JP2010285346A - Glass ceramic dielectric material and manufacturing method thereof - Google Patents
Glass ceramic dielectric material and manufacturing method thereof Download PDFInfo
- Publication number
- JP2010285346A JP2010285346A JP2010163542A JP2010163542A JP2010285346A JP 2010285346 A JP2010285346 A JP 2010285346A JP 2010163542 A JP2010163542 A JP 2010163542A JP 2010163542 A JP2010163542 A JP 2010163542A JP 2010285346 A JP2010285346 A JP 2010285346A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- sio
- cao
- glass
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
本発明はセラミック多層基板の作製に用いられるガラスセラミックス誘電体材料に関するものであり、特に1000℃以下の低温で焼成するのに好適なガラスセラミックス誘電体材料に関するものである。 The present invention relates to a glass-ceramic dielectric material used for manufacturing a ceramic multilayer substrate, and more particularly to a glass-ceramic dielectric material suitable for firing at a low temperature of 1000 ° C. or lower.
アノーサイトを析出するガラスセラミックス誘電体材料として、SiO2−CaO−Al2O3−B2O3系ガラス粉末とアルミナ粉末からなる誘電体材料が知られている(例えば特許文献1)。この種の材料は機械的強度が高いという特徴を有している。また1000℃以下で焼成でき、融点の低い銀若しくは銅と同時焼成を行うことができる。特に銀導体は、窒素中での焼成を必要とする銅導体とは異なり、空気中で焼成を行っても酸化されることがなく、製造費用が安価であるという利点がある。 As a glass ceramic dielectric material for depositing anorthite, a dielectric material made of SiO 2 —CaO—Al 2 O 3 —B 2 O 3 glass powder and alumina powder is known (for example, Patent Document 1). This type of material is characterized by high mechanical strength. Further, it can be fired at 1000 ° C. or lower, and can be fired simultaneously with silver or copper having a low melting point. Silver conductors, in particular, have the advantage that, unlike copper conductors that require firing in nitrogen, they are not oxidized even when fired in air, and are inexpensive to manufacture.
焼成後の回路基板上には、半導体パッケージや受動チップ部品が表層の導体と接続され実装される。表層導体の位置をCCDカメラ等の光学式読取装置で認識し、部品が自動マウントされる。ところが、銀導体を使用した場合、ガラスセラミック基板からの反射光と銀導体からの反射光の信号レベルの差がないため、導体位置の読み取りが困難になるという問題がある。 On the fired circuit board, a semiconductor package and a passive chip component are connected and mounted on the surface conductor. The position of the surface conductor is recognized by an optical reader such as a CCD camera, and the component is automatically mounted. However, when a silver conductor is used, there is no difference in the signal level between the reflected light from the glass ceramic substrate and the reflected light from the silver conductor, which makes it difficult to read the conductor position.
本発明の目的は、表層銀導体の位置を光学式読取装置で容易に認識できるアノーサイト系ガラスセラミックス誘電体材料を提供することである。 An object of the present invention is to provide an anorthite glass ceramic dielectric material in which the position of a surface silver conductor can be easily recognized by an optical reader.
本発明のガラスセラミックス誘電体材料は、SiO2−Al2O3−CaO−B2O3系ガラス粉末とAl2O3を含むセラミック粉末からなり、銀導体と同時焼成されるガラスセラミックス誘電体材料において、ガラス粉末が、質量%でSiO 2 35.0〜65.0%、Al 2 O 3 8.0〜25.0%、CaO 15.0〜35.0%、B 2 O 3 4.0〜12.0%、Fe2O3 0.1〜1.0質量%含有し、アノーサイトを析出する性質を有することを特徴とする。 Glass ceramic dielectric material of the present invention, a glass ceramic dielectric is Do Ri, baked silver conductive simultaneously from a ceramic powder comprising SiO 2 -Al 2 O 3 -CaO- B 2 O 3 based glass powder and Al 2 O 3 in the body material, glass powder, SiO 2 from 35.0 to 65.0% by mass%, Al 2 O 3 8.0~25.0% , CaO 15.0~35.0%, B 2 O 3 4 0.0 to 12.0%, Fe 2 O 3 It is contained in an amount of 0.1 to 1.0% by mass and has a property of precipitating anorthite .
SiO 2 −Al 2 O 3 −CaO−B 2 O 3 系ガラス粉末は、B2O3を5〜9質量%含有し、かつB2O3の全量をSiO2に置換したときのSiO2−Al2O3−CaO三成分系ガラスの液相温度が1300℃以下であることが好ましい。 SiO 2 -Al 2 O 3 -CaO- B 2 O 3 based glass powder, B 2 O 3 containing 5 to 9% by weight and B 2 O 3 in SiO when the total amount was replaced by SiO 2 2 - The liquidus temperature of the Al 2 O 3 —CaO ternary glass is preferably 1300 ° C. or lower.
またガラス粉末は、B2O3を5〜9質量%含有し、かつB2O3の全量をSiO2に置換したときのSiO2、Al2O3及びCaOの組成比が、SiO2−Al2O3−CaO三成分系組成図におけるA点(SiO2 64.4質量部、Al2O3 16.9質量部、CaO 18.7質量部)、B点(SiO2 62.1質量部、Al2O3 9.9質量部、CaO 28.0質量部)、及びC点(SiO2 47.3質量部、Al2O3 19.0質量部、CaO 33.7質量部)を頂点とする三角形の領域内にあることが好ましい。 Glass powder also, B a 2 O 3 containing 5-9 wt%, and B 2 O SiO 2 the total amount of time that is substituted with SiO 2 of 3, Al 2 O 3 and the composition ratio of CaO are, SiO 2 - Point A (SiO 2 64.4 parts by mass, Al 2 O 3 16.9 parts by mass, CaO 18.7 parts by mass), point B (SiO 2 62.1 parts by mass) in the Al 2 O 3 —CaO ternary composition diagram Part, Al 2 O 3 9.9 parts by mass, CaO 28.0 parts by mass), and C point (SiO 2 47.3 parts by mass, Al 2 O 3 19.0 parts by mass, CaO 33.7 parts by mass). It is preferable that it exists in the area | region of the triangle used as a vertex.
ガラス粉末とAl2O3 を含むセラミック粉末の混合割合は、ガラス粉末40〜65質量%、Al2O3 を含むセラミック粉末35〜60質量%であることが好ましい。 The mixing ratio of the ceramic powder containing glass powder and Al 2 O 3 glass powder 40-65 wt%, preferably ceramic powder 35-60% by weight comprises Al 2 O 3.
本発明のガラスセラミックス焼結体の製造方法は、SiOThe method for producing a glass ceramic sintered body according to the present invention includes SiO 2 22 −Al-Al 22 OO 33 −CaO−B-CaO-B 22 OO 33 系ガラス粉末とAlGlass powder and Al 22 OO 33 を含むセラミック粉末を銀導体と同時焼成し、アノーサイトを析出させるガラスセラミックス焼結体の製造方法において、SiOIn a method for producing a glass ceramic sintered body in which a ceramic powder containing sinter is co-fired with a silver conductor and anorthite is deposited, 22 −Al-Al 22 OO 33 −CaO−B-CaO-B 22 OO 33 系ガラス粉末として、質量%でSiOSiO2 as a glass powder in mass% 22 35.0〜65.0%、Al 35.0-65.0%, Al 22 OO 33 8.0〜25.0%、CaO 15.0〜35.0%、B 8.0-25.0%, CaO 15.0-35.0%, B 22 OO 33 4.0〜12.0%、Fe 4.0-12.0%, Fe 22 OO 33 0.1〜1.0質量%含有するガラス粉末を用い、L Using glass powder containing 0.1-1.0% by mass, L ** aa ** bb ** 表色系において、LIn the color system, L ** =85〜94、a= 85-94, a ** =−2〜−0.5、b= -2 to -0.5, b ** =0.5〜2の範囲にある焼結体を作製することを特徴とする。= Sintered body in the range of 0.5 to 2 is produced.
SiO SiO 22 −Al-Al 22 OO 33 −CaO−B-CaO-B 22 OO 33 系ガラス粉末は、BGlass powder is B 22 OO 33 を5〜9質量%含有し、かつB5-9 mass%, and B 22 OO 33 の全量をSiOThe total amount of SiO 22 に置換したときのSiOSiO when substituted with 22 −Al-Al 22 OO 33 −CaO三成分系ガラスの液相温度が1300℃以下であることが好ましい。The liquid phase temperature of the —CaO ternary glass is preferably 1300 ° C. or lower.
またガラス粉末は、B The glass powder is B 22 OO 33 を5〜9質量%含有し、かつB5-9 mass%, and B 22 OO 33 の全量をSiOThe total amount of SiO 22 に置換したときのSiOSiO when substituted with 22 、Al, Al 22 OO 33 及びCaOの組成比が、SiOAnd the composition ratio of CaO is SiO 22 −Al-Al 22 OO 33 −CaO三成分系組成図におけるA点(SiO-Point A in the CaO ternary composition diagram (SiO 22 64.4質量部、Al 64.4 parts by mass, Al 22 OO 33 16.9質量部、CaO 18.7質量部)、B点(SiO 16.9 parts by mass, CaO 18.7 parts by mass), point B (SiO 22 62.1質量部、Al 62.1 parts by mass, Al 22 OO 33 9.9質量部、CaO 28.0質量部)、及びC点(SiO 9.9 parts by mass, CaO 28.0 parts by mass), and C point (SiO 2 22 47.3質量部、Al 47.3 parts by mass, Al 22 OO 33 19.0質量部、CaO 33.7質量部)を頂点とする三角形の領域内にあることが好ましい。 19.0 parts by mass and CaO 33.7 parts by mass) are preferably in a triangular region having a vertex.
ガラス粉末とセラミック粉末の混合割合は、ガラス粉末40〜65質量%、セラミック粉末35〜60質量%とすることが好ましい。 The mixing ratio of the glass powder and the ceramic powder is preferably 40 to 65% by mass of the glass powder and 35 to 60% by mass of the ceramic powder.
本発明のガラスセラミックス焼結体は、上記した方法で作製されてなることを特徴とする。 The glass-ceramic sintered body of the present invention is produced by the method described above.
本発明のガラスセラミック誘電体材料は、1000℃以下の温度で焼成可能であり、銀もしくは銅の導体材料と同時焼成できる。しかもアノーサイトを析出するため、機械的強度が高い焼結体を得ることができる。 The glass ceramic dielectric material of the present invention can be fired at a temperature of 1000 ° C. or less, and can be fired simultaneously with a silver or copper conductor material. And since anorthite precipitates, a sintered compact with high mechanical strength can be obtained.
さらに本発明の材料は、焼成すると基板が緑色を呈する。表層に銀導体を用いた場合、銀導体とのコントラストが高いので、光学式読取装置による認識が容易になる。それゆえ電子部品を自動実装する回路基板用誘電体材料として好適である。 Furthermore, the substrate of the present invention exhibits a green color when fired. When a silver conductor is used for the surface layer, since the contrast with the silver conductor is high, recognition by an optical reader becomes easy. Therefore, it is suitable as a dielectric material for circuit boards for automatically mounting electronic components.
本発明において使用するガラス粉末は、SiO2−Al2O3−CaO−B2O3系ガラス粉末からなる。 Glass powder used in the present invention, SiO 2 -Al 2 O 3 -CaO -B 2 O 3 based glass Powder or Ranaru.
ガラス粉末は、SiO2、Al2O3、CaO及びB2O3を主成分とする。SiO2、Al2O3、CaO及びB2O3の組成範囲は、それぞれ質量%でSiO2 35.0〜65.0%、Al2O3 8.0〜25.0%、CaO 15.0〜35.0%、B2O3 4.0〜12.0%、特にSiO2 38.3〜59.4%、Al2O3 9.9〜19.0%、CaO 18.7〜33.7%、B2O3 5.0〜9.0%であることが好ましい。ガラス粉末は、例えばMgO、Na2O、TiO2、SrO等の任意成分を合計で3%以下含有しているガラスでも差し支えない。この系のガラスは、Al2O3を含むセラミック粉末とともに焼成するとアノーサイトを析出することが可能である。 Glass powder, as a main component SiO 2, Al 2 O 3, CaO and B 2 O 3. Composition range of SiO 2, Al 2 O 3, CaO and B 2 O 3 is, SiO 2 from 35.0 to 65.0%, respectively by weight%, Al 2 O 3 8.0~25.0% , CaO 15. 0~35.0%, B 2 O 3 4.0~12.0 %, in particular SiO 2 38.3~59.4%, Al 2 O 3 9.9~19.0%, CaO 18.7~ 33.7 percent, it is preferred that B 2 O 3 5.0~9.0%. Glass powder, eg if MgO, Na 2 O, no problem even in the glass containing less than 3% in total of optional components such as TiO 2, SrO. When this type of glass is fired together with a ceramic powder containing Al 2 O 3 , it is possible to precipitate anorthite.
さらに本発明におけるガラス粉末は、Fe2O3を0.1〜1.0質量%含有する。Fe2O3量が0.1質量%未満であると焼結体がほとんど着色せず、銀導体からの反射光の信号レベルとの差が殆どなくなる。また、1.0質量%よりも多くなると誘電損失が上昇し好ましくない。Fe2O3量の好ましい範囲は0.15〜0.5%である。 Furthermore the glass powder in the present invention, the Fe 2 O 3 containing 0.1 to 1.0 mass%. When the amount of Fe 2 O 3 is less than 0.1% by mass, the sintered body is hardly colored and there is almost no difference from the signal level of the reflected light from the silver conductor. Moreover, when it exceeds 1.0 mass%, a dielectric loss will raise and it is unpreferable. A preferable range of the amount of Fe 2 O 3 is 0.15 to 0.5%.
またガラスの主成分であるSiO2、Al2O3、CaO及びB2O3の組成比については、ガラス製造上の観点、具体的には安定した品質の材料を安価に製造するという観点から、より好ましい範囲が存在する。 Further, regarding the composition ratio of SiO 2 , Al 2 O 3 , CaO and B 2 O 3 which are the main components of glass, from the viewpoint of glass production, specifically from the viewpoint of producing a stable quality material at low cost. There is a more preferred range.
つまり、液相温度が高いとガラス冷却時に結晶が析出し易くなる。結晶が析出したガラス粉末をガラスセラミックス誘電体材料として使用すると、その結晶が核となり、誘電体材料の焼成時に、通常の場合(ガラス中に結晶が存在しない場合)よりも低温で結晶化を開始する。低温での結晶化はガラスの流動性を阻害し、ガラスセラミックスが緻密に焼結することを阻むため、気孔の多い信頼性の低い誘電体しか得られない。しかも液相温度が高いガラスを溶融するには高温で溶融する必要がある。高温で溶融するには、多量のエネルギーを使用しなければならない。また高温操業によって溶融窯の寿命が短くなるので、製造費用が高くなる。このためガラスの液相粘度が低い方が好ましく、具体的には1200℃以下であることが望ましい。 That is, when the liquidus temperature is high, crystals are likely to precipitate during glass cooling. When glass powder with crystals deposited is used as a glass-ceramic dielectric material, the crystals serve as nuclei, and crystallization starts at a lower temperature than when normal (when no crystals are present in the glass) when firing the dielectric material. To do. Crystallization at a low temperature inhibits the flowability of the glass and prevents the glass ceramic from being sintered densely, so that only a low-reliability dielectric having many pores can be obtained. Moreover, in order to melt glass having a high liquidus temperature, it is necessary to melt at a high temperature. To melt at high temperatures, a large amount of energy must be used. In addition, the high temperature operation shortens the life of the melting furnace, which increases the manufacturing cost. For this reason, the one where the liquidus viscosity of glass is low is preferable, and specifically, it is desirable that it is 1200 degrees C or less.
またガラス粉末の化学耐久性が低いと、経年変化でガラスが変質して絶縁性が保てなくなったり、酸性メッキ浴で基板上にメッキが付着したりする等の問題が生じる。このためガラスの化学耐久性は高い方がよい。 In addition, when the chemical durability of the glass powder is low, problems such as deterioration of the glass due to aging and inability to maintain insulation, plating on the substrate in an acidic plating bath, and the like occur. For this reason, the higher the chemical durability of the glass, the better.
本発明者は様々な考察を行った結果、SiO2−Al2O3−CaO−B2O3系のガラスでは、B2O3のSiO2置換量が多くなれば液相温度が低下する傾向がある。逆に少なくなれば化学耐久性が向上する傾向がある。化学耐久性の低下が許容できる範囲内でB2O3をSiO2に置換しながら、ガラスの液相温度を1200℃以下にするには、B2O3置換前のSiO2−Al2O3−CaO三成分系組成の液相温度が1300℃以下であることが望ましい。同三成分系組成において液相温度が1300℃以下になる範囲は、図1のA点、B点、C点の3点を結ぶ三角形とほぼ一致する。具体的にはA点(SiO2 64.4質量%、Al2O3 16.9質量%、CaO 18.7質量%)、B点(SiO2 62.1質量%、Al2O3 9.9質量%、CaO 28.0質量%)、及びC点(SiO2 47.3質量%、Al2O3 19.0質量%、CaO 33.7質量%)を頂点とする三角形の領域内である。この範囲のガラス組成において、SiO2の5〜9質量%をB2O3に置換すれば、化学耐久性を悪化させることなく液相温度を1200℃以下にすることができる。なおB2O3量が9質量%よりも多い場合には化学的耐久性が著しく悪化する。また5質量%未満であれば液相温度を1200℃以下にすることができない。なおSiO2−Al2O3−CaO三成分系の基礎組成が上記範囲外にある場合は、液相温度が1200℃以下のガラスを得ることが困難である。 As a result of various considerations, the present inventors have found that the liquid phase temperature of the SiO 2 —Al 2 O 3 —CaO—B 2 O 3 glass decreases as the SiO 2 substitution amount of B 2 O 3 increases. Tend. Conversely, if it decreases, chemical durability tends to improve. In order to reduce the liquidus temperature of the glass to 1200 ° C. or less while substituting B 2 O 3 with SiO 2 within the allowable range of chemical durability, SiO 2 —Al 2 O before B 2 O 3 substitution is used. The liquid phase temperature of the 3- CaO ternary composition is desirably 1300 ° C. or lower. In the same ternary composition, the range in which the liquidus temperature is 1300 ° C. or lower substantially matches the triangle connecting the three points A, B, and C in FIG. Specifically, point A (SiO 2 64.4% by mass, Al 2 O 3 16.9% by mass, CaO 18.7% by mass), point B (SiO 2 62.1% by mass, Al 2 O 3 9. 9 mass%, CaO 28.0 mass%), and within the triangular region with the C point (SiO 2 47.3 mass%, Al 2 O 3 19.0 mass%, CaO 33.7 mass%) as vertices is there. In the glass composition in this range, if 5 to 9% by mass of SiO 2 is replaced with B 2 O 3 , the liquidus temperature can be made 1200 ° C. or less without deteriorating chemical durability. Incidentally amount of B 2 O 3 chemical durability is considerably deteriorated when more than 9 mass%. Moreover, if it is less than 5 mass%, liquidus temperature cannot be 1200 degrees C or less. In addition, when the basic composition of the SiO 2 —Al 2 O 3 —CaO ternary system is outside the above range, it is difficult to obtain a glass having a liquidus temperature of 1200 ° C. or lower.
本発明において、ガラス粉末とAl2O3を含むセラミック粉末の混合割合は、ガラス粉末40〜65質量%とセラミック粉末35〜60質量%であることが望ましい。セラミック粉末が60%より多いと緻密化し難くなる。一方セラミック粉末が35%よりも少ないと曲げ強度が低くなり過ぎる。Al2O3を含むセラミック粉末としては、アルミナ、ムライト、コージエライト、アルミネイトスピネルなどが使用可能であるが、基板強度の観点からはアルミナが望ましい。 In the present invention, the mixing ratio of the glass powder and the ceramic powder containing Al 2 O 3 is desirably 40 to 65% by mass of the glass powder and 35 to 60% by mass of the ceramic powder. If the ceramic powder is more than 60%, it becomes difficult to densify. On the other hand, if the ceramic powder is less than 35%, the bending strength becomes too low. As the ceramic powder containing Al 2 O 3 , alumina, mullite, cordierite, aluminate spinel, etc. can be used, but alumina is desirable from the viewpoint of substrate strength.
上記組成を有する本発明のガラスセラミック誘電体材料を焼成すると、アノーサイトを析出する焼結体となる。この焼結体は、含有されるFe2O3により、緑色系の色調を呈する。特にJIS Z8729で規定されるL*a*b*表色系において、L*=85〜94、a*=−2〜−0.5、b*=0.5〜2の範囲にある色調を呈していることが好ましい。色座標がこの範囲にあれば、銀導体と明確に識別可能な緑色の色調を呈することになる。また焼結体は、1〜20GHz以上の高周波領域において、比誘電率が6〜8、誘電損失が0.005以下であることが望ましい。比誘電率及び誘電損失が上記範囲内にあれば、高周波数帯域での信号処理を行う誘電体として好適に使用できる。 When the glass ceramic dielectric material of the present invention having the above composition is fired, a sintered body in which anorthite is deposited is obtained. This sintered body exhibits a greenish color tone due to the contained Fe 2 O 3 . In particular, in the L * a * b * color system defined by JIS Z8729, the color tone is in the range of L * = 85 to 94, a * = − 2 to −0.5, b * = 0.5 to 2. It is preferable to present. When the color coordinates are within this range, a green color tone that can be clearly distinguished from the silver conductor is exhibited. The sintered body preferably has a relative dielectric constant of 6 to 8 and a dielectric loss of 0.005 or less in a high frequency region of 1 to 20 GHz or more. If the relative permittivity and the dielectric loss are within the above ranges, they can be suitably used as a dielectric for performing signal processing in a high frequency band.
次に本発明のガラスセラミックス誘電体材料の使用方法を述べる。 Next, a method of using the glass ceramic dielectric material of the present invention will be described.
まず、上記のガラスセラミックス誘電体材料に、所定量の結合剤、可塑剤及び溶剤を添加してスラリーを調製する。結合剤としては例えばポリビニルブチラール樹脂、メタアクリル酸樹脂等、可塑剤としては例えばフタル酸ジブチル等、溶剤としては例えばトルエン、メチルエチルケトン等を使用することができる。 First, a predetermined amount of a binder, a plasticizer, and a solvent are added to the glass ceramic dielectric material to prepare a slurry. Examples of the binder include polyvinyl butyral resin and methacrylic acid resin, examples of the plasticizer include dibutyl phthalate, and examples of the solvent include toluene and methyl ethyl ketone.
次いで上記のスラリーを、ドクターブレード法によってグリーンシートに成形する。その後、このグリーンシートを乾燥させ、所定寸法に切断してから、機械的加工を施してバイアホールを形成し、導体や電極となる銀導体をスルーホール及びグリーンシート表面に印刷する。続いてグリーンシートの複数枚を積層し、熱圧着によって一体化する。 Next, the slurry is formed into a green sheet by a doctor blade method. Thereafter, the green sheet is dried and cut to a predetermined size, and then mechanical processing is performed to form a via hole, and a silver conductor serving as a conductor or an electrode is printed on the surface of the through hole and the green sheet. Subsequently, a plurality of green sheets are laminated and integrated by thermocompression bonding.
さらに、積層グリーンシートを焼成することによってガラスセラミックス焼結体を絶縁層とする多層基板を得ることができる。なお材料の焼成温度は800〜1000℃、特に、800〜950℃の温度であることが望ましい。また銀導体を使用することから空気中で焼成することが望ましい。 Furthermore, a multilayer substrate having a glass ceramic sintered body as an insulating layer can be obtained by firing the laminated green sheet. The firing temperature of the material is desirably 800 to 1000 ° C., particularly 800 to 950 ° C. It is also desirable to burn formed in air from the use of silver conductors.
以下、実施例に基づいて本発明を説明する。 Hereinafter, the present invention will be described based on examples.
表1は本発明の実施例(試料No.1〜5)及び比較例(試料No.6、7)を示している。 Table 1 shows Examples (Sample Nos. 1 to 5) and Comparative Examples (Sample Nos. 6 and 7) of the present invention.
まず表1に示す組成となるようにガラス原料を調合した後、白金坩堝に入れて1400℃〜1550℃で3時間溶融してから、水冷ローラーによって薄板状に成形した。次いでこの成形体をボールミルにより粗砕した後、純水を加えて湿式粉砕し、平均粒径が3μmのガラス粉末とした。さらにアルミナ粉末もしくはムライト粉末(平均粒径2μm)を添加し、混合して試料とした。 First, glass raw materials were prepared so as to have the composition shown in Table 1, and then put in a platinum crucible and melted at 1400 ° C. to 1550 ° C. for 3 hours, and then formed into a thin plate shape by a water-cooled roller. Next, this compact was roughly crushed by a ball mill, and then pure water was added and wet pulverized to obtain a glass powder having an average particle size of 3 μm. Further, alumina powder or mullite powder (average particle size 2 μm) was added and mixed to prepare a sample.
得られた試料について、各種の特性を評価した。結果を表1に示す。 Various characteristics were evaluated for the obtained samples. The results are shown in Table 1.
表から明らかなように、実施例No.1〜5の各試料は、焼成によって良好な緻密体が得られた。しかも焼結体が緑色を呈しており、光学式読取装置による銀導体の自動認識が可能であった。 As is apparent from the table, Example No. In each of the samples 1 to 5, good dense bodies were obtained by firing. Moreover, the sintered body was green, and the silver conductor could be automatically recognized by the optical reader.
一方、比較例No.6の試料は焼結体が白色であり、光学式読取装置による銀導体の自動認識が不可能であった。No.7の試料は、自動認識は可能であったが、誘電損失が実施例の各試料に比べてかなり高かった。 On the other hand, Comparative Example No. The sample 6 had a white sintered body, and automatic recognition of the silver conductor by an optical reader was impossible. No. Sample 7 was capable of automatic recognition, but the dielectric loss was considerably higher than each sample of the example.
なお焼成温度及び緻密性は、プレス成形した試料を種々の温度で焼成し、得られた焼結体にインクを塗布した後に拭き取り、インクが残らない(=緻密に焼結した)焼結体のうち最低の温度で焼成したものの焼成温度を記載した。また緻密性を良好(=○)とした。ただし、焼成温度の上限は1000℃とし、1000℃の焼成温度においてもインクが残る場合は、緻密性を×とした。 The firing temperature and denseness of the sintered body are obtained by firing a press-molded sample at various temperatures, wiping after applying the ink to the obtained sintered body, and leaving no ink (= sintered densely). Of these, the firing temperature of the one fired at the lowest temperature is described. Also, the denseness was good (= ◯). However, the upper limit of the firing temperature was 1000 ° C., and when the ink remained even at the firing temperature of 1000 ° C., the denseness was evaluated as x.
色座標は次のようにして評価した。まず各試料に、結合剤、可塑剤及び溶剤を添加してスラリーを調製した。次いで得られたスラリーをドクターブレード法によってグリーンシートに成形し、乾燥後、所定寸法に切断した。続いてグリーンシートを複数枚積層し、熱圧着によって一体化した後、表の焼成温度で焼成して焼結体を得た。このようにして得られた焼結体を用い、色度計を用いて測定した。 The color coordinates were evaluated as follows. First, a binder, a plasticizer, and a solvent were added to each sample to prepare a slurry. Next, the obtained slurry was formed into a green sheet by a doctor blade method, dried, and then cut into predetermined dimensions. Subsequently, a plurality of green sheets were laminated and integrated by thermocompression bonding, and then fired at the firing temperature shown in the table to obtain a sintered body. The sintered body thus obtained was used for measurement using a chromaticity meter.
銀導体の自動認識は、焼成基板に銀ペーストを印刷し、900℃で再度焼成したものを、光学式読取装置にかけ、銀パターンを認識するか否かで判定した。 The automatic recognition of the silver conductor was performed by printing a silver paste on a fired substrate and firing it again at 900 ° C. and applying it to an optical reader to determine whether or not the silver pattern was recognized.
誘電損失は焼成基板に銀導体を印刷し、LCRメーターを用いて1MHzの周波数におけるtanδを測定した。 Dielectric loss was measured by printing a silver conductor on a fired substrate and measuring tan δ at a frequency of 1 MHz using an LCR meter.
三成分系組成の液相温度は以下の方法で測定した。まず各試料のB2O3をSiO2に全量置換してSiO2−Al2O3−CaO三成分系組成を求めた。なお試料No.5については、さらにSiO2、Al2O3及びCaOの三成分で100%となるように換算した。次に求めた三成分系組成となるようにガラス原料を調合し、白金坩堝に入れ、1450〜1600℃で2時間溶融した。続いて白金のボートに流し入れ、温度勾配炉で24時間保持後取り出し、顕微鏡観察によりガラス中に結晶の見られた最高温度を液相温度とした。ガラス試料の液相温度は、表1の組成となるようにガラス原料を調合した後、上記とを同様にして求めた。 The liquid phase temperature of the ternary composition was measured by the following method. Was determined SiO 2 -Al 2 O 3 -CaO ternary composition first, the B 2 O 3 of each sample was whole amount replaced SiO 2. Sample No. The 5 were converted to more 100% in three components SiO 2, Al 2 O 3 and CaO. Next, the glass raw material was prepared so that it might become the calculated | required ternary system composition, it put into the platinum crucible, and it fuse | melted at 1450-1600 degreeC for 2 hours. Subsequently, it was poured into a platinum boat, held in a temperature gradient furnace for 24 hours, and then taken out. The maximum temperature at which crystals were observed in the glass was observed as the liquid phase temperature by microscopic observation. The liquid phase temperature of the glass sample was determined in the same manner as described above after preparing the glass raw material so as to have the composition shown in Table 1.
耐水性は、焼成温度の評価で作製した焼結体(緻密に焼結した焼結体のうち、最も焼成温度が低いもの)を用いて評価し、焼結体を純水中で1時間煮沸した後の重量減少が0.
01%未満のものを○とした。
Water resistance is evaluated using a sintered body produced by evaluating the firing temperature (the sintered body with the lowest firing temperature among the densely sintered bodies), and the sintered body is boiled in pure water for 1 hour. The weight loss after
Those with less than 01% were marked as ◯.
曲げ強度は次のようにして評価した。まず各試料に、結合剤、可塑剤及び溶剤を添加してスラリーを調製した。次いで得られたスラリーをドクターブレード法によってグリーンシートに成形し、乾燥後、所定寸法に切断した。続いてグリーンシートを複数枚積層し、熱圧着によって一体化した後、表の焼成温度で焼成して焼結体を得た。このようにして得られた焼結体を用い、3点曲げ試験にて求めた。 The bending strength was evaluated as follows. First, a binder, a plasticizer, and a solvent were added to each sample to prepare a slurry. Next, the obtained slurry was formed into a green sheet by a doctor blade method, dried, and then cut into predetermined dimensions. Subsequently, a plurality of green sheets were laminated and integrated by thermocompression bonding, and then fired at the firing temperature shown in the table to obtain a sintered body. Using the sintered body thus obtained, a three-point bending test was used.
本明細書では、本発明の材料を多層基板として利用する方法を述べたが、本発明はこれに限定されるものではなく、半導体パッケージや積層チップ部品等の電子部品材料として使用することが可能である。また焼結体の製造方法として、グリーンシートを用いる例を挙げたが、本発明はこれに限定されるものではなく、一般にセラミックの製造に用いられる各種の方法を適用することができる。
In this specification, the method of using the material of the present invention as a multilayer substrate has been described. However, the present invention is not limited to this, and can be used as an electronic component material such as a semiconductor package or a multilayer chip component. It is. Moreover, although the example which uses a green sheet was given as a manufacturing method of a sintered compact, this invention is not limited to this, The various methods generally used for manufacture of a ceramic are applicable.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010163542A JP5429091B2 (en) | 2010-07-21 | 2010-07-21 | Glass ceramic dielectric material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010163542A JP5429091B2 (en) | 2010-07-21 | 2010-07-21 | Glass ceramic dielectric material and method for producing the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004221625A Division JP2006036608A (en) | 2004-07-29 | 2004-07-29 | Glass ceramic dielectric material and sintered compact of the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010285346A true JP2010285346A (en) | 2010-12-24 |
JP5429091B2 JP5429091B2 (en) | 2014-02-26 |
Family
ID=43541337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010163542A Expired - Lifetime JP5429091B2 (en) | 2010-07-21 | 2010-07-21 | Glass ceramic dielectric material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5429091B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60264345A (en) * | 1984-06-12 | 1985-12-27 | Nippon Sheet Glass Co Ltd | Glass composition for fiber |
JPS6146096A (en) * | 1984-08-10 | 1986-03-06 | 日本高圧電気株式会社 | Method of producing ceramic board |
JPS63225552A (en) * | 1987-03-13 | 1988-09-20 | Nitto Boseki Co Ltd | Glass composition absorbing ultraviolet ray for fiber |
JPH0353269B2 (en) * | 1984-06-01 | 1991-08-14 | Narumi China Corp | |
JPH0531274U (en) * | 1991-09-30 | 1993-04-23 | 京セラ株式会社 | Ceramic wiring board |
JPH0748171A (en) * | 1993-08-04 | 1995-02-21 | Yamamura Glass Co Ltd | Composition for low-temperature baked substrate and substrate therefrom |
JPH0782011A (en) * | 1993-09-13 | 1995-03-28 | Sumitomo Metal Ind Ltd | Ceramic base and its production |
JPH08274429A (en) * | 1995-03-29 | 1996-10-18 | Kyocera Corp | Wiring board |
JP2002160938A (en) * | 2000-09-18 | 2002-06-04 | Nippon Sheet Glass Co Ltd | Ultraviolet and infrared absorption green glass |
-
2010
- 2010-07-21 JP JP2010163542A patent/JP5429091B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0353269B2 (en) * | 1984-06-01 | 1991-08-14 | Narumi China Corp | |
JPS60264345A (en) * | 1984-06-12 | 1985-12-27 | Nippon Sheet Glass Co Ltd | Glass composition for fiber |
JPS6146096A (en) * | 1984-08-10 | 1986-03-06 | 日本高圧電気株式会社 | Method of producing ceramic board |
JPS63225552A (en) * | 1987-03-13 | 1988-09-20 | Nitto Boseki Co Ltd | Glass composition absorbing ultraviolet ray for fiber |
JPH0531274U (en) * | 1991-09-30 | 1993-04-23 | 京セラ株式会社 | Ceramic wiring board |
JPH0748171A (en) * | 1993-08-04 | 1995-02-21 | Yamamura Glass Co Ltd | Composition for low-temperature baked substrate and substrate therefrom |
JPH0782011A (en) * | 1993-09-13 | 1995-03-28 | Sumitomo Metal Ind Ltd | Ceramic base and its production |
JPH08274429A (en) * | 1995-03-29 | 1996-10-18 | Kyocera Corp | Wiring board |
JP2002160938A (en) * | 2000-09-18 | 2002-06-04 | Nippon Sheet Glass Co Ltd | Ultraviolet and infrared absorption green glass |
Also Published As
Publication number | Publication date |
---|---|
JP5429091B2 (en) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100850658B1 (en) | Glass ceramic composition | |
KR100522135B1 (en) | Low dielectric constant, low temperature fired ceramics | |
KR101316658B1 (en) | Mullite-based sintered body, circuit board using same and probe card | |
JP2008270741A (en) | Wiring board | |
JP5803453B2 (en) | Glass ceramic dielectric material and glass ceramic dielectric | |
JP2004168597A (en) | Lead-free glass and composition for electronic circuit board | |
JP2006124201A (en) | Nonlead glass, glass ceramic composition and dielectric | |
JP5527053B2 (en) | Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component | |
JPWO2005073146A1 (en) | Ceramic substrate composition, ceramic substrate, method for producing ceramic substrate, and glass composition | |
JP2002338295A (en) | Alkali-free glass, composition for electronic circuit board and electronic circuit board | |
JP2007284327A (en) | Ceramic composition and laminated ceramic circuit device | |
JP5429091B2 (en) | Glass ceramic dielectric material and method for producing the same | |
JP4229045B2 (en) | Electronic circuit board and lead-free glass for producing electronic circuit board | |
JP2006036608A (en) | Glass ceramic dielectric material and sintered compact of the same | |
JP5678950B2 (en) | Glass ceramic sintered body and wiring board | |
JP2004075534A (en) | Insulating composition | |
KR20220044497A (en) | Glass powder, dielectric material, sintered compact and circuit member for high frequency | |
JP2005067936A (en) | Glass ceramic dielectric material and sintered compact thereof | |
JP2010126381A (en) | Green sheet | |
JP2005217170A (en) | Composite multilayer ceramic electronic component | |
JP2004244271A (en) | Lead-free glass, composition for electronic circuit board, and electronic circuit board | |
JP4665130B2 (en) | Conductive paste and method for manufacturing substrate with conductive layer | |
JP2010120849A (en) | Glass ceramic sintered compact | |
WO2024019024A1 (en) | Glass ceramic substrate, greensheet for glass ceramic substrate, and composite powder for glass ceramic substrate | |
JP2005060171A (en) | Lead-free glass, glass ceramic composition, green sheet and electronic circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131118 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5429091 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |