the upper limit of the normal operating pressure of the mass spectrometer, characterized by discharging the excess amount of measurement gas via a bypass pipe to the outside of the system.

更に、本発明に係る高感度ガス分析装置システムは、前記高感度ガス分析装置と、この高感度ガス分析装置による分析の解析を行うホストコンピュータと、前記高感度ガス分析装置とホストコンピュータ間で分析情報及び解析結果情報のやり取りを行う有線又は無線による連絡機構とを具備することを特徴とする。   Furthermore, the high-sensitivity gas analyzer system according to the present invention includes the high-sensitivity gas analyzer, a host computer that analyzes the analysis by the high-sensitivity gas analyzer, and an analysis between the high-sensitivity gas analyzer and the host computer. And a wired or wireless contact mechanism for exchanging information and analysis result information.

本発明によれば、装置の大型化やコスト高を招くことなく、測定値の精度向上を図るとともに、水蒸気等の吸着性ガスの影響を最小限に抑えて最高ppmオーダーまでの微量ガスを測定できる高感度ガス分析装置、ガス定量方法及び分析装置システムを得ることができる。   According to the present invention, measurement accuracy can be improved without increasing the size and cost of the apparatus, and measurement of trace gases up to the highest ppm order while minimizing the influence of adsorbent gas such as water vapor. A highly sensitive gas analyzer, gas determination method and analyzer system that can be obtained can be obtained.

図1は本発明の一実施形態に係る高感度ガス分析装置の概略図。FIG. 1 is a schematic view of a highly sensitive gas analyzer according to an embodiment of the present invention. 図2は、本発明に係る高感度ガス分析装置システムの説明図。FIG. 2 is an explanatory diagram of a highly sensitive gas analyzer system according to the present invention. 図3は従来のガス分析装置の概略図。FIG. 3 is a schematic view of a conventional gas analyzer. 図4は本発明に係る高感度ガス分析装置のバッファタンク及びマニホールド内の圧力の時間的変化を概略的に示した図。FIG. 4 is a diagram schematically showing temporal changes in pressure in the buffer tank and the manifold of the high sensitivity gas analyzer according to the present invention.

以下、本発明の高感度ガス分析装置、ガス定量方法及び分析装置システムについて更に詳しく説明する。
本発明において、バッファタンクの容量を小容器の容量の2000倍以上とするのは、以下の理由による。
本発明の分析装置の一構成である四極子型質量分析計は、イオン化した(電荷を持った)被測定ガスを、高周波電場と直流電場を重ね合わせた電場域を通過させると、被測定ガス重量(分子量)の違い毎にイオンの飛行軌跡が異なってくることを利用して混合ガス中の成分ガス種を分別検出する装置である。従って、四極子型質量分析計では、電気的に中性な被測定ガスをイオン化させることが極めて重要である。
Hereinafter, the highly sensitive gas analyzer, gas determination method, and analyzer system of the present invention will be described in more detail.
In the present invention, the reason why the capacity of the buffer tank is 2000 times or more the capacity of the small container is as follows.
The quadrupole mass spectrometer, which is one configuration of the analyzer according to the present invention, allows an ionized (charged) gas to be measured to pass through an electric field region in which a high-frequency electric field and a DC electric field are superimposed. This is a device that detects separately the component gas species in the mixed gas by utilizing the fact that the flight trajectory of ions varies with the difference in weight (molecular weight). Therefore, in a quadrupole mass spectrometer, it is extremely important to ionize an electrically neutral measurement gas.

電気的に中性な被測定ガスをイオン化させる方法としては、約1000℃以上に高温加熱した金属製フィラメントから熱電子を放出させ、それに外部電圧を印加して熱電子を加速し、中性な被測定ガスに衝突させて中性ガス分子から電子を叩き出し、プラス電荷を持ったイオンに変化させることが挙げられる。   As a method of ionizing an electrically neutral gas to be measured, thermoelectrons are emitted from a metal filament heated at a high temperature of about 1000 ° C. or more, and an external voltage is applied thereto to accelerate the thermoelectrons. For example, electrons can be struck out from neutral gas molecules by colliding with a gas to be measured, and changed to ions having a positive charge.

従って、四極子型質量分析計のイオン源内では、四極子型質量分析計の運転に必須な熱電子発生のために約1000℃以上に高温加熱されたタングステン等の金属製フィラメントが点灯されている。不活性気体以外の酸素、ハロゲン等の反応性ガスがイオン源内に一定の上限圧以上存在すると、高温の金属製フィラメントは、急激な腐食反応を起こしフィラメントが腐食破断に至ることが知られている。これにより、高温の金属製フィラメントからの熱電子発生が中断され、四極子型質量分析計の正常な運転が阻害される。   Therefore, in the ion source of the quadrupole mass spectrometer, a metal filament such as tungsten heated at a high temperature of about 1000 ° C. or higher is lit to generate the thermoelectrons necessary for the operation of the quadrupole mass spectrometer. . It is known that when a reactive gas other than inert gas, such as oxygen and halogen, is present in the ion source above a certain upper limit pressure, the high-temperature metal filament undergoes an abrupt corrosion reaction and the filament leads to corrosion breakage. . This interrupts the generation of thermionic electrons from the hot metal filament and impedes normal operation of the quadrupole mass spectrometer.

この腐食反応が顕著に起きだす反応性ガスの上限圧は、反応ガス種にあまり依存することなく、約50Paであるということが経験的に知られており、したがってこの腐食反応を抑えるためにイオン源のガス入口を約50Pa以下にする必要がある。このため、本発明では、大気圧(略1気圧、0.1MPa)状態で小容器内に採取された被測定ガスの圧を約50Pa以下に低減させる必要がある。そこで、バッファタンクの容量を小容器の約2000倍(0.1×10Pa/50Pa=2000倍)とし、小容器からバッファタンク内へ被測定ガスを導入膨張させることで、イオン源の入口部で約50Paとなるように圧力調整を行なっている。 It has been empirically known that the upper limit pressure of the reactive gas at which this corrosion reaction occurs remarkably does not depend much on the reaction gas species, and is about 50 Pa. Therefore, in order to suppress this corrosion reaction, The gas inlet of the source needs to be about 50 Pa or less. For this reason, in the present invention, it is necessary to reduce the pressure of the gas to be measured collected in the small container under the atmospheric pressure (approximately 1 atm, 0.1 MPa) to about 50 Pa or less. Therefore, the capacity of the buffer tank is set to about 2000 times that of the small container (0.1 × 10 6 Pa / 50 Pa = 2000 times), and the gas to be measured is introduced and expanded from the small container into the buffer tank. The pressure is adjusted to about 50 Pa at the part.

本発明において、マニホールドとターボ分子ポンプ間に第4の開閉弁を介装したバイパス配管を設けるのは、被測定ガスリザーバには一般的に多めの被測定ガスを収容することがあり、これに起因してマニホールド内の被測定ガス圧が四極子型質量分析計の正常動作圧力の上限を超える場合があるからである。   In the present invention, the bypass pipe having the fourth on-off valve interposed between the manifold and the turbo molecular pump is generally provided with a large amount of gas to be measured in the gas reservoir to be measured. This is because the gas pressure to be measured in the manifold may exceed the upper limit of the normal operating pressure of the quadrupole mass spectrometer.

(第1の実施形態)
図1を参照する。
図中の符番21は、大気圧(0.1MPa)状態で被測定ガスを収容する被測定ガスリザーバを示す。この被測定ガスリザーバ21には、第1の開閉弁22を介して小容器23(内容積:約0.1ml)が接続されている。この小容器23には、第2の開閉弁24を介してバッファタンク25(内容積:約200ml)が接続されている。このバッファタンク25には、大きなコンダクタンスの配管26を介して圧力計(図示せず)を備えたマニホールド27が接続されている。ここで、前記被測定ガスリザーバ21、小容器23、バッファタンク25及びマニホールド27より被測定ガス流路28が構成されている。ここで、バッファタンク25の容量は、小容器23の容量の2000倍以上となっている。
(First embodiment)
Please refer to FIG.
Reference numeral 21 in the figure indicates a gas reservoir to be measured that accommodates the gas to be measured in an atmospheric pressure (0.1 MPa) state. A small container 23 (internal volume: about 0.1 ml) is connected to the measured gas reservoir 21 via a first on-off valve 22. A buffer tank 25 (internal volume: about 200 ml) is connected to the small container 23 via a second opening / closing valve 24. A manifold 27 having a pressure gauge (not shown) is connected to the buffer tank 25 through a pipe 26 having a large conductance. Here, a measured gas flow path 28 is constituted by the measured gas reservoir 21, the small container 23, the buffer tank 25 and the manifold 27. Here, the capacity of the buffer tank 25 is 2000 times or more the capacity of the small container 23.

前記マニホールド27には、配管29を介して真空排気装置付四極子型質量分析計30が接続されている。この質量分析計30の下流側には、吸気口側に第3の開閉弁36を備えたターボ分子ポンプ32と、このターボ分子ポンプ32に接続するダイヤフラムポンプ33から構成された真空排気装置31が配置されている。ここで、真空排気装置31の実効排気速度は20〜100L/sである。マニホールド27とターボ分子ポンプ32の吸気口は、マニホールド側に位置した第4の開閉弁37を介装したバイパス配管38により接続されている。前記質量分析計30はイオン源34を備えている。マニホールド27と質量分析計30を接続する配管29には、円形の孔(直径0.3mm前後)を有する薄い金属板(オリフィス)35が配置されている。このオリフィス35により、被測定ガス流路28の中間から被測定ガスの一部が質量分析計30のイオン源34に導入される。   A quadrupole mass spectrometer 30 with an evacuation device is connected to the manifold 27 via a pipe 29. On the downstream side of the mass spectrometer 30, there is a vacuum exhaust device 31 composed of a turbo molecular pump 32 having a third on-off valve 36 on the inlet side and a diaphragm pump 33 connected to the turbo molecular pump 32. Has been placed. Here, the effective exhaust speed of the vacuum exhaust device 31 is 20 to 100 L / s. The intake port of the manifold 27 and the turbo molecular pump 32 is connected by a bypass pipe 38 having a fourth open / close valve 37 located on the manifold side. The mass spectrometer 30 includes an ion source 34. A thin metal plate (orifice) 35 having a circular hole (diameter of about 0.3 mm) is disposed in the pipe 29 connecting the manifold 27 and the mass spectrometer 30. A part of the gas to be measured is introduced into the ion source 34 of the mass spectrometer 30 from the middle of the gas flow path 28 to be measured by the orifice 35.

こうしたガス分析装置における被測定ガスの流れは次のとおりである。即ち、まず、被測定ガスリザーバ21に入っている被測定ガスを第1の開閉弁22を開いて(第2の開閉弁24は閉じておく)小容器23に一定容積の大気圧(略1気圧,0.1MPa)の被測定ガスを採取する。つづいて、真空排気装置31が作動していることを確認してから第1の開閉弁22を閉じ、この後第2の開閉弁24を高速で全開する。これにより、小容器23内の被測定ガスは、バッファタンク25内に速やかに拡散する。このとき、バッファタンク25内の圧力は、図4に示すように、いったん極大値に達し、以後、真空排気装置31により排気されるので、徐々に低下していく。バッファタンク25とマニホールド27は大きなコンダクタンスの配管26で接続されているので、マニホールド27内の圧力はバッファタンク25内の圧力とほぼ同様な変化をする。従って、第2の開閉弁24を開いた直後のバッファタンク25及びマニホールド27内の圧力はおよそ50Paである。   The flow of the gas to be measured in such a gas analyzer is as follows. That is, first, the gas to be measured contained in the gas reservoir 21 to be measured is opened in the first on-off valve 22 (the second on-off valve 24 is closed). , 0.1 MPa) to be measured. Subsequently, after confirming that the vacuum exhaust device 31 is operating, the first on-off valve 22 is closed, and then the second on-off valve 24 is fully opened at high speed. As a result, the gas to be measured in the small container 23 quickly diffuses into the buffer tank 25. At this time, as shown in FIG. 4, the pressure in the buffer tank 25 once reaches a maximum value, and after that, since it is exhausted by the vacuum exhaust device 31, it gradually decreases. Since the buffer tank 25 and the manifold 27 are connected by a pipe 26 having a large conductance, the pressure in the manifold 27 changes almost the same as the pressure in the buffer tank 25. Therefore, the pressure in the buffer tank 25 and the manifold 27 immediately after opening the second on-off valve 24 is approximately 50 Pa.

この後、バッファタンク25内に拡散した被測定ガスを、マニホールド27に移す。次に、マニホールド27内の被測定ガスを、オリフィス35を介して四極子型質量分析計30のイオン源34に供給し、電気的に中性な被測定ガスをイオン化する。ここで、イオン化した被測定ガスのイオン電流を測定して被測定ガス中の対象ガスの定量を繰り返し行う。なお、マニホールド27内の被測定ガス圧が四極子型質量分析計30の正常動作圧力の上限を超えた場合には、第4の開閉弁37の開閉によりバイパス配管38を経由して、余分な量の被測定ガスを系外へ排出除去する。   Thereafter, the gas to be measured diffused into the buffer tank 25 is transferred to the manifold 27. Next, the gas to be measured in the manifold 27 is supplied to the ion source 34 of the quadrupole mass spectrometer 30 through the orifice 35 to ionize the electrically neutral gas to be measured. Here, the ion current of the ionized measurement gas is measured, and the target gas in the measurement gas is quantified repeatedly. When the gas pressure to be measured in the manifold 27 exceeds the upper limit of the normal operating pressure of the quadrupole mass spectrometer 30, the fourth on-off valve 37 is opened / closed to bypass the bypass pipe 38. A quantity of gas to be measured is discharged out of the system.

上記実施形態に係る高感度ガス分析装置は、上述したように、被測定ガスリザーバ21と、この被測定ガスリザーバ21に第1の開閉弁22を介して接続する小容器23と、この小容器23に第2の開閉弁24を介して接続する,容量が小容器23の容量の約2000倍のバッファタンク25と、このバッファタンク25に配管26を介して接続するマニホールド27と、このマニホールド27に接続する,吸気口側に第3の開閉弁36を介装したターボ分子ポンプ32及びダイヤフラムポンプ33からなる真空排気装置31の付いた四極子型質量分析計30と、被測定ガスの一部を前記質量分析計30に流入させるオリフィス35と、マニホールド27とターボ分子ポンプ32とを接続する,第4の開閉弁37を介装したバイパス配管38を具備している。   As described above, the high-sensitivity gas analyzer according to the embodiment includes the gas reservoir 21 to be measured, the small container 23 connected to the gas reservoir 21 to be measured via the first on-off valve 22, and the small container 23. A buffer tank 25 having a capacity of about 2000 times the capacity of the small container 23 connected through the second opening / closing valve 24, a manifold 27 connected to the buffer tank 25 via a pipe 26, and a connection to the manifold 27 A quadrupole mass spectrometer 30 having a vacuum exhaust device 31 comprising a turbo molecular pump 32 and a diaphragm pump 33 having a third opening / closing valve 36 on the intake side, and a part of the gas to be measured A bypass pipe 38 having a fourth on-off valve 37 connecting the orifice 35 flowing into the mass spectrometer 30, the manifold 27 and the turbo molecular pump 32. It is provided.

こうした高感度ガス分析装置によれば、バッファタンク25の容量を小容器23の容量の2000倍とすることにより、従来のようにマニホールドに配管を介して接続する真空排気装置を用いることなく、測定値の精度向上を図るとともに、水蒸気等の吸着性ガスの影響を最小限に抑えて最高ppmオーダーまでの微量ガスを測定することができる。また、上記真空排気装置を取り除くことができるので、装置の構成部材を簡略化でき、装置の大型化やコスト高を回避することができる。更に、本発明のガス分析装置では、マニホールド27とターボ分子ポンプ32間にバイパス配管38を設けることにより、マニホールド27内の被測定ガス圧が四極子型質量分析計30の正常動作圧力の上限を超えた場合に、第4の開閉弁37の開閉によりバイパス配管38を経由して、余分な量の被測定ガスを系外へ排出除去している。この場合、第4の開閉弁37の開又は閉動作に対応して第3の開閉弁36の動作が常に第4の開閉弁37とは正反対の閉又は開動作となるように第3の開閉弁36及び第4の開閉弁37を連動動作させることにより、除去した被測定ガスが四極子型質量分析計30へ逆流侵入することを阻止できる。   According to such a high-sensitivity gas analyzer, the capacity of the buffer tank 25 is set to 2000 times the capacity of the small container 23, so that measurement can be performed without using a conventional vacuum exhaust device connected to the manifold via a pipe. In addition to improving the accuracy of the values, it is possible to measure trace gases up to the highest ppm order while minimizing the influence of adsorptive gases such as water vapor. Moreover, since the said vacuum exhaust apparatus can be removed, the structural member of an apparatus can be simplified and the enlargement and cost increase of an apparatus can be avoided. Furthermore, in the gas analyzer of the present invention, by providing a bypass pipe 38 between the manifold 27 and the turbo molecular pump 32, the gas pressure to be measured in the manifold 27 increases the upper limit of the normal operating pressure of the quadrupole mass spectrometer 30. When it exceeds, an excess amount of the gas to be measured is discharged and removed from the system via the bypass pipe 38 by opening and closing the fourth on-off valve 37. In this case, in response to the opening or closing operation of the fourth opening / closing valve 37, the third opening / closing operation is such that the operation of the third opening / closing valve 36 is always the opposite closing or opening operation of the fourth opening / closing valve 37. By operating the valve 36 and the fourth on-off valve 37 in conjunction with each other, it is possible to prevent the removed gas to be measured from flowing back into the quadrupole mass spectrometer 30.

(第2の実施形態)
図2を参照する。
本実施形態に係る高感度ガス分析装置システムは、高感度ガス分析装置41と、この分析装置41による分析の解析を行うホストコンピュータ42と、前記高感度ガス分析装置とホストコンピュータ間で分析情報及び解析結果情報のやり取りを行う有線又は無線による連絡機構43とを備えている。ここで、連絡機構43としては、携帯電話、パソコン、FAXあるいはネットコンピュータなどが挙げられるが、分析情報及び解析結果情報のやり取りができれば特に限定されない。
(Second Embodiment)
Please refer to FIG.
The high-sensitivity gas analyzer system according to the present embodiment includes a high-sensitivity gas analyzer 41, a host computer 42 that analyzes the analysis by the analyzer 41, analysis information between the high-sensitivity gas analyzer and the host computer, and A wired or wireless contact mechanism 43 that exchanges analysis result information. Here, examples of the contact mechanism 43 include a mobile phone, a personal computer, a FAX, and a net computer, but are not particularly limited as long as analysis information and analysis result information can be exchanged.

第2の実施形態によれば、高感度ガス分析装置41を用いた作業者による分析情報をホストコンピュータ42に送り、またホストコンピュータ42による分析者の分析結果を作業者に伝達できるので、分析者は高感度ガス分析装置41が配置された現地まで出向くことなく、分析結果を作業者に伝達することができる。従って、たとえ作業者が装置41による分析に十分習得していなくても短時間で正確な分析結果が得られ、また分析者も現地まで出向いて分析する手間を省き、移動時間の無駄を無くすことができる。   According to the second embodiment, the analysis information by the operator using the high-sensitivity gas analyzer 41 can be sent to the host computer 42, and the analysis result of the analyzer by the host computer 42 can be transmitted to the operator. Can transmit the analysis result to the operator without going to the site where the high-sensitivity gas analyzer 41 is arranged. Therefore, even if the operator is not sufficiently mastered in the analysis by the apparatus 41, an accurate analysis result can be obtained in a short time, and the analyst can also go to the site and analyze it, thereby eliminating waste of travel time. Can do.

なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素を適宜に組み合わせることにより種々の発明を形成できる。例えば、バッファタンクの容量と小容器の容量との比は、上述した比に限らず、2000倍以上であればよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, the ratio between the capacity of the buffer tank and the capacity of the small container is not limited to the above ratio, and may be 2000 times or more.

21…被測定ガスリザーバ、22…第1の開閉弁、23…小容器、24…第2の開閉弁、25…バッファタンク、26,29…配管、27…マニホールド、28…被測定ガス流路、30…四極子型質量分析計、31…真空排気装置、32…ターボ分子ポンプ、33…ダイヤフラムポンプ、34…イオン源、35…オリフィス、36…第3の開閉弁、37…第4の開閉弁、38…バイパス配管、41…高感度ガス分析装置、42…ホストコンピュータ、43…連絡機構。   21 ... Gas reservoir to be measured, 22 ... First open / close valve, 23 ... Small container, 24 ... Second open / close valve, 25 ... Buffer tank, 26, 29 ... Piping, 27 ... Manifold, 28 ... Gas flow to be measured, DESCRIPTION OF SYMBOLS 30 ... Quadrupole-type mass spectrometer, 31 ... Vacuum exhaust apparatus, 32 ... Turbo molecular pump, 33 ... Diaphragm pump, 34 ... Ion source, 35 ... Orifice, 36 ... Third on-off valve, 37 ... Fourth on-off valve 38 ... Bypass piping, 41 ... High sensitivity gas analyzer, 42 ... Host computer, 43 ... Communication mechanism.

Claims (3)

微量ガスを定量測定する高感度ガス分析装置において、
被測定ガスを収容する被測定ガスリザーバと、
この被測定ガスリザーバと第1の開閉弁を介して接続する小容器と、
この小容器と第2の開閉弁を介して接続する,容量が前記小容器の容量の2000倍以上のバッファタンクと、
このバッファタンクと配管を介して接続するマニホールドと、
このマニホールドと接続する,吸気口側に第3の開閉弁を介装したターボ分子ポンプ及びダイヤフラムポンプからなる真空排気装置の付いた四極子型質量分析計と、
被測定ガスを四極子型質量分析計に流入させるためのオリフィスと、
前記マニホールドとターボ分子ポンプとを接続する,第4の開閉弁を介装したバイパス配管とを具備することを特徴とする高感度ガス分析装置。
In a high-sensitivity gas analyzer that quantitatively measures trace gases,
A gas reservoir to be measured for containing a gas to be measured;
A small container connected to the measured gas reservoir via the first on-off valve;
A buffer tank having a capacity of 2000 times or more the capacity of the small container, connected to the small container via a second on-off valve;
A manifold connected to the buffer tank via a pipe,
A quadrupole mass spectrometer with a vacuum exhaust system consisting of a turbo molecular pump and a diaphragm pump interposing a third on-off valve on the inlet side connected to the manifold;
An orifice for allowing the gas to be measured to flow into the quadrupole mass spectrometer,
A high-sensitivity gas analyzer comprising a bypass pipe connecting a manifold and a turbo molecular pump with a fourth on-off valve interposed therebetween.
請求項1記載の高感度ガス分析装置を用いたガス定量方法であって、
前記被測定ガスリザーバに収容されている被測定ガスを第1・第2の開閉弁を操作して小容器に一定容積の被測定ガスを採取する工程と、
前記真空排気装置を作動させた後、第1の開閉弁を閉じてから第2の開閉弁を開いて小容器内の被測定ガスをバッファタンク内に拡散させる工程、
拡散した被測定ガスを前記バッファタンクと前記マニホールド間の配管を介してマニホールドに移す工程と、
マニホールド内の被測定ガスを、前記オリフィスを介して前記質量分析計のイオン源に供給して被測定ガスをイオン化する工程、
イオン化した被測定ガスのイオン電流を測定することにより被測定ガス中の対象ガスの定量を行う工程とを具備し、
前記マニホールド内の被測定ガス圧が前記質量分析計の正常動作圧力の上限値を超えた場合に、バイパス配管を経由して余分な量の被測定ガスを系外へ排出することを特徴とするガス定量方法。
A gas quantification method using the highly sensitive gas analyzer according to claim 1,
Collecting the gas to be measured in a small volume by operating the first and second on-off valves for the gas to be measured stored in the gas reservoir to be measured;
A step of diffusing the gas to be measured in the small container into the buffer tank by closing the first on-off valve and then opening the second on-off valve after operating the vacuum exhaust device;
Transferring the measured gas diffused to the manifold via a pipe between the buffer tank and the manifold;
Supplying the gas to be measured in the manifold to the ion source of the mass spectrometer through the orifice to ionize the gas to be measured;
Measuring the ion current of the ionized measurement gas, and quantifying the target gas in the measurement gas,
When the measured gas pressure in the manifold exceeds the upper limit value of the normal operating pressure of the mass spectrometer, an excessive amount of measured gas is discharged out of the system via a bypass pipe. Gas determination method.
請求項1記載の高感度ガス分析装置と、この高感度ガス分析装置による分析の解析を行うホストコンピュータと、前記高感度ガス分析装置とホストコンピュータ間で分析情報及び解析結果情報のやり取りを行う有線又は無線による連絡機構とを具備することを特徴とする高感度ガス分析装置システム。   2. The high-sensitivity gas analyzer according to claim 1, a host computer that performs analysis of analysis by the high-sensitivity gas analyzer, and a wire that exchanges analysis information and analysis result information between the high-sensitivity gas analyzer and the host computer. Or a highly sensitive gas analyzer system comprising a wireless communication mechanism.
JP2010104211A 2009-05-12 2010-04-28 High-sensitivity gas analyzer, gas determination method and analyzer system Active JP5648992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010104211A JP5648992B2 (en) 2009-05-12 2010-04-28 High-sensitivity gas analyzer, gas determination method and analyzer system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009115803 2009-05-12
JP2009115803 2009-05-12
JP2010104211A JP5648992B2 (en) 2009-05-12 2010-04-28 High-sensitivity gas analyzer, gas determination method and analyzer system

Publications (2)

Publication Number Publication Date
JP2010286476A true JP2010286476A (en) 2010-12-24
JP5648992B2 JP5648992B2 (en) 2015-01-07

Family

ID=43542260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104211A Active JP5648992B2 (en) 2009-05-12 2010-04-28 High-sensitivity gas analyzer, gas determination method and analyzer system

Country Status (1)

Country Link
JP (1) JP5648992B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518380A (en) * 2011-06-16 2014-07-28 スミスズ ディテクション モントリオール インコーポレイティド Loop shape ionization source
KR20210012300A (en) * 2019-07-24 2021-02-03 한국수력원자력 주식회사 An extracting gas supply line balance maintaining system of transformer oil
JP2021018100A (en) * 2019-07-18 2021-02-15 日本金属化学株式会社 Gas analyzer
WO2021145716A1 (en) * 2020-01-17 2021-07-22 주식회사 한국에이티아이 System for stabilizing flow of gas introduced into sensor
KR20210112114A (en) * 2020-03-04 2021-09-14 한국원자력안전기술원 Qualitative and quantitative analysis apparatus and method for inert gas
CN117288829A (en) * 2023-09-27 2023-12-26 武汉科益研创科技有限公司 Gas generation detecting system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028675A (en) * 2002-06-24 2004-01-29 Hitachi Ltd Dangerous object sensing system
JP2005098705A (en) * 2003-09-22 2005-04-14 Hitachi Ltd Apparatus and method for monitoring chemical substance
JP2006053003A (en) * 2004-08-11 2006-02-23 Japan Atom Energy Res Inst High sensitivity gas analyzer
JP2008151590A (en) * 2006-12-15 2008-07-03 Japan Atomic Energy Agency Gas analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028675A (en) * 2002-06-24 2004-01-29 Hitachi Ltd Dangerous object sensing system
JP2005098705A (en) * 2003-09-22 2005-04-14 Hitachi Ltd Apparatus and method for monitoring chemical substance
JP2006053003A (en) * 2004-08-11 2006-02-23 Japan Atom Energy Res Inst High sensitivity gas analyzer
JP2008151590A (en) * 2006-12-15 2008-07-03 Japan Atomic Energy Agency Gas analyzer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518380A (en) * 2011-06-16 2014-07-28 スミスズ ディテクション モントリオール インコーポレイティド Loop shape ionization source
JP2021018100A (en) * 2019-07-18 2021-02-15 日本金属化学株式会社 Gas analyzer
JP7320249B2 (en) 2019-07-18 2023-08-03 日本金属化学株式会社 gas analyzer
KR20210012300A (en) * 2019-07-24 2021-02-03 한국수력원자력 주식회사 An extracting gas supply line balance maintaining system of transformer oil
KR102258418B1 (en) 2019-07-24 2021-06-01 한국수력원자력 주식회사 An extracting gas supply line balance maintaining system of transformer oil
WO2021145716A1 (en) * 2020-01-17 2021-07-22 주식회사 한국에이티아이 System for stabilizing flow of gas introduced into sensor
KR20210112114A (en) * 2020-03-04 2021-09-14 한국원자력안전기술원 Qualitative and quantitative analysis apparatus and method for inert gas
KR102305532B1 (en) 2020-03-04 2021-09-27 한국원자력안전기술원 Qualitative and quantitative analysis apparatus and method for inert gas
CN117288829A (en) * 2023-09-27 2023-12-26 武汉科益研创科技有限公司 Gas generation detecting system

Also Published As

Publication number Publication date
JP5648992B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5648992B2 (en) High-sensitivity gas analyzer, gas determination method and analyzer system
US20060266353A1 (en) Exhaled air filter, exhaled air collecting apparatus, exhaled air analyzing system and exhaled air analyzing method
TW201124710A (en) Preconcentrating a sample
JP2013253970A (en) System and method for measuring hydrogen content in sample
JP2007170985A (en) Chemical substance monitoring apparatus and method for cleaning the same
JPWO2018056419A1 (en) Elemental analyzer and elemental analysis method
JP2007506903A (en) Contaminant detection in pumped fluids
JP4911502B2 (en) Gas analyzer
CN109406691B (en) Gas sampling separation system and gas chromatograph
JP2009115651A (en) Sample inlet device, sample analyzer, and sample analysis system
JP2008095504A (en) Analysis apparatus
JP2018141657A (en) Highly sensitive thermal desorption gas analyzer
JP2010096753A (en) Mercury collector, mercury collecting unit, mercury analyzer, and its method
JP2010054498A (en) Sample analyzing method, sample carry-in member, sample carry-in method and thermal desorption spectrometer
JP2013175321A (en) Mass spectroscope and usage thereof, and gas permeation characteristic measuring method
JP4052597B2 (en) High sensitivity gas analyzer
KR101068269B1 (en) Quantitative measurement system for very small amount of fission gas
JP2858143B2 (en) Concentration analysis method and apparatus therefor
JP4744336B2 (en) Liquefied gas concentration analyzer
JP2009524022A (en) Equipment for low pressure systems
JP6322507B2 (en) Leak detection method
JP2013019672A (en) Measuring method, nuclear fuel failure detection method with measuring method, measuring apparatus and its usage method
CN116413404B (en) Test system and test method
JP4185728B2 (en) Method and apparatus for analyzing trace impurities in gas
JP2012247202A (en) Analysis method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5648992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250