JP2010282817A - Method of fabricating flat solid oxide fuel battery cell - Google Patents

Method of fabricating flat solid oxide fuel battery cell Download PDF

Info

Publication number
JP2010282817A
JP2010282817A JP2009134820A JP2009134820A JP2010282817A JP 2010282817 A JP2010282817 A JP 2010282817A JP 2009134820 A JP2009134820 A JP 2009134820A JP 2009134820 A JP2009134820 A JP 2009134820A JP 2010282817 A JP2010282817 A JP 2010282817A
Authority
JP
Japan
Prior art keywords
temperature
load
fuel cell
solid oxide
type solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009134820A
Other languages
Japanese (ja)
Other versions
JP5284876B2 (en
Inventor
Kazuhiko Nozawa
和彦 野沢
Himeko Orui
姫子 大類
Takeshi Komatsu
武志 小松
Reiichi Chiba
玲一 千葉
So Arai
創 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009134820A priority Critical patent/JP5284876B2/en
Publication of JP2010282817A publication Critical patent/JP2010282817A/en
Application granted granted Critical
Publication of JP5284876B2 publication Critical patent/JP5284876B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of fabricating a flat oxide fuel battery cell, the method reducing warping of a single cell. <P>SOLUTION: The method includes: a step of forming a green laminate 10 by laminating an electrolyte sheet 3' on an electrode support body 2' formed in a sheet shape; and a step of forming a half cell composed of a sintered body by calcining the green laminate 10. The calcining step of the half cell includes a temperature elevating step and a temperature lowering step, and in the whole calcining step from the temperature elevating step to the temperature lowering step, a first load is added to the half cell. In the temperature lowering step, a second load is added to the half cell in addition to the first load. In the temperature lowering step, a temperature range in which the load is added to the half cell is decided as a range between the highest calcining temperature and at least a temperature in the vicinity of an operating temperature of the fuel battery cell by cooling down. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電極支持型の平板型固体酸化物形燃料電池セルの作製方法に関するものであり、特に単セルの反りを軽減し信頼性および出力特性を高めるようにした平板型固体酸化物形燃料電池セルの作製方法に関するものである。   The present invention relates to a method for producing an electrode-supported flat-type solid oxide fuel cell, and more particularly to a flat-type solid oxide fuel in which warpage of a single cell is reduced and reliability and output characteristics are improved. The present invention relates to a method for manufacturing a battery cell.

燃料電池は、燃料と酸素の化学反応から直接電気エネルギーを取り出す高効率な発電装置であり、CO2 排出量削減など環境面での期待に加え、電力自由化、規制緩和の流れとともに分散発電ビジネスのキーコンポーネントとして注目されている。 A fuel cell is a highly efficient power generator that directly extracts electrical energy from the chemical reaction between fuel and oxygen. In addition to environmental expectations such as CO 2 emission reduction, the power generation liberalization and the deregulation trend have led to the distributed power generation business. It is attracting attention as a key component.

各種燃料電池のうち固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)は、一般的な構成材料として電解質に酸化物イオン導電体(セラミックス)を用いたものであり、燃料電池の中ではもっとも高い発電効率の実現が期待されている。   Among various fuel cells, the solid oxide fuel cell (SOFC) uses an oxide ion conductor (ceramics) as an electrolyte as a general constituent material. Realization of high power generation efficiency is expected.

従来のSOFCは1000℃付近で動作するものが一般的であった。高温での動作は反応の起こり易さや排熱利用の点で有利であり、結果として高い発電効率が期待される。しかし、その反面、高温であるがためにシステムを構成する材料等に制約があった。   Conventional SOFCs generally operate near 1000 ° C. Operation at high temperature is advantageous in terms of easy reaction and utilization of exhaust heat, and as a result, high power generation efficiency is expected. On the other hand, however, there are restrictions on the materials constituting the system due to the high temperature.

そこで近年では、動作温度を下げても従来の電解質や電極と同程度あるいはそれ以上のイオン導電性、電子伝導性を有する新規材料の開発が精力的に行われ、700〜800℃を動作温度とするSOFCが主流となりつつある。また、SOFCの単セルは、構造上、円筒型と平板型、およびその複合型など多岐にわたるが、システム化が容易で、しかも電解質を薄くすることによる電気的損失の低減を実現できる電極支持型平板セルが一般的である(例えば、非特許文献1、p.12〜13)。   Therefore, in recent years, new materials having ion conductivity and electron conductivity comparable to or higher than those of conventional electrolytes and electrodes have been vigorously developed even when the operating temperature is lowered, and the operating temperature is set to 700 to 800 ° C. SOFC is becoming mainstream. In addition, SOFC single cells have a wide variety of structures such as cylindrical, flat, and composite types, but they are easy to systematize and can be used to reduce electrical loss by thinning the electrolyte. A flat plate cell is common (for example, Non-Patent Document 1, p. 12 to 13).

特開2007−194170号公報JP 2007-194170 A

燃料電池発電技術開発固体酸化物形燃料電池の研究開発適用性拡大に関する要素研究(耐熱衝撃性平板形セル・スタックの研究)、平成15年度〜平成16年度NEDO委託業務成果報告書,東京瓦斯株式会社、p.12〜13、p.44〜45、2005年Development of fuel cell power generation technology Elemental research on expanding R & D applicability of solid oxide fuel cells (research on thermal shock-resistant flat plate cells and stacks), FY 2003-2004 NEDO commissioned business results report, Tokyo Gas Co., Ltd. Company, p. 12-13, p. 44-45, 2005

SOFCに用いられる単セル(以下、単にセルともいう)1枚の発電電圧は高々1V程度である。このため、実用的な規模の電力を得るためには、単セルとインターコネクタ(セパレータ)を交互に多数積層して電気的に直列に接続したスタックを形成し、発電を行なう。しかし、セラミックス焼結体である単セルは、熱膨張係数が異なる材料を共焼結して形成されるため、通常「反り」が発生し、これが大きくなると、セルとインターコネクタとの間で良好な電気的接触が確保できなくなり、結果として出力が低下したり、焼結体の割れの原因となる(例えば、特許文献1参照)。また、単セルの反りは、単にセルの能力を十分に引き出せなくなるばかりか、電流パスの偏重による電力集中、スタック組み立て時の機械的歪の蓄積などによる動作の安定性や信頼性にかかわる問題を引き起こすおそれがある。   The generated voltage of a single cell (hereinafter also simply referred to as a cell) used for SOFC is about 1 V at most. For this reason, in order to obtain electric power of a practical scale, a large number of single cells and interconnectors (separators) are alternately stacked to form a stack electrically connected in series to generate power. However, a single cell, which is a ceramic sintered body, is formed by co-sintering materials with different thermal expansion coefficients, so usually “warping” occurs, and if this becomes large, the cell and interconnector are good. As a result, the electrical contact cannot be ensured, and as a result, the output is reduced or the sintered body is cracked (for example, see Patent Document 1). In addition, the warpage of a single cell not only makes it impossible to fully draw out the capacity of the cell, but also causes problems related to operational stability and reliability due to power concentration due to uneven current paths and accumulation of mechanical distortion during stack assembly. May cause.

一般に、電極支持型の平板型固体酸化物形燃料電池セルは、燃料極または空気極を電極支持体とし、この電極支持体と電解質のシートを積層して積層グリーン体(グリーン積層体)とし、このグリーン積層体を共焼結法を用いて一体に焼結することによりハーフセルを作製した後、電解質の上に対極となるシートを積層して焼結することにより作製される。共焼結法では、異なる物質を同時に焼成し、しかも緻密体である電解質と多孔質体である電極が混在する構造としているため、原理的に平坦な単セルを得ることが極めて困難である。実際、現実的なセル形状においては、数mmオーダの反りが発生する(非特許文献1、p.44〜45参照)。このようなセルの反りは、セルサイズの拡大に伴って増加する傾向にあるため、実用的なサイズの大面積なセルの作製において特に影響が顕著となる。したがって、大容量システムの開発には反りの低減が必須である(非特許文献1、p.12〜13)。   In general, an electrode-supported flat solid oxide fuel cell has a fuel electrode or an air electrode as an electrode support, and laminates the electrode support and an electrolyte sheet to form a stacked green body (green stack). The green laminate is integrally sintered using a co-sintering method to prepare a half cell, and then a sheet serving as a counter electrode is laminated on the electrolyte and sintered. In the co-sintering method, different materials are fired at the same time, and a dense electrolyte and a porous electrode are mixed, so that it is extremely difficult in principle to obtain a flat single cell. Actually, in a practical cell shape, warpage of the order of several mm occurs (see Non-Patent Document 1, pages 44 to 45). Since such cell warpage tends to increase as the cell size increases, the influence is particularly significant in the production of a large-sized cell having a practical size. Therefore, it is essential to reduce warpage for the development of a large-capacity system (Non-patent Document 1, p. 12-13).

従来、電極支持型の平板型固体酸化物形燃料電池では、ハーフセルの焼成工程の期間中、すなわち焼結開始から終了まで一定の荷重を加えることにより、焼成工程での反りの発生を抑制していた。しかしながら、ハーフセルの加熱をグリーン状態から開始し、焼成温度近傍で焼結が開始されると電解質、電極支持体ともに収縮が起こる。この過程で、電解質または電極支持体の表面と荷重を与える重石との間に生じる摩擦により、焼結体の表面に傷が発生する。特に電解質は電極支持体よりも薄いので、セル特性を著しく損なう電解質表面から電極に至る貫通孔の発生や、電解質と電極支持体の剥離、さらにはハーフセルの破損に至ることがある。その一方、こうした問題を回避するために荷重を掛けずに焼成を行うと、反りを抑制することができず、一般的なセルの材質、構成では目視でも確認できるほどの数mmオーダの反りが生じるのが一般的であった。   Conventionally, in electrode-supported flat solid oxide fuel cells, the generation of warpage in the firing process is suppressed by applying a constant load during the half cell firing process, that is, from the start to the end of sintering. It was. However, when heating of the half cell is started from the green state and sintering is started in the vicinity of the firing temperature, both the electrolyte and the electrode support contract. In this process, scratches are generated on the surface of the sintered body due to friction generated between the surface of the electrolyte or the electrode support and the heavy stone that applies the load. In particular, since the electrolyte is thinner than the electrode support, it may lead to the generation of through-holes from the electrolyte surface to the electrode that significantly impair the cell characteristics, separation of the electrolyte and the electrode support, and damage to the half cell. On the other hand, if firing is performed without applying a load in order to avoid such a problem, the warpage cannot be suppressed, and the warpage of the order of several millimeters that can be visually confirmed with a general cell material and configuration. It was common to occur.

そこで、本発明者らは、荷重の掛け方について鋭意検討した結果、焼成工程を昇温工程と、降温工程とに分けて荷重の掛け方を変えた種々の実験を行った結果、昇温工程と降温工程における荷重の掛け方を変え、降温工程において掛ける荷重を昇温工程において掛ける荷重よりも大きくすると上記した焼結開始から終了まで一定の荷重を加える従来の荷重方式に比べて反りを大幅に低減することができることを見出した。具体的には、燃料極を電極支持体とするシートとして、ジルコニア系酸化物の粉体に酸化ニッケルの粉体を混合した混合粉体を含むセラミックスシートを用い、電解質のシートとして、ジルコニア系酸化物の粉体を含むセラミックスシートを用いた。また、前記ジルコニア系酸化物としては、イットリア安定化ジルコニアまたはスカンジア安定化ジルコニアZr(Sc)O2 もしくは金属酸化物をドープしたスカンジア安定化ジルコニア(Zr(Sc,R)O2 で、RがAl23 、CeO2 ,Y23 のいずれか)を用いて実験したところ、焼成最高温度から室温までの降温工程において、少なくとも燃料電池セルの作動温度付近の温度(700〜800℃)に冷却されるまでの間、昇温工程において掛ける第1の荷重(例えば、40〜50g/cm2 )に加えて第2の荷重(例えば、10〜60g/cm2 )を加えると、ハーフセルの反りを数十μm程度に抑えることができることを確認した。反りを軽減できる物理的な理由は、未だ定かではないが、反りが粘弾性変形から主に弾性的変形に転じて緩やかになる、所謂反りの変曲点の温度が、電極支持体と電解質の材料によって燃料電池セルの作動温度付近の温度と一致していることによるものと考えられる。ここで、焼成工程は、厳密にいえば、室温から1300℃程度の最高焼成温度に徐々に昇温した後(昇温工程)、その温度で所定の時間(通常2時間程度)保持する過程(定温保持工程)があり、その後、徐々に温度を下げ室温に至るため、以下の説明では、降温工程が最高焼成温度における定温保持工程を含むものとして説明する。 Therefore, as a result of earnestly examining the method of applying the load, the present inventors conducted various experiments in which the method of applying the load was changed by dividing the firing step into the temperature raising step and the temperature lowering step, resulting in the temperature raising step. If the load applied in the temperature lowering process is changed to be larger than the load applied in the temperature increasing process, the warpage will be significantly larger than the conventional load method in which a constant load is applied from the start to the end of sintering. It was found that it can be reduced. Specifically, a ceramic sheet containing a mixed powder obtained by mixing a zirconia-based oxide powder with a nickel oxide powder is used as a sheet with a fuel electrode as an electrode support, and a zirconia-based oxide is used as an electrolyte sheet. A ceramic sheet containing the powder of the product was used. As examples of the zirconia-based oxide, yttria-stabilized zirconia or scandia-stabilized zirconia Zr (Sc) scandia stabilized zirconia doped with O 2 or a metal oxide (Zr (Sc, R) in O 2, R is Al 2 O 3 , CeO 2 , or Y 2 O 3 ) was used, and in the temperature lowering process from the highest firing temperature to room temperature, at least the temperature near the operating temperature of the fuel cell (700 to 800 ° C.) When the second load (for example, 10 to 60 g / cm 2 ) is applied in addition to the first load (for example, 40 to 50 g / cm 2 ) applied in the temperature raising step until cooling, the warp of the half cell It was confirmed that can be suppressed to about several tens of μm. The physical reason why the warp can be reduced is not yet clear, but the temperature at the so-called warp inflection point at which the warp gradually changes from viscoelastic deformation to mainly elastic deformation is caused by the electrode support and the electrolyte. This is considered to be due to the fact that it matches the temperature near the operating temperature of the fuel cell depending on the material. Strictly speaking, the firing step is a process in which the temperature is gradually raised from room temperature to a maximum firing temperature of about 1300 ° C. (temperature raising step) and then maintained at that temperature for a predetermined time (usually about 2 hours) ( There is a constant temperature holding step), and then the temperature is gradually lowered to room temperature. Therefore, in the following description, the temperature lowering step will be described as including a constant temperature holding step at the maximum firing temperature.

本発明は、上記した従来の問題と検討結果に基づいてなされたもので、セルの反りを抑制ないし低減することができる平板型酸化物形燃料電池セルの作製方法を提供することを目的とする。   The present invention has been made based on the above-described conventional problems and examination results, and an object of the present invention is to provide a method for producing a flat oxide fuel cell capable of suppressing or reducing cell warpage. .

上記目的を達成するために本発明に係る平板型酸化物形燃料電池セルの作製方法は、燃料極と空気極とで電解質を挟持して構成される平板型固体酸化物形燃料電池セルの作製方法であって、前記燃料極または前記空気極のいずれか一方の構成材料によってシート状に形成された電極支持体に電解質のシートを積層してグリーン積層体を形成する工程と、前記グリーン積層体を焼成して焼結体からなるハーフセルを形成する工程とを備え、前記ハーフセルの焼成工程は、昇温工程と、最高焼成温度における定温保持工程を含む降温工程とからなり、前記昇温工程においてハーフセルに第1の荷重を加え、降温工程において前記第1の荷重に加えて第2の荷重を前記ハーフセルに荷重を加えてなり、前記ハーフセルに前記第2の荷重を加える温度範囲は、焼成最高温度から少なくとも前記燃料電池セルの作動温度付近の温度に冷却されるまでの間であることを特徴とする。   In order to achieve the above object, a method for producing a flat plate type oxide fuel cell according to the present invention comprises producing a flat plate type solid oxide fuel cell comprising an electrolyte sandwiched between a fuel electrode and an air electrode. A method of forming a green laminate by laminating an electrolyte sheet on an electrode support formed in a sheet shape from a constituent material of either the fuel electrode or the air electrode; and the green laminate And forming a half cell made of a sintered body, and the half cell firing step includes a temperature raising step and a temperature lowering step including a constant temperature holding step at the highest firing temperature. A temperature at which the first load is applied to the half cell, the second load is applied to the half cell in addition to the first load in the temperature lowering step, and the second load is applied to the half cell. Circumference is characterized in that between the maximum firing temperature to be cooled to a temperature of at least near the operating temperature of the fuel cell.

また、本発明は、上記発明において、前記燃料電池セルの作動温度付近の温度が700〜800℃であることを特徴とする。   Moreover, the present invention is characterized in that, in the above-mentioned invention, a temperature in the vicinity of an operating temperature of the fuel cell is 700 to 800 ° C.

また、本発明は、上記発明において、前記ハーフセルに加える第1の荷重が40〜50g/cm2、前記第2の荷重が10〜60g/cm2 であることを特徴とする。 Moreover, the present invention is characterized in that, in the above invention, the first load applied to the half cell is 40 to 50 g / cm 2 , and the second load is 10 to 60 g / cm 2 .

また、本発明は、上記発明において、前記燃料電池セルの作動温度付近の温度に達した後は、室温に冷却されるまでの間前記第1の荷重を前記ハーフセルに加え続けることを特徴とする。   Further, the present invention is characterized in that, in the above invention, after reaching a temperature near the operating temperature of the fuel cell, the first load is continuously applied to the half cell until it is cooled to room temperature. .

また、本発明は、上記発明において、前記電極支持体のシートが、ジルコニア系酸化物の粉体に酸化ニッケルの粉体を混合した混合粉体を含むセラミックスシートの少なくとも1層で構成されることを特徴とする。   Further, in the present invention according to the above-mentioned invention, the electrode support sheet is composed of at least one ceramic sheet including a mixed powder obtained by mixing a zirconia-based oxide powder with a nickel oxide powder. It is characterized by.

また、本発明は、上記発明において、前記ジルコニア系酸化物は、イットリア安定化ジルコニアまたはスカンジア安定化ジルコニアZr(Sc)O2 もしくは金属酸化物をドープしたスカンジア安定化ジルコニア(Zr(Sc,R)O2 で、RがAl23 、CeO2 ,Y23 のいずれか)であることを特徴とする。 In the present invention, the zirconia-based oxide may be yttria-stabilized zirconia, scandia-stabilized zirconia Zr (Sc) O 2, or scandia-stabilized zirconia doped with a metal oxide (Zr (Sc, R)). O 2 and R is any one of Al 2 O 3 , CeO 2 , and Y 2 O 3 ).

また、本発明は、上記発明において、前記電極支持体のシートが、ランタン系ぺロブスカイト酸化物粉体を含むセラミックスシートの少なくとも1層で構成されることを特徴とする。   The present invention is also characterized in that, in the above invention, the electrode support sheet is composed of at least one ceramic sheet containing a lanthanum perovskite oxide powder.

さらに、本発明は、上記発明において、前記電解質のシートが、ジルコニア系酸化物の粉体を含むセラミックスシートであることを特徴とする。   Furthermore, the present invention is characterized in that, in the above invention, the electrolyte sheet is a ceramic sheet containing zirconia-based oxide powder.

本発明によれば、ハーフセルの焼成時における降温工程において、焼成最高温度から少なくとも燃料電池セルの作動温度付近の温度に冷却されるまでの間、昇温工程時に掛ける第1の荷重に加えて第2の荷重をハーフセルに加えるようにしたので、焼成工程の全行程において一定の荷重を加える従来の焼成方法に比べ、飛躍的に反りを低減または緩和することができ、併せて電解質表面のダメージを回避することができることにより高い歩留まりでセルを作製することができる。これは、ハーフセルに加える温度範囲が反りの変曲点の温度と一致し、反りの変化を緩やかにすることによるものと考えられる。
因みに、直径120mmの円盤状セルを例にとれば、従来の反り抑制を目指した焼成法では100μm程度から数100μm程度であった反りが、実用上問題にならない10〜数10μm程度にまで低減することができた。その結果として、セルの平坦性が大幅に向上することにより、セルスタックにおける集電状態が改善され、結果として出力特性の大幅な向上が可能となる。また、スタック作製時の破損や、不要な形状的な歪みの発生を抑えることができるため、セルスタックの信頼性も向上する。
ハーフセルに掛ける第1の荷重が40g/cm2 以下になると、荷重を掛ける効果が減少するため好ましくない。ハーフセルに掛ける最大荷重が、第1の加重と第2の加重を合わせて110g/cm2 以上になると、反りの低減が緩和するため、それ以上の荷重を掛ける意味がなくなる。より好ましい荷重は、第1の加重と第2の加重を合わせて50〜100g/cm2 である。
また、燃料電池セルの作動温度付近の温度に達した後は、室温に冷却されるまでの間第1の荷重(50g/cm2 未満)の荷重を掛けておけば反りを一層低減することができる。
According to the present invention, in the temperature lowering process at the time of firing the half cell, the first load applied during the temperature raising process is added to the first load applied during the temperature raising process until the temperature is cooled to at least the temperature near the operating temperature of the fuel cell. Since the load of 2 is applied to the half cell, the warpage can be dramatically reduced or reduced compared to the conventional firing method in which a constant load is applied in the entire process of the firing process, and the damage on the electrolyte surface is also reduced. By avoiding this, a cell can be manufactured with a high yield. This is presumably because the temperature range applied to the half cell coincides with the temperature of the inflection point of the warp, and the warp change is moderated.
For example, if a disk-shaped cell having a diameter of 120 mm is taken as an example, the warpage that was about 100 μm to several hundred μm in the conventional firing method aiming to suppress warpage is reduced to about 10 to several tens μm, which is not a practical problem. I was able to. As a result, the flatness of the cell is greatly improved, whereby the current collection state in the cell stack is improved, and as a result, the output characteristics can be greatly improved. In addition, the reliability of the cell stack can be improved because the occurrence of breakage during stack fabrication and the occurrence of unnecessary geometric distortion can be suppressed.
If the first load applied to the half cell is 40 g / cm 2 or less, the effect of applying the load decreases, which is not preferable. When the maximum load applied to the half cell is 110 g / cm 2 or more in combination of the first weight and the second weight, the reduction in warpage is alleviated, so there is no point in applying more load. A more preferable load is 50 to 100 g / cm 2 in total of the first load and the second load.
Further, after reaching a temperature near the operating temperature of the fuel cell, the warp can be further reduced by applying a first load (less than 50 g / cm 2 ) until it is cooled to room temperature. it can.

本発明に係る平板型固体酸化物形燃料電池セルの第1の実施の形態を示す正面図である。1 is a front view showing a first embodiment of a flat plate type solid oxide fuel cell according to the present invention. 本発明の実施の形態における焼成時のグリーン積層体の設置状況を示す図である。It is a figure which shows the installation condition of the green laminated body at the time of baking in embodiment of this invention. 本発明を実施するために用いる焼成炉の断面の模式図である。It is a schematic diagram of the cross section of the baking furnace used in order to implement this invention. ハーフセルの反りを示す図である。It is a figure which shows the curvature of a half cell. 被焼結体の反り、焼成炉温度および焼成経過時間の関係を示す図である。It is a figure which shows the relationship between the curvature of a to-be-sintered body, a baking furnace temperature, and baking elapsed time.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1において、平板型固体酸化物形燃料電池セル1は、燃料極2を厚肉に形成して電極支持体とし、その上に電解質3を形成し、さらにその上に対極である空気極4を形成することにより、燃料極支持型のセルを構成している。このような単セル1は、燃料極2と電解質3のシートを積層してグリーン積層体を形成し、このグリーン積層体を焼成して焼結体からなるハーフセルを作製し、次に空気極4のシートを電解質3の上に積層し、このシートを焼成することにより作製される。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, a flat solid oxide fuel cell 1 has a fuel electrode 2 formed to be thick to form an electrode support, an electrolyte 3 formed thereon, and an air electrode 4 serving as a counter electrode thereon. Thus, a fuel electrode support type cell is formed. In such a single cell 1, a fuel cell 2 and an electrolyte 3 sheet are laminated to form a green laminate, and the green laminate is fired to produce a half cell made of a sintered body. The sheet is laminated on the electrolyte 3 and the sheet is fired.

ハーフセルの構成材料としては、電極支持体を構成する燃料極2に、例えば平均粒径が1.8〜5.0μm、比表面積0.8〜1.5m2 /gのNiOが用いられ、電解質3に、例えば平均粒径0.1〜0.5μm、比表面積7〜17m2 /gのイットリア安定化ジルコニア(YSZ)が用いられる。焼成後の電解質3の厚さは、例えば5〜15μm、燃料極2の厚さは1〜2mmとした。 As a constituent material of the half cell, for example, NiO having an average particle diameter of 1.8 to 5.0 μm and a specific surface area of 0.8 to 1.5 m 2 / g is used for the fuel electrode 2 constituting the electrode support. 3, for example, yttria-stabilized zirconia (YSZ) having an average particle size of 0.1 to 0.5 μm and a specific surface area of 7 to 17 m 2 / g is used. The thickness of the electrolyte 3 after firing was 5 to 15 μm, for example, and the thickness of the fuel electrode 2 was 1 to 2 mm.

ハーフセルの作製に際しては、NiOとイットリア安定化ジルコニアをそれぞれドクターブレード法によるセラミックシートとした後、所要枚数積層、張り合わせを行い、所定の厚さ構成の積層シート(グリーン積層体)を製作する。次に、このグリーン積層体を直径約150mmの円形に切り出して焼成し、ハーフセルを作製する。   In producing the half cell, NiO and yttria-stabilized zirconia are each made into a ceramic sheet by a doctor blade method, and then a required number of layers are laminated and bonded together to produce a laminated sheet (green laminate) having a predetermined thickness. Next, the green laminate is cut into a circle having a diameter of about 150 mm and fired to produce a half cell.

図2は焼成時のグリーン積層体の設置状況を示す図で、10はNiOシート2’とイットリア安定化ジルコニアシート3’とからなるグリーン積層体、11はアルミナ板、12はアルミナセッタである。円形に切り出したグリーン積層体10を2枚のアルミナ板11で挟み、アルミナセッタ12の上に、上側を電解質、下側を電極支持体として、セッティングした後、焼成炉(図3)に装填し焼成することにより、焼結体からなるハーフセル30(図4)が作製される。上方側のアルミナ板11は、ハーフセルの焼成時において、第1の荷重としてハーフセルに加えられる。アルミナ板11の重量は、40〜50g未満である。   FIG. 2 is a diagram showing the installation state of the green laminate during firing. 10 is a green laminate comprising a NiO sheet 2 'and a yttria-stabilized zirconia sheet 3', 11 is an alumina plate, and 12 is an alumina setter. The green laminate 10 cut out in a circle is sandwiched between two alumina plates 11, set on an alumina setter 12, with the upper side serving as an electrolyte and the lower side serving as an electrode support, and then loaded into a firing furnace (FIG. 3). The half cell 30 (FIG. 4) which consists of a sintered compact is produced by baking. The upper alumina plate 11 is applied to the half cell as a first load when the half cell is fired. The weight of the alumina plate 11 is less than 40 to 50 g.

図3はハーフセルの焼成時の状態を示す焼成炉の断面図で、20は焼成炉、21はハーフセルを加圧する加圧機構21である。加圧機構21は、焼成炉20の上板を回転によって上下動するスクリュー22と、スクリュー22の下端に取り付けられた重り23とで構成され、これによってハーフセルの焼成工程の昇温工程と降温工程のうち、降温工程においてハーフセルに第1の荷重に加えて第2の荷重を加えるようにしている。第2の荷重は、前記上方側のアルミナ板11の重量を含む荷重で、10〜60g/cm2 とされる。すなわち、ハーフセルに加える総荷重は、50〜110g/cm2 とされる。焼成炉21の壁面には、焼成時のハーフセルの挙動を外部から視認するための小さな観察窓24が設けられている。25は観察窓24にはめ込まれた透明石英である。 FIG. 3 is a cross-sectional view of the firing furnace showing a state during firing of the half cell, 20 is a firing furnace, and 21 is a pressurizing mechanism 21 for pressurizing the half cell. The pressurizing mechanism 21 includes a screw 22 that moves up and down by rotating the upper plate of the firing furnace 20 and a weight 23 attached to the lower end of the screw 22, thereby raising and lowering the half cell firing process. Among them, in the temperature lowering process, a second load is applied to the half cell in addition to the first load. The second load is a load including the weight of the upper alumina plate 11 and is 10 to 60 g / cm 2 . That is, the total load applied to the half cell is 50 to 110 g / cm 2 . A small observation window 24 is provided on the wall surface of the firing furnace 21 for visually confirming the behavior of the half cell during firing from the outside. Reference numeral 25 denotes a transparent quartz fitted in the observation window 24.

焼成炉20によるハーフセルの焼成条件としては、室温から100℃/時の速度で昇温し、焼成最高温度(約1300℃)で2時間保持した後(昇温工程)、100℃/時の速度で室温まで冷却する(降温工程)。また、焼成最高温度に達してから所定の温度に冷却されるまでの間、加圧機構21によってハーフセル30に第2の荷重を加える。所定の温度は、燃料電池セルの作動温度付近の温度、約700〜800℃とされる。   As the firing conditions of the half cell by the firing furnace 20, the temperature is raised from room temperature at a rate of 100 ° C./hour, held at the highest firing temperature (about 1300 ° C.) for 2 hours (temperature raising step), and then the rate of 100 ° C./hour. To cool to room temperature (temperature lowering step). In addition, a second load is applied to the half cell 30 by the pressurizing mechanism 21 from the time when the firing maximum temperature is reached until the temperature is cooled to a predetermined temperature. The predetermined temperature is about 700 to 800 ° C. near the operating temperature of the fuel cell.

第2の荷重は、10〜60/cm2 である。ハーフセルに加える総荷重が50g/cm2 以下であると、反りが大きくなり荷重を掛ける効果が少なくなるため好ましくない。総荷重が110g/cm2 以上になると、反りの低減が緩和する傾向にある。このため、より好ましい総荷重は、50〜100g/cm2 である。さらに前記燃料電池セルの作動温度付近の温度に達した後は、冷却終了まで第3の荷重として第1の荷重と同等、すなわち50g/cm2 未満、より好ましくは40g/cm2 の荷重をハーフセルに掛け続けることが望ましいが、無荷重状態に切り換えた場合でも反りを低減することができる。 The second load is 10-60 / cm 2 . It is not preferable that the total load applied to the half cell is 50 g / cm 2 or less because warping increases and the effect of applying the load decreases. When the total load is 110 g / cm 2 or more, the reduction in warping tends to be relaxed. For this reason, a more preferable total load is 50-100 g / cm < 2 >. Further, after reaching a temperature near the operating temperature of the fuel cell, the third load is the same as the first load until the end of cooling, that is, a load of less than 50 g / cm 2 , more preferably 40 g / cm 2 is applied to the half cell. Although it is desirable to continue to be applied, warping can be reduced even when the load is switched to a no-load state.

このように、本発明は、焼成最高温度から室温までの降温工程において、少なくとも燃料電池セルの作動温度付近の温度(700〜800℃)に冷却されるまでの間、昇温工程において加える第1の荷重に加えて第2の荷重を掛けるようにしたので、その結果として、焼結開始から終了まで一定の荷重を加える従来の荷重方式に比べてハーフセルの反りを数十μmに抑えることができることを確認した。反りを低減できる物理的な理由としては、反りが粘弾性変形から主に弾性的変形に転じて緩やかになる、所謂変曲点の温度が、電極支持体と電解質の材料によって燃料電池セルの作動温度付近の温度と略一致していることによるものと考えられる。   Thus, according to the present invention, in the temperature lowering process from the highest firing temperature to room temperature, the first temperature applied in the temperature increasing process is at least until the fuel cell is cooled to a temperature (700 to 800 ° C.) near the operating temperature. As a result, the half cell warpage can be suppressed to several tens of μm compared to the conventional load method in which a constant load is applied from the start to the end of sintering. It was confirmed. The physical reason that warpage can be reduced is that the temperature at the so-called inflection point where the warpage gradually changes from viscoelastic deformation to mainly elastic deformation depends on the electrode support and the electrolyte material. This is considered to be due to the fact that the temperature is substantially the same as the temperature near the temperature.

図4は、焼成過程を通じ、アルミナ板11の重量以外の荷重を掛けずに焼成を行った際、昇温開始後、800℃に達した後の被焼結体(ハーフセル)の反りを温度に対して測定した結果を示す図で、左縦軸は被焼結体の反り、右縦軸は焼成炉温度、横軸は焼成経過時間、曲線Aは時間軸に沿った被焼結体の温度変化、曲線Bは時間とともに変化する被焼結体の反りを示す。   FIG. 4 shows that when firing is performed without applying a load other than the weight of the alumina plate 11 through the firing process, the warpage of the sintered body (half cell) after reaching the temperature of 800 ° C. after the start of the temperature rise. FIG. 4 is a diagram showing the results of measurement, wherein the left vertical axis is the warp of the sintered body, the right vertical axis is the firing furnace temperature, the horizontal axis is the firing elapsed time, and the curve A is the temperature of the sintered body along the time axis. The change, curve B, shows the warpage of the sintered body that changes with time.

これまでの報告例から容易に推察されるように、まず電解質3(YSZ)の収縮、すなわち焼結が始まり、これにともなって、曲線Bに示すように被焼結体は、下側に凸となるように湾曲を開始し、900℃近傍から電極支持体(燃料極2)の収縮が開始することにより、徐々にその反りは小さくなっていく。焼成最高温度(1300℃)の焼成が終わる段階ではほぼ反りの変化は終了し、電解質3、燃料極2の単体での収縮率に依存して決まる一定の反り値に収斂する。その後、冷却が開始されると上に凸な反りは徐々に減少し、やがて下に凸な反りへと転ずる。900℃以下の領域では、温度の下降とともに単調に反りが増加することがわかる。これは、900℃以上の温度領域での粘弾性的変形が、主に弾性的変形に転じ、パイメタルモデル的な挙動を示していると考えられる。この焼結プロセスで得られたハーフセル30(図5)の反りは、約320μmであった。   As can be easily inferred from the examples reported so far, first, the shrinkage of the electrolyte 3 (YSZ), that is, the sintering starts, and accordingly, the object to be sintered protrudes downward as shown by the curve B. Then, the warping gradually decreases as the electrode support (fuel electrode 2) starts to contract from around 900 ° C. At the stage where the firing at the highest firing temperature (1300 ° C.) is finished, the change in warpage is almost finished and converges to a constant warpage value determined depending on the shrinkage rate of the electrolyte 3 and the fuel electrode 2 alone. Thereafter, when the cooling is started, the upwardly warping gradually decreases, and eventually the downwardly convex warping is started. It can be seen that in the region of 900 ° C. or lower, the warpage increases monotonously as the temperature decreases. This is considered that viscoelastic deformation in a temperature region of 900 ° C. or higher mainly turns into elastic deformation and exhibits a pie metal model-like behavior. The warpage of the half cell 30 (FIG. 5) obtained by this sintering process was about 320 μm.

これに対し、降温開始時から燃料電池セルの作動温度付近の温度まで冷却される間に第1荷重と第2の荷重を加えた荷重(総荷重)50〜100g/cm2 を掛けて焼成し、その反りを測定した結果を表1に示す。降温開始時の温度は、焼成最高温度(1300℃)で、燃料電池セルの作動温度付近の温度を800℃とした。 On the other hand, firing is performed by applying a load (total load) of 50 to 100 g / cm 2 to which the first load and the second load are applied while cooling from the start of temperature decrease to a temperature close to the operating temperature of the fuel cell. The results of measuring the warpage are shown in Table 1. The temperature at the start of temperature drop was the highest firing temperature (1300 ° C.), and the temperature near the operating temperature of the fuel cell was 800 ° C.

Figure 2010282817
Figure 2010282817

表1から加圧機構21によってアルミナ板11の自重に第1の荷重に加えて第2の荷重を掛けることにより、得られるハーフセル30の反りが低減されることがわかる。第2の荷重が10〜60g/cm2 の荷重範囲で、無荷重の場合よりも反りは減少した。特に、総荷重が50〜100g/cm2 の範囲では、荷重の増加とともに、反りが大幅に減少する。ただし、100g/cm2 より大きな荷重では、反りの低減が飽和する傾向にあり、また、200g/cm2 以上ではハーフセル30の破損が生じた。これは冷却過程で熱膨張係数差に起因して生じた反りが、過大な荷重によって弾性限界を超えて開放されるためと考えられる。 It can be seen from Table 1 that the warpage of the obtained half cell 30 is reduced by applying a second load in addition to the first load to the weight of the alumina plate 11 by the pressurizing mechanism 21. When the second load was in a load range of 10 to 60 g / cm 2 , the warp decreased compared to the case of no load. In particular, when the total load is in the range of 50 to 100 g / cm 2 , the warpage is greatly reduced as the load increases. However, when the load is larger than 100 g / cm 2 , the reduction in warping tends to be saturated, and when the load is 200 g / cm 2 or more, the half cell 30 is damaged. This is considered to be because the warpage caused by the difference in thermal expansion coefficient during the cooling process is released beyond the elastic limit by an excessive load.

[比較例]
第1の実施の形態と同じグリーン積層体と焼結温度ブロファイルを用い、50〜100g/cm2 の荷重を、
(1)昇温時の800℃から降温時の800℃まで加えた場合
(2)降温開始時から室温まで加えた場合
(3)第1の実施の形態の場合と同じく降温開始時から800℃まで冷却される間に加えた場合
について比較した。
[Comparative example]
Using the same green laminate and sintering temperature brofil as in the first embodiment, a load of 50 to 100 g / cm 2 is applied.
(1) When added from 800 ° C. during temperature rise to 800 ° C. during temperature drop (2) When added from the start of temperature drop to room temperature (3) 800 ° C. from the start of temperature fall as in the first embodiment A comparison was made of the case where it was added while it was cooled down.

(1)の場合は、焼成時の収縮時にアルミナ板11と電解質3の表面との摩擦に起因するとみられる電解質表面の傷が多数発生し、その傷の一部は燃料極2までの貫通孔となっていることが確認された。このことから、収縮開始から十分に焼結が進むまでの間は、必要最小限の荷重を掛けるに留めることが望ましいことがわかる。   In the case of (1), many scratches on the electrolyte surface, which are considered to be caused by friction between the alumina plate 11 and the surface of the electrolyte 3, occur during shrinkage during firing, and some of the scratches are through-holes to the fuel electrode 2. It was confirmed that From this, it can be seen that it is desirable to apply a necessary minimum load from the start of shrinkage until the sintering is sufficiently advanced.

一方、(2)の場合は、(1)の場合でみられたような電解質表面のダメージや、欠陥は見られなかったが、全てのハーフセルが破損していた。これは冷却過程で熱膨張係数差に起因して生じた反りの弾性限界を超える過大な荷重が加えられたためと考えられる。   On the other hand, in the case of (2), although damage and defects on the electrolyte surface as seen in the case of (1) were not observed, all the half cells were broken. This is thought to be because an excessive load exceeding the elastic limit of warpage caused by the difference in thermal expansion coefficient was applied during the cooling process.

(3)の場合は、上記第1の実施の形態に示したとおりである。 In the case of (3), it is as shown in the first embodiment.

[第2の実施の形態]
本発明の第2の実施の形態とし、電解質材料として平均粒径が0.4〜0.7μm、比表面積10〜12m2 /gのアルミナ添加スカンジア安定化ジルコニア(Zr(Sc,Al23 )O2 、以下SASZ)を用い、電極支持体燃料極材料としてSASZと酸化ニッケル(NiO)の混合体を用いた。NiOは平均粒径1.8〜5.0μm、比表面積0.8〜1.5m2 /g、または平均粒径が1.0〜3.0μm、比表面積3.0〜5.05m2 /gの2種類の原料を用いた。以下、便宣上前者をNiO-1、後者をNiO-2とする。
[Second Embodiment]
In the second embodiment of the present invention, an alumina-doped scandia-stabilized zirconia (Zr (Sc, Al 2 O 3) having an average particle size of 0.4 to 0.7 μm and a specific surface area of 10 to 12 m 2 / g is used as the electrolyte material. ) O 2 , hereinafter SASZ), and a mixture of SASZ and nickel oxide (NiO) was used as the electrode support fuel electrode material. NiO is an average particle diameter 1.8~5.0Myuemu, specific surface area 0.8~1.5m 2 / g or an average particle diameter of 1.0 to 3.0 m,, a specific surface area 3.0~5.05m 2 / Two kinds of raw materials of g were used. Hereinafter, the former on the flight is NiO-1, and the latter is NiO-2.

ハーフセルは、NiO-1を燃料極材料にした場合、NiO-2を燃料極材料にした場合、さらにNiO-2を燃料極基板とし、かつNiO-1を電解質近傍に約100μm形成した2層構造の燃料極構造のハーフセルを作製した。便宣上、それぞれType1セル、Type2セル、Type3セルと呼称する。作製の手順は第1の実施の形態と同じである。焼結温度プロファイルも第1の実施の形態と同一とし、無荷重(アルミナ板11の自重による荷重のみ)の場合と、降温開始時から、800℃まで冷却される間に総荷重100g/cm2 の荷重をかけた場合の反りを表2に示す。 The half cell has a two-layer structure in which NiO-1 is used as the fuel electrode material, NiO-2 is used as the fuel electrode material, NiO-2 is used as the fuel electrode substrate, and NiO-1 is formed in the vicinity of the electrolyte at about 100 μm. A half cell with a fuel electrode structure was fabricated. For convenience, they are referred to as Type 1 cell, Type 2 cell, and Type 3 cell, respectively. The manufacturing procedure is the same as in the first embodiment. The sintering temperature profile is also the same as that of the first embodiment, and the total load is 100 g / cm 2 between the case of no load (only the load due to its own weight of the alumina plate 11) and the cooling from the start of the temperature decrease to 800 ° C. Table 2 shows the warpage when the load is applied.

Figure 2010282817
Figure 2010282817

第1の実施の形態と同様、降温開始時から、燃料電池セルの作動温度付近の温度(700〜800℃)まで冷却される間、第1の荷重に加えて第2の荷重を掛けた場合には大輻に反りが低減されていることがわかる。ここで、2種類のNiOに対し、得られたハーフセルの反り量が異なっているのは、グリーン積層体の焼結特性(収縮挙動)が原料粉体の平均粒径、比表面積に依存し、より収縮率の小さい燃料極(NiO)の方が反りが抑えられる(特許文献1:特開2007−194170号公報)ことを反映した結果と思われる。   Similar to the first embodiment, when the second load is applied in addition to the first load while cooling to the temperature near the operating temperature of the fuel cell (700 to 800 ° C.) from the start of the temperature decrease. It can be seen that warpage is reduced due to large radiation. Here, for the two types of NiO, the amount of warpage of the obtained half cell is different because the sintering characteristics (shrinkage behavior) of the green laminate depends on the average particle size and specific surface area of the raw material powder, This is probably because the fuel electrode (NiO) having a smaller shrinkage rate is less warped (Patent Document 1: Japanese Patent Laid-Open No. 2007-194170).

[第3の実施の形態]
第2の実施の形態で作製したハーフセルの電解質上にLaNi0.6Fe0.43 (LNF)の空気極4を形成して図1に示すセル1を作製した。空気極4は、LNFペーストをハーフセルの電解質3上に塗布し、1000℃、2時間の焼成により形成した。室温において平坦なセルは、内部応力が緩和されたわけでなく、無荷重の状態で再度高温に加熱すると、内部応力を緩和すべく、セルの反りが発生する。上記空気極形成の焼成を無荷重状態で行うと、空気極形成後、室温における反り量が空気極形成前のハーフセルの反り量より増加することが知られている。空気極形成過程において、1000℃の焼結温度から、室温に冷却する過程で、800℃まで、第1の荷重に加えて100g/cm2 の第2の荷重を加えたところ、空気極形成後のセルの反りは誤差範囲内で、表2に示すハーフセルの反りと変化がなかった。
[Third Embodiment]
A cell 1 shown in FIG. 1 was produced by forming an air electrode 4 of LaNi 0.6 Fe 0.4 O 3 (LNF) on the electrolyte of the half cell produced in the second embodiment. The air electrode 4 was formed by applying an LNF paste onto the half-cell electrolyte 3 and firing at 1000 ° C. for 2 hours. A cell that is flat at room temperature does not have its internal stress relaxed, and when heated to a high temperature again under no load, the cell warps to relieve the internal stress. It is known that when the air electrode formation firing is performed in a no-load state, after the air electrode is formed, the amount of warpage at room temperature is greater than the amount of warpage of the half cell before the air electrode is formed. In the process of forming the air electrode, in the process of cooling from the sintering temperature of 1000 ° C. to room temperature, up to 800 ° C., a second load of 100 g / cm 2 was applied in addition to the first load. The warpage of the cell was within the error range, and the warpage of the half cell shown in Table 2 was not changed.

上記した実施の形態は、燃料極2を電極支持体とした例について示したが、本発明はこれに何ら特定されるものではなく、空気極4を電極支持体としてハーフセルを同様に作製してもよい。その場合は、空気極のシートとして、ランタン系ぺロブスカイト酸化物粉体を含むセラミックスシートを用いればよい。   Although the above-described embodiment has shown an example in which the fuel electrode 2 is an electrode support, the present invention is not limited to this, and a half cell is similarly manufactured using the air electrode 4 as an electrode support. Also good. In that case, a ceramic sheet containing lanthanum perovskite oxide powder may be used as the air electrode sheet.

1…単セル、2…燃料極、2’…NiOシート、3…電解質、3’…イットリア安定化ジルコニアシート、4…燃料極、10…グリーン積層体、11…アルミナ板、12…アルミナセッタ、20…焼成炉、21…加圧機構、30…ハーフセル。   DESCRIPTION OF SYMBOLS 1 ... Single cell, 2 ... Fuel electrode, 2 '... NiO sheet, 3 ... Electrolyte, 3' ... Yttria stabilization zirconia sheet, 4 ... Fuel electrode, 10 ... Green laminated body, 11 ... Alumina plate, 12 ... Alumina setter, 20 ... firing furnace, 21 ... pressurizing mechanism, 30 ... half cell.

Claims (8)

燃料極と空気極とで電解質を挟持して構成される平板型固体酸化物形燃料電池セルの作製方法であって、
前記燃料極または前記空気極のいずれか一方の構成材料によってシート状に形成された電極支持体に電解質のシートを積層してグリーン積層体を形成する工程と、
前記グリーン積層体を焼成して焼結体からなるハーフセルを形成する工程とを備え、
前記ハーフセルの焼成工程は、昇温工程と、最高焼成温度における定温保持工程を含む降温工程とからなり、前記昇温工程においてハーフセルに第1の荷重を加え、降温工程において前記第1の荷重に加えて第2の荷重を前記ハーフセルに加えてなり、前記ハーフセルに第2の荷重を加える温度範囲は、焼成最高温度から少なくとも前記燃料電池セルの作動温度付近の温度に冷却されるまでの間であることを特徴とする平板型固体酸化物前記燃料電池セルの作製方法。
A method for producing a flat solid oxide fuel cell comprising an electrolyte sandwiched between a fuel electrode and an air electrode,
Forming a green laminate by laminating an electrolyte sheet on an electrode support formed into a sheet shape from the constituent material of either the fuel electrode or the air electrode;
A step of firing the green laminate to form a half cell made of a sintered body,
The half cell firing step includes a temperature raising step and a temperature lowering step including a constant temperature holding step at the maximum firing temperature. In the temperature raising step, a first load is applied to the half cell, and in the temperature lowering step, the first load is applied. In addition, a second load is applied to the half cell, and the temperature range in which the second load is applied to the half cell is between the highest firing temperature and at least a temperature close to the operating temperature of the fuel cell. A flat-type solid oxide manufacturing method for a fuel cell according to claim 1.
請求項1記載の平板型固体酸化物形燃料電池セルの作製方法において、
前記燃料電池セルの作動温度付近の温度が700〜800℃であることを特徴とする平板型固体酸化物形燃料電池セルの作製方法。
In the manufacturing method of the flat type solid oxide fuel cell according to claim 1,
A method for producing a flat-plate solid oxide fuel cell, wherein the temperature in the vicinity of the operating temperature of the fuel cell is 700 to 800 ° C.
請求項1または2記載の平板型固体酸化物形燃料電池セルの作製方法において、
前記ハーフセルに加える第1の荷重が40〜50g/cm2 、前記第2の荷重が10〜60g/cm2 であることを特徴とする平板型固体酸化物形燃料電池セルの作製方法。
In the manufacturing method of the flat type solid oxide fuel cell according to claim 1 or 2,
A method for producing a flat plate type solid oxide fuel cell, wherein the first load applied to the half cell is 40 to 50 g / cm 2 and the second load is 10 to 60 g / cm 2 .
請求項1、2、3のうちのいずれか一項記載の平板型固体酸化物形燃料電池セルの作製方法において、
前記燃料電池セルの作動温度付近の温度に達した後は、室温に冷却されるまでの間前記第1の荷重を前記ハーフセルに加え続けることを特徴とする平板型固体酸化物形燃料電池セルの作製方法。
In the manufacturing method of the flat type solid oxide fuel cell according to any one of claims 1, 2, and 3,
After reaching a temperature near the operating temperature of the fuel cell, the first load is continuously applied to the half cell until it is cooled to room temperature. Manufacturing method.
請求項1〜4のうちのいずれか一項記載の平板型固体酸化物形燃料電池セルの作製方法において、
前記電極支持体のシートが、ジルコニア系酸化物の粉体に酸化ニッケルの粉体を混合した混合粉体を含むセラミックスシートの少なくとも1層で構成されることを特徴とする平板型固体酸化物形燃料電池セルの作製方法。
In the manufacturing method of the flat type solid oxide form fuel cell according to any one of claims 1 to 4,
The plate-type solid oxide form, wherein the electrode support sheet is composed of at least one layer of a ceramic sheet containing a mixed powder obtained by mixing a zirconia-based oxide powder with a nickel oxide powder. A method for producing a fuel cell.
請求項5記載の平板型固体酸化物形燃料電池セルの作製方法において、
前記ジルコニア系酸化物は、イットリア安定化ジルコニアまたはスカンジア安定化ジルコニアZr(Sc)O2 もしくは金属酸化物をドープしたスカンジア安定化ジルコニア(Zr(Sc,R)O2 で、RがAl23 、CeO2 ,Y23 のいずれか)であることを特徴とする平板型固体酸化物形燃料電池セルの作製方法。
In the manufacturing method of the flat type solid oxide fuel cell according to claim 5,
The zirconia-based oxide is yttria-stabilized zirconia or scandia-stabilized zirconia Zr (Sc) O 2 or scandia-stabilized zirconia (Zr (Sc, R) O 2 ) doped with a metal oxide, and R is Al 2 O 3. Or any one of CeO 2 and Y 2 O 3 ).
請求項1〜4のうちのいずれか一項記載の平板型固体酸化物形燃料電池セルの作製方法において、
前記電極支持体のシートが、ランタン系ぺロブスカイト酸化物粉体を含むセラミックスシートの少なくとも1層で構成されることを特徴とする平板型固体酸化物形燃料電池セルの作製方法。
In the manufacturing method of the flat type solid oxide form fuel cell according to any one of claims 1 to 4,
A method for producing a flat plate type solid oxide fuel cell, wherein the electrode support sheet is composed of at least one layer of a ceramic sheet containing a lanthanum perovskite oxide powder.
請求項1〜7のうちのいずれか一項記載の平板型固体酸化物形燃料電池セルの作製方法において、
前記電解質のシートが、ジルコニア系酸化物の粉体を含むセラミックスシートであることを特徴とする平板型固体酸化物形燃料電池セルの作製方法。
In the manufacturing method of the flat type solid oxide form fuel cell according to any one of claims 1 to 7,
The method for producing a flat plate type solid oxide fuel cell, wherein the electrolyte sheet is a ceramic sheet containing zirconia-based oxide powder.
JP2009134820A 2009-06-04 2009-06-04 Method for producing flat solid oxide fuel cell Expired - Fee Related JP5284876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134820A JP5284876B2 (en) 2009-06-04 2009-06-04 Method for producing flat solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134820A JP5284876B2 (en) 2009-06-04 2009-06-04 Method for producing flat solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2010282817A true JP2010282817A (en) 2010-12-16
JP5284876B2 JP5284876B2 (en) 2013-09-11

Family

ID=43539397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134820A Expired - Fee Related JP5284876B2 (en) 2009-06-04 2009-06-04 Method for producing flat solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5284876B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204149A (en) * 2011-03-25 2012-10-22 Nippon Shokubai Co Ltd Anode supported type half-cell, and anode supported type using the same
JP2016195116A (en) * 2016-04-28 2016-11-17 株式会社日本触媒 Anode support half cell and anode support cell using the same
JP2017037759A (en) * 2015-08-07 2017-02-16 日産自動車株式会社 Method for producing electrode sheet
JP2017162607A (en) * 2016-03-08 2017-09-14 株式会社日本触媒 Electrolyte for solid oxide fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128973A (en) * 1985-11-25 1987-06-11 松下電工株式会社 Method of burning ceramic substrate
JPH04144971A (en) * 1990-10-05 1992-05-19 Toyota Motor Corp Burned structure of piezoelectric ceramics
JP2007005135A (en) * 2005-06-23 2007-01-11 Nippon Shokubai Co Ltd Manufacturing method of flat plate type fuel cell
JP2007194170A (en) * 2006-01-23 2007-08-02 Nippon Telegr & Teleph Corp <Ntt> Flat solid oxide fuel cell and method of manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128973A (en) * 1985-11-25 1987-06-11 松下電工株式会社 Method of burning ceramic substrate
JPH04144971A (en) * 1990-10-05 1992-05-19 Toyota Motor Corp Burned structure of piezoelectric ceramics
JP2007005135A (en) * 2005-06-23 2007-01-11 Nippon Shokubai Co Ltd Manufacturing method of flat plate type fuel cell
JP2007194170A (en) * 2006-01-23 2007-08-02 Nippon Telegr & Teleph Corp <Ntt> Flat solid oxide fuel cell and method of manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204149A (en) * 2011-03-25 2012-10-22 Nippon Shokubai Co Ltd Anode supported type half-cell, and anode supported type using the same
JP2017037759A (en) * 2015-08-07 2017-02-16 日産自動車株式会社 Method for producing electrode sheet
JP2017162607A (en) * 2016-03-08 2017-09-14 株式会社日本触媒 Electrolyte for solid oxide fuel cell
JP2016195116A (en) * 2016-04-28 2016-11-17 株式会社日本触媒 Anode support half cell and anode support cell using the same

Also Published As

Publication number Publication date
JP5284876B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP3976181B2 (en) Solid oxide fuel cell single cell and solid oxide fuel cell using the same
JP5284876B2 (en) Method for producing flat solid oxide fuel cell
KR101842319B1 (en) Solid oxide fuel cell and method for manufacturing the same
TWI509869B (en) A fabrication process for production of SOFC-MEA with a pore array anode structure for improving output power density
JP5051741B2 (en) Fabrication method of flat plate type solid oxide fuel cell
JP2010061829A (en) Operation method of solid oxide fuel cell
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
JP4476721B2 (en) Flat plate type solid oxide fuel cell and method for producing the same
JP6486138B2 (en) Method of manufacturing membrane electrode assembly for solid oxide fuel cell having anode with pore arrangement structure
JPH11354139A (en) Solid electrolyte type fuel cell
JP2010238437A (en) Solid electrolyte for flat-plate solid oxide fuel cell, and flat-plate solid oxide fuel cell
JP2009009738A (en) Solid electrolyte fuel cell and its manufacturing method
JP2012142241A (en) Method for manufacturing single cell for solid oxide fuel cell
JP5362979B2 (en) Method for producing solid oxide fuel cell
US10283799B2 (en) Membrane electrode assembly structure of fuel cell and the method of fabricating the same
JP5326330B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP2014007127A (en) Method for manufacturing single cell for solid oxide fuel cell, single cell for solid oxide fuel cell, and solid oxide fuel cell
JP2006310132A (en) Flat-plate solid oxide fuel battery cell
KR101940712B1 (en) Solid oxide fuel cell and method for manufacturing the same
JP2015002035A (en) Method for manufacturing solid oxide fuel battery cell
JP6502977B2 (en) Fuel cell membrane electrode assembly and method of manufacturing the same
JP2008066002A (en) Power generation film, its manufacturing method, and solid oxide fuel cell
EP3389127B1 (en) Membrane electrode assembly structure of fuel cell and the method of manufacturing the same
TWI631757B (en) Membrane electrode assembly structure of fuel cell and the method of manufacturing the same
KR102117739B1 (en) Method of preparing anode-supported solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees