JP2010284792A - Method for polishing travelling substrate - Google Patents
Method for polishing travelling substrate Download PDFInfo
- Publication number
- JP2010284792A JP2010284792A JP2010037776A JP2010037776A JP2010284792A JP 2010284792 A JP2010284792 A JP 2010284792A JP 2010037776 A JP2010037776 A JP 2010037776A JP 2010037776 A JP2010037776 A JP 2010037776A JP 2010284792 A JP2010284792 A JP 2010284792A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- substrate
- polishing head
- head
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
本発明は、走行基板を連続的に鏡面研磨する方法に関する。 The present invention relates to a method for continuously mirror-polishing a traveling substrate.
このような大型基板の研磨方法としては、例えば、複数の研磨ヘッドを走行方向と直行する方向に並べ走行速度よりも十分に速い速度で往復運動させながら、均一な表面粗さの鏡面を得る方法が開示されている(特許文献1)。 As a polishing method for such a large substrate, for example, a method of obtaining a mirror surface having a uniform surface roughness while reciprocating a plurality of polishing heads in a direction orthogonal to the traveling direction and reciprocating at a speed sufficiently higher than the traveling speed. Is disclosed (Patent Document 1).
また、プレストンの経験式を用いた計算を行なうことによって、平坦な研磨ができるように研磨条件を決定する方法が開示されている(非特許文献1)。 In addition, a method is disclosed in which polishing conditions are determined so that flat polishing can be performed by performing calculations using Preston's empirical formula (Non-Patent Document 1).
しかしながら特許文献1には、複数個の研磨ヘッドの研磨条件(走行速度に対する回転数、研磨圧力、研磨ヘッド配置、往復運動距離、往復運動速度)を決定する方法が記載されていないため、各研磨条件をどのように設定したら均一に基板を研磨することができるのか不明である。一方、非特許文献1には、プレストンの経験式を用いて研磨条件を決定する方法が開示されており、プレストン係数を求める際に、研磨前の基板の形状を表面粗さ測定器を用いて計測している。しかしながらこの測定方法は、研削のように削り量が大きい場合には容易であるが、研磨のように削り量が小さい場合には、基板の反りなどの影響で該削り量(研磨量)を精度よく測定できない。さらに、研磨面が広いものを用いて、広範囲を研磨する場合には、数百ナノメートルの深さの基板の形状を広範囲にわたり測定することは容易ではない。 However, Patent Document 1 does not describe a method for determining the polishing conditions (the number of rotations with respect to the traveling speed, the polishing pressure, the polishing head arrangement, the reciprocating distance, and the reciprocating speed) of the plurality of polishing heads. It is unclear how the conditions can be set to polish the substrate uniformly. On the other hand, Non-Patent Document 1 discloses a method for determining polishing conditions using Preston's empirical formula, and when determining the Preston coefficient, the shape of the substrate before polishing is measured using a surface roughness measuring instrument. Measuring. However, this measurement method is easy when the amount of shaving is large, such as grinding, but when the amount of shaving is small, such as polishing, the amount of shaving (polishing amount) is accurate due to the effects of warping of the substrate. I can't measure well. Furthermore, when polishing a wide range using a wide polishing surface, it is not easy to measure the shape of a substrate having a depth of several hundred nanometers over a wide range.
本発明は、前記事情に鑑み、複数個の研磨ヘッドの最適な研磨条件を容易に決定することができる研磨方法を提供することを課題とする。 In view of the above circumstances, an object of the present invention is to provide a polishing method capable of easily determining optimum polishing conditions for a plurality of polishing heads.
本発明は、水平に走行する基板上に複数個配設した円盤状の各研磨ヘッドの研磨面を前記基板に圧着し、各研磨ヘッドを基板面に垂直な回転軸で回転させると共に、各研磨ヘッドを基板の走行方向と直交する水平方向に往復運動させ、かつ各研磨ヘッドの回転中心部に設けた研磨液供給孔から研磨液を、研磨面に装着した研磨パッドを介して走行する基板へ供給することにより、前記基板を連続的に鏡面研磨する方法であって、以下の(1)〜(4)の手順で選定した研磨条件にて研磨する方法である。
(1)予め基板の一部をくり貫いたくり貫き板の重量を測定した後、くり貫き板を基板の元の位置へ戻し、各研磨ヘッドについて個別に、くり貫き板の往復運動方向の中心位置Oを中心として研磨ヘッドを基板の走行方向と直交する水平方向に加減速時間を研磨ヘッドの直径Dの2倍の距離を研磨ヘッドが運動する時間の10%以下として往復運動させ、往復運動の幅が研磨ヘッドの直径Dとくり貫き板の幅Mを足した距離(D+M)以上の長さとし、研磨ヘッドの往復運動速度を、研磨ヘッドの直径Dの1/3以下の距離を基板が走行する間に研磨ヘッドの往復運動が1回完了する速度として研磨する。
(2)その後、くり貫き板の重量を再度測定することによって得られた研磨前後のくり貫き板の重量差、基板の密度及び研磨面の面積から算出された研磨量(研磨した深さ)、及び研磨条件を以下のプレストンの経験式
dH(x、y))/dt=k×(P(x、y)×V(x、y))0.5
に代入しプレストン係数kを求める。
(ここで前式のx:基板の走行方向と直交する方向の位置、y:基板の走行方向の位置、dt:微小時間、dH(x、y):微小時間のx、y位置での研磨量、k:プレストン係数、P(x、y):x、y位置での研磨圧力、V(x、y):x、y位置での研磨速度(研磨ヘッドの回転周速、往復運動速度及び基板の走行速度の合成速度)を表す。)
(3)走行する基板面の研磨領域を基板の走行方向と直交する方向(x方向)及び基板の走行方向(y方向)にメッシュ分割し、該メッシュ分割により生成した各点での研磨量を、研磨条件、及び前項(2)で求めたプレストン係数kを前記プレストンの経験式に代入して各研磨ヘッドについて個別に求めた後、得られた各研磨ヘッドのx方向の同位置の研磨量を足し合わせることにより全研磨ヘッドによるx方向の研磨量プロファイルを得る。
(4)各研磨ヘッドの研磨条件及び配置を変更して前項(3)と同様にして研磨量プロファイルを得ることを繰り返して、基板幅方向の一方の端部に配置する研磨ヘッドの往復運動の折り返し点Lより研磨ヘッドの半径D/2だけ内側の位置から、もう一方の端部に配置する研磨ヘッドの往復運動の折り返し点Rより研磨ヘッドの半径D/2だけ内側の位置までの範囲(以下、「均一範囲」という。)における下記式で表される研磨斑Rが10%以下となる研磨条件を選定する。
研磨斑R=(Rz/H)×100
(ここで前式のH:前記均一範囲を、x、y方向に10mm以下でメッシュ分割することにより得られた各点の研磨量の平均値、Rz:均一に研磨された部分を、x、y方向に10mm以下でメッシュ分割することにより得られた各点の研磨量の値において、最も大きい値から5番目までの値の平均値から、最も小さい値から5番目までの値の平均値を引いて2で割った値を表す。)
In the present invention, a plurality of disc-shaped polishing heads arranged on a horizontally running substrate are pressure-bonded to the substrate, and each polishing head is rotated about a rotation axis perpendicular to the substrate surface. The head is reciprocated in a horizontal direction perpendicular to the traveling direction of the substrate, and the polishing liquid is supplied from the polishing liquid supply hole provided in the center of rotation of each polishing head to the substrate that travels through the polishing pad attached to the polishing surface. By supplying, the substrate is continuously mirror-polished and polished under the polishing conditions selected in the following procedures (1) to (4).
(1) After measuring the weight of the punched plate that has been punched through a portion of the substrate in advance, the punched plate is returned to the original position of the substrate, and the center position of the punched plate in the reciprocating direction of each polishing head individually. The reciprocating motion of the polishing head in the horizontal direction perpendicular to the substrate traveling direction with O as the center is set so that the distance twice the polishing head diameter D is 10% or less of the time for the polishing head to move. The width is equal to or longer than the distance (D + M) obtained by adding the diameter D of the polishing head and the width M of the punching plate, and the substrate travels the reciprocating speed of the polishing head at a distance equal to or less than 1/3 of the diameter D of the polishing head. In the meantime, polishing is performed at a speed at which the reciprocation of the polishing head is completed once.
(2) Then, the polishing amount (polished depth) calculated from the weight difference between the punched plates before and after polishing obtained by measuring the weight of the punched plate again, the density of the substrate and the area of the polished surface, And the polishing conditions are the following Preston's empirical formula dH (x, y)) / dt = k × (P (x, y) × V (x, y)) 0.5
To obtain the Preston coefficient k.
(Where x: position in the direction orthogonal to the traveling direction of the substrate, y: position in the traveling direction of the substrate, dt: minute time, dH (x, y): polishing at the x and y positions of minute time. Quantity, k: Preston coefficient, P (x, y): polishing pressure at x, y position, V (x, y): polishing speed at x, y position (rotational peripheral speed of reciprocating head, reciprocating speed and This represents the combined speed of the board running speed.)
(3) The polishing area of the traveling substrate surface is divided into meshes in the direction orthogonal to the traveling direction of the substrate (x direction) and the traveling direction of the substrate (y direction), and the polishing amount at each point generated by the mesh division is determined. , Polishing conditions, and the preston coefficient k obtained in the preceding item (2) is substituted for the Preston's empirical formula to obtain each polishing head individually, and then the obtained polishing amount at the same position in the x direction of each polishing head Are added together to obtain a polishing amount profile in the x direction by all polishing heads.
(4) The polishing condition and arrangement of each polishing head are changed and the polishing amount profile is obtained in the same manner as in the previous section (3), and the reciprocating motion of the polishing head arranged at one end in the substrate width direction is repeated. A range from a position inside the polishing head radius D / 2 from the turning point L to a position inside the polishing head radius D / 2 from the turning point R of the reciprocating motion of the polishing head arranged at the other end ( Hereinafter, polishing conditions are selected so that the polishing spot R represented by the following formula in “uniform range”) is 10% or less.
Polishing spots R = (Rz / H) × 100
(Here H of the previous formula: average value of polishing amount of each point obtained by dividing the uniform range into meshes of 10 mm or less in the x and y directions, Rz: x, From the average value of the largest value to the fifth value, from the average value of the smallest value to the fifth value, the average value of the smallest value to the fifth value in the polishing amount value of each point obtained by mesh division at 10 mm or less in the y direction. Subtracts and divides by 2)
本研磨方法は、プレストンの経験式におけるプレストン係数を簡易な方法で求めることができ、このプレストンの経験式から基板の研磨プロファイルを得ることにより、複数個の研磨ヘッドの最適な研磨条件を容易に決定することができる。 In this polishing method, the Preston coefficient in the Preston's empirical formula can be obtained by a simple method. By obtaining the polishing profile of the substrate from this Preston's empirical formula, the optimum polishing conditions for a plurality of polishing heads can be easily obtained. Can be determined.
以下、本発明の実施形態について詳細に説明する。本発明に使用する基板は、特に制限されないが、鏡面研磨のし易さの観点からステンレス鋼等のコイル材やエンドレスベルトのような帯板或いは定尺板、配列により形成された小型の切板などを対象とすることが好ましい。前記基板は水平に走行させる。この水平に走行する基板の走行速度を0.01〜5m/minとすることが好ましい。走行速度が遅すぎると、研磨の作業効率が悪くなり、走行速度が速すぎると、研磨効率が悪くなる。 Hereinafter, embodiments of the present invention will be described in detail. The substrate used in the present invention is not particularly limited, but from the viewpoint of ease of mirror polishing, a coil material such as stainless steel, a band plate such as an endless belt or a fixed plate, and a small cut plate formed by an array It is preferable to target. The substrate is run horizontally. The traveling speed of the horizontally traveling substrate is preferably set to 0.01 to 5 m / min. If the traveling speed is too slow, the polishing work efficiency is deteriorated, and if the traveling speed is too fast, the polishing efficiency is deteriorated.
本研磨ヘッドは、円盤状の形状をしている(図1参照)。そして、水平に走行する基板上に複数個配設した円盤状の各研磨ヘッドの研磨面を基板に圧着し、各研磨ヘッドを基板面に垂直な回転軸で回転させると共に、各研磨ヘッドを基板の走行方向と直交する水平方向(以下、前記水平方向を「基板の幅方向」という。)に往復運動するようになっている。前記研磨ヘッドの研磨面の形状は、安定した回転状態の保持の観点から、円形であることが好ましい。前記研磨面を基板に圧着し研磨する際の研磨圧力(以下、「研磨圧」ともいう。)は、例えば研磨ヘッドに接続されたエアシリンダーあるいは電動シリンダーによる加圧により調整することができる。研磨圧としては0.01〜0.1MPaが好ましい。研磨圧が小さすぎると研磨効率が悪くなり、研磨圧が高すぎると基板表面が粗くなり、また研磨時のトルク負荷が増大するため、それに耐えるべくモータを大型化せざるを得ないことになる。 The polishing head has a disk shape (see FIG. 1). Then, a plurality of disk-shaped polishing heads disposed on a horizontally running substrate are pressure-bonded to the substrate, and each polishing head is rotated about a rotation axis perpendicular to the substrate surface. Are reciprocated in a horizontal direction orthogonal to the traveling direction (hereinafter, the horizontal direction is referred to as a “substrate width direction”). The shape of the polishing surface of the polishing head is preferably circular from the viewpoint of maintaining a stable rotational state. The polishing pressure (hereinafter also referred to as “polishing pressure”) when the polishing surface is pressed against the substrate and polished can be adjusted by, for example, pressurization with an air cylinder or an electric cylinder connected to the polishing head. The polishing pressure is preferably 0.01 to 0.1 MPa. If the polishing pressure is too low, the polishing efficiency will deteriorate, and if the polishing pressure is too high, the substrate surface will become rough, and the torque load during polishing will increase, so the motor will have to be enlarged to withstand it. .
研磨面には研磨パッドが密着されている。ここでいう密着とは面に接触した状態のことであり、接着剤等で固着しない方が好ましい。研磨パッド自体の固定方法としては固定治具を用いることが好ましい。研磨パッドを固定する際、研磨パッドにはしわが無く適度な張力がかかった状態で固着することが好ましい。前記固定方法としては、例えばプレート状の治具と研磨ヘッドの間に研磨パッドを挟んでネジで止める方法が挙げられる。その他の方法としては、研磨ヘッドに研磨パッドを包むような形にした後、紐や止めバンドで締めて止める方法が挙げられる。その他、研磨パッドを研磨ヘッドに引っ張り上げ止めることが可能な固定治具であれば、前記方法に限られない。 A polishing pad is in close contact with the polishing surface. Here, the close contact means a state in contact with the surface, and it is preferable that the contact is not fixed with an adhesive or the like. As a method for fixing the polishing pad itself, it is preferable to use a fixing jig. When the polishing pad is fixed, it is preferable that the polishing pad is fixed in a state where there is no wrinkle and an appropriate tension is applied. Examples of the fixing method include a method in which a polishing pad is sandwiched between a plate-shaped jig and a polishing head and is fixed with a screw. Other methods include a method in which a polishing pad is wrapped around a polishing head and then fastened with a string or a stop band. In addition, the method is not limited to the above as long as it is a fixing jig capable of pulling and holding the polishing pad on the polishing head.
研磨ヘッドの回転及び研磨ヘッドの往復運動は、モータ等の公知の駆動装置により行うことができる。この研磨ヘッドの回転速度は、100〜1000rpmとするのが好ましい。回転速度が遅すぎると、回転による遠心力が小さい分、回転軸中心部の研磨液の研磨パッド全体への浸透性が悪くなり研磨効率が悪くなる。回転速度が速すぎると、研磨液の飛散が顕著となる。 The rotation of the polishing head and the reciprocating motion of the polishing head can be performed by a known driving device such as a motor. The rotational speed of the polishing head is preferably 100 to 1000 rpm. When the rotation speed is too slow, the penetrating force of the polishing liquid at the center of the rotating shaft into the entire polishing pad is deteriorated and the polishing efficiency is deteriorated because the centrifugal force due to the rotation is small. If the rotation speed is too high, the polishing liquid will become scattered.
また、連続的に鏡面研磨を行うために、研磨ヘッドの回転中心部に設けた研磨液供給孔から研磨液を研磨パッドを介して走行する基板へ一定速度で供給する。研磨面に装着した研磨パッドは不織布などの素材で構成し、貫通孔を有することがなく、研磨液を研磨パッド全体に浸透させることができ、かつ、走行基板へ研磨液を容易に供給可能な素材であることが好ましい。研磨パッドとしては、研磨液を研磨パッド全体に浸透させることができ、かつ、走行基板5へ研磨液を容易に供給可能な素材であることが好ましい。前記素材として不織布からなるものが例示される。該不織布の材質としては、ナイロン、レーヨン、ウレタン等が挙げられる。該不織布の繊維径としては10〜100μmが好ましく、また目付は10〜1000g/m2であることが好ましい。 Further, in order to perform mirror polishing continuously, the polishing liquid is supplied from a polishing liquid supply hole provided in the center of rotation of the polishing head to the substrate traveling through the polishing pad at a constant speed. The polishing pad mounted on the polishing surface is made of a material such as a non-woven fabric, has no through holes, can penetrate the polishing liquid throughout the polishing pad, and can easily supply the polishing liquid to the traveling substrate. A material is preferable. The polishing pad is preferably a material that allows the polishing liquid to penetrate the entire polishing pad and that can easily supply the polishing liquid to the traveling substrate 5. Examples of the material include those made of nonwoven fabric. Examples of the material for the nonwoven fabric include nylon, rayon and urethane. The fiber diameter of the nonwoven fabric is preferably 10 to 100 μm, and the basis weight is preferably 10 to 1000 g / m 2 .
研磨液は特に限定されないが、無機微粒子を含む研磨液を使用することができる。その中でもアルミナスラリーのように不織布のような研磨パッドを浸透し易い研磨液であることが好ましい。これにより、研磨パッドの目詰まりを防止でき、長時間の安定した連続研磨が可能となる。研磨液の濃度は0.01〜5質量%であることが好ましく、また研磨液のpH値は0.01〜6の範囲とするのが好ましい。研磨液を一定速度で供給する際、その供給量は0.1〜5L/minであることが好ましい。供給量が少なすぎると、研磨により発生する研磨カスが溜まり易くなり、研磨効率が低下する。供給量が多すぎると、研磨効率は上がらず研磨液が無駄となる。無機微粒子を含む研磨液を使用する場合、該無機微粒子の粒径は0.01〜5μmであることが好ましい。 The polishing liquid is not particularly limited, but a polishing liquid containing inorganic fine particles can be used. Among them, a polishing liquid that easily penetrates a polishing pad such as a nonwoven fabric such as alumina slurry is preferable. As a result, clogging of the polishing pad can be prevented, and stable continuous polishing for a long time is possible. The concentration of the polishing liquid is preferably 0.01 to 5% by mass, and the pH value of the polishing liquid is preferably in the range of 0.01 to 6. When supplying the polishing liquid at a constant rate, the supply amount is preferably 0.1 to 5 L / min. If the supply amount is too small, polishing residue generated by polishing tends to accumulate, and the polishing efficiency decreases. If the supply amount is too large, the polishing efficiency is not increased and the polishing liquid is wasted. When a polishing liquid containing inorganic fine particles is used, the particle size of the inorganic fine particles is preferably 0.01 to 5 μm.
次に、上記研磨ヘッドを用いて、走行基板全面を研磨するための研磨条件の選定方法について説明する。研磨量と研磨条件の関係は、下記プレストンの経験式で表されることが知られている。
dH(x、y))/dt=k×(P(x、y))α×(V(x、y))β
この式を用いて基板全面の研磨量を計算することにより最適な条件を決定する。ここで、x:基板の走行方向と直交する方向の位置、y:基板の走行方向の位置、dt:微小時間、dH(x、y):dt時間のx、y位置での研磨量、k:プレストン係数(比例定数)、P(x、y):x、y位置での研磨圧力、V(x、y):x、y位置での研磨速度(研磨ヘッドの回転周速、往復運動速度及び基板の走行速度の合成速度)である。なお本発明においては、式中のα、βはいずれも0.5とした下式(1)を使用する。
dH(x、y))/dt=k×(P(x、y)×V(x、y))0.5
(1)
Next, a method for selecting polishing conditions for polishing the entire surface of the traveling substrate using the polishing head will be described. It is known that the relationship between the polishing amount and the polishing conditions is expressed by the following Preston empirical formula.
dH (x, y)) / dt = k × (P (x, y)) α × (V (x, y)) β
The optimum condition is determined by calculating the polishing amount on the entire surface of the substrate using this equation. Here, x: position in the direction orthogonal to the traveling direction of the substrate, y: position in the traveling direction of the substrate, dt: minute time, dH (x, y): polishing amount at the x and y positions in the dt time, k : Preston coefficient (proportional constant), P (x, y): Polishing pressure at the x and y positions, V (x, y): Polishing speed at the x and y positions (rotational peripheral speed and reciprocating speed of the polishing head) And the combined speed of the traveling speed of the substrate). In the present invention, the following formula (1) is used in which α and β are both 0.5.
dH (x, y)) / dt = k × (P (x, y) × V (x, y)) 0.5
(1)
研磨条件の設定は以下の(1)〜(4)の手順で行うことができる。
手順(1)
研磨量を計算により求める際は、まず、前記プレストン係数kを求める必要がある。このプレストン係数は、実際に研磨した研磨条件(研磨圧力、研磨速度)と研磨量が分かれば、式(1)により導き出される。このとき、この研磨量の実測方法としては、図2に示すように、予め基板の一部をくり貫いたくり貫き板の重量を測定した後、くり貫き板を基板の元の位置へ戻し、後述の研磨条件にて研磨した後、くり貫き板の重量を再度測定し得られた研磨前後のくり貫き板の重量差ΔW、基板の密度d及び研磨面の面積Sから以下の式により研磨量H(研磨した深さ)が算出できる。
研磨量H=ΔW/Sd
The polishing conditions can be set by the following procedures (1) to (4).
Procedure (1)
When obtaining the polishing amount by calculation, it is first necessary to obtain the Preston coefficient k. This Preston coefficient can be derived from the equation (1) if the polishing conditions (polishing pressure, polishing rate) and polishing amount actually polished are known. At this time, as a method of actually measuring the polishing amount, as shown in FIG. 2, after measuring the weight of the punched plate that has been punched through a part of the substrate in advance, the punched plate is returned to the original position of the substrate, which will be described later. After polishing under the polishing conditions, the weight difference ΔW of the punched-through plate before and after polishing obtained by measuring the weight of the punched-out plate again, the substrate density d, and the area S of the polished surface, the polishing amount H (Polished depth) can be calculated.
Polishing amount H = ΔW / Sd
このとき、くり貫き板の表面は全面に渡って研磨されてないと正確な研磨量が正確に算出できない。そこで、各研磨ヘッドについて個別に、くり貫き板の往復運動方向の中心位置Oを中心として研磨ヘッドを点Lと点Rで折り返すように往復運動させ、往復運動の幅が研磨ヘッドの直径Dとくり貫き板の幅Mを足した距離(D+M)以上の長さとし、研磨ヘッドの往復運動速度を研磨ヘッドの直径Dの1/3以下の距離を基板が走行する間に研磨ヘッドの往復運動が1回完了する速度とすることによってくり貫き板の表面全面に渡って研磨することができる(図3、図4参照)。このとき、往復運動速度が研磨ヘッドの直径Dの1/3より大きいと研磨斑が大きくなる(図5、図6参照)。前記往復運動速度が研磨ヘッドの直径Dの1/4以下とすることが好ましい。 At this time, an accurate polishing amount cannot be accurately calculated unless the entire surface of the punched-out plate is polished. Therefore, for each polishing head, the polishing head is reciprocated around the center position O in the reciprocating direction of the punched plate so as to be folded back at points L and R, and the width of the reciprocating motion is the diameter D of the polishing head. The reciprocating motion of the polishing head is performed while the substrate travels a distance equal to or less than 1/3 of the diameter D of the polishing head, with a length equal to or greater than the distance (D + M) obtained by adding the width M of the perforated plate. By setting the speed to be completed once, the entire surface of the punched plate can be polished (see FIGS. 3 and 4). At this time, if the reciprocating speed is larger than 1/3 of the diameter D of the polishing head, polishing spots increase (see FIGS. 5 and 6). The reciprocating speed is preferably ¼ or less of the diameter D of the polishing head.
また、研磨ヘッドの往復運動の際の加減速時間、すなわち一定速度で走行する研磨ヘッドが減速してから、折り返し点で反転し加速して一定速度となるまでの時間は研磨ヘッドの直径Dの2倍の距離を研磨ヘッドが運動する時間の10%以下とする。これより長いと研磨斑が大きくなり、くり貫き板の表面全面を研磨できなくなり、正確な研磨量が得られない。前記加減速時間は140msec以下であることが好ましい。 Further, the acceleration / deceleration time during the reciprocating motion of the polishing head, that is, the time from when the polishing head traveling at a constant speed is decelerated until it reverses and accelerates at the turning point to reach a constant speed is equal to the diameter D of the polishing head. The double distance is 10% or less of the time for the polishing head to move. If the length is longer than this, polishing spots become large, and the entire surface of the punched-out plate cannot be polished, and an accurate polishing amount cannot be obtained. The acceleration / deceleration time is preferably 140 msec or less.
また、基板の走行速度は2m/min以下が好ましい。基板の走行速度が速すぎると、前記往復運動速度が速くなるため、研磨ヘッドを支持する架台が貧弱であると架台の揺れが大きくなり、揺れを防止するために架台の剛性をより強くする必要が生じる場合がある。 Further, the traveling speed of the substrate is preferably 2 m / min or less. If the running speed of the substrate is too fast, the reciprocating speed will increase, and if the gantry that supports the polishing head is poor, the gantry will sway greatly, and it is necessary to increase the rigidity of the gantry to prevent shaking. May occur.
手順(2)
手順(1)で実測した重量差から算出された研磨量と、研磨条件(研磨圧力、研磨速度)を前記プレストンの経験式(1)に代入してプレストン係数kを求めることができる。
Procedure (2)
The Preston coefficient k can be obtained by substituting the polishing amount calculated from the weight difference actually measured in the procedure (1) and the polishing conditions (polishing pressure, polishing rate) into the Preston empirical formula (1).
ここで、プレストン係数kは各研磨ヘッドについて求める必要がある。すなわち、プレストン係数kは、研磨圧力や研磨速度の研磨条件が同じでも、研磨液中の研磨材の種類や濃度、添加剤及び研磨液の供給量や供給圧によりプレストン係数が異なってくる。このため、通常はこれらの条件(研磨液中の研磨材の種類や濃度、添加剤及び研磨液の供給量や供給圧)を固定してプレストン係数を求め研磨量を計算する必要がある。なお、これら条件を固定しても、研磨ヘッド径が変わるとプレストン係数が異なるため、研磨ヘッド径に応じてプレストン係数を求める必要がある。研磨ヘッドの大きさが変わると、研磨ヘッド中心部から研磨ヘッド外部へ研磨液が排出されるまでの研磨液の供給速度が変わるためプレストン係数が異なってくるものと推測される。 Here, the Preston coefficient k needs to be obtained for each polishing head. That is, the Preston coefficient k varies depending on the type and concentration of the abrasive in the polishing liquid, the supply amount and supply pressure of the additive and the polishing liquid, even if the polishing conditions of the polishing pressure and the polishing speed are the same. For this reason, it is usually necessary to fix these conditions (the type and concentration of the abrasive in the polishing liquid, the supply amount and supply pressure of the additive and polishing liquid), calculate the Preston coefficient, and calculate the polishing amount. Even if these conditions are fixed, the Preston coefficient varies depending on the polishing head diameter. Therefore, it is necessary to obtain the Preston coefficient according to the polishing head diameter. When the size of the polishing head is changed, it is presumed that the Preston coefficient is different because the supply rate of the polishing liquid until the polishing liquid is discharged from the center of the polishing head to the outside of the polishing head is changed.
手順(3)
次に、手順(2)で研磨ヘッド径に応じて求められたプレストン係数kを一定値としてプレストンの経験式(1)に基づいて、複数個の研磨ヘッドの研磨量プロファイルを以下のようにして求める。なお、研磨量プロファイルとは、基板面の一方向についてその研磨量をプロットしたものをいう。本発明では研磨ヘッドをx方向に往復運動させて研磨するので、研磨条件の選定のし易さから基板面のx方向の研磨量プロファイルを求めることにする。
Procedure (3)
Next, based on Preston's empirical formula (1) with the Preston coefficient k determined according to the polishing head diameter in the procedure (2) as a constant value, the polishing amount profiles of the plurality of polishing heads are as follows. Ask. The polishing amount profile refers to a plot of the polishing amount in one direction of the substrate surface. In the present invention, since the polishing is performed by reciprocating the polishing head in the x direction, the polishing amount profile in the x direction of the substrate surface is determined from the ease of selecting the polishing conditions.
走行する基板面の研磨領域を基板の走行方向と直交する方向(x方向)及び基板の走行方向(y方向)にメッシュ分割し、該メッシュ分割により生成した各点での研磨量を、研磨条件、及び前記のようにして求めたプレストン係数kを前記プレストンの経験式に代入して各研磨ヘッドについて個別に求める。前記研磨量はプレストンの経験式(1)を時間で積分することにより得られる。その際、プレストンの経験式(1)における微小時間dtを0.1sec以下とすることが好ましく、0.02sec以下とすることがより好ましい。また前記x方向及びy方向のメッシュ分割の間隔を10mm以下とすることが好ましく、5mm以下とすることがより好ましい。 The polishing region of the traveling substrate surface is divided into meshes in the direction orthogonal to the substrate traveling direction (x direction) and the substrate traveling direction (y direction), and the polishing amount at each point generated by the mesh division is determined by polishing conditions. , And the Preston coefficient k determined as described above is substituted into the Preston's empirical formula to determine each polishing head individually. The amount of polishing is obtained by integrating Preston's empirical formula (1) with time. At that time, the minute time dt in Preston's empirical formula (1) is preferably 0.1 sec or less, and more preferably 0.02 sec or less. Moreover, it is preferable that the space | interval of the mesh division | segmentation of the said x direction and a y direction shall be 10 mm or less, and it is more preferable to set it as 5 mm or less.
この後、得られた各研磨ヘッドのx方向の同位置の研磨量を足し合わせることにより全研磨ヘッドによるx方向の研磨量プロファイルを得ることができる(図7、図8)。 Thereafter, the polishing amount profiles in the x direction of all the polishing heads can be obtained by adding the polishing amounts at the same position in the x direction of the obtained polishing heads (FIGS. 7 and 8).
手順(4)
各研磨ヘッドの研磨条件及び配置を変更して手順(3)と同様にして研磨量プロファイルを得ることを繰り返して、基板幅方向(x方向)の一方の端部に配置する研磨ヘッドの往復運動の折り返し点Lより研磨ヘッドの半径D/2だけ内側の位置から、もう一方の端部に配置する研磨ヘッドの往復運動の折り返し点Rより研磨ヘッドの半径D/2だけ内側の位置までの範囲(以下「均一範囲」という。)における下記式(2)で表される研磨斑が10%以下となる研磨条件を選定する。
研磨斑R=(Rz/H)×100 (2)
Procedure (4)
The reciprocating motion of the polishing head arranged at one end in the substrate width direction (x direction) is repeated by changing the polishing conditions and arrangement of each polishing head and obtaining a polishing amount profile in the same manner as in the procedure (3). From a position inside the polishing head radius D / 2 from the turning point L to a position inside the polishing head radius D / 2 from the turning point R of the reciprocating motion of the polishing head arranged at the other end. Polishing conditions are selected such that the polishing spots represented by the following formula (2) in (hereinafter referred to as “uniform range”) are 10% or less.
Polishing spots R = (Rz / H) × 100 (2)
ここでH:前記均一範囲を、x、y方向に10mm以下で分割することにより得られた各点の研磨量の平均値、Rz:均一範囲を、x、y方向に10mm以下で分割することにより得られた各点の研磨量の値において、最も大きい値から5番目までの値の平均値から、最も小さい値から5番目までの値の平均値を引いて2で割った値である。 Here, H: average value of the polishing amount of each point obtained by dividing the uniform range by 10 mm or less in the x and y directions, Rz: dividing the uniform range by 10 mm or less in the x and y directions In the polishing amount value of each point obtained by the above, the average value from the largest value to the fifth value is subtracted from the average value from the smallest value to the fifth value and divided by 2.
前記研磨斑Rを10%以下とするための計算手順としては、以下のような手順を採ることができる。 As a calculation procedure for setting the polishing spot R to 10% or less, the following procedure can be adopted.
(a)研磨ヘッド1個で、所望の研磨量となるように、研磨条件(研磨ヘッドの回転数、研磨圧力、往復運動幅等)を変えて研磨量を計算し、Rzを求め、Rが10%以下となる条件を選択する。
(b)仕様の同じ研磨ヘッド2個をx方向に配設し、前項で選択した研磨条件にて研磨量を計算し、各研磨ヘッドのx方向の研磨量を足し合わせ、研磨ヘッド間の距離(x方向)を変えてRzを求め、Rが10%以下となるまで研磨量の計算を繰り返す。
(c)均一範囲の大きさに応じて、研磨ヘッドの数を増やして、あるいは研磨ヘッド径を大きくして研磨量を計算し、再度Rzを求め、Rが10%以下となる条件を選択する。
(A) The polishing amount is calculated by changing the polishing conditions (the number of rotations of the polishing head, the polishing pressure, the reciprocating motion width, etc.) so that the desired polishing amount can be obtained with one polishing head, and Rz is obtained. Select conditions that result in 10% or less.
(B) Two polishing heads having the same specifications are arranged in the x direction, the polishing amount is calculated under the polishing conditions selected in the previous section, and the polishing amounts in the x direction of the polishing heads are added together, and the distance between the polishing heads Rz is obtained by changing (x direction), and the calculation of the polishing amount is repeated until R becomes 10% or less.
(C) According to the size of the uniform range, increase the number of polishing heads or increase the polishing head diameter to calculate the polishing amount, obtain Rz again, and select the condition that R is 10% or less. .
前記のように、複数個の研磨ヘッドの研磨条件(走行速度に対する回転数、研磨圧力、研磨ヘッド配置、往復運動距離、往復運動速度)を適宜変更する。このとき、研磨斑が大きすぎる場合には、均一な研磨ができなくなる。たとえば基板面のキズを除去しようとした場合、研磨斑が大きいと部分的にキズ残りが生じてしまう。 As described above, the polishing conditions (the rotational speed with respect to the traveling speed, the polishing pressure, the polishing head arrangement, the reciprocating movement distance, and the reciprocating movement speed) of the plurality of polishing heads are appropriately changed. At this time, if the polishing spots are too large, uniform polishing cannot be performed. For example, when the scratch on the substrate surface is to be removed, if the polishing spot is large, a scratch residue is partially generated.
ここで、複数個の研磨ヘッドを配設した場合、研磨ヘッドの往復運動の幅を該研磨ヘッドの直径以上の長さとし、隣り合う研磨ヘッドのx方向の間隔を往復運動幅と同じ長さとすると共に、各研磨ヘッドの往復運動速度を、研磨ヘッドの直径の1/3以下の距離を基板が走行する間に研磨ヘッドの往復運動が1回完了する速度とすることが好ましい。 Here, when a plurality of polishing heads are provided, the width of the reciprocating motion of the polishing head is set to be equal to or longer than the diameter of the polishing head, and the interval between adjacent polishing heads in the x direction is the same length as the reciprocating motion width. At the same time, the reciprocating speed of each polishing head is preferably set to a speed at which the reciprocating movement of the polishing head is completed once while the substrate travels a distance of 1/3 or less of the diameter of the polishing head.
また、研磨ヘッドAと研磨ヘッドBを配設し、基板端部から研磨ヘッドがはみ出すことなく研磨する際、前記研磨ヘッドAの直径の1/2の直径を有する研磨ヘッドBを研磨ヘッドAと干渉しないよう基板端部に配置し、該研磨ヘッドBの往復運動の幅は研磨ヘッドBの直径と同じ長さとすると共に、研磨ヘッドBの往復運動速度を、研磨ヘッドBの直径の1/3以下の距離を基板が走行する間に研磨ヘッドBの往復運度が1回完了する速度とし、且つ、該研磨ヘッドBの回転数と研磨圧力の条件を、研磨ヘッドBの最も深く削られる部分の研磨量が研磨ヘッドAの均一に研磨された部分の研磨量の1/2となるようにすることが好ましい。 Further, when the polishing head A and the polishing head B are provided and polishing is performed without the polishing head protruding from the edge of the substrate, the polishing head B having a diameter that is ½ of the diameter of the polishing head A is used as the polishing head A. The width of the reciprocating motion of the polishing head B is set to the same length as the diameter of the polishing head B, and the reciprocating speed of the polishing head B is set to 1/3 of the diameter of the polishing head B. The speed at which the reciprocation of the polishing head B is completed once while the substrate travels the following distance, and the conditions of the rotational speed and polishing pressure of the polishing head B are the deepest part of the polishing head B. It is preferable that the polishing amount of the polishing head be ½ of the polishing amount of the polishing head A uniformly polished portion.
本発明を以下の実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described by the following examples, but the present invention is not limited thereto.
(実施例1)
基板はステンレス鋼(SUS304)のエンドレスベルトを用いた。研磨ヘッドは、図1に示すように、直径200mmの円盤状で、回転軸に研磨液を供給する直径4mmの貫通孔を有し、研磨パッドは貫通孔のない浸透性のある不織布素材として小島繊維製ブランケットを研磨ヘッドと固着することなく、止め金具で張り上げ取り付けた。また、研磨パッドと研磨ヘッドの間には、クッション材として直径200mmの研磨パッド(ケメット・ジャパン(株)製、商品名FEL)を研磨ヘッドへ粘着剤で固着した。中心部は直径8mmの貫通孔を有している。研磨液は、昭和電工(株)製の商品名A6000を用いて純水で砥粒濃度が1%となるように希釈し、さらに添加剤として硝酸アルミニウムを1%添加した。また、研磨液の供給量は0.5L/minとし、研磨ヘッドの研磨液供給孔での供給圧が定常となる状態とした。
Example 1
A stainless steel (SUS304) endless belt was used as the substrate. As shown in FIG. 1, the polishing head has a disc shape with a diameter of 200 mm and has a through hole with a diameter of 4 mm for supplying the polishing liquid to the rotating shaft. The fiber blanket was stretched and attached with a stopper without being fixed to the polishing head. In addition, a polishing pad having a diameter of 200 mm (made by Kemet Japan Co., Ltd., trade name FEL) was fixed as a cushion material between the polishing pad and the polishing head with an adhesive. The central portion has a through hole having a diameter of 8 mm. The polishing liquid was diluted with pure water using a trade name A6000 manufactured by Showa Denko KK so that the abrasive grain concentration would be 1%, and 1% aluminum nitrate was further added as an additive. The supply amount of the polishing liquid was 0.5 L / min, and the supply pressure at the polishing liquid supply hole of the polishing head was in a steady state.
まず、プレストン係数を求めるため、下記条件にて予備研磨を実施した。 First, in order to obtain the Preston coefficient, preliminary polishing was performed under the following conditions.
基板の寸法は厚さ1.5mm、幅500mm、長さ600mmで、その中心部をくり貫き板として厚さ1.5mm、幅100mm、長さ100mmの大きさでくり貫いた。くり貫き板の重量をまず測定し、その後、くり貫き板を基板の元の位置へ戻し、研磨ヘッド1個にて基板(くり貫き板含む)を図2のように研磨した。基板の走行速度を0.5m/minとし、研磨条件は、研磨ヘッドの回転数300rpm、研磨圧0.024MPa、往復運動幅300mm、往復運動速度7.5m/min(研磨ヘッドの直径Dの1/5の距離を基板が走行する間に研磨ヘッドの往復運動が1回完了)、往復運動の加減速時間100msecとした。(研磨ヘッドの直径Dの2倍の距離を研磨ヘッドが運動する時間の6.25%)その後、くり貫き板の重量を再測定し、研磨前後の重量差から基板の密度7.8g/cm3とし研磨量を求めた。このとき、研磨量は深さ155nmであった。この研磨条件と研磨量を前記プレストンの経験式に代入しプレストン係数kを求めた。このとき、微小時間を0.02secとし、メッシュ分割数は以下の通りとした。 The substrate had a thickness of 1.5 mm, a width of 500 mm, and a length of 600 mm, and a central portion of the substrate was cut into a thickness of 1.5 mm, a width of 100 mm, and a length of 100 mm. The weight of the perforated plate was first measured, and then the perforated plate was returned to the original position of the substrate, and the substrate (including the perforated plate) was polished with one polishing head as shown in FIG. The substrate traveling speed is 0.5 m / min, and the polishing conditions are as follows: polishing head rotation speed 300 rpm, polishing pressure 0.024 MPa, reciprocating motion width 300 mm, reciprocating motion speed 7.5 m / min (1 of polishing head diameter D). The reciprocation of the polishing head is completed once while the substrate travels a distance of / 5), and the acceleration / deceleration time of the reciprocation is 100 msec. (6.25% of the time during which the polishing head moves over a distance twice the diameter D of the polishing head) Thereafter, the weight of the punched plate is measured again, and the density of the substrate is 7.8 g / cm from the weight difference before and after polishing. The polishing amount was determined as 3 . At this time, the polishing amount was 155 nm in depth. The polishing conditions and the polishing amount were substituted into the Preston empirical formula to determine the Preston coefficient k. At this time, the minute time was set to 0.02 sec, and the number of mesh divisions was as follows.
基板の幅方向(x方向);400mmを5mm間隔で80分割
基板の走行方向(y方向);100mmを5mmで20分割
従って基板のxy平面上を80×20=1600分割した。
The width direction of the substrate (x direction): 400 mm is divided into 80 divisions at intervals of 5 mm (y direction); 100 mm is divided into 20 portions at 5 mm, so that 80 × 20 = 1600 divisions on the xy plane of the substrate.
この後、厚さ1.5mm、幅500mmのエンドレスベルトにおいて、両端部50mmを除いた400mm幅の範囲(均一範囲)が180nmの研磨量(深さ)となるように研磨条件(研磨ヘッドの回転数、研磨圧力、往復運動幅、隣り合う研磨ヘッドのx方向の間隔)を適宜変えて先で求めたプレストン係数kを用いてプレストンの経験式に基づき計算し、以下の手順で研磨斑が10%以下となる研磨条件を選定した。 Thereafter, in an endless belt having a thickness of 1.5 mm and a width of 500 mm, polishing conditions (rotation of the polishing head) are set so that a 400 mm width range (uniform range) excluding both end portions 50 mm becomes a polishing amount (depth) of 180 nm. Number, polishing pressure, reciprocating motion width, and spacing between adjacent polishing heads in the x direction) are appropriately calculated based on the Preston's empirical formula using the Preston coefficient k obtained earlier. The polishing conditions were selected to be% or less.
(a)前記研磨ヘッド1個で、研磨量が180nmになるように前記の研磨条件を変えて、Rzの小さくなる条件を選択した。
(b)前記研磨ヘッド2個をx方向に配設し前項(a)で選択した研磨条件にて研磨量を計算し、各研磨ヘッドのx方向研磨量を足し合わせ、研磨ヘッド間の距離を変えて、Rzが小さくように計算を繰り返した。
(A) The polishing conditions were changed so that the polishing amount was 180 nm with one polishing head, and the conditions for reducing Rz were selected.
(B) The two polishing heads are arranged in the x direction, the polishing amount is calculated under the polishing conditions selected in the previous section (a), the x direction polishing amounts of the polishing heads are added together, and the distance between the polishing heads is calculated. The calculation was repeated so that Rz was small.
なお、研磨斑は前記式(2)を用い、式中のHは、前記メッシュ分割して得られた1600点の各点の研磨量の値の平均値とし、またRzは前記各点の研磨量の値において、最も大きい値から5番目までの値の平均値から、最も小さい値から5番目までの値の平均値を引いた値として算出した。 In addition, the polishing spot uses the above formula (2), where H is the average value of the polishing amount at each point of 1600 points obtained by dividing the mesh, and Rz is the polishing point at each point. In the quantity value, the average value from the largest value to the fifth value was calculated as the value obtained by subtracting the average value from the smallest value to the fifth value.
この場合、図9に示すように、基板の走行速度を0.5m/minとし、前記研磨ヘッド2個を用いて、回転数400rpm、研磨圧0.024MPa、研磨ヘッド間距離300mm、往復運動幅300mm、往復運動速度7.5m/min(研磨ヘッドの直径Dの1/5の距離を基板が走行する間に研磨ヘッドの往復運動が1回完了する速度)、往復運動の加減速時間100msec(研磨ヘッドの直径Dの2倍の距離を研磨ヘッドが運動する時間の6.25%)とした。このときの研磨量プロファイルを図10に示す。前記均一範囲の研磨斑は7.6%となった。 In this case, as shown in FIG. 9, the traveling speed of the substrate is set to 0.5 m / min, and using the two polishing heads, the rotation speed is 400 rpm, the polishing pressure is 0.024 MPa, the distance between the polishing heads is 300 mm, and the reciprocating motion width. 300 mm, reciprocating speed 7.5 m / min (speed at which the reciprocating motion of the polishing head is completed once while the substrate travels a distance of 1/5 of the diameter D of the polishing head), reciprocating acceleration / deceleration time 100 msec ( The distance twice the diameter D of the polishing head was 6.25% of the time for the polishing head to move. The polishing amount profile at this time is shown in FIG. The polishing spots in the uniform range were 7.6%.
(実施例2)
直径200mmの研磨ヘッドAを1個と、直径100mmの研磨ヘッドB、B’を2個用いて、厚さ1.5mm、幅500mmのエンドレスベルトを、ベルト端部から研磨ヘッドがはみ出すことなく、両端部100mmを除いた300mm幅の範囲を深さ180nmの研磨量で研磨する場合の最適な研磨量プロファイルを求めた。
(Example 2)
Using one polishing head A having a diameter of 200 mm and two polishing heads B and B ′ having a diameter of 100 mm, an endless belt having a thickness of 1.5 mm and a width of 500 mm was not protruded from the belt end. An optimum polishing amount profile in the case of polishing a range of 300 mm width excluding both end portions of 100 mm with a polishing amount having a depth of 180 nm was obtained.
なお、研磨ヘッドBは、直径100mmの円盤状である以外は研磨ヘッドAと同じ仕様とした。この研磨ヘッドBのプレストン係数を求めるため、下記条件にて予備研磨を実施した。 The polishing head B has the same specifications as the polishing head A except that it has a disk shape with a diameter of 100 mm. In order to obtain the Preston coefficient of the polishing head B, preliminary polishing was performed under the following conditions.
基板の寸法は厚さ1.5mm、幅500mm、長さ600mmで、その中心部をくり貫き板として厚さ1.5mm、幅100mm、長さ100mmの大きさでくり貫いた。くり貫き板の重量をまず測定し、その後、基板へくり貫き板を戻し、研磨ヘッドBにて基板(くり貫き板含む)を図2のように研磨した。基板の走行速度を0.25m/minとした場合、研磨条件は、回転数400rpm、研磨圧0.024MPa、往復運動幅200mm、往復運動速度5m/min(研磨ヘッドの直径Dの1/5の距離を基板が走行する間に研磨ヘッドの往復運動が1回完了)、往復運動の加減速時間100msec(研磨ヘッドの直径Dの2倍の距離を研磨ヘッドが運動する時間の10%)とした。その後、くり貫き板の重量を再測定し、研磨前後の重量差から密度7.8g/cm3とし研磨量を求めた。このとき、研磨量は深さ96nmであった。この研磨条件と研磨量を用いてプレストン係数k’を求めた。このプレストン係数k’を用いて、実施例1と同様の手順で研磨斑を10%以下となる条件を選定した。 The substrate had a thickness of 1.5 mm, a width of 500 mm, and a length of 600 mm, and a central portion of the substrate was cut into a thickness of 1.5 mm, a width of 100 mm, and a length of 100 mm. The weight of the perforated plate was first measured, and then the perforated plate was returned to the substrate, and the substrate (including the perforated plate) was polished by the polishing head B as shown in FIG. When the substrate traveling speed is 0.25 m / min, the polishing conditions are as follows: the rotation speed is 400 rpm, the polishing pressure is 0.024 MPa, the reciprocating motion width is 200 mm, and the reciprocating motion speed is 5 m / min (1/5 of the diameter D of the polishing head). The reciprocating motion of the polishing head is completed once while the substrate is traveling), and the acceleration / deceleration time of the reciprocating motion is 100 msec (the distance twice the polishing head diameter D is 10% of the time for the polishing head to move). . Thereafter, the weight of the cut-through plate was measured again, and the amount of polishing was determined by setting the density to 7.8 g / cm 3 from the weight difference before and after polishing. At this time, the polishing amount was 96 nm in depth. The Preston coefficient k ′ was determined using the polishing conditions and the polishing amount. Using this Preston coefficient k ′, the conditions for polishing spots to be 10% or less were selected in the same procedure as in Example 1.
このとき、図11に示すように、基板の走行速度を0.5m/minとし、研磨ヘッドAでは、回転数400rpm、研磨圧0.024MPa、往復運動幅300mm、往復運動速度7.5m/min(研磨ヘッドの直径Dの1/5の距離を基板が走行する間に研磨ヘッドの往復運動が1回完了)、往復運動の加減速時間100msec(研磨ヘッドの直径Dの2倍の距離を研磨ヘッドが運動する時間の6.25%)の条件でベルト全面を研磨し、研磨ヘッドB、B’では最も深く削られる部分の研磨量が研磨ヘッドAの均一に研磨された部分(中心部の100mm幅)の研磨量の1/2の研磨量となるように回転数400rpm、研磨圧0.024MPa、往復運動幅100mm、往復運動速度6m/min(研磨ヘッドの直径Dの1/5の距離を基板が走行する間に研磨ヘッドの往復運動が1回完了)、往復運動の加減速時間100msec(研磨ヘッドの直径Dの2倍の距離を研磨ヘッドが運動する時間の10%)の条件でベルト両端部を研磨した。 At this time, as shown in FIG. 11, the traveling speed of the substrate is 0.5 m / min. In the polishing head A, the rotation speed is 400 rpm, the polishing pressure is 0.024 MPa, the reciprocating motion width is 300 mm, and the reciprocating motion speed is 7.5 m / min. (The reciprocation of the polishing head is completed once while the substrate travels a distance of 1/5 of the diameter D of the polishing head), and the acceleration / deceleration time of the reciprocation is 100 msec (polishing a distance twice the diameter D of the polishing head) The entire surface of the belt is polished under the condition of 6.25% of the time during which the head moves, and in the polishing heads B and B ′, the polishing amount at the deepest part of the polishing head B is a portion where the polishing head A is uniformly polished (the central portion). The rotational speed is 400 rpm, the polishing pressure is 0.024 MPa, the reciprocating motion width is 100 mm, and the reciprocating motion speed is 6 m / min (1/5 of the diameter D of the polishing head). The reciprocating motion of the polishing head is completed once while the substrate travels the distance), and the acceleration / deceleration time of the reciprocating motion is 100 msec (10% of the time for which the polishing head moves twice the distance D of the polishing head diameter D). The belt was polished at both ends.
このときの研磨量プロファイルを図12に示す。両端部100mmを除いた300mm幅の範囲の研磨斑は8.9%となった。 The polishing amount profile at this time is shown in FIG. Polishing spots in the range of 300 mm width excluding both ends 100 mm were 8.9%.
(比較例1)
研磨ヘッド2個の往復運動速度を3m/min(研磨ヘッドの直径Dの1/2の距離を基板が走行する間に研磨ヘッドの往復運動が1回完了)としたこと以外は、実施例1と同様に計算し、研磨条件を選定した。このときの研磨量プロファイルを図13に示す。両端部50mmを除いた400mm幅の研磨斑は17.9%と大きかった。
(Comparative Example 1)
Example 1 except that the reciprocating speed of the two polishing heads was set to 3 m / min (the reciprocating movement of the polishing head was completed once while the substrate traveled a distance ½ of the diameter D of the polishing head). Calculation was performed in the same manner as above, and polishing conditions were selected. The polishing amount profile at this time is shown in FIG. Polishing spots with a width of 400 mm excluding 50 mm at both ends were as large as 17.9%.
(比較例2)
研磨ヘッド2個の往復運動の加減速時間を240msec(研磨ヘッドの直径Dの2倍の距離を研磨ヘッドが運動する時間の15%)としたこと以外は、実施例1と同様に計算し、研磨条件を選定した。このときの研磨量プロファイルを図14に示す。両端部50mmを除いた400mm幅の研磨斑は14.6%と大きかった。
(Comparative Example 2)
The acceleration / deceleration time of the two reciprocating motions of the two polishing heads was calculated in the same manner as in Example 1 except that the acceleration / deceleration time was 240 msec (a distance twice the polishing head diameter D was 15% of the time for the polishing head to move). Polishing conditions were selected. The polishing amount profile at this time is shown in FIG. Polishing spots with a width of 400 mm excluding 50 mm at both ends were as large as 14.6%.
本発明によれば、走行する基板を連続的に鏡面研磨する方法として、広く適用できる。 The present invention can be widely applied as a method of continuously mirror-polishing a traveling substrate.
1 基板平面
2 基板断面
3 基板X方向(基板の走行方向と直交する方向)
4 基板Y方向(基板の走行方向)
5 くり貫き板
6 くり貫き板の中心位置O
7 くり貫き板の幅M
8 研磨ヘッドA
9 研磨ヘッドA’
10 研磨ヘッドB
11 研磨ヘッドB’
12 研磨ヘッド直径D
13 研磨ヘッドA、A’の回転軸中心の軌跡
14 研磨ヘッドB、B’の回転軸中心の軌跡
15 往復運動の幅
16 往復運動が1回完了したときの基板の走行距離
17 往復運動の折り返し点L
18 往復運動の折り返し点R
19 往復運動の折り返し点L’
20 往復運動の折り返し点R’
21 往復運動の折り返し点Lから研磨ヘッドの半径D/2だけ外側の位置
22 往復運動の折り返し点Rから研磨ヘッドの半径D/2だけ外側の位置
23 往復運動の折り返し点Lから研磨ヘッドの半径D/2だけ内側の位置
24 往復運動の折り返し点Rから研磨ヘッドの半径D/2だけ内側の位置
25 研磨量(研磨した深さ)H
26 均一範囲
29 研磨パッド
30 クッション材
31 研磨液供給孔
32 基板断面V
33 基板断面W
34 エッジガイド
35 研磨斑の算出範囲
1 substrate plane 2 substrate cross section 3 substrate X direction (direction orthogonal to the traveling direction of the substrate)
4 substrate Y direction (traveling direction of the substrate)
5 Drilled plate 6 Center position of drilled plate O
7 Width M of punched plate
8 Polishing head A
9 Polishing head A '
10 Polishing head B
11 Polishing head B '
12 Polishing head diameter D
13 Trajectory of the rotational axis center of the polishing heads A and A ′ 14 Trajectory of the rotational axis center of the polishing heads B and B ′ 15 Width of the reciprocating motion 16 Travel distance of the substrate when the reciprocating motion is completed once 17 Return of the reciprocating motion Point L
18 Turning point R of reciprocating motion
19 Reciprocal turning point L '
20 Reciprocal turning point R '
21 A position outside the polishing head radius D / 2 from the reciprocal turning point L 22 A position outside the reciprocating turning point R by the polishing head radius D / 2 23 A radius of the polishing head from the reciprocating turning point L A position 24 inside by D / 2 A position 25 inside by a radius D / 2 of the polishing head from the turn-back point R of the reciprocating motion. Polishing amount (polishing depth) H
26 Uniform range 29 Polishing pad 30 Cushion material 31 Polishing liquid supply hole 32 Substrate cross section V
33 Substrate cross section W
34 Edge guide 35 Polishing spot calculation range
Claims (7)
(1)予め基板の一部をくり貫いたくり貫き板の重量を測定した後、くり貫き板を基板の元の位置へ戻し、各研磨ヘッドについて個別に、くり貫き板の往復運動方向の中心位置Oを中心として研磨ヘッドを基板の走行方向と直交する水平方向に加減速時間を研磨ヘッドの直径Dの2倍の距離を研磨ヘッドが運動する時間の10%以下として往復運動させ、往復運動の幅が研磨ヘッドの直径Dとくり貫き板の幅Mを足した距離(D+M)以上の長さとし、研磨ヘッドの往復運動速度を、研磨ヘッドの直径Dの1/3以下の距離を基板が走行する間に研磨ヘッドの往復運動が1回完了する速度として研磨する。
(2)その後、くり貫き板の重量を再度測定することによって得られた研磨前後のくり貫き板の重量差、基板の密度及び研磨面の面積から算出された研磨量(研磨した深さ)、及び研磨条件を以下のプレストンの経験式
dH(x、y))/dt=k×(P(x、y)×V(x、y))0.5
に代入しプレストン係数kを求める。
(ここで前式のx:基板の走行方向と直交する方向の位置、y:基板の走行方向の位置、dt:微小時間、dH(x、y):微小時間のx、y位置での研磨量、k:プレストン係数、P(x、y):x、y位置での研磨圧力、V(x、y):x、y位置での研磨速度(研磨ヘッドの回転周速、往復運動速度及び基板の走行速度の合成速度)を表す。)
(3)走行する基板面の研磨領域を基板の走行方向と直交する方向(x方向)及び基板の走行方向(y方向)にメッシュ分割し、該メッシュ分割により生成した各点での研磨量を、研磨条件、及び前項(2)で求めたプレストン係数kを前記プレストンの経験式に代入して各研磨ヘッドについて個別に求めた後、得られた各研磨ヘッドのx方向の同位置の研磨量を足し合わせることにより全研磨ヘッドによるx方向の研磨量プロファイルを得る。
(4)各研磨ヘッドの研磨条件及び配置を変更して前項(3)と同様にして研磨量プロファイルを得ることを繰り返して、基板幅方向の一方の端部に配置する研磨ヘッドの往復運動の折り返し点Lより研磨ヘッドの半径D/2だけ内側の位置から、もう一方の端部に配置する研磨ヘッドの往復運動の折り返し点Rより研磨ヘッドの半径D/2だけ内側の位置までの範囲(以下、「均一範囲」という。)における下記式で表される研磨斑Rが10%以下となる研磨条件を選定する。
研磨斑R=(Rz/H)×100
(ここで前式のH:前記均一範囲を、x、y方向に10mm以下でメッシュ分割することにより得られた各点の研磨量の平均値、Rz:均一に研磨された部分を、x、y方向に10mm以下でメッシュ分割することにより得られた各点の研磨量の値において、最も大きい値から5番目までの値の平均値から、最も小さい値から5番目までの値の平均値を引いて2で割った値を表す。) A plurality of disc-shaped polishing heads arranged on a horizontally running substrate are pressed against the substrate, and each polishing head is rotated about a rotation axis perpendicular to the substrate surface. By reciprocating in the horizontal direction perpendicular to the traveling direction and supplying the polishing liquid from the polishing liquid supply hole provided in the center of rotation of each polishing head to the traveling substrate through the polishing pad mounted on the polishing surface. A method for continuously mirror-polishing the substrate under the polishing conditions selected by the following procedures (1) to (4).
(1) After measuring the weight of the punched plate that has been punched through a portion of the substrate in advance, the punched plate is returned to the original position of the substrate, and the center position of the punched plate in the reciprocating direction of each polishing head individually. The reciprocating motion of the polishing head in the horizontal direction perpendicular to the substrate traveling direction with O as the center is set so that the distance twice the polishing head diameter D is 10% or less of the time for the polishing head to move. The width is equal to or longer than the distance (D + M) obtained by adding the diameter D of the polishing head and the width M of the punching plate, and the substrate travels the reciprocating speed of the polishing head at a distance equal to or less than 1/3 of the diameter D of the polishing head. In the meantime, polishing is performed at a speed at which the reciprocation of the polishing head is completed once.
(2) Then, the polishing amount (polished depth) calculated from the weight difference between the punched plates before and after polishing obtained by measuring the weight of the punched plate again, the density of the substrate and the area of the polished surface, And the polishing conditions are the following Preston's empirical formula dH (x, y)) / dt = k × (P (x, y) × V (x, y)) 0.5
To obtain the Preston coefficient k.
(Where x: position in the direction orthogonal to the traveling direction of the substrate, y: position in the traveling direction of the substrate, dt: minute time, dH (x, y): polishing at the x and y positions of minute time. Quantity, k: Preston coefficient, P (x, y): polishing pressure at x, y position, V (x, y): polishing speed at x, y position (rotational peripheral speed of reciprocating head, reciprocating speed and This represents the combined speed of the board running speed.)
(3) The polishing area of the traveling substrate surface is divided into meshes in the direction orthogonal to the traveling direction of the substrate (x direction) and the traveling direction of the substrate (y direction), and the polishing amount at each point generated by the mesh division is determined. , Polishing conditions, and the Preston coefficient k determined in the preceding item (2) is substituted for the Preston's empirical formula to determine each polishing head individually, and then the polishing amount at the same position in the x direction of each polishing head obtained Are added together to obtain a polishing amount profile in the x direction by all polishing heads.
(4) The polishing conditions and arrangement of each polishing head are changed and the polishing amount profile is repeatedly obtained in the same manner as in (3) above, and the reciprocating motion of the polishing head arranged at one end in the substrate width direction is repeated. A range from a position inside the polishing head radius D / 2 from the turning point L to a position inside the polishing head radius D / 2 from the turning point R of the reciprocating motion of the polishing head arranged at the other end ( Hereinafter, polishing conditions are selected so that the polishing spot R represented by the following formula in “uniform range”) is 10% or less.
Polishing spots R = (Rz / H) × 100
(Here H of the previous formula: average value of polishing amount of each point obtained by dividing the uniform range into meshes of 10 mm or less in the x and y directions, Rz: x, From the average value of the largest value to the fifth value, from the average value of the smallest value to the fifth value, the average value of the smallest value to the fifth value in the polishing amount value of each point obtained by mesh division at 10 mm or less in the y direction. Subtracts and divides by 2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010037776A JP2010284792A (en) | 2009-05-13 | 2010-02-23 | Method for polishing travelling substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009116271 | 2009-05-13 | ||
JP2010037776A JP2010284792A (en) | 2009-05-13 | 2010-02-23 | Method for polishing travelling substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010284792A true JP2010284792A (en) | 2010-12-24 |
Family
ID=43540896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010037776A Pending JP2010284792A (en) | 2009-05-13 | 2010-02-23 | Method for polishing travelling substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010284792A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190101679A (en) * | 2018-02-23 | 2019-09-02 | 주식회사 케이씨텍 | Substrate polishing appartus |
KR20190104757A (en) * | 2018-03-02 | 2019-09-11 | 주식회사 케이씨텍 | Substrate polishing apparatus |
KR20190127091A (en) * | 2018-05-03 | 2019-11-13 | 주식회사 케이씨텍 | Substrate processing apparatus |
KR20210097813A (en) * | 2018-12-26 | 2021-08-09 | 어플라이드 머티어리얼스, 인코포레이티드 | Preston Matrix Generator |
-
2010
- 2010-02-23 JP JP2010037776A patent/JP2010284792A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190101679A (en) * | 2018-02-23 | 2019-09-02 | 주식회사 케이씨텍 | Substrate polishing appartus |
KR102515390B1 (en) * | 2018-02-23 | 2023-03-30 | 주식회사 케이씨텍 | Substrate polishing appartus |
KR20190104757A (en) * | 2018-03-02 | 2019-09-11 | 주식회사 케이씨텍 | Substrate polishing apparatus |
KR102544765B1 (en) * | 2018-03-02 | 2023-06-19 | 주식회사 케이씨텍 | Substrate polishing apparatus |
KR20190127091A (en) * | 2018-05-03 | 2019-11-13 | 주식회사 케이씨텍 | Substrate processing apparatus |
KR102551940B1 (en) * | 2018-05-03 | 2023-07-05 | 주식회사 케이씨텍 | Substrate processing apparatus |
KR20210097813A (en) * | 2018-12-26 | 2021-08-09 | 어플라이드 머티어리얼스, 인코포레이티드 | Preston Matrix Generator |
JP2022517729A (en) * | 2018-12-26 | 2022-03-10 | アプライド マテリアルズ インコーポレイテッド | Preston matrix generator |
US11989492B2 (en) | 2018-12-26 | 2024-05-21 | Applied Materials, Inc. | Preston matrix generator |
KR102678211B1 (en) | 2018-12-26 | 2024-06-26 | 어플라이드 머티어리얼스, 인코포레이티드 | Preston Matrix Generator |
JP7558173B2 (en) | 2018-12-26 | 2024-09-30 | アプライド マテリアルズ インコーポレイテッド | Preston matrix generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008018528A (en) | Method for concurrently polishing both surfaces of a plurality of semiconductor wafers and semiconductor wafer | |
JP4714189B2 (en) | Sewing strip and method for simultaneously slicing multiple wafers from a cylindrical workpiece using the sawing strip | |
JP5406890B2 (en) | Method and trimming device for trimming two working layers | |
KR101588512B1 (en) | Method for conditioning polishing pads for the simultaneous double-side polishing of semiconductor wafers | |
JP2010284792A (en) | Method for polishing travelling substrate | |
JP5061296B2 (en) | Flat double-side polishing method and flat double-side polishing apparatus | |
JP5608310B1 (en) | Polishing machine and polishing machine | |
CN108698195A (en) | Polishing method and polishing pad | |
US7438626B2 (en) | Apparatus and method for removing material from microfeature workpieces | |
JP5464497B2 (en) | Substrate polishing method and apparatus | |
JP2000218504A (en) | Wire with fixed abrasive grains and cutting method for fixed abrasive grains wire saw | |
TWI333440B (en) | Method for simulating slurry flow for a grooved polishing pad | |
WO2019069847A1 (en) | Three-dimensional structure grindstone and manufacturing method therefor | |
JP2014195839A (en) | Polishing pad and method for producing polishing pad | |
JP5970955B2 (en) | Polishing table, polishing apparatus using the polishing table, and stamping apparatus for manufacturing the polishing table | |
Shimada et al. | Statistical approach optimizing slant feed grinding | |
JP2000141201A (en) | Cutting method of wire saw | |
JP2006026778A (en) | Sliding surface formation method and sliding surface shape in sliding member | |
JP6295807B2 (en) | Polishing tool and polishing apparatus | |
TW201536479A (en) | Polishing apparatus, method for machining polishing member, method for modifying polishing member, cutting tool for machining shape, and tool for modifying surface | |
JPWO2005095053A1 (en) | Straightening type polishing method and apparatus | |
JP2015042427A (en) | Polishing tool | |
JP3848643B2 (en) | Lap surface plate manufacturing equipment | |
JP2012045682A (en) | Fixed abrasive grain wire saw device | |
JP2020531298A (en) | Surface protrusion polishing pad |