JP2008151590A - Gas analyzer - Google Patents

Gas analyzer Download PDF

Info

Publication number
JP2008151590A
JP2008151590A JP2006338659A JP2006338659A JP2008151590A JP 2008151590 A JP2008151590 A JP 2008151590A JP 2006338659 A JP2006338659 A JP 2006338659A JP 2006338659 A JP2006338659 A JP 2006338659A JP 2008151590 A JP2008151590 A JP 2008151590A
Authority
JP
Japan
Prior art keywords
gas
measured
heating
analyzer according
gas analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006338659A
Other languages
Japanese (ja)
Other versions
JP4911502B2 (en
Inventor
Tetsuya Abe
哲也 阿部
Seiji Hiroki
成治 廣木
Masahiro Nemoto
正博 根本
Yasuhide Tajima
保英 田島
Soichiro Omachi
聡一郎 大間知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkin Flux Inc
Japan Atomic Energy Agency
Original Assignee
Nikkin Flux Inc
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkin Flux Inc, Japan Atomic Energy Agency filed Critical Nikkin Flux Inc
Priority to JP2006338659A priority Critical patent/JP4911502B2/en
Publication of JP2008151590A publication Critical patent/JP2008151590A/en
Application granted granted Critical
Publication of JP4911502B2 publication Critical patent/JP4911502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure the actual weight of a very small amount of a gas in the gas to be measured by calculating the weight difference of the gas to be measured before and after heating by heating the gas to be measured. <P>SOLUTION: This gas analyzer for quantifying the very small amount of the gas contained in the atmosphere or the like is equipped with an electric oven (heating means) 31 for heating the gas to be measured and a measuring means for measuring the amounts of the gas before and after the gas to be measured is heated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は大気等に含まれる微量ガスを高感度で定量することが可能なガス分析装置に関し、特に、大気中の特定ガス,自動車排気ガス中の有害ガス,呼気中の特定ガス,構造材に含まれる特定ガス等の微量ガスを最高ppmオーダーの高い感度で測定することができるガス分析装置に関する。   The present invention relates to a gas analyzer capable of quantifying a minute amount of gas contained in the atmosphere with high sensitivity, and more particularly to a specific gas in the atmosphere, a harmful gas in an automobile exhaust gas, a specific gas in an exhaled breath, and a structural material. The present invention relates to a gas analyzer capable of measuring a trace gas such as a specific gas contained with high sensitivity on the order of up to ppm.

従来、大気等に含まれる微量ガスを質量分析法により測定する場合には、測定しようとするガス(対象ガス)を含む大気等(被測定ガス)を連続的に質量分析計のイオン源に流し込む必要があるが、大気圧かそれに近い被測定ガス圧力と質量分析計が正常に作動する圧力の間には1億倍(10)以上の差があるため、数段の差動排気を行い、質量分析計のイオン源へのガス流入口の孔径を極度に小さくしている。 Conventionally, when measuring a very small amount of gas in the atmosphere by mass spectrometry, the atmosphere (measuring gas) containing the gas to be measured (target gas) is continuously flowed into the ion source of the mass spectrometer. Although there is a difference of 100 million times (10 8 ) or more between the pressure of the gas to be measured at or near atmospheric pressure and the pressure at which the mass spectrometer operates normally, several stages of differential exhaust are performed. The diameter of the gas inlet to the ion source of the mass spectrometer is extremely small.

即ち、従来のガス分析装置は、図7に示すようになっている。ガス分析装置は、ガス供給機構1を備えている。ここで、ガス供給機構1は、被測定ガスリザーバ2と、可変リークバルブ3を介装した配管4と、圧力計5を備えたマニホールド6と、このマニホールド6と配管7を介して接続する真空排気装置8とから構成されている。真空排気装置8は、ターボ分子ポンプ9とダイヤフラムポンプ10とからなる。また、ガス分析装置は、前記ガス供給機構1の下流側にオリフィス板11を備えた分岐管12を備えている。図中の符番11aはオリフィス板11のオリフィスである。更に、ガス分析装置は、前記分岐管12の下流側にイオン源13を備えた四極子型質量分析計14と、この質量分析計14に接続する真空排気装置15を備えている。真空排気装置15は、ターボ分子ポンプ16とダイヤフラムポンプ17とからなる。   That is, the conventional gas analyzer is configured as shown in FIG. The gas analyzer includes a gas supply mechanism 1. Here, the gas supply mechanism 1 includes a measured gas reservoir 2, a pipe 4 provided with a variable leak valve 3, a manifold 6 provided with a pressure gauge 5, and a vacuum exhaust connected via the manifold 6 and the pipe 7. The apparatus 8 is comprised. The vacuum exhaust device 8 includes a turbo molecular pump 9 and a diaphragm pump 10. In addition, the gas analyzer includes a branch pipe 12 provided with an orifice plate 11 on the downstream side of the gas supply mechanism 1. The reference numeral 11a in the figure is the orifice of the orifice plate 11. The gas analyzer further includes a quadrupole mass spectrometer 14 having an ion source 13 on the downstream side of the branch pipe 12 and a vacuum exhaust device 15 connected to the mass spectrometer 14. The vacuum exhaust device 15 includes a turbo molecular pump 16 and a diaphragm pump 17.

こうした分析装置の動作は次のとおりである。即ち、まず、2つの前記真空排気装置8,15により可変リークバルブ3の下流側の配管4と四極子型質量分析計14内を高真空に排気し、質量分析計14を作動状態にする。次に、可変リークバルブ3を適度に開き、マニホールド6に取り付けてある圧力計5の指示が所定の値になるようにする。この所定の値は、このとき質量分析計のイオン源13部の圧力がこの値とオリフィス11aのコンダクタンスと排気装置の実効排気速度とにより、測定に最適な値となるように予め設定されたガス分析装置固有なものである。   The operation of such an analyzer is as follows. That is, first, the two vacuum exhaust devices 8 and 15 exhaust the pipe 4 and the quadrupole mass spectrometer 14 on the downstream side of the variable leak valve 3 to a high vacuum, and the mass spectrometer 14 is put into an operating state. Next, the variable leak valve 3 is appropriately opened so that the indication of the pressure gauge 5 attached to the manifold 6 becomes a predetermined value. This predetermined value is a gas set in advance so that the pressure of the ion source 13 part of the mass spectrometer at this time becomes an optimum value for measurement by this value, the conductance of the orifice 11a, and the effective exhaust speed of the exhaust device. It is unique to the analyzer.

この状態において、被測定ガスリザーバ2から放出された被測定ガスの一部がマニホールド6の近くに設けられたオリフィス板11のオリフィス11aから四極子型質量分析計14のイオン源13に流れ込むので、そのガスのマススペクトルを分析することにより被測定ガスの中の対象ガスの濃度を測定することができる。   In this state, a part of the measurement gas released from the measurement gas reservoir 2 flows into the ion source 13 of the quadrupole mass spectrometer 14 from the orifice 11 a of the orifice plate 11 provided near the manifold 6. By analyzing the mass spectrum of the gas, the concentration of the target gas in the gas to be measured can be measured.

しかしながら、図7の従来のガス分析装置では、可変リークバルブ3を絞って被測定ガスリザーバ2からのガス放出量を少なくすると、流量を微調整するのが難しいため再現性に乏しくなる。反対に、可変リークバルク3を開いて被測定ガスリザーバ2からのガス放出量を多くすると、マニホールド部の圧力が上昇するためオリフィス径を極端に小さくする必要がある。それ故、オリフィスのコンダクタンスが変化したり、オリフィスが詰まったりして、同様に再現性が悪くなるという難点がある。   However, in the conventional gas analyzer shown in FIG. 7, if the variable leak valve 3 is throttled to reduce the amount of gas released from the gas reservoir 2 to be measured, it is difficult to finely adjust the flow rate, resulting in poor reproducibility. On the other hand, if the variable leak bulk 3 is opened to increase the amount of gas released from the gas reservoir 2 to be measured, the pressure in the manifold portion increases, so the orifice diameter needs to be extremely small. Therefore, there is a problem that the reproducibility is similarly deteriorated because the conductance of the orifice is changed or the orifice is clogged.

また、従来のガス分析装置では、基本的に被測定ガスを連続的に流して、定常状態にて測定する方式を採用しているため、流れの再現性が仮に確保されたとしても、通常、被測定ガス中に多量に含まれている水蒸気等の吸着性ガスの影響により対象ガスの検出感度が著しく低下するという問題を有している。   In addition, since the conventional gas analyzer basically employs a method of continuously flowing the gas to be measured and measuring in a steady state, even if flow reproducibility is ensured, There is a problem that the detection sensitivity of the target gas is significantly lowered due to the influence of an adsorbent gas such as water vapor contained in a large amount in the gas to be measured.

即ち、例えば、被測定ガス中に存在する微量の水素を測定しようとする場合、イオンの質量数と電荷の比m/e=2(H )に着目して分析を行うが、被測定ガス中に多量の水蒸気が存在するとm/e=1(H)が生成し、m/e=1の値が大きくなるとこれに隣接するm/e=2の指値にも影響を与える。このため、対象ガスの水素に起因するm/e=2の正確な値が読めなくなり、結果的に検出感度の低下を招くことになる。
水蒸気等の吸着性ガスは、質量分析計の管壁や電極に吸着しやすく、一旦吸着すると高温に加熱しない限り簡単に脱離しない性質を有している。
That is, for example, when a trace amount of hydrogen present in the gas to be measured is to be measured, the analysis is performed while paying attention to the ratio of the mass number of ions to the charge m / e = 2 (H 2 + ). When a large amount of water vapor is present in the gas, m / e = 1 (H + ) is generated. When the value of m / e = 1 is increased, the limit value of m / e = 2 adjacent thereto is also affected. For this reason, an accurate value of m / e = 2 due to hydrogen of the target gas cannot be read, resulting in a decrease in detection sensitivity.
An adsorptive gas such as water vapor is easily adsorbed on a tube wall or an electrode of a mass spectrometer, and once adsorbed, it does not easily desorb unless heated to a high temperature.

従って、質量分析法によるガス分析装置を大気等に含まれる微量ガスの分析に使用するためには、検出感度を最高ppmオーダーにまで高めるとともに、測定値の精度(再現性)の向上、測定の迅速化等、改善すべき課題が山積している。   Therefore, in order to use a gas analyzer based on mass spectrometry for the analysis of trace gases contained in the atmosphere, etc., the detection sensitivity is increased to the highest ppm order, and the accuracy (reproducibility) of measured values is improved. There are many issues to be improved, such as speeding up.

こうしたことから、本発明者らは、先に、上述した課題を解決するために高感度ガス分析装置を提案した(非特許文献1)。この提案は、被測定ガス導入部に開閉弁付小容器と該小容器に前記開閉弁を介して接続される比較的大容量のバッファタンクを設けた構成にすることにより、被測定ガスをパルス的に導入できるようにするとともに、オリフィスから被測定ガスの一部を四極子型質量分析計のイオン源に流入させることにより、特定ガス等の微量ガスを最高ppmオーダーの高い感度で再現性よく測定できるようにしたものである。
特願2004−234010
For these reasons, the present inventors have previously proposed a high-sensitivity gas analyzer in order to solve the above-described problems (Non-Patent Document 1). In this proposal, a gas to be measured is pulsed by adopting a configuration in which a small container with an on-off valve and a relatively large buffer tank connected to the small container through the on-off valve are provided in the gas to be measured introduction section. In addition, by introducing a part of the gas to be measured from the orifice into the ion source of the quadrupole mass spectrometer, trace gases such as a specific gas can be reproducible with high sensitivity on the order of ppm. It can be measured.
Japanese Patent Application No. 2004-234010

ところで、非特許文献1によれば、大気等に含まれる複数の微量ガスを高感度で検出することはできるものの、各ガスを相対値で測定するもので、絶対値で測定するものではなかった。また、被測定ガス中に微量ガスが具体的にどのくらい含まれているかを測定することもできなかった。   By the way, according to Non-Patent Document 1, although a plurality of trace gases contained in the atmosphere or the like can be detected with high sensitivity, each gas is measured with a relative value and not with an absolute value. . Further, it has not been possible to measure how much trace gas is specifically contained in the gas to be measured.

本発明は、こうした事情を考慮してなされたもので、被測定ガスを加熱する加熱手段と、被測定ガスの加熱前後のガス量を測定する計測手段とを備えることにより、被測定ガスを加熱して加熱前後の被測定ガスの重量差を求めて、被測定ガス中の微量ガスの実際の重さを測定しえるガス分析装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and includes heating means for heating the measurement gas and measurement means for measuring the gas amount before and after heating the measurement gas, thereby heating the measurement gas. Thus, an object of the present invention is to provide a gas analyzer capable of measuring the actual weight of a trace gas in a gas to be measured by obtaining a weight difference between the gas to be measured before and after heating.

また、本発明は、被測定ガスをパルス的に流すためのガス供給機構と、このガス供給機構の下流側に配置されたバッファタンクと、このバッファタンクの下流側に配置された,イオン源を備えた四極子型質量分析計と、前記ガス供給機構から被測定ガスの一部を前記四極子型質量分析計のイオン源に流入させるためのオリフィス板とを更に備えた構成にすることにより、被測定ガス中の各微量ガスの絶対量を測定しえるガス分析装置を提供することを目的とする。   The present invention also provides a gas supply mechanism for flowing the gas to be measured in a pulse manner, a buffer tank disposed on the downstream side of the gas supply mechanism, and an ion source disposed on the downstream side of the buffer tank. By further comprising a quadrupole mass spectrometer provided, and an orifice plate for allowing a part of the gas to be measured from the gas supply mechanism to flow into the ion source of the quadrupole mass spectrometer, An object of the present invention is to provide a gas analyzer capable of measuring the absolute amount of each trace gas in a gas to be measured.

本発明に係るガス分析装置は、大気等に含まれる微量ガスを定量するガス分析装置であり、被測定ガスを加熱する加熱手段と、被測定ガスの加熱前後のガス量を測定する計測手段とを具備することを特徴とする。   A gas analyzer according to the present invention is a gas analyzer for quantifying a trace gas contained in the atmosphere, etc., a heating means for heating a gas to be measured, and a measuring means for measuring a gas amount before and after heating of the gas to be measured. It is characterized by comprising.

本発明によれば、被測定ガスを加熱して加熱前後の被測定ガスの重量差を求めて、被測定ガス中の微量ガスの実際の重さを測定することができる。また、本発明によれば、被測定ガスをパルス的に流すためのガス供給機構と、このガス供給機構の下流側に配置されたバッファタンクと、このバッファタンクの下流側に配置された,イオン源を備えた四極子型質量分析計と、前記ガス供給機構から被測定ガスの一部を前記四極子型質量分析計のイオン源に流入させるためのオリフィス板とを更に備えた構成にすることにより、被測定ガス中の各微量ガスの絶対量を測定することができる。   According to the present invention, the actual weight of the trace gas in the measured gas can be measured by heating the measured gas and determining the weight difference between the measured gas before and after heating. Further, according to the present invention, a gas supply mechanism for causing the gas to be measured to flow in a pulse manner, a buffer tank disposed on the downstream side of the gas supply mechanism, and an ion disposed on the downstream side of the buffer tank, A quadrupole mass spectrometer having a source, and an orifice plate for allowing a part of the gas to be measured to flow from the gas supply mechanism into the ion source of the quadrupole mass spectrometer. Thus, the absolute amount of each trace gas in the gas to be measured can be measured.

以下、本発明について更に詳しく説明する。
上述したように、本発明のガス分析装置は、被測定ガスを加熱する加熱手段と、被測定ガスの加熱前後のガス量を測定する計測手段とを具備している。
Hereinafter, the present invention will be described in more detail.
As described above, the gas analyzer of the present invention includes the heating unit that heats the measurement gas and the measurement unit that measures the gas amount before and after heating the measurement gas.

本発明において、前記計測手段としては、1)測定前後にサンプリング管内の試料を真空容器から取り出して大気中で測定する方法、あるいは2)真空マニプレータを使用して真空容器内に吊り下げ天秤を設置して連続してサンプリング内の試料からの微量放出ガスを測定する方法が挙げられる。ここで、1)による計測方法は、試料の重量変化量が大きく大気の影響を無視できる場合に有効で、簡単な計測装置を用いて低コストで微量放出ガスを測定できるというメリットを有する。2)による計測方法は、大気中での測定と比べて、微量放出ガスの測定を大気中での不純物の影響を受けずに正確に測定できるというメリットを有する。上記2)の具体的な例は、後述する図2、図3に示すとおりである。   In the present invention, as the measuring means, 1) a method in which the sample in the sampling tube is taken out from the vacuum vessel before and after the measurement and measured in the atmosphere, or 2) a suspended balance is installed in the vacuum vessel using a vacuum manipulator. Thus, there is a method of continuously measuring a small amount of released gas from the sample in the sampling. Here, the measurement method according to 1) is effective when the weight change amount of the sample is large and the influence of the atmosphere can be ignored, and has a merit that a small amount of emitted gas can be measured at a low cost using a simple measurement device. The measurement method according to 2) has an advantage that it is possible to accurately measure a trace amount of emitted gas without being affected by impurities in the atmosphere, compared to measurement in the atmosphere. Specific examples of 2) are as shown in FIGS. 2 and 3 to be described later.

本発明においては、被測定ガスをパルス的に流すためのガス供給機構と、このガス供給機構の下流側に配置されたバッファタンクと、このバッファタンクの下流側に配置された、イオン源を備えた四極子型質量分析計と、前記ガス供給機構から被測定ガスの一部を前記四極子型質量分析計のイオン源に流入させるためのオリフィス板とを更に備えることが好ましい。こうした構成にすることにより、被測定ガス中の微量ガスの各成分の絶対量を測定することができる。   In the present invention, a gas supply mechanism for flowing a gas to be measured in a pulse manner, a buffer tank disposed on the downstream side of the gas supply mechanism, and an ion source disposed on the downstream side of the buffer tank are provided. It is preferable to further include a quadrupole mass spectrometer and an orifice plate for allowing a part of the gas to be measured from the gas supply mechanism to flow into the ion source of the quadrupole mass spectrometer. With this configuration, the absolute amount of each component of the trace gas in the gas to be measured can be measured.

前記ガス供給機構は、前記バッファタンクに接続された,被測定ガスの一部を一時的に貯蔵する一次貯蔵容器と、この一次貯蔵容器の開閉を行う複数の開閉バルブを備えていることが好ましい。こうした構成にすることにより、サンプリング管表面に付着した不純物ガスの各成分の絶対量を測定することができる。ここで、前記一時貯蔵容器と前記バッファタンクの内容積の比は、1/10000〜1/400であることが好ましい。この数値限定の理由は、上記比が1/400未満ではガス量を測定する測定手段(例えば、四極子型質量分析計)がOFFとなってガス量の検出が不可能であり、上記比が1/10000を越えると前記分析計の感度が低下するからである。ここで、一時貯蔵容器に採取した一定量の大気圧の被測定ガスを前記開閉弁を高速で全開して流出させることにより、前記ガス供給機構の被測定ガスの流れを繰り返し再現できる。   The gas supply mechanism preferably includes a primary storage container connected to the buffer tank for temporarily storing a part of the gas to be measured and a plurality of on-off valves for opening and closing the primary storage container. . With such a configuration, the absolute amount of each component of the impurity gas adhering to the surface of the sampling tube can be measured. Here, the ratio of the internal volume of the temporary storage container to the buffer tank is preferably 1/10000 to 1/400. The reason for this numerical limitation is that when the above ratio is less than 1/400, the measuring means for measuring the gas amount (for example, a quadrupole mass spectrometer) is turned off and the gas amount cannot be detected. This is because if the ratio exceeds 1/10000, the sensitivity of the analyzer decreases. Here, the flow of the gas to be measured in the gas supply mechanism can be repeatedly reproduced by allowing the gas to be measured of a certain amount collected in the temporary storage container to flow out by fully opening the on-off valve at a high speed.

本発明においては、前記ガス供給機構と前記加熱手段間に、被測定ガスが流通する配管を冷却するための冷却手段が配置されていることが好ましい。冷却手段を設けることにより、加熱手段からバッファタンク等に熱的悪影響が及ぶのを回避することができる。   In the present invention, it is preferable that cooling means for cooling a pipe through which the gas to be measured flows is disposed between the gas supply mechanism and the heating means. By providing the cooling means, it is possible to avoid a thermal adverse effect from the heating means to the buffer tank or the like.

本発明において、前記加熱手段としては、電気炉、あるいは電気炉と高周波加熱、レーザ加熱、ハロゲンランプの少なくともいずれか1つとを組み合わせることができる。電気炉は一般に急速加熱するのに不向きであるので、サンプリング管表面の不純物ガスの加熱には急速加熱に適した高周波加熱、レーザ加熱あるいはハロゲンランプによる加熱処理を行うことが好ましい。高周波加熱等の急速加熱手段はサンプリング管を収容する加熱管の内側あるいは外側に配置することができる。   In the present invention, as the heating means, an electric furnace, or an electric furnace and at least one of high-frequency heating, laser heating, and a halogen lamp can be combined. Since an electric furnace is generally unsuitable for rapid heating, it is preferable to heat the impurity gas on the surface of the sampling tube by high-frequency heating suitable for rapid heating, laser heating or heat treatment using a halogen lamp. Rapid heating means such as high-frequency heating can be arranged inside or outside the heating tube that houses the sampling tube.

本発明において、前記四極子型質量分析計には真空排気装置が接続されていることが好ましい。但し、前記質量分析計が不要の場合、この真空排気装置又は前記ガス供給機構の真空排気装置の一方のみを用いることにより、コスト低減を図ることができる。   In the present invention, it is preferable that an evacuation apparatus is connected to the quadrupole mass spectrometer. However, when the mass spectrometer is unnecessary, the cost can be reduced by using only one of the vacuum exhaust device or the vacuum exhaust device of the gas supply mechanism.

次に、本発明に係るガス分析装置の具体的な例について図面を参照して説明する。
(実施例1)
本発明の実施例1に係るガス分析装置について図1を参照して説明する。
図中の符番21は、両端にフランジ21a,21bが形成されたバッファタンクを示す。このバッファタンク21の片側(右側)には、被測定ガスをバッファタンク側にパルス的に流すためのガス供給機構23が接続されている。ガス供給機構23は、片側にフランジ24aが形成された一時貯蔵容器24と、この一時貯蔵容器24に設けられた開閉バルブ25,26とから構成されている。一時貯蔵容器24の片側には、フランジ27aが形成された配管27を冷却するための二重壁構造の冷却管(冷却手段)28が配置されている。この冷却管28には冷却水が矢印Yのように供給される。また、配管27の一端側にはフランジ29aを備えた加熱管29が取り付けられ、この加熱管29内に被測定ガスを収容するサンプリング管30が配置されている。
Next, specific examples of the gas analyzer according to the present invention will be described with reference to the drawings.
Example 1
A gas analyzer according to Embodiment 1 of the present invention will be described with reference to FIG.
Reference numeral 21 in the figure denotes a buffer tank having flanges 21a and 21b formed at both ends. A gas supply mechanism 23 is connected to one side (right side) of the buffer tank 21 so that the gas to be measured flows in a pulsed manner toward the buffer tank. The gas supply mechanism 23 includes a temporary storage container 24 having a flange 24 a formed on one side thereof, and open / close valves 25 and 26 provided in the temporary storage container 24. On one side of the temporary storage container 24, a cooling pipe (cooling means) 28 having a double wall structure for cooling the pipe 27 in which the flange 27a is formed is disposed. Cooling water is supplied to the cooling pipe 28 as shown by an arrow Y. A heating tube 29 having a flange 29 a is attached to one end side of the piping 27, and a sampling tube 30 that accommodates the gas to be measured is disposed in the heating tube 29.

前記ガス分析装置は、加熱管29及びサンプリング管30を加熱するヒータ31aを備えた電気炉(加熱手段)31を更に備え、該電気炉31はX方向に移動できるようになっている。また、前記加熱管29は、フランジ29a部分で配管27から取り外しできるようになっている。前記バッファタンク21の他端側(左側)のフランジ21aには、一端側にフランジ32aが形成され,途中にバルブ33が設けられたマニホールド32が接続されている。マニホールド32は、他端部に加熱管29側から被測定ガスの一部を四極子型質量分析計34のイオン源35に流入させるためのオリフィス板36を具備している。オリフィス板36は、円形のオリフィス(孔)36aを有する薄い金属板で、孔の直径は0.3mm前後である。オリフィス板36に厚みがある場合には、孔径がこれよりも大きくなる。   The gas analyzer further includes an electric furnace (heating means) 31 provided with a heater 31a for heating the heating tube 29 and the sampling tube 30, and the electric furnace 31 can move in the X direction. The heating pipe 29 can be detached from the pipe 27 at the flange 29a portion. A flange 32a is formed on one end side of the flange 21a on the other end side (left side) of the buffer tank 21, and a manifold 32 provided with a valve 33 on the way is connected. The manifold 32 includes an orifice plate 36 at the other end for allowing a part of the gas to be measured to flow into the ion source 35 of the quadrupole mass spectrometer 34 from the heating tube 29 side. The orifice plate 36 is a thin metal plate having a circular orifice (hole) 36a, and the diameter of the hole is about 0.3 mm. When the orifice plate 36 is thick, the hole diameter is larger than this.

前記バッファタンク21には、バルブ37aを備えた配管37を介して第1の真空排気装置38が接続されている。この真空排気装置38は、ターボ分子ポンプ39とダイヤフラムポンプ40とからなる。前記四極子型質量分析計34は前記マニホールド32の下流側に配置され、マニホールド32と四極子型質量分析計34間には真空容器41が配置されている。この真空容器41には配管42を介して第2の真空排気装置43が接続されている。真空排気装置43は、ターボ分子ポンプ44とダイヤフラムポンプ45とからなる。   A first vacuum exhaust device 38 is connected to the buffer tank 21 via a pipe 37 having a valve 37a. The vacuum exhaust device 38 includes a turbo molecular pump 39 and a diaphragm pump 40. The quadrupole mass spectrometer 34 is disposed on the downstream side of the manifold 32, and a vacuum vessel 41 is disposed between the manifold 32 and the quadrupole mass spectrometer 34. A second vacuum exhaust device 43 is connected to the vacuum vessel 41 through a pipe 42. The vacuum exhaust device 43 includes a turbo molecular pump 44 and a diaphragm pump 45.

次に、こうした構成のガス分析装置を用いて、例えばA356(Al合金)100g中の不純物ガスを測定する例を示す。
1)まず、不純物を含む被測定ガスをガス分析装置に導入する前に、別途用意した天秤で被測定ガスの重量Wを測定しておく。ここで、被測定ガスの重量とは、サンプリング管30、ガス及びサンプルの重さを示す。次に、サンプリング管30を収容した加熱管29のフランジ部29aを、配管27のフランジ部27aに位置あわせ、ボルトで固定する。つづいて、一時貯蔵容器24の開閉弁25,開閉弁26が開き、配管37のバルブ37aを開いた状態で、第1の真空排気装置38により加熱管29内の真空排気を行う。
Next, an example in which impurity gas in, for example, 100 g of A356 (Al alloy) is measured using the gas analyzer having such a configuration will be described.
1) First, before introducing the gas to be measured containing impurities into the gas analyzer, the weight W 1 of the gas to be measured is measured with a separately prepared balance. Here, the weight of the gas to be measured indicates the weight of the sampling tube 30, the gas, and the sample. Next, the flange portion 29a of the heating tube 29 containing the sampling tube 30 is aligned with the flange portion 27a of the pipe 27 and fixed with a bolt. Subsequently, the opening / closing valve 25 and the opening / closing valve 26 of the temporary storage container 24 are opened, and the first evacuation device 38 evacuates the heating tube 29 while the valve 37a of the pipe 37 is opened.

2)次に、加熱管29内が所定の圧力になったら、真空排気を止め、開閉弁26を開いて、開閉弁25を閉じる。つづいて、電気炉31のヒータ31aで加熱管29及びサンプリング管30を加熱し、サンプリング管30内の被測定ガスを一時貯蔵容器24に詰める。開閉弁26を閉じると、一時貯蔵容器24には一定容積の大気圧(略1気圧,10Pa)の被測定ガスが採取できる。 2) Next, when the inside of the heating pipe 29 reaches a predetermined pressure, evacuation is stopped, the on-off valve 26 is opened, and the on-off valve 25 is closed. Subsequently, the heating tube 29 and the sampling tube 30 are heated by the heater 31 a of the electric furnace 31, and the gas to be measured in the sampling tube 30 is packed in the temporary storage container 24. When the on-off valve 26 is closed, the gas to be measured having a constant volume of atmospheric pressure (approximately 1 atm, 10 5 Pa) can be collected in the temporary storage container 24.

3)次に、バルブ37aを開き、バルブ33が閉じた状態で第1の真空排気装置38が作動していることを確認してから、開閉弁25を高速で全開する。これにより、一時貯蔵容器24内の被測定ガスはバッファタンク21内に速やかに拡散する。このとき、バッファタンク21内の圧力は、図4に示すように一旦極大値に達し、以後、第1の真空排気装置38により排気されるので、徐々に低下していく。なお、マニホールド32内の圧力はバッファタンク21内の圧力と略同様な変化をする。   3) Next, after opening the valve 37a and confirming that the first evacuation device 38 is operating with the valve 33 closed, the on-off valve 25 is fully opened at high speed. As a result, the gas to be measured in the temporary storage container 24 quickly diffuses into the buffer tank 21. At this time, the pressure in the buffer tank 21 once reaches a maximum value as shown in FIG. 4 and thereafter is exhausted by the first vacuum exhaust device 38, so that it gradually decreases. Note that the pressure in the manifold 32 changes in substantially the same manner as the pressure in the buffer tank 21.

4)ここで、通常、一時貯蔵容器24の内容積は0.1〜0.5mL、バッファタンク21の内容積は0.2〜1Lで両者の比は1/2000前後である。従って、開閉弁25を開いた直後のバッファタンク21及びマニホールド32内の圧力は、およそ1/2000気圧の50Pa前後である。第1の真空排気装置38によるバッファタンク21及びマニホールド32における実効排気速度は0.02〜0.1L/sで、圧力減衰(図4参照)の時定数は10s前後である。   4) Here, the internal volume of the temporary storage container 24 is usually 0.1 to 0.5 mL, the internal volume of the buffer tank 21 is 0.2 to 1 L, and the ratio of both is about 1/2000. Therefore, the pressure in the buffer tank 21 and the manifold 32 immediately after opening the on-off valve 25 is approximately 50 Pa of 1/2000 atm. The effective exhaust speed in the buffer tank 21 and the manifold 32 by the first vacuum exhaust device 38 is 0.02 to 0.1 L / s, and the time constant of pressure decay (see FIG. 4) is around 10 seconds.

5)次に、冷却管28で配管27等を冷却しながら、加熱炉31のヒータ31aでサンプリング管30の被測定ガスを加熱する。これにより、被測定ガスの温度が上がり、被測定ガス中の各成分例えばH,CO,HO,CO,C,Cが出てくる。 5) Next, the gas to be measured in the sampling pipe 30 is heated by the heater 31a of the heating furnace 31 while cooling the pipe 27 and the like by the cooling pipe 28. As a result, the temperature of the gas to be measured rises, and each component in the gas to be measured, for example, H 2 , CO, H 2 O, CO 2 , C, C 4 H 7 comes out.

6)次に、バルブ37aを閉じ、バルブ33を開いた状態で第2の真空排気装置43を作動させることにより、バッファタンク21及びマニホールド32より被測定ガスの一部を真空容器41を介して四極子型質量分析計34のイオン源35に流し込む。ここで、第2の真空排気装置43の実効排気速度は20〜100L/sである。   6) Next, by operating the second vacuum exhaust device 43 with the valve 37a closed and the valve 33 opened, a part of the gas to be measured is passed through the vacuum vessel 41 from the buffer tank 21 and the manifold 32. Pour into the ion source 35 of the quadrupole mass spectrometer 34. Here, the effective exhaust speed of the second vacuum exhaust apparatus 43 is 20 to 100 L / s.

7)第2の真空排気装置43が作動状態にあり、オリフィス36aからのガス流入がないときには、四極子型質量分析計34のイオン源35内は圧力が10−5Pa以下の超高真空になっている。しかし、マニホールド32内に被測定ガスが存在すると、該被測定ガスの一部がオリフィス36a、真空容器41を通ってイオン源35に流入し、イオン源35内の圧力が上昇する。イオン源35に流入したガスは第2の真空排気装置43によって排気される。 7) When the second evacuation device 43 is in an operating state and no gas flows from the orifice 36a, the pressure in the ion source 35 of the quadrupole mass spectrometer 34 is set to an ultrahigh vacuum of 10 −5 Pa or less. It has become. However, when the gas to be measured exists in the manifold 32, a part of the gas to be measured flows into the ion source 35 through the orifice 36a and the vacuum vessel 41, and the pressure in the ion source 35 increases. The gas flowing into the ion source 35 is exhausted by the second vacuum exhaust device 43.

8)オリフィス36aを通過するガスの流量はマニホールド32内のガスの圧力に略比例するが、第2の真空排気装置43の実効排気速度は圧力によらず略一定なので、イオン源35内の被測定ガスの圧力はマニホールド32内の被測定ガスの圧力に略比例して変化し、その比例定数は(オリフィスのコンダクタンス)/(第2の真空排気装置の実効排気速度)で表される。本実施例1では、比例定数がおよそ1/10000〜1/2000である。   8) Although the flow rate of the gas passing through the orifice 36a is substantially proportional to the pressure of the gas in the manifold 32, the effective exhaust speed of the second vacuum exhaust device 43 is substantially constant regardless of the pressure. The pressure of the measurement gas changes approximately in proportion to the pressure of the gas to be measured in the manifold 32, and the proportionality constant is represented by (orificance conductance) / (effective pumping speed of the second vacuum pumping device). In the first embodiment, the proportionality constant is approximately 1/10000 to 1/2000.

9)サンプリング管30内又は表面の被測定ガス中の対象ガス(H,CO,HO,CO,C,C等)の定量は、四極子型質量分析計34のイオン源35で被測定ガスをイオン化し、対象ガスに特有なm/eのイオンを四極子型質量分析計34で分離してそのイオン電流を測定する。通常、イオン電流が極大に達したときのイオン電流を測定し、予め作成してある校正曲線から絶対値を求める。本発明の具体的な実施例では、最高ppmオーダーまでの微量ガスの測定が可能である。 9) Quantification of the target gas (H 2 , CO, H 2 O, CO 2 , C, C 4 H 7, etc.) in the gas to be measured inside or on the surface of the sampling tube 30 is performed by the ion of the quadrupole mass spectrometer 34. The gas to be measured is ionized by the source 35, m / e ions peculiar to the target gas are separated by the quadrupole mass spectrometer 34, and the ion current is measured. Usually, the ion current when the ion current reaches the maximum is measured, and the absolute value is obtained from a calibration curve prepared in advance. In a specific embodiment of the present invention, trace gases up to the highest ppm order can be measured.

10)図6は、各対象ガスによる時間と濃度(イオン電流)との関係を示す。なお、図6中、曲線(a),(b),(c),(d),(e),(f)は、夫々H,CO,HO,CO,C,Cの曲線を示す。前記特性図より、各対象ガスの夫々の相対比は、次のようにして計算する。
:S1×2=S1’
CO :S2×28=S2’
O:S3×18=S3’
CO:S4×44=S4’
C :S5×12=S5’
:S6×55=S6’
但し、S1,S2,S3,S4,S5,S6は夫々図4中の各曲線(a),(b),(c),(d),(e),(f)の下側の面積(積分値)を示す。
上記S1’,S2’,S3’,S4’,S5’,S6’により、各対象ガスの相対比が判明する。例えば、Hの相対比は、S1’/(S1+S2’+S3’+S4’+S5’+S6’)である。このようにして他の対象ガスの相対比も求めることができる。
10) FIG. 6 shows the relationship between time and concentration (ion current) for each target gas. In FIG. 6, curves (a), (b), (c), (d), (e), and (f) are H 2 , CO, H 2 O, CO 2 , C, and C 4 H, respectively. 7 curves are shown. From the characteristic diagram, the relative ratio of each target gas is calculated as follows.
H 2 : S1 × 2 = S1 ′
CO: S2 × 28 = S2 ′
H 2 O: S3 × 18 = S3 ′
CO 2 : S4 × 44 = S4 ′
C: S5 × 12 = S5 ′
C 4 H 7 : S6 × 55 = S6 ′
However, S1, S2, S3, S4, S5, and S6 are the areas under the curves (a), (b), (c), (d), (e), and (f) in FIG. Integration value).
The relative ratio of each target gas is determined by S1 ′, S2 ′, S3 ′, S4 ′, S5 ′, and S6 ′. For example, the relative ratio of H 2 is S1 ′ / (S1 + S2 ′ + S3 ′ + S4 ′ + S5 ′ + S6 ′). In this way, the relative ratio of other target gases can also be obtained.

11)次に、加熱後の被測定ガスの重量Wを別途用意した天秤で求め、加熱前後の被測定ガスの重量差ΔW=(W−W)を求める。従って、被測定ガス中の個々の対象ガスの重量を求めることができる。例えば、Hは、次の式で求めることができる。 11) Next, the weight W 2 of the gas to be measured after heating is obtained with a separately prepared balance, and the weight difference ΔW = (W 1 −W 2 ) of the gas to be measured before and after heating is obtained. Therefore, the weight of each target gas in the gas to be measured can be obtained. For example, H 2 can be obtained by the following equation.

:ΔW×S1’/(S1+S2’+S3’+S4’+S5’+S6’)
このようにして他の対象ガスの重量を求めることができる。
H 2 : ΔW × S1 ′ / (S1 + S2 ′ + S3 ′ + S4 ′ + S5 ′ + S6 ′)
In this way, the weight of another target gas can be obtained.

上記実施例1によれば、第1に、被測定ガスの上流,下流側に夫々開閉弁26,25を備えた一時貯蔵容器24を用いて被測定ガスをガス分析装置にパルス的に導入できる。これにより、ガスの流れの再現性が確保されるとともに、従来のガスを連続的に流す装置に比べ、四極子型質量分析計34の管壁や電極が被測定ガスに触れる度合いが数桁低くなり、ひいては、水蒸気等の吸着性ガスに起因するバックグラウンド圧上昇が抑えられ、対象ガスに対する検出感度の低下を防ぐことができる。第2に、加熱炉31を用いて加熱前後の被測定ガスの重量を測定し、図6の時間−濃度特性図に基づいて、被測定ガス中の各対象ガスの重量を具体的に測定できる。従って、実施例1のガス分析装置によれば、被測定ガス中の各対象ガスの実際の重量を感度よく測定できる。   According to the first embodiment, first, the gas to be measured can be introduced into the gas analyzer in a pulse manner using the temporary storage container 24 provided with the on-off valves 26 and 25 on the upstream and downstream sides of the gas to be measured, respectively. . As a result, the reproducibility of the gas flow is ensured, and the degree to which the tube wall and electrodes of the quadrupole mass spectrometer 34 are in contact with the gas to be measured is several orders of magnitude lower than that of a conventional gas flow apparatus. Therefore, as a result, the background pressure rise due to the adsorptive gas such as water vapor is suppressed, and the reduction of the detection sensitivity for the target gas can be prevented. Second, the weight of the gas to be measured before and after heating is measured using the heating furnace 31, and the weight of each target gas in the gas to be measured can be specifically measured based on the time-concentration characteristic diagram of FIG. . Therefore, according to the gas analyzer of Example 1, the actual weight of each target gas in the gas to be measured can be measured with high sensitivity.

なお、サンプリング管29には、内部のみならず表面にも不純物ガスが付着しているので、時間とサンプルの不純物ガスの重さの変化をグラフ化すると、立ち上がりに急激な重さの変化を示すことが明らかになっている。この特性は、サンプルの表面の不純物ガスに起因すると考えられている。   In addition, since the impurity gas adheres not only to the inside but also to the surface of the sampling tube 29, when the change of the time and the weight of the impurity gas of the sample is graphed, a sudden change in the weight is shown at the rising edge. It has become clear. This characteristic is believed to be due to the impurity gas on the surface of the sample.

(実施例2)
本発明の実施例2に係るガス分析装置について図2を参照して説明する。このガス分析装置は、実施例1のガス分析装置と比べて、加熱手段,計測手段のみが異なるため、要部のみ説明する。即ち、実施例1では、被測定ガスの重量は別途用意した天秤を用いて測定したが、本実施例2では、図2に示す構成の計測手段51及び加熱手段を用いて行った。なお、図1と同部材は同符番を付して説明を省略する。
(Example 2)
A gas analyzer according to Example 2 of the present invention will be described with reference to FIG. Since this gas analyzer differs from the gas analyzer of Example 1 only in the heating means and the measuring means, only the main part will be described. That is, in Example 1, the weight of the gas to be measured was measured using a separately prepared balance, but in Example 2, the measurement was performed using the measuring unit 51 and the heating unit having the configuration shown in FIG. Note that the same members as those in FIG.

計測手段51は、図2に示すように、加熱管29及びサンプリング管30を出入するための窓52が形成された真空容器53を備えている。この真空容器53の側壁には、図1の配管27のフランジ部27aと位置あわせ、固定する為のフランジ部53aが形成されている。真空容器53内の上方には電子天秤54が配置され、該電子天秤54には吊り下げ部材55により受け皿56が吊り下げられている。前記真空容器53内で受け皿56の周囲には、受け皿56に載置される前記加熱管及びサンプリング管を加熱するヒータ57が載置されている。電子天秤54と受け皿56間には、ヒータ57からの熱を遮蔽するための板状の熱遮蔽板58が配置されている。この熱遮蔽板58の材質は例えばステンレスである。なお、熱遮蔽板は板状に限らず、内部に水を流すことができるように中空状にしてもよい。   As shown in FIG. 2, the measuring means 51 includes a vacuum vessel 53 in which a window 52 for entering and exiting the heating tube 29 and the sampling tube 30 is formed. On the side wall of the vacuum vessel 53, a flange portion 53a is formed for positioning and fixing with the flange portion 27a of the pipe 27 of FIG. An electronic balance 54 is disposed above the vacuum container 53, and a tray 56 is suspended from the electronic balance 54 by a suspension member 55. A heater 57 for heating the heating tube and the sampling tube placed on the saucer 56 is placed around the saucer 56 in the vacuum container 53. A plate-like heat shielding plate 58 for shielding heat from the heater 57 is disposed between the electronic balance 54 and the tray 56. The material of the heat shielding plate 58 is stainless steel, for example. The heat shielding plate is not limited to a plate shape, and may be hollow so that water can flow inside.

こうした構成のガス分析装置によれば、配管27のフランジ部27aと位置合わせるフランジ部53aを備えた真空容器53と、加熱管及びサンプリング管を収容する受け皿56と、電子天秤54と、ヒータ57と、熱遮蔽板58とを備えた計測手段51となっているので、実施例1の装置と比べ、微量放出ガスの測定を大気中での不純物の影響を受けずに正確に測定できるという効果が得られる。   According to the gas analyzer having such a configuration, the vacuum vessel 53 provided with the flange portion 53a aligned with the flange portion 27a of the pipe 27, the tray 56 for housing the heating tube and the sampling tube, the electronic balance 54, the heater 57, and the like. Since the measurement means 51 includes the heat shielding plate 58, compared with the apparatus of the first embodiment, there is an effect that it is possible to accurately measure a trace amount of emitted gas without being affected by impurities in the atmosphere. can get.

(実施例3)
本発明の実施例3に係るガス分析装置について図3を参照して説明する。このガス分析装置は、実施例2のガス分析装置の計測手段と比べ、計測手段51の構成が若干異なるのみであるため、要部のみ説明する。
図3中の符番59は、受け皿56を電子天秤54まで上下動させる昇降機構を示す。昇降機構59はマニプレーター(図示せず)を大気側から操作するもので、窓52から受け皿56に加熱管及びサンプリング管を載置した後、受け皿56を電子天秤54側まで矢印Aのように下降させて微量放出ガスを測定する。
実施例3によれば、実施例2と同様な効果が得られる。
Example 3
A gas analyzer according to Embodiment 3 of the present invention will be described with reference to FIG. Since this gas analyzer is only slightly different in configuration from the measuring means 51 of the gas analyzing apparatus of the second embodiment, only the main part will be described.
A reference numeral 59 in FIG. 3 indicates an elevating mechanism that moves the tray 56 up and down to the electronic balance 54. The raising / lowering mechanism 59 operates a manipulator (not shown) from the atmosphere side. After placing the heating tube and the sampling tube on the tray 56 from the window 52, the tray 56 is lowered to the electronic balance 54 side as indicated by an arrow A. And measure the trace emission gas.
According to the third embodiment, the same effect as the second embodiment can be obtained.

(実施例4)
図5を参照する。但し、図1と同部材は同符番を付して説明を省略する。実施例4に係るガス分析装置は、実施例1の装置のように不純物ガス中の各対象ガスの重量を測定するものではなく、加熱前後の不純物ガスの全量変化を測定する場合に有効である。従って、実施例4のガス分析装置においては、実施例1の場合と異なり、四極子型質量分析計、第2の真空排気装置及びオリフィス板が不要となる。
Example 4
Please refer to FIG. However, the same members as those in FIG. The gas analyzer according to the fourth embodiment is effective in measuring the change in the total amount of the impurity gas before and after heating, rather than measuring the weight of each target gas in the impurity gas, unlike the apparatus in the first embodiment. . Therefore, unlike the case of the first embodiment, the gas analyzer of the fourth embodiment does not require a quadrupole mass spectrometer, a second evacuation device, and an orifice plate.

このように、実施例4のガス分析装置によれば、被測定ガスをパルス的に流すためのガス供給機構23と、被測定ガスを加熱する加熱手段としての電気炉31と、被測定ガスの加熱前後のガス量を測定する計測手段としての天秤(図示せず)とを具備し、ガス供給機構23は、片側にフランジ24aを有した一時貯蔵容器24と、この一時貯蔵容器24に設けられた開閉弁25,26とを備えた構成となっている。従って、加熱前後の不純物ガスの全量変化を測定することができる。また、実施例1の場合と比べ、高価な第2の真空排気装置等を不要にできるので、コスト低減を図ることができる。   Thus, according to the gas analyzer of Example 4, the gas supply mechanism 23 for flowing the measurement gas in a pulse manner, the electric furnace 31 as a heating means for heating the measurement gas, and the measurement gas A balance (not shown) as a measuring means for measuring the amount of gas before and after heating is provided, and the gas supply mechanism 23 is provided in a temporary storage container 24 having a flange 24a on one side, and the temporary storage container 24. The open / close valves 25 and 26 are provided. Therefore, it is possible to measure a change in the total amount of impurity gas before and after heating. Further, compared to the case of the first embodiment, an expensive second evacuation device or the like can be dispensed with, so that the cost can be reduced.

なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。具体的には、四極子型質量分析計は必ずしも必要なものではない。この場合、第1・第2の真空排気装置のうちいずれかが不要であるとともに、オリフィス板も不要となる。また、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Specifically, a quadrupole mass spectrometer is not always necessary. In this case, one of the first and second evacuation devices is unnecessary, and the orifice plate is also unnecessary. Moreover, you may combine the component covering different embodiment suitably.

図1は本発明の実施例1に係るガス分析装置の説明図である。FIG. 1 is an explanatory diagram of a gas analyzer according to a first embodiment of the present invention. 図2は本発明の実施例2に係るガス分析装置の一構成である計測手段及び加熱手段の説明図である。FIG. 2 is an explanatory view of a measuring unit and a heating unit which are one configuration of the gas analyzer according to the second embodiment of the present invention. 図3は本発明の実施例3に係るガス分析装置の一構成である計測手段及び加熱手段の説明図である。FIG. 3 is an explanatory view of a measuring unit and a heating unit which are one configuration of the gas analyzer according to the third embodiment of the present invention. 図4は図1のガス分析装置のバッファタンク及びマニホールド内の圧力の時間的変化を概略的に示す図である。FIG. 4 is a diagram schematically showing temporal changes in pressure in the buffer tank and manifold of the gas analyzer of FIG. 図5は本発明の実施例4に係るガス分析装置の概略的な図である。FIG. 5 is a schematic diagram of a gas analyzer according to Embodiment 4 of the present invention. 図6は図1のガス分析装置による時間と濃度との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between time and concentration by the gas analyzer of FIG. 図7は従来のガス分析装置の説明図である。FIG. 7 is an explanatory diagram of a conventional gas analyzer.

符号の説明Explanation of symbols

21…バッファタンク、23…ガス供給機構、24…一時貯蔵容器、25,26…開閉弁、27,37,42…配管、28…冷却管、29…加熱管、30…サンプリング管、31…電気炉、32…マニホールド、34…四極子型質量分析計、35…イオン源、36…オリフィス板、36a…オリフィス、38,42…真空排気装置。   DESCRIPTION OF SYMBOLS 21 ... Buffer tank, 23 ... Gas supply mechanism, 24 ... Temporary storage container, 25, 26 ... On-off valve, 27, 37, 42 ... Pipe, 28 ... Cooling pipe, 29 ... Heating pipe, 30 ... Sampling pipe, 31 ... Electricity Furnace, 32 ... manifold, 34 ... quadrupole mass spectrometer, 35 ... ion source, 36 ... orifice plate, 36a ... orifice, 38, 42 ... vacuum exhaust device.

Claims (9)

大気等に含まれる微量ガスを定量するガス分析装置であり、被測定ガスを加熱する加熱手段と、被測定ガスの加熱前後のガス量を測定する計測手段とを具備することを特徴とするガス分析装置。 A gas analyzer for quantifying a minute amount of gas contained in the atmosphere or the like, comprising a heating means for heating a gas to be measured, and a measuring means for measuring a gas amount before and after heating of the gas to be measured. Analysis equipment. 前記計測手段は、真空容器と、この真空容器内に配置された電子天秤と、前記真空容器内に配置され,被測定ガスを収容するサンプリング管を載置する受け皿と、この受け皿に載置されたサンプリング管を加熱するヒータ部とを具備することを特徴とする請求項1記載のガス分析装置。 The measuring means includes a vacuum vessel, an electronic balance arranged in the vacuum vessel, a saucer placed in the vacuum vessel, on which a sampling tube for containing a gas to be measured is placed, and placed on the saucer. The gas analyzer according to claim 1, further comprising a heater unit that heats the sampling tube. 前記計測手段は、真空容器と、この真空容器内に配置された電子天秤と、前記真空容器内に配置され,被測定ガスを収容するサンプリング管を載置する受け皿と、この受け皿に載置されたサンプリング管を加熱するヒータ部と、前記受け皿を電子天秤まで上下動させる昇降機構とを具備することを特徴とする請求項1記載のガス分析装置。 The measuring means includes a vacuum vessel, an electronic balance arranged in the vacuum vessel, a saucer placed in the vacuum vessel, on which a sampling tube for containing a gas to be measured is placed, and placed on the saucer. The gas analyzer according to claim 1, further comprising: a heater unit that heats the sampling tube; and an elevating mechanism that moves the tray up and down to the electronic balance. 被測定ガスをパルス的に流すためのガス供給機構と、このガス供給機構の下流側に配置されたバッファタンクと、このバッファタンクの下流側に配置された,イオン源を備えた四極子型質量分析計と、前記ガス供給機構から被測定ガスの一部を前記四極子型質量分析計のイオン源に流入させるためのオリフィス板とを更に備えることを特徴とする請求項1記載のガス分析装置。 A gas supply mechanism for pulsing the gas to be measured, a buffer tank disposed downstream of the gas supply mechanism, and a quadrupole mass having an ion source disposed downstream of the buffer tank The gas analyzer according to claim 1, further comprising: an analyzer; and an orifice plate for allowing a part of the gas to be measured to flow into the ion source of the quadrupole mass spectrometer from the gas supply mechanism. . 前記ガス供給機構は、前記バッファタンクに接続された,被測定ガスの一部を一時的に貯蔵する一次貯蔵容器と、この一次貯蔵容器の開閉を行う複数の開閉バルブを備えていることを特徴とする請求項4記載のガス分析装置。 The gas supply mechanism includes a primary storage container that is connected to the buffer tank and temporarily stores a part of the gas to be measured, and a plurality of on-off valves that open and close the primary storage container. The gas analyzer according to claim 4. 前記ガス供給機構と加熱手段間に、被測定ガスが流通する配管を冷却するための冷却手段が配置されていることを特徴とする請求項4又は5いずれか記載のガス分析装置。 6. The gas analyzer according to claim 4, wherein a cooling means for cooling a pipe through which the gas to be measured flows is disposed between the gas supply mechanism and the heating means. 前記加熱手段は、電気炉、あるいは電気炉と高周波加熱、レーザ加熱、ハロゲンランプの少なくともいずれか1つであることを特徴とする請求項1記載のガス分析装置。 The gas analyzer according to claim 1, wherein the heating unit is an electric furnace, or at least one of an electric furnace and high-frequency heating, laser heating, and a halogen lamp. 前記四極子型質量分析計に真空排気装置が接続されていることを特徴とする請求項4記載のガス分析装置。 The gas analyzer according to claim 4, wherein an evacuation device is connected to the quadrupole mass spectrometer. 前記一時貯蔵容器と前記バッファタンクの内容積の比が1/10000〜1/400であることを特徴とする請求項5に記載のガス分析装置。 The gas analyzer according to claim 5, wherein a ratio of an internal volume of the temporary storage container to the buffer tank is 1/10000 to 1/400.
JP2006338659A 2006-12-15 2006-12-15 Gas analyzer Active JP4911502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338659A JP4911502B2 (en) 2006-12-15 2006-12-15 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338659A JP4911502B2 (en) 2006-12-15 2006-12-15 Gas analyzer

Publications (2)

Publication Number Publication Date
JP2008151590A true JP2008151590A (en) 2008-07-03
JP4911502B2 JP4911502B2 (en) 2012-04-04

Family

ID=39653906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338659A Active JP4911502B2 (en) 2006-12-15 2006-12-15 Gas analyzer

Country Status (1)

Country Link
JP (1) JP4911502B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286476A (en) * 2009-05-12 2010-12-24 Japan Atomic Energy Agency Highly sensitive gas analyzer, gas quantitative method and gas analyzer system
CN103698240A (en) * 2013-12-16 2014-04-02 国家电网公司 Device used for testing oxidation indexes of boiler flue gas and operating process of device
WO2015045869A1 (en) * 2013-09-25 2015-04-02 株式会社堀場製作所 Analysis device and analysis method
CN115825215A (en) * 2022-10-18 2023-03-21 上海市环境科学研究院 Method, system, medium and platform for quickly quantifying organic matter emission of actual road motor vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482522B (en) * 2016-10-12 2018-08-07 安徽贝意克设备技术有限公司 A kind of tube furnace that samples weighing in test tube can be measured during the test

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174781A (en) * 1991-12-25 1993-07-13 Sharp Corp Induction coupling plasma type mass-spectrographic device
JPH08334449A (en) * 1995-06-06 1996-12-17 Japan Atom Energy Res Inst Adsorbed gasification component measuring device
JPH09243525A (en) * 1996-03-07 1997-09-19 Shimadzu Corp Temperature calibrating sample for thermal analyzer
JP2003240625A (en) * 2002-02-21 2003-08-27 Nippon Hodo Co Ltd Sample measuring device
JP2006053003A (en) * 2004-08-11 2006-02-23 Japan Atom Energy Res Inst High sensitivity gas analyzer
JP2006068804A (en) * 2004-09-06 2006-03-16 Kurosaki Harima Corp Hardly adhesive continuous casting nozzle containing pitch
JP2006084440A (en) * 2004-09-17 2006-03-30 Toshiba Corp Released gas exhausting device, and released gas collecting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174781A (en) * 1991-12-25 1993-07-13 Sharp Corp Induction coupling plasma type mass-spectrographic device
JPH08334449A (en) * 1995-06-06 1996-12-17 Japan Atom Energy Res Inst Adsorbed gasification component measuring device
JPH09243525A (en) * 1996-03-07 1997-09-19 Shimadzu Corp Temperature calibrating sample for thermal analyzer
JP2003240625A (en) * 2002-02-21 2003-08-27 Nippon Hodo Co Ltd Sample measuring device
JP2006053003A (en) * 2004-08-11 2006-02-23 Japan Atom Energy Res Inst High sensitivity gas analyzer
JP2006068804A (en) * 2004-09-06 2006-03-16 Kurosaki Harima Corp Hardly adhesive continuous casting nozzle containing pitch
JP2006084440A (en) * 2004-09-17 2006-03-30 Toshiba Corp Released gas exhausting device, and released gas collecting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286476A (en) * 2009-05-12 2010-12-24 Japan Atomic Energy Agency Highly sensitive gas analyzer, gas quantitative method and gas analyzer system
WO2015045869A1 (en) * 2013-09-25 2015-04-02 株式会社堀場製作所 Analysis device and analysis method
JPWO2015045869A1 (en) * 2013-09-25 2017-03-09 株式会社堀場製作所 Analysis apparatus and analysis method
US9606090B2 (en) 2013-09-25 2017-03-28 Horiba, Ltd. Analysis device with simultaneous induction and laser heating and analysis method therewith
CN103698240A (en) * 2013-12-16 2014-04-02 国家电网公司 Device used for testing oxidation indexes of boiler flue gas and operating process of device
CN103698240B (en) * 2013-12-16 2016-03-16 国家电网公司 A kind of device for boiler smoke oxidisability index test and operating procedure thereof
CN115825215A (en) * 2022-10-18 2023-03-21 上海市环境科学研究院 Method, system, medium and platform for quickly quantifying organic matter emission of actual road motor vehicle
CN115825215B (en) * 2022-10-18 2023-09-26 上海市环境科学研究院 Method, system, medium and platform for rapidly quantifying organic emission of motor vehicle on actual road

Also Published As

Publication number Publication date
JP4911502B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP6180797B2 (en) System and method for measuring hydrogen content in a sample
JP4911502B2 (en) Gas analyzer
JP5363408B2 (en) Generated gas analyzer
CN106501125B (en) Gas adsorption and desorption testing device and testing method
US20060266353A1 (en) Exhaled air filter, exhaled air collecting apparatus, exhaled air analyzing system and exhaled air analyzing method
JPH0460539B2 (en)
JP5648992B2 (en) High-sensitivity gas analyzer, gas determination method and analyzer system
KR20100096699A (en) A batch type gas chromatography device by quantitative injection of a negative pressure gas sample equipped with a high vacuum multiple gas introduction
JP6002404B2 (en) Mass spectrometer, method of using the same, and method of measuring gas permeation characteristics
JP4885110B2 (en) Sample introduction apparatus and sample analysis system
JP4052597B2 (en) High sensitivity gas analyzer
JP4091977B2 (en) Fourier transform ion cyclotron resonance mass spectrometry method
JP4391682B2 (en) Leakage gas measuring device and leak gas measuring device evaluation device
JP5718725B2 (en) Analysis method
JP4744336B2 (en) Liquefied gas concentration analyzer
JP5508118B2 (en) Generated gas analyzer
JP2007149681A (en) Gas inlet device in mass spectrometer
JP5985266B2 (en) Measuring method, atmospheric pressure ionization mass spectrometer and destructive inspection device
US3616678A (en) Process for measuring oxygen partial pressure
JPH07272671A (en) Method and device for gas analysis
JP7353936B2 (en) Analyzer and method
JP2011237453A (en) Sample collection device
JP2008241533A (en) Sample introduction apparatus and sample introduction method
CN115483087A (en) Gas sample feeding and sampling method capable of adjusting wide-pressure-variable accurate feeding
JP2005265666A (en) Analyzing apparatus and analyzing method of gas in oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

R150 Certificate of patent or registration of utility model

Ref document number: 4911502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250