JP2010283205A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2010283205A
JP2010283205A JP2009136203A JP2009136203A JP2010283205A JP 2010283205 A JP2010283205 A JP 2010283205A JP 2009136203 A JP2009136203 A JP 2009136203A JP 2009136203 A JP2009136203 A JP 2009136203A JP 2010283205 A JP2010283205 A JP 2010283205A
Authority
JP
Japan
Prior art keywords
region
igbt
fwd
conductivity type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009136203A
Other languages
Japanese (ja)
Other versions
JP5577628B2 (en
Inventor
Koji Hotta
幸司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009136203A priority Critical patent/JP5577628B2/en
Publication of JP2010283205A publication Critical patent/JP2010283205A/en
Application granted granted Critical
Publication of JP5577628B2 publication Critical patent/JP5577628B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device for securing reliability when applied with a current. <P>SOLUTION: The semiconductor device 11 includes a semiconductor substrate 12 where IGBTs having a plurality of IGBT cells, and FWDs 14 having a plurality of FWD cells arranged so as to be dispersed with the IGBs interposed therebetween are arranged side by side. Wire bonding regions 16 are arranged in positions corresponding to the FWDs 14 at one surface side of the semiconductor substrate 12. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、IGBTとFWDとが併設された半導体基板を備える半導体装置に関するものである。   The present invention relates to a semiconductor device including a semiconductor substrate in which an IGBT and an FWD are provided.

従来、電力変換装置等に用いられる半導体装置として、IGBT(絶縁ゲート型バイポーラトランジスタ、Insulated Gate Bipolar Transistor)と、負荷電流を転流させるためのFWD(Free Wheeling Diode)とを備えたものがあった(例えば特許文献1,2)。   2. Description of the Related Art Conventionally, semiconductor devices used for power conversion devices and the like have been provided with IGBTs (Insulated Gate Bipolar Transistors) and FWDs (Free Wheeling Diodes) for commutating load currents. (For example, Patent Documents 1 and 2).

特許文献1の半導体装置においては、半導体基板の主表面側に設けられたワイヤボンディング領域(ワイヤボンディング部)に金属ワイヤを接合することで通電が行われるようになっていた。   In the semiconductor device of Patent Document 1, energization is performed by bonding a metal wire to a wire bonding region (wire bonding portion) provided on the main surface side of the semiconductor substrate.

また、こうした半導体装置には、特許文献2に示すように、小型化のためにIGBTとFWDとが共通の半導体基板に併設されたものがあった。すなわち、図3及び図4に示す従来の半導体装置111は、共通の半導体基板112にトレンチゲート構造のIGBT部113とFWD部114とが併設されている。   In addition, as shown in Patent Document 2, such a semiconductor device includes one in which IGBT and FWD are provided on a common semiconductor substrate for miniaturization. That is, the conventional semiconductor device 111 shown in FIG. 3 and FIG. 4 is provided with an IGBT portion 113 and an FWD portion 114 having a trench gate structure on a common semiconductor substrate 112.

図3に示すように、半導体基板112の主表面側のアクティブ領域Ac上には、ワイヤボンディング領域115,116が設けられている。ワイヤボンディング領域115は、IGBT部113のゲート電極に通電するためのワイヤが接合される領域である。また、ワイヤボンディング領域116は、IGBT部113のエミッタ電極及びFWD部114のアノード電極として機能する電極に通電するためのワイヤ117が接合される領域である。なお、半導体基板112の主表面側にはゲート電極用の配線をする必要があるために、ワイヤボンディング領域116は複数に分割される態様となっている。そして、ワイヤボンディング領域116に対してアルミニウム系のワイヤ117が超音波等で接合されることで、接合部118が形成される。   As shown in FIG. 3, wire bonding regions 115 and 116 are provided on the active region Ac on the main surface side of the semiconductor substrate 112. The wire bonding region 115 is a region where a wire for energizing the gate electrode of the IGBT portion 113 is joined. The wire bonding region 116 is a region where a wire 117 for energizing an electrode functioning as an emitter electrode of the IGBT portion 113 and an anode electrode of the FWD portion 114 is joined. Note that since the gate electrode wiring needs to be provided on the main surface side of the semiconductor substrate 112, the wire bonding region 116 is divided into a plurality of parts. Then, an aluminum-based wire 117 is bonded to the wire bonding region 116 with ultrasonic waves or the like, so that a bonding portion 118 is formed.

図4に示すように、半導体装置111においては、半導体基板112のN導電型(n−)層119が、IGBT部113及びFWD部114のドリフト層となっている。また、N導電型(n−)層119の主表面側にはIGBT部113のベース領域となるP導電型(P)層120が形成されている。   As shown in FIG. 4, in the semiconductor device 111, the N conductivity type (n−) layer 119 of the semiconductor substrate 112 is a drift layer of the IGBT portion 113 and the FWD portion 114. In addition, a P conductivity type (P) layer 120 serving as a base region of the IGBT portion 113 is formed on the main surface side of the N conductivity type (n−) layer 119.

P導電型(P)層120には主表面側からP導電型(P)層120を貫通して底面がN導電型(n−)層119に達するトレンチが複数形成されている。そして、各トレンチにはゲート絶縁膜121を介してゲート電極122が埋め込まれている。   A plurality of trenches are formed in the P conductivity type (P) layer 120 so as to penetrate the P conductivity type (P) layer 120 from the main surface side and reach the bottom surface to the N conductivity type (n−) layer 119. In each trench, a gate electrode 122 is embedded via a gate insulating film 121.

P導電型(P)層120の主表面側にはIGBT部113のエミッタ領域となるN導電型(n+)領域123とFWD部114のアノード領域となるP導電型(P+)領域124とが選択的に形成されている。そして、半導体基板112の主表面側には、各ゲート電極122を主表面側から覆いつつ、P導電型(P+)領域124及びN導電型(n+)領域123の一部を露出するように層間絶縁膜125が形成されている。   On the main surface side of the P conductivity type (P) layer 120, an N conductivity type (n +) region 123 serving as an emitter region of the IGBT portion 113 and a P conductivity type (P +) region 124 serving as an anode region of the FWD portion 114 are selected. Is formed. Then, on the main surface side of the semiconductor substrate 112, an interlayer is formed so as to expose a part of the P conductivity type (P +) region 124 and the N conductivity type (n +) region 123 while covering each gate electrode 122 from the main surface side. An insulating film 125 is formed.

さらに、半導体基板112の主表面には、アルミニウム系材料からなる電極126がN導電型(n+)領域123及びP導電型(P+)領域124と電気的に接続されるように形成されている。すなわち、電極126はエミッタ領域に接続されるエミッタ電極及びアノード領域に接続されるアノード電極として機能するようになっている。   Furthermore, an electrode 126 made of an aluminum-based material is formed on the main surface of the semiconductor substrate 112 so as to be electrically connected to the N conductivity type (n +) region 123 and the P conductivity type (P +) region 124. That is, the electrode 126 functions as an emitter electrode connected to the emitter region and an anode electrode connected to the anode region.

また、N導電型(n−)層119の裏面側には、フィールドストップ層となるN導電型(n)層127が形成されている。さらに、N導電型(n)層127の裏面側には、IGBT部113のコレクタ領域となるP導電型(P+)層128及びFWD部114のカソード領域となるN導電型(n+)領域129が形成されている。   Further, an N conductivity type (n) layer 127 to be a field stop layer is formed on the back side of the N conductivity type (n−) layer 119. Further, on the back side of the N conductivity type (n) layer 127, there are a P conductivity type (P +) layer 128 serving as a collector region of the IGBT portion 113 and an N conductivity type (n +) region 129 serving as a cathode region of the FWD portion 114. Is formed.

特開平6−302639号公報JP-A-6-302039 特開2009−94105号公報JP 2009-94105 A

ところで、半導体装置111においては、ワイヤ117を通じて大電流が繰り返し通電される。通電時には、IGBT部113及びFWD部114において損失に伴う発熱が生じるとともに、ワイヤ117においても同様に発熱が生じる。その結果、接合部118においては、半導体基板112側からの熱とワイヤ117側からの熱が伝わることにより、局所的な温度上昇が生じていた。そして、繰り返し通電に伴って接合部118で温度の上昇と下降が繰り返されることにより、熱応力によってワイヤ117が剥がれてしまうという問題があった。   By the way, in the semiconductor device 111, a large current is repeatedly supplied through the wire 117. During energization, heat is generated due to loss in the IGBT unit 113 and the FWD unit 114, and similarly, heat is generated in the wire 117. As a result, in the bonding portion 118, heat from the semiconductor substrate 112 side and heat from the wire 117 side are transmitted, and thus a local temperature rise has occurred. In addition, there is a problem that the wire 117 is peeled off due to thermal stress due to repeated increase and decrease in temperature at the joint 118 with repeated energization.

こうした問題に対応するため、特許文献1の半導体装置においては、ワイヤの材質及び線径、並びに接合部のサイズ等を規定することで、接合強度を確保するようにしていた。
一方、ワイヤボンディング領域に接続されるワイヤの本数は少ない方が製造効率上好ましいため、従来から、電流容量を確保しつつワイヤの本数を削減する工夫がなされてきた。しかし、ワイヤの本数を削減すると、ワイヤ1本あたりの電流密度が高まる分、発熱量も増すことになる。
In order to cope with such a problem, in the semiconductor device of Patent Document 1, the bonding strength is ensured by defining the material and diameter of the wire, the size of the bonding portion, and the like.
On the other hand, since it is preferable from the viewpoint of manufacturing efficiency that the number of wires connected to the wire bonding region is small, there has been conventionally devised to reduce the number of wires while securing the current capacity. However, if the number of wires is reduced, the amount of heat generated increases as the current density per wire increases.

すなわち、接続するワイヤの本数の削減や大電流化によって各ワイヤの電流容量が大きくなる場合には、ワイヤの材質及び線径、並びに接合部のサイズを適正化しても、接合部における信頼性を確保することができない虞があった。   In other words, if the current capacity of each wire increases due to a reduction in the number of wires to be connected or an increase in current, the reliability of the joint can be improved even if the material and diameter of the wire and the size of the joint are optimized. There was a possibility that it could not be secured.

この発明はこうした事情に鑑みてなされたものであり、その目的は、通電時における信頼性を確保することができる半導体装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a semiconductor device capable of ensuring reliability during energization.

以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明は、複数のIGBTセルを含むIGBT部と、間に前記IGBT部を介して分散するように配置された、複数のFWDセルを含むFWD部とが併設された半導体基板を備え、該半導体基板の一面側において、前記FWD部と対応する位置にワイヤボンディング領域が設けられたことをその要旨とする。
In the following, means for achieving the above object and its effects are described.
The invention according to claim 1 is a semiconductor substrate in which an IGBT unit including a plurality of IGBT cells and an FWD unit including a plurality of FWD cells disposed so as to be distributed between the IGBT units are provided. And a wire bonding region is provided at a position corresponding to the FWD portion on one surface side of the semiconductor substrate.

同構成では、複数のIGBTセルを含むIGBT部と、複数のFWDセルを含むFWD部とが併設された半導体基板の一面側において、FWD部と対応する位置にワイヤボンディング領域が設けられている。そして、IGBT部よりも通電時の発熱量が少ないFWD部に対応して設けられたワイヤボンディング領域にワイヤが接合されることにより、ワイヤと半導体基板との接合部における局所的な温度上昇を抑制することができる。そして、FWD部を、間にIGBT部を介して分散するように配置することにより、ワイヤとIGBT部の熱をFWD部に拡散させて、全体の温度分布を調整することができる。これにより、接合部における温度上昇を抑制し、通電時における信頼性を確保することができる。   In this configuration, a wire bonding region is provided at a position corresponding to the FWD portion on one surface side of a semiconductor substrate where an IGBT portion including a plurality of IGBT cells and an FWD portion including a plurality of FWD cells are provided. In addition, the wire is bonded to the wire bonding region provided corresponding to the FWD portion that generates less heat when energized than the IGBT portion, thereby suppressing a local temperature rise at the bonding portion between the wire and the semiconductor substrate. can do. And by arrange | positioning an FWD part so that it may disperse | distribute via an IGBT part in between, the heat | fever of a wire and an IGBT part can be spread | diffused to an FWD part, and the whole temperature distribution can be adjusted. Thereby, the temperature rise in a junction part can be suppressed and the reliability at the time of electricity supply can be ensured.

本実施形態における半導体装置のワイヤボンディング模式図。The wire bonding schematic diagram of the semiconductor device in this embodiment. 図1のA−A線における断面構造を示す模式図。The schematic diagram which shows the cross-section in the AA of FIG. 従来の半導体装置のワイヤボンディング模式図。The wire bonding schematic diagram of the conventional semiconductor device. 図3のA−A線における断面構造を示す模式図。The schematic diagram which shows the cross-section in the AA of FIG.

以下、本発明を大容量の電力変換装置として用いられる半導体装置に具体化した一実施形態について、図1及び図2を併せ参照して説明する。
図1及び図2に示す本実施形態の半導体装置11は、共通の半導体基板12に複数のIGBTセルを含むIGBT部13と複数のFDWセルを含むFWD部14とが併設されている。
Hereinafter, an embodiment in which the present invention is embodied in a semiconductor device used as a large-capacity power conversion device will be described with reference to FIGS.
The semiconductor device 11 of this embodiment shown in FIGS. 1 and 2 is provided with an IGBT section 13 including a plurality of IGBT cells and an FWD section 14 including a plurality of FDW cells on a common semiconductor substrate 12.

図1に示すように、半導体基板12の主表面側のアクティブ領域Acには、ワイヤボンディング領域15,16が設けられている。ワイヤボンディング領域15は、IGBT部13のゲート電極に通電するためのワイヤが接合される領域である。また、ワイヤボンディング領域16は、IGBT部13のエミッタ電極及びFWD部14のアノード電極として機能する電極に通電するためのワイヤ17が接合される領域である。   As shown in FIG. 1, wire bonding regions 15 and 16 are provided in the active region Ac on the main surface side of the semiconductor substrate 12. The wire bonding region 15 is a region where a wire for energizing the gate electrode of the IGBT portion 13 is joined. The wire bonding region 16 is a region where a wire 17 for energizing an electrode functioning as an emitter electrode of the IGBT portion 13 and an anode electrode of the FWD portion 14 is joined.

なお、半導体基板112の主表面側にはゲート電極用の配線をする必要があるために、ワイヤボンディング領域16は複数に分割される態様となっている。そして、ワイヤボンディング領域16に対しては、アルミニウム系のワイヤ17が超音波等で接合されることで、接合部18が形成される。   In addition, since it is necessary to wire for the gate electrode on the main surface side of the semiconductor substrate 112, the wire bonding region 16 is divided into a plurality of parts. Then, an aluminum-based wire 17 is bonded to the wire bonding region 16 with ultrasonic waves or the like, so that a bonding portion 18 is formed.

そして、本実施形態の半導体装置11は、IGBT部13のアクティブ領域Ac内に、FWD部14が、間にIGBT部13を介して分散するように配置され、半導体基板12の一面側となる主表面側において、FWD部14と対応する位置にワイヤボンディング領域16が設けられている点が、図3及び図4に示す従来の半導体装置111と異なる。   In the semiconductor device 11 according to the present embodiment, the FWD portions 14 are arranged in the active region Ac of the IGBT portion 13 so as to be dispersed via the IGBT portion 13 between them, and become the main surface of the semiconductor substrate 12. On the surface side, the point that the wire bonding region 16 is provided at a position corresponding to the FWD portion 14 is different from the conventional semiconductor device 111 shown in FIGS.

図2に示すように、半導体装置11においては、半導体基板12のN導電型(n−)層19が、IGBT部13及びFWD部14のドリフト層となっている。また、N導電型(n−)層19の主表面側にはIGBT部13のベース領域となるP導電型(P)層20が形成されている。   As shown in FIG. 2, in the semiconductor device 11, the N conductivity type (n−) layer 19 of the semiconductor substrate 12 is a drift layer of the IGBT portion 13 and the FWD portion 14. In addition, a P conductivity type (P) layer 20 serving as a base region of the IGBT portion 13 is formed on the main surface side of the N conductivity type (n−) layer 19.

そして、IGBT部13のP導電型(P)層20には、主表面側からP導電型(P)層20を貫通して底面がN導電型(n−)層19に達するトレンチが複数形成されている。そして、各トレンチにはゲート絶縁膜21を介してゲート電極22が埋め込まれている。   The P conductivity type (P) layer 20 of the IGBT portion 13 is formed with a plurality of trenches that penetrate the P conductivity type (P) layer 20 from the main surface side and reach the bottom surface to the N conductivity type (n−) layer 19. Has been. A gate electrode 22 is embedded in each trench through a gate insulating film 21.

さらに、IGBT部13のP導電型(P)層20の主表面側には、エミッタ領域となるN導電型(n+)領域23とコンタクト領域となるP導電型(P+)領域24aとが選択的に形成されている。そして、半導体基板12の主表面側には、各ゲート電極22を主表面側から覆いつつ、P導電型(P+)領域24a及びN導電型(n+)領域23の一部を露出するように層間絶縁膜25が形成されている。   Further, an N conductivity type (n +) region 23 serving as an emitter region and a P conductivity type (P +) region 24a serving as a contact region are selectively provided on the main surface side of the P conductivity type (P) layer 20 of the IGBT portion 13. Is formed. Then, on the main surface side of the semiconductor substrate 12, the gate electrode 22 is covered from the main surface side, and an interlayer is formed so as to expose a part of the P conductivity type (P +) region 24a and the N conductivity type (n +) region 23. An insulating film 25 is formed.

一方、FWD部14のP導電型(P)層20には、アノード領域となるP導電型(p+)領域24bが選択的に形成されている。
そして、半導体基板12の主表面には、アルミニウム系材料からなる電極26がN導電型(n+)領域23、P導電型(P+)領域24a及びP導電型(P+)領域24bと電気的に接続されるように形成されている。すなわち、電極126はエミッタ領域に接続されるエミッタ電極及びアノード領域に接続されるアノード電極として機能するようになっている。
On the other hand, the P conductivity type (P) layer 20 of the FWD portion 14 is selectively formed with a P conductivity type (p +) region 24b serving as an anode region.
On the main surface of the semiconductor substrate 12, an electrode 26 made of an aluminum-based material is electrically connected to the N conductivity type (n +) region 23, the P conductivity type (P +) region 24a, and the P conductivity type (P +) region 24b. It is formed to be. That is, the electrode 126 functions as an emitter electrode connected to the emitter region and an anode electrode connected to the anode region.

また、N導電型(n−)層19の裏面側には、フィールドストップ層となるN導電型(n)層27が形成されている。さらに、N導電型(n)層27の裏面側には、IGBT部13のコレクタ領域となるP導電型(P+)層28及びFWD部14のカソード領域となるN導電型(n+)領域29が形成されている。そして、P導電型(P+)層28及びN導電型(n+)領域29は、IGBT部13のコレクタ電極及びFWD部14のカソード電極として機能する電極基板に接続されるようになっている。   Further, an N conductivity type (n) layer 27 serving as a field stop layer is formed on the back surface side of the N conductivity type (n−) layer 19. Further, on the back side of the N conductivity type (n) layer 27, there are a P conductivity type (P +) layer 28 that becomes a collector region of the IGBT portion 13 and an N conductivity type (n +) region 29 that becomes a cathode region of the FWD portion 14. Is formed. The P conductivity type (P +) layer 28 and the N conductivity type (n +) region 29 are connected to an electrode substrate that functions as a collector electrode of the IGBT portion 13 and a cathode electrode of the FWD portion 14.

次に、IGBT部13の動作を説明する。
エミッタ電極とコレクタ電極との間に所定のコレクタ電圧を印可するとともに、エミッタ電極とゲート電極22との間に所定のゲート電圧を印可すると、エミッタ領域であるN導電型(n+)領域23とN導電型(n−)層19との間の部分(チャネル領域)がN型に反転してチャネルが形成される。すると、このチャネルを通じて、エミッタ電極からN導電型(n−)層19に電子が注入される。
Next, the operation of the IGBT unit 13 will be described.
When a predetermined collector voltage is applied between the emitter electrode and the collector electrode and a predetermined gate voltage is applied between the emitter electrode and the gate electrode 22, the N conductivity type (n +) region 23 as the emitter region and the N A portion (channel region) between the conductive type (n−) layer 19 is inverted to N-type to form a channel. Then, electrons are injected from the emitter electrode into the N conductivity type (n−) layer 19 through this channel.

そして、注入された電子により、コレクタ領域であるP導電型(P+)層28とN導電型(n−)層19が順バイアスされ、P導電型(P+)層28からホールが注入されてN導電型(n−)層19の抵抗が大幅に下がり、IGBTの電流容量が増大する。   Then, by the injected electrons, the P conductivity type (P +) layer 28 and the N conductivity type (n−) layer 19 which are collector regions are forward-biased, and holes are injected from the P conductivity type (P +) layer 28 to form N The resistance of the conductivity type (n−) layer 19 is greatly reduced, and the current capacity of the IGBT is increased.

また、エミッタ電極とゲート電極22との間に印可されていたゲート電圧を0Vにする、又は逆バイアスすると、N型に反転していたチャネル領域がP型に戻り、エミッタ電極からの電子の注入が止まる。これにより、P導電型(P+)層28からのホールの注入も止まる。その後、N導電型(n−)層19に蓄積されていたキャリア(電子とホール)がそれぞれコレクタ電極とエミッタ電極から排出されるか、互いに再結合して消滅する。   Further, when the gate voltage applied between the emitter electrode and the gate electrode 22 is set to 0 V or reverse biased, the channel region that has been inverted to the N type returns to the P type, and electrons are injected from the emitter electrode. Stops. Thereby, the injection of holes from the P conductivity type (P +) layer 28 is also stopped. Thereafter, the carriers (electrons and holes) accumulated in the N conductivity type (n−) layer 19 are discharged from the collector electrode and the emitter electrode, respectively, or recombine with each other and disappear.

次に、FWD部14の動作を説明する。
FWD部14においては、アノード電極である電極26とN導電型(n−)層19との間にアノード電圧(順バイアス)を印可し、アノード電圧が閾値を超えると、アノード領域であるP導電型(p+)領域24bとN導電型(n−)層19とが順バイアスされ、FWDが導電する。一方、電極26とN導電型(n−)層19との間に逆バイアスを印可すると、空乏層がアノード領域よりN導電型(n−)層19側へ伸びることで、逆方向耐圧を保持することができる。
Next, the operation of the FWD unit 14 will be described.
In the FWD section 14, an anode voltage (forward bias) is applied between the electrode 26 serving as the anode electrode and the N conductivity type (n−) layer 19, and when the anode voltage exceeds a threshold value, the P conductivity serving as the anode region is applied. The type (p +) region 24b and the N conductivity type (n−) layer 19 are forward biased, and the FWD conducts. On the other hand, when a reverse bias is applied between the electrode 26 and the N conductivity type (n−) layer 19, the depletion layer extends from the anode region to the N conductivity type (n−) layer 19 side, thereby maintaining a reverse breakdown voltage. can do.

ところで、IGBT部13及びFWD部14においては、通電時に電流が流れることで発生する定常損失やスイッチ動作の際に発生するスイッチング損失が原因となって発熱を生じる。また、通電時には各ワイヤ17も発熱するため、ワイヤ17側からの熱と半導体基板12側の熱とにより、接合部18において局所的な温度上昇が生じる虞がある。   By the way, in the IGBT part 13 and the FWD part 14, heat is generated due to a steady loss caused by a current flowing during energization and a switching loss caused during a switch operation. Further, since each wire 17 also generates heat when energized, there is a possibility that a local temperature rise may occur in the joint portion 18 due to heat from the wire 17 side and heat from the semiconductor substrate 12 side.

ここで、本実施形態の半導体装置11は、FWD部14の直上にのみワイヤボンディング領域16が配置されている。そして、一般にFWD部14はIGBT部13よりも損失が少ないため、通電時の発熱量も小さい傾向にある。したがって、FWD部14の直上に配置されたワイヤボンディング領域16にワイヤ17が接合されることにより、ワイヤ17とIGBT部13の熱はFWD部14に拡散され、接合部18における温度上昇が抑制される。   Here, in the semiconductor device 11 of the present embodiment, the wire bonding region 16 is disposed only immediately above the FWD portion 14. And generally, since the FWD part 14 has less loss than the IGBT part 13, the amount of heat generated during energization tends to be small. Therefore, when the wire 17 is joined to the wire bonding region 16 disposed immediately above the FWD portion 14, the heat of the wire 17 and the IGBT portion 13 is diffused to the FWD portion 14, and the temperature rise at the joint 18 is suppressed. The

これに対して、従来の半導体装置111においては、ワイヤボンディング領域116と対応する位置にはIGBT部113とFWD部114とが混在しているために、ワイヤ117とIGBT部113の発熱により接合部118における温度上昇が顕著となる。   On the other hand, in the conventional semiconductor device 111, the IGBT portion 113 and the FWD portion 114 are mixed at a position corresponding to the wire bonding region 116, so that the junction portion is generated by the heat generated by the wire 117 and the IGBT portion 113. The temperature rise at 118 is significant.

すなわち、本実施形態の半導体装置11においては、半導体基板12の温度分布を均一化させるのに適切なサイズ及び間隔で配置したFWD部14と対応する位置にワイヤボンディング領域16を設けたことで、接合部18における温度上昇を抑制することが可能となる。したがって、繰り返し通電に伴う接合部18の温度変化の幅を小さくすることにより、熱応力による接合部18の劣化やワイヤ17の剥離を抑制することができる。   That is, in the semiconductor device 11 of the present embodiment, the wire bonding region 16 is provided at a position corresponding to the FWD portion 14 arranged at an appropriate size and interval to make the temperature distribution of the semiconductor substrate 12 uniform. It is possible to suppress the temperature rise at the joint 18. Therefore, by reducing the width of the temperature change of the joint portion 18 due to repeated energization, deterioration of the joint portion 18 and peeling of the wire 17 due to thermal stress can be suppressed.

以上説明した本実施形態によれば、以下のような効果を得ることができる。
(1)複数のIGBTセルを含むIGBT部13と、複数のFWDセルを含むFWD部14とが併設された半導体基板12の主表面側において、FWD部14と対応する位置にワイヤボンディング領域16が設けられている。そして、IGBT部13よりも通電時の発熱量が少ないFWD部14に対応して設けられたワイヤボンディング領域16にワイヤ17が接合されることにより、接合部18における局所的な温度上昇を抑制することができる。
According to this embodiment described above, the following effects can be obtained.
(1) On the main surface side of the semiconductor substrate 12 where the IGBT unit 13 including a plurality of IGBT cells and the FWD unit 14 including a plurality of FWD cells are provided, the wire bonding region 16 is provided at a position corresponding to the FWD unit 14. Is provided. And the wire 17 is joined to the wire bonding area | region 16 provided corresponding to the FWD part 14 with less calorific value at the time of energization than the IGBT part 13, and the local temperature rise in the junction part 18 is suppressed. be able to.

そして、FWD部14を、間にIGBT部13を介して分散するように配置することにより、ワイヤ17とIGBT部13の熱をFWD部14に拡散させて、全体の温度分布を調整することができる。これにより、接合部18における温度上昇を抑制し、通電時における信頼性を確保することができる。   And by arrange | positioning the FWD part 14 so that it may disperse | distribute via the IGBT part 13, it can diffuse the heat | fever of the wire 17 and the IGBT part 13 to the FWD part 14, and can adjust the whole temperature distribution. it can. Thereby, the temperature rise in the junction part 18 can be suppressed and the reliability at the time of electricity supply can be ensured.

(2)半導体基板12において、FWD部14を、間にIGBT部13を介して分散するように配置することで、全体の温度分布を調整することができる。これにより、ワイヤ17の電流容量を確保しつつ、接合部18の温度上昇を抑制することができる。したがって、接合部18は従来の半導体装置111よりも電力集中に耐えることができるため、ワイヤ17の本数を削減することで製造効率を向上させ、コストダウンに貢献することができる。   (2) In the semiconductor substrate 12, by disposing the FWD part 14 so as to be dispersed via the IGBT part 13, the overall temperature distribution can be adjusted. Thereby, the temperature rise of the junction part 18 can be suppressed, ensuring the current capacity of the wire 17. Therefore, since the junction 18 can withstand more power concentration than the conventional semiconductor device 111, reducing the number of wires 17 can improve manufacturing efficiency and contribute to cost reduction.

なお、上記実施形態は以下のように変更して実施することもできる。
・ワイヤボンディング領域16は電極26の表面側に設けてもよいし、電極26の表面側に別途ボンディングパットを形成するようにしてもよい。
In addition, the said embodiment can also be changed and implemented as follows.
The wire bonding region 16 may be provided on the surface side of the electrode 26, or a separate bonding pad may be formed on the surface side of the electrode 26.

・フィールドストップ層は省略してもよい。
・IGBTセルはトレンチゲート構造に限らず、例えばプレーナ型のセル構造を採用してもよい。
-The field stop layer may be omitted.
The IGBT cell is not limited to the trench gate structure, and may be a planar cell structure, for example.

・IGBTセル及びFWDセルのIGBT部13及びFWD部14における配置数や、IGBT部13とFWD部14のサイズ及び配置、ワイヤ17の本数や接合部18の数は任意に設定することができる。   The number of IGBT cells and FWD cells arranged in the IGBT part 13 and the FWD part 14, the size and arrangement of the IGBT part 13 and the FWD part 14, the number of wires 17 and the number of joints 18 can be arbitrarily set.

・半導体装置11は、n−p−n型のIGBTセルとしてもよいし、pとnの導電型を逆にしたp−n−p型のIGBTセルとしてもよい。
・ワイヤ17は、より断面積の大きいテープ形状やリボン形状のものを用いてもよい。
The semiconductor device 11 may be an npn type IGBT cell, or may be a pnp type IGBT cell in which the conductivity types of p and n are reversed.
The wire 17 may be a tape shape or ribbon shape having a larger cross-sectional area.

11…半導体装置、12…半導体基板、13…IGBT部、14…FWD部、16…ワイヤボンディング領域。   DESCRIPTION OF SYMBOLS 11 ... Semiconductor device, 12 ... Semiconductor substrate, 13 ... IGBT part, 14 ... FWD part, 16 ... Wire bonding area | region.

Claims (1)

複数のIGBTセルを含むIGBT部と、間に前記IGBT部を介して分散するように配置された、複数のFWDセルを含むFWD部とが併設された半導体基板を備え、
該半導体基板の一面側において、前記FWD部と対応する位置にワイヤボンディング領域が設けられたことを特徴とする半導体装置。
A semiconductor substrate provided with an IGBT section including a plurality of IGBT cells and an FWD section including a plurality of FWD cells arranged so as to be dispersed through the IGBT section between the IGBT sections;
A semiconductor device, wherein a wire bonding region is provided at a position corresponding to the FWD portion on one surface side of the semiconductor substrate.
JP2009136203A 2009-06-05 2009-06-05 Semiconductor device Expired - Fee Related JP5577628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136203A JP5577628B2 (en) 2009-06-05 2009-06-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009136203A JP5577628B2 (en) 2009-06-05 2009-06-05 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2010283205A true JP2010283205A (en) 2010-12-16
JP5577628B2 JP5577628B2 (en) 2014-08-27

Family

ID=43539684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136203A Expired - Fee Related JP5577628B2 (en) 2009-06-05 2009-06-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5577628B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170780A (en) * 2013-03-01 2014-09-18 Toyota Central R&D Labs Inc Reverse conducting IGBT
JP2015065213A (en) * 2013-09-24 2015-04-09 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2018225571A1 (en) * 2017-06-09 2018-12-13 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
CN111863743A (en) * 2019-04-26 2020-10-30 三菱电机株式会社 Semiconductor device with a plurality of semiconductor chips

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302639A (en) * 1993-04-14 1994-10-28 Hitachi Ltd Power semiconductor device
JP2007013367A (en) * 2005-06-29 2007-01-18 Mitsubishi Electric Corp Measuring system and measuring device and radio station
JP2007013377A (en) * 2005-06-29 2007-01-18 Canon Inc Image processing method, image processing device, and program
WO2007013377A1 (en) * 2005-07-26 2007-02-01 Matsushita Electric Industrial Co., Ltd. Semiconductor element and electric device
JP2007227806A (en) * 2006-02-24 2007-09-06 Denso Corp Semiconductor device
JP2008172132A (en) * 2007-01-15 2008-07-24 Denso Corp Semiconductor apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302639A (en) * 1993-04-14 1994-10-28 Hitachi Ltd Power semiconductor device
JP2007013367A (en) * 2005-06-29 2007-01-18 Mitsubishi Electric Corp Measuring system and measuring device and radio station
JP2007013377A (en) * 2005-06-29 2007-01-18 Canon Inc Image processing method, image processing device, and program
WO2007013377A1 (en) * 2005-07-26 2007-02-01 Matsushita Electric Industrial Co., Ltd. Semiconductor element and electric device
JP2007227806A (en) * 2006-02-24 2007-09-06 Denso Corp Semiconductor device
JP2008172132A (en) * 2007-01-15 2008-07-24 Denso Corp Semiconductor apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170780A (en) * 2013-03-01 2014-09-18 Toyota Central R&D Labs Inc Reverse conducting IGBT
JP2015065213A (en) * 2013-09-24 2015-04-09 ルネサスエレクトロニクス株式会社 Semiconductor device
US10032736B2 (en) 2013-09-24 2018-07-24 Renesas Electronics Corporation Semiconductor device
US10672762B2 (en) 2017-06-09 2020-06-02 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN110100314A (en) * 2017-06-09 2019-08-06 富士电机株式会社 The manufacturing method of semiconductor device and semiconductor device
JPWO2018225571A1 (en) * 2017-06-09 2019-11-07 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2018225571A1 (en) * 2017-06-09 2018-12-13 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2021052208A (en) * 2017-06-09 2021-04-01 富士電機株式会社 Semiconductor device and manufacturing method for semiconductor device
JP7078099B2 (en) 2017-06-09 2022-05-31 富士電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices
CN111863743A (en) * 2019-04-26 2020-10-30 三菱电机株式会社 Semiconductor device with a plurality of semiconductor chips
JP2020181918A (en) * 2019-04-26 2020-11-05 三菱電機株式会社 Semiconductor device
JP7061983B2 (en) 2019-04-26 2022-05-02 三菱電機株式会社 Semiconductor device
CN111863743B (en) * 2019-04-26 2024-02-23 三菱电机株式会社 Semiconductor device with a semiconductor device having a plurality of semiconductor chips

Also Published As

Publication number Publication date
JP5577628B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5771984B2 (en) Semiconductor device
JP2016096222A (en) Semiconductor device
JP2013115223A (en) Semiconductor device
JP2007227806A (en) Semiconductor device
JP2007214541A (en) Semiconductor device
JP2006332127A (en) Semiconductor device for power
JP2007258363A (en) Semiconductor device
CN110391225B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2013543260A (en) Reverse conducting power semiconductor device
CN107258018B (en) Bidirectional power semiconductor device
JP2004363327A (en) Semiconductor device
JP5577628B2 (en) Semiconductor device
JP6540563B2 (en) Semiconductor device
JP2007281090A (en) Wide gap composite semiconductor device
WO2020202430A1 (en) Semiconductor device
JP2020113691A (en) Semiconductor device
JP2014011213A (en) Diode and power conversion device using the same
US20140061718A1 (en) Insulated gate bipolar transistor
JP6047429B2 (en) Semiconductor device and power conversion device using the same
JP2005101254A (en) Bidirectional high breakdown voltage planer semiconductor device
JP2013069871A (en) Semiconductor device
JP2021128993A (en) Semiconductor device and switching system
JP2011023527A (en) Semiconductor device
JP2020027878A (en) Semiconductor device
JP2804216B2 (en) Gate turn-off thyristor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5577628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees