JP2010281842A - Device and method for measuring luminous energy - Google Patents

Device and method for measuring luminous energy Download PDF

Info

Publication number
JP2010281842A
JP2010281842A JP2010213948A JP2010213948A JP2010281842A JP 2010281842 A JP2010281842 A JP 2010281842A JP 2010213948 A JP2010213948 A JP 2010213948A JP 2010213948 A JP2010213948 A JP 2010213948A JP 2010281842 A JP2010281842 A JP 2010281842A
Authority
JP
Japan
Prior art keywords
light
amount
calibration
light source
luminous energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010213948A
Other languages
Japanese (ja)
Inventor
Muneki Ran
宗樹 蘭
Takeo Tanaami
健雄 田名網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2010213948A priority Critical patent/JP2010281842A/en
Publication of JP2010281842A publication Critical patent/JP2010281842A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and a method for measuring luminous energy which can quantitatively evaluate luminous energy. <P>SOLUTION: The luminous energy measuring device which measures luminous energy loaded with a light detection means is characterized by including a luminous energy calculating means calculating luminous energy of fluorescence signal light based on output signal of the light detection means, a light source for calibration which can control luminous energy of light given to the light detection means, and a calibrating means giving light of known luminous energy to the light detecting means with the light source for calibration to calibrate linearity of luminous energy calculated by the luminous energy calculating means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光量を計測する光量計測装置および光量計測方法に関し、とくに光量を定量評価できる光量計測装置および光量計測方法に関する。   The present invention relates to a light amount measuring device and a light amount measuring method for measuring a light amount, and more particularly to a light amount measuring device and a light amount measuring method capable of quantitatively evaluating the light amount.

DNA等の生体高分子を同定する方法として、マイクロアレイを用いた方法が知られている。例えばDNAを同定する場合、既知の塩基配列を有するDNAプローブをマイクロアレイの各サイトに固定し、ハイブリダイゼーションによって相補的な塩基配列をもつDNAを各サイトに結合させるものである。結合したDNAを蛍光マーカで標識しておくことで、結合量を蛍光の光量として認識できる。   A method using a microarray is known as a method for identifying a biopolymer such as DNA. For example, when DNA is identified, a DNA probe having a known base sequence is fixed to each site of the microarray, and DNA having a complementary base sequence is bound to each site by hybridization. By labeling the bound DNA with a fluorescent marker, the amount of binding can be recognized as the amount of fluorescence.

牧野徹・狩野恭一、会誌「光学」 ライフサイエンスにおける光技術 「DNA解析と光技術」、第28巻10号(1999)、(社)応用物理学会分科会 日本光学会、1999年、p549〜552Toru Makino and Junichi Kano, Journal “Optics” Optical Technology in Life Science “DNA Analysis and Optical Technology”, Vol. 28, No. 10 (1999), Japan Society for Applied Physics, Japan Optical Society, 1999, p549-552

光量は専用の光量計測装置を用いて計測する。しかし従来の装置では、絶対光量が計測できないため、遺伝子発現量を直接定量評価できない。   The amount of light is measured using a dedicated light amount measuring device. However, since the absolute light quantity cannot be measured with the conventional apparatus, the gene expression level cannot be directly quantitatively evaluated.

本発明の目的は、光量を定量評価できる光量計測装置および光量計測方法を提供することにある。   An object of the present invention is to provide a light quantity measuring device and a light quantity measuring method capable of quantitatively evaluating the quantity of light.

本発明の光量計測装置は、光検出手段で取り込んだ光の光量を計測する光量計測装置において、前記光検出手段の出力信号に基づいて蛍光信号光の光量を算出する光量算出手段と、前記光検出手段に与える光の光量を制御可能な校正用光源と、前記校正用光源により既知の光量の光を前記光検出手段に与えることで、前記光量算出手段により算出される光量のリニアリティを校正する校正手段と、を備えることを特徴とする。
この光量計測装置によれば、校正用光源により既知の光量の光を光検出手段に与えることで、光量算出手段により算出される光量のリニアリティを校正するので、光量を定量的に評価できる。
The light quantity measuring device of the present invention is a light quantity measuring device for measuring the light quantity of light taken in by the light detecting means, a light quantity calculating means for calculating a light quantity of fluorescent signal light based on an output signal of the light detecting means, and the light A calibration light source capable of controlling the amount of light applied to the detection means and a known light amount of light from the calibration light source to the light detection means to calibrate the linearity of the light quantity calculated by the light quantity calculation means. And a calibration means.
According to this light quantity measuring apparatus, the light quantity linearity calculated by the light quantity calculating means is calibrated by applying a known quantity of light to the light detecting means from the calibration light source, so that the light quantity can be quantitatively evaluated.

前記校正用光源は、一定光量の光を出力する光源と、値付けされた光アッテネータとにより構成されてもよい。   The calibration light source may include a light source that outputs a fixed amount of light and a priced optical attenuator.

前記蛍光信号光を発生する対象物に向けて励起光を照射する励起光照射手段を備えてもよい。   You may provide the excitation light irradiation means to irradiate excitation light toward the target object which generate | occur | produces the said fluorescence signal light.

本発明の光量計測方法は、光検出手段で取り込んだ光の光量を計測する光量計測方法において、前記光検出手段の出力信号に基づいて蛍光信号光の光量を算出するステップと、前記光検出手段に与える光の光量を制御可能な校正用光源により既知の光量の光を前記光検出手段に与えることで、前記光量を算出するステップにより算出される光量のリニアリティを校正するステップと、を備えることを特徴とする。
この光量計測方法によれば、校正用光源により既知の光量の光を光検出手段に与えることで、光量算出手段により算出される光量のリニアリティを校正するので、光量を定量的に評価できる。
The light quantity measuring method of the present invention is a light quantity measuring method for measuring a light quantity of light taken in by a light detecting means, a step of calculating a light quantity of fluorescent signal light based on an output signal of the light detecting means, and the light detecting means Calibrating the linearity of the light amount calculated by the step of calculating the light amount by supplying light of a known light amount to the light detection means by a calibration light source capable of controlling the light amount of light applied to the light source. It is characterized by.
According to this light quantity measurement method, the light quantity linearity calculated by the light quantity calculation means is calibrated by applying light of a known light quantity to the light detection means from the calibration light source, so that the light quantity can be quantitatively evaluated.

前記校正用光源は、一定光量の光を出力する光源と、値付けされた光アッテネータとにより構成されてもよい。   The calibration light source may include a light source that outputs a fixed amount of light and a priced optical attenuator.

本発明の光量計測装置によれば、校正用光源により既知の光量の光を光検出手段に与えることで、光量算出手段により算出される光量のリニアリティを校正するので、光量を定量的に評価できる。   According to the light quantity measuring device of the present invention, the light quantity linearity calculated by the light quantity calculating means is calibrated by applying a known light quantity of light to the light detecting means from the calibration light source, so that the light quantity can be quantitatively evaluated. .

本発明の光量計測方法によれば、校正用光源により既知の光量の光を光検出手段に与えることで、光量算出手段により算出される光量のリニアリティを校正するので、光量を定量的に評価できる。   According to the light quantity measuring method of the present invention, the light quantity linearity calculated by the light quantity calculating means is calibrated by applying a known light quantity of light to the light detecting means from the calibration light source, so that the light quantity can be quantitatively evaluated. .

本実施形態の光量計測装置の光学系の構成を示す図。The figure which shows the structure of the optical system of the light quantity measuring device of this embodiment. 本実施形態の光量計測装置の制御系の構成を示すブロック図。The block diagram which shows the structure of the control system of the light quantity measuring device of this embodiment.

以下、図1および図2を参照して、本発明による光量計測装置の一実施形態について説明する。   Hereinafter, with reference to FIG. 1 and FIG. 2, an embodiment of a light amount measuring apparatus according to the present invention will be described.

図1は本実施形態の光量計測装置の光学系の構成を示す図である。本実施形態は、DNAマイクロアレイ(マイクロアレイ上のDNAやRNAサンプル(以下バイオチップという。))に励起光を照射し、DNAマイクロアレイで発生する蛍光信号光の光量を計測する光量計測装置である。   FIG. 1 is a diagram illustrating a configuration of an optical system of a light amount measuring apparatus according to the present embodiment. The present embodiment is a light quantity measuring device that irradiates a DNA microarray (DNA or RNA sample on the microarray (hereinafter referred to as biochip)) with excitation light and measures the quantity of fluorescent signal light generated in the DNA microarray.

図1に示すように、本実施形態の光量計測装置は、DNAマイクロアレイ(バイオチップ)30に励起光を照射するための光学系として、励起光を発生する緑色レーザ光源1および赤色レーザ光源2と、緑色レーザ光源1からの照射光を折り曲げるミラー3と、それぞれ、緑色レーザ光源1および赤色レーザ光源2からの照射光の光路に配置されるダイクロイックミラー5、マイクロレンズアレイ6、ミラー7、ダイクロイックミラー8および可動ミラー9と、を備える。   As shown in FIG. 1, the light quantity measuring device of the present embodiment includes, as an optical system for irradiating a DNA microarray (biochip) 30 with excitation light, a green laser light source 1 and a red laser light source 2 that generate excitation light, , A mirror 3 for bending the irradiation light from the green laser light source 1, and a dichroic mirror 5, a microlens array 6, a mirror 7 and a dichroic mirror disposed in the optical paths of the irradiation light from the green laser light source 1 and the red laser light source 2, respectively. 8 and a movable mirror 9.

緑色レーザ光源1および赤色レーザ光源2の波長は、cy3やcy5の蛍光色素の励起光に合致するものである。   The wavelengths of the green laser light source 1 and the red laser light source 2 match the excitation light of the fluorescent dyes cy3 and cy5.

また、本実施形態の光量計測装置は、DNAマイクロアレイ30で発生する蛍光信号光を受けるための光学系として、信号光の光路に配置されたリレーレンズ11と、リレーレンズ11を通過した光を受ける高感度のCCDカメラ12と、を備える。   Moreover, the light quantity measuring device of this embodiment receives the relay lens 11 arranged in the optical path of the signal light and the light that has passed through the relay lens 11 as an optical system for receiving the fluorescent signal light generated in the DNA microarray 30. And a high-sensitivity CCD camera 12.

さらに、本実施形態の光量計測装置は、光量の校正を行うための光学系として、校正のためのレーザ光を出力する校正用レーザ光源21と、校正用レーザ光源21から出力されたレーザ光を減衰させる光アッテネータ22と、を備える。なお、校正用レーザ光源および光アッテネータ22は、装置に内蔵する代りに校正時に取り付けるようにしてもよい。   Furthermore, the light quantity measuring device of the present embodiment uses a calibration laser light source 21 that outputs a laser beam for calibration as an optical system for calibrating the light quantity, and a laser beam output from the calibration laser light source 21. An optical attenuator 22 for attenuation. The calibration laser light source and the optical attenuator 22 may be attached at the time of calibration instead of being built in the apparatus.

また、CCDカメラ12の前面側には、CCDカメラ12への入射光を遮断する校正用シャッター23が設けられている。   A calibration shutter 23 that blocks incident light on the CCD camera 12 is provided on the front side of the CCD camera 12.

図1に示すように、DNAマイクロアレイ30はテーブル41に載置される。   As shown in FIG. 1, the DNA microarray 30 is placed on a table 41.

図2は本実施形態の光量計測装置の制御系の構成を示すブロック図である。   FIG. 2 is a block diagram showing the configuration of the control system of the light quantity measuring apparatus of this embodiment.

図2に示すように、本実施形態の光量計測装置は、CCDカメラ12で捉えた光の光量を算出する光量算出部51と、校正用シャッター23を駆動する校正用シャッター駆動部53と、ミラー9を駆動するミラー駆動部55と、光量算出部51の校正を行う校正部56と、緑色レーザ光源1、赤色レーザ光源2、CCDカメラ12、光量算出部51、校正用レーザ光源21、光アッテネータ22、校正用シャッター駆動部53、ミラー駆動部55および校正部56を制御する制御部61と、を備える。   As shown in FIG. 2, the light amount measuring device of the present embodiment includes a light amount calculation unit 51 that calculates the amount of light captured by the CCD camera 12, a calibration shutter drive unit 53 that drives the calibration shutter 23, and a mirror. 9, a mirror driving unit 55 that calibrates the light amount calculating unit 51, a green laser light source 1, a red laser light source 2, a CCD camera 12, a light amount calculating unit 51, a calibration laser light source 21, and an optical attenuator. 22, a calibration shutter drive unit 53, a mirror drive unit 55, and a control unit 61 that controls the calibration unit 56.

次に、DNAマイクロアレイ30の測定時の動作について説明する。   Next, an operation during measurement of the DNA microarray 30 will be described.

測定時には、可動ミラー9および校正用シャッター23は、それぞれ光路から退避した破線で示す位置に駆動される(図1)。   At the time of measurement, the movable mirror 9 and the calibration shutter 23 are driven to positions indicated by broken lines that are retracted from the optical path (FIG. 1).

緑色レーザ光源1または赤色レーザ光源2で出力されたレーザ光はミラー3、ダイクロイックミラー5、マイクロレンズアレイ6、ミラー7、およびダイクロイックミラー8を介してDNAマイクロアレイ30に照射される。   Laser light output from the green laser light source 1 or the red laser light source 2 is applied to the DNA microarray 30 via the mirror 3, the dichroic mirror 5, the microlens array 6, the mirror 7, and the dichroic mirror 8.

レーザ光による励起により発生したDNAマイクロアレイ30からの蛍光信号光は、ダイクロイックミラー8およびリレーレンズ11を介してCCDカメラ12に入射する。CCDカメラ12の出力信号は光量算出部51に送られ、光量算出部51では信号光の光量が算出される。   The fluorescent signal light from the DNA microarray 30 generated by the excitation by the laser light enters the CCD camera 12 via the dichroic mirror 8 and the relay lens 11. The output signal of the CCD camera 12 is sent to the light amount calculation unit 51, and the light amount calculation unit 51 calculates the light amount of the signal light.

なお、バックグラウンドノイズに埋もれるような低レベルの信号光については、繰り返し加算によるアベレージング処理でランダムなノイズを相対的に低減し、S/N比を向上させてもよい。   For low-level signal light that is buried in background noise, random noise may be relatively reduced by averaging processing by repeated addition to improve the S / N ratio.

一般に遺伝子発現量は広いレンジに分布するため、遺伝子発現量を定量的に計測するためには、低いレベルまで光量を高精度に算出することが要求される。しかし、低レベルの光量は背景光(バックグラウンドノイズ)に埋もれやすく、とくに低レベルの光量において算出精度が問題となる。   In general, gene expression levels are distributed over a wide range, and in order to quantitatively measure gene expression levels, it is required to calculate the light quantity to a low level with high accuracy. However, the low-level light quantity is easily buried in the background light (background noise), and the calculation accuracy becomes a problem particularly in the low-level light quantity.

次に、校正時の動作について説明する。   Next, the operation at the time of calibration will be described.

本実施形態では、CCDカメラ12の無信号状態を作り、ゼロ点調整を行う。このとき、校正用シャッター23は光路を遮断する実線で示す位置に駆動される(図1)。これにより、迷光がCCDカメラ12に入らない状態が確保される。このときのCCDカメラ12の出力信号は光量算出部51に送られ、校正部56は光量算出部51に対し、この出力信号値を基準(ゼロ点)とする校正を実行する。   In this embodiment, the no-signal state of the CCD camera 12 is created and zero point adjustment is performed. At this time, the calibration shutter 23 is driven to a position indicated by a solid line that blocks the optical path (FIG. 1). Thereby, a state where stray light does not enter the CCD camera 12 is ensured. The output signal of the CCD camera 12 at this time is sent to the light amount calculation unit 51, and the calibration unit 56 performs calibration with respect to the light amount calculation unit 51 using the output signal value as a reference (zero point).

また、本実施形態では、CCDカメラ12に入射する光量を制御することで、とくに低光量領域での光量算出の校正を行う。このとき、校正用シャッター23は光路から退避する破線で示す位置に駆動される。また、可動ミラー9は光路に進入した実線で示す位置に駆動される(図1)。   Further, in the present embodiment, the amount of light incident on the CCD camera 12 is controlled to calibrate the light amount calculation particularly in the low light amount region. At this time, the calibration shutter 23 is driven to a position indicated by a broken line retracted from the optical path. Further, the movable mirror 9 is driven to a position indicated by a solid line entering the optical path (FIG. 1).

図1に示すように、校正用レーザ光源21から出力された光は光アッテネータ22により減衰され、可動ミラー9およびリレーレンズ11を介してCCDカメラ12に入射する。校正用レーザ光源21から出力されるレーザ光の光量、および光アッテネータ22による減衰量は既知であるため、CCDカメラ12に入射される光量も既知である。また、校正用レーザ光源21から出力されるレーザ光は、例えば、cy3の蛍光信号光の波長(570nm)に近い波長を有する。   As shown in FIG. 1, the light output from the calibration laser light source 21 is attenuated by the optical attenuator 22 and enters the CCD camera 12 via the movable mirror 9 and the relay lens 11. Since the amount of laser light output from the calibration laser light source 21 and the amount of attenuation by the optical attenuator 22 are known, the amount of light incident on the CCD camera 12 is also known. The laser light output from the calibration laser light source 21 has a wavelength close to the wavelength (570 nm) of the fluorescence signal light of cy3, for example.

光アッテネータ22の減衰量を切り替えることで、例えば、0dBm、−10dBm、−20dBm等、正しく値付けされた光をCCDカメラ12に入射させる。このときのCCDカメラ12の出力信号は光量算出部51に送られ、校正部56は各出力信号値がそれぞれの光量に正しく対応するように、光量算出部51に対する校正を実行する。   By switching the attenuation amount of the optical attenuator 22, for example, correctly valued light such as 0 dBm, −10 dBm, −20 dBm, or the like is incident on the CCD camera 12. The output signal of the CCD camera 12 at this time is sent to the light amount calculation unit 51, and the calibration unit 56 performs calibration on the light amount calculation unit 51 so that each output signal value corresponds to each light amount correctly.

このように本実施形態では、校正用シャッター23を用いてゼロ点の校正を行うとともに、光アッテネータ22の減衰量を切り替えることで、とくに低レベルの光量のリニアリティ補正を行うことができる。このため背景光に近い低レベルまで、光量を定量的に正確に計測できる。また、背景光の光量を正しく評価できる。   As described above, in this embodiment, the zero point is calibrated using the calibration shutter 23 and the attenuation of the optical attenuator 22 is switched, so that linearity correction of a particularly low level of light quantity can be performed. Therefore, the amount of light can be measured quantitatively and accurately up to a low level close to the background light. In addition, the amount of background light can be correctly evaluated.

上記実施形態では、校正用レーザ光源21と光アッテネータ22とを用いて、既知の光量の光をCCDカメラ12に与えているが、光量を調整可能な光源をこれらに代えて用いてもよい。例えば、光源としてLEDを用い、駆動電流によって光量を制御してもよい。   In the above embodiment, the calibration laser light source 21 and the optical attenuator 22 are used to give a known amount of light to the CCD camera 12, but a light source capable of adjusting the amount of light may be used instead. For example, an LED may be used as the light source and the amount of light may be controlled by the drive current.

また、校正用光源として、レーザ光源に代えて白色光源を用いてもよい。
さらに、校正用光源と光アッテネータの組み合わせではなく、基準となる蛍光信号を発生する対象物(基準蛍光信号発生手段)をバイオチップ30の代わりに設置し、そこに緑色レーザ光源や赤色レーザ光源(励起用光照射手段)から励起光を照射し、校正用光源として用いても良い。また、異なる基準蛍光信号を発生する対象物を複数用意することにより、リニアリティ校正ができる。
Further, a white light source may be used as the calibration light source instead of the laser light source.
Further, instead of a combination of a calibration light source and an optical attenuator, an object (reference fluorescence signal generating means) that generates a reference fluorescence signal is installed instead of the biochip 30, and a green laser light source and a red laser light source ( Excitation light may be emitted from the excitation light irradiation means) and used as a calibration light source. Also, linearity calibration can be performed by preparing a plurality of objects that generate different reference fluorescence signals.

上記実施形態では、CCDカメラ12に入射する光の光量を正確に制御することで、光量の校正を行っているが、CCDカメラ12に入射する光量を正確に測定してもよい。例えば、CCDカメラ12の位置に、光量が正確に測定できるパワーメータを取り付けることで、実際にCCDカメラ12に入射する光量を正確に測定し、同一条件でのCCDカメラ12の出力信号と、予め測定された光量とを対応付けるように校正することができる。このようなパワーメータを用いた校正方法として、特開2004−191232号公報に開示された方法を本発明に適用することができる。   In the above embodiment, the light amount is calibrated by accurately controlling the light amount of light incident on the CCD camera 12. However, the light amount incident on the CCD camera 12 may be accurately measured. For example, by attaching a power meter that can accurately measure the amount of light at the position of the CCD camera 12, the amount of light actually incident on the CCD camera 12 can be accurately measured, and the output signal of the CCD camera 12 under the same conditions can be obtained in advance. Calibration can be performed so as to correlate the measured light quantity. As a calibration method using such a power meter, the method disclosed in Japanese Patent Application Laid-Open No. 2004-191232 can be applied to the present invention.

上記実施形態では、校正に用いる校正部を装置に設けているが、校正のための校正部を校正時に取り付けることで、同様の校正方法を実行してもよい。ここで校正部とは、校正用光源21,光アッテネータ22および校正用シャッタ23である。   In the above embodiment, the calibration unit used for calibration is provided in the apparatus. However, a similar calibration method may be executed by attaching a calibration unit for calibration during calibration. Here, the calibration unit is a calibration light source 21, an optical attenuator 22, and a calibration shutter 23.

上記実施形態では、DNAマイクロアレイを測定対象とする場合を例示したが、本発明は、タンパク質、糖鎖、メタボローム等、種々の生体物質の検出に対し同様に適用できる。また、本発明はマイクロアレイによる物質検出に止まらず、半導体プロセスにおける蛍光性塵埃、プラズマディスプレイパネルの蛍光面の評価等にも適用できる。   In the above embodiment, the case where a DNA microarray is a measurement target has been exemplified, but the present invention can be similarly applied to detection of various biological substances such as proteins, sugar chains, metabolomes and the like. Further, the present invention is not limited to substance detection by a microarray, but can also be applied to evaluation of fluorescent dust in a semiconductor process, a fluorescent screen of a plasma display panel, and the like.

本発明の適用範囲は上記実施形態に限定されることはない。本発明は、光検出手段の出力信号に基づいて蛍光信号光の光量を算出する光量計測装置および光量計測方法に対し、広く適用することができる。   The scope of application of the present invention is not limited to the above embodiment. The present invention can be widely applied to a light quantity measuring device and a light quantity measuring method for calculating the quantity of fluorescent signal light based on the output signal of the light detection means.

1 緑色レーザ光源(励起光照射手段)
2 赤色レーザ光源(励起光照射手段)
12 CCDカメラ(光検出手段)
21 校正用レーザ光源(校正用光源)
22 光アッテネータ(校正用光源)
23 校正用シャッター
51 光量算出部(光量算出手段)
56 校正部(校正手段)
1 Green laser light source (excitation light irradiation means)
2 Red laser light source (excitation light irradiation means)
12 CCD camera (light detection means)
21 Calibration Laser Light Source (Calibration Light Source)
22 Optical attenuator (light source for calibration)
23 Calibration shutter 51 Light quantity calculation unit (light quantity calculation means)
56 Calibration section (calibration means)

Claims (5)

光検出手段で取り込んだ光の光量を計測する光量計測装置において、
前記光検出手段の出力信号に基づいて蛍光信号光の光量を算出する光量算出手段と、
前記光検出手段に与える光の光量を制御可能な校正用光源と、
前記校正用光源により既知の光量の光を前記光検出手段に与えることで、前記光量算出手段により算出される光量のリニアリティを校正する校正手段と、
を備えることを特徴とする光量計測装置。
In a light amount measuring device that measures the amount of light captured by the light detection means,
A light amount calculating means for calculating the light amount of the fluorescent signal light based on the output signal of the light detecting means;
A calibration light source capable of controlling the amount of light applied to the light detection means;
A calibration unit that calibrates the linearity of the light amount calculated by the light amount calculation unit by giving light of a known light amount to the light detection unit by the calibration light source;
A light quantity measuring device comprising:
前記校正用光源は、一定光量の光を出力する光源と、値付けされた光アッテネータとにより構成されることを特徴とする請求項1に記載の光量計測装置。   The light quantity measuring device according to claim 1, wherein the calibration light source includes a light source that outputs a constant amount of light and a priced optical attenuator. 前記蛍光信号光を発生する対象物に向けて励起光を照射する励起光照射手段を備えることを特徴とする請求項1または請求項2に記載の光量計測装置。   The light quantity measuring device according to claim 1, further comprising excitation light irradiation means for irradiating excitation light toward an object that generates the fluorescent signal light. 光検出手段で取り込んだ光の光量を計測する光量計測方法において、
前記光検出手段の出力信号に基づいて蛍光信号光の光量を算出するステップと、
前記光検出手段に与える光の光量を制御可能な校正用光源により既知の光量の光を前記光検出手段に与えることで、前記光量を算出するステップにより算出される光量のリニアリティを校正するステップと、
を備えることを特徴とする光量計測方法。
In the light quantity measurement method for measuring the light quantity of light captured by the light detection means,
Calculating the amount of fluorescent signal light based on the output signal of the light detection means;
Calibrating the linearity of the light amount calculated by the step of calculating the light amount by applying light of a known light amount to the light detection unit by a calibration light source capable of controlling the light amount of light applied to the light detection unit; ,
A light quantity measuring method comprising:
前記校正用光源は、一定光量の光を出力する光源と、値付けされた光アッテネータとにより構成されることを特徴とする請求項4に記載の光量計測方法。   5. The light quantity measuring method according to claim 4, wherein the calibration light source includes a light source that outputs light having a constant light quantity and a priced optical attenuator.
JP2010213948A 2010-09-24 2010-09-24 Device and method for measuring luminous energy Pending JP2010281842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010213948A JP2010281842A (en) 2010-09-24 2010-09-24 Device and method for measuring luminous energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010213948A JP2010281842A (en) 2010-09-24 2010-09-24 Device and method for measuring luminous energy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005279506A Division JP2007093249A (en) 2005-09-27 2005-09-27 Device and method for measuring luminous energy

Publications (1)

Publication Number Publication Date
JP2010281842A true JP2010281842A (en) 2010-12-16

Family

ID=43538662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010213948A Pending JP2010281842A (en) 2010-09-24 2010-09-24 Device and method for measuring luminous energy

Country Status (1)

Country Link
JP (1) JP2010281842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047441A1 (en) * 2016-09-09 2018-03-15 ソニー株式会社 Microparticle measurement device and microparticle measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266453A (en) * 1986-05-14 1987-11-19 Kobe Steel Ltd Calibrating apparatus for densitometer of fluorescent magnetic powder liquid
JPH10311789A (en) * 1997-05-13 1998-11-24 Nikon Corp Photometer
JP2003524754A (en) * 1998-05-16 2003-08-19 ピーイー コーポレイション (エヌワイ) Apparatus for monitoring the polymerase chain reaction of DNA
WO2004018623A2 (en) * 2002-08-16 2004-03-04 Clinical Microarrays, Inc. Substrates for isolating, reacting and microscopically analyzing materials
WO2004019019A1 (en) * 2002-08-21 2004-03-04 Amersham Biosiciences Uk Limited Fluorescence reference plate
JP2005515473A (en) * 2002-01-18 2005-05-26 ニユートン・ラボラトリーズ・インコーポレーテツド Spectroscopic diagnosis method and system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266453A (en) * 1986-05-14 1987-11-19 Kobe Steel Ltd Calibrating apparatus for densitometer of fluorescent magnetic powder liquid
JPH10311789A (en) * 1997-05-13 1998-11-24 Nikon Corp Photometer
JP2003524754A (en) * 1998-05-16 2003-08-19 ピーイー コーポレイション (エヌワイ) Apparatus for monitoring the polymerase chain reaction of DNA
JP2005515473A (en) * 2002-01-18 2005-05-26 ニユートン・ラボラトリーズ・インコーポレーテツド Spectroscopic diagnosis method and system
WO2004018623A2 (en) * 2002-08-16 2004-03-04 Clinical Microarrays, Inc. Substrates for isolating, reacting and microscopically analyzing materials
JP2005535909A (en) * 2002-08-16 2005-11-24 ディシジョン バイオマーカーズ インコーポレイテッド Substrates for material separation, reaction, and microscopic analysis
WO2004019019A1 (en) * 2002-08-21 2004-03-04 Amersham Biosiciences Uk Limited Fluorescence reference plate
JP2005535904A (en) * 2002-08-21 2005-11-24 アマシャム バイオサイエンス ユーケイ リミテッド Fluorescent reference plate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6011025450; 今関英夫、佐藤正一: '加算形光可変減衰器の検討' 1990年電子情報通信学会春季全国大会講演会論文集 第4分冊, 19900305, 第4-353頁 *
JPN6012048576; 牧野徹、狩野恭一: 'ライフサイエンスにおける光技術 DNA解析と光技術' 光学 第28巻、第10号, 19991010, 第549頁-第555頁 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047441A1 (en) * 2016-09-09 2018-03-15 ソニー株式会社 Microparticle measurement device and microparticle measurement method
US11378510B2 (en) 2016-09-09 2022-07-05 Sony Corporation Fine particle measuring device and fine particle measuring method

Similar Documents

Publication Publication Date Title
JP2007093249A (en) Device and method for measuring luminous energy
US10544453B2 (en) Method for detecting nucleic acid amplification product in real time
JP5760096B2 (en) Systems and methods for metered dose illumination in biological analysis or other systems
JP2010032513A5 (en)
US7508516B2 (en) Biochip reading apparatus and biochip reading method
JP2012032183A (en) Sample observation device and sample observation method
CA2930802C (en) Optical alignment tool
US20120179383A1 (en) Disc and calibration method of test device using the same
JP2007093370A (en) Fluorescence spectroscopic analyzer
US20100068714A1 (en) Multivariate detection of molecules in biossay
TW202043733A (en) Water quality analysis system, sensor module, calibration machine and calibration method for water quality analysis system
CN103018221A (en) Plant chlorophyll fluorescence detecting device for equalizing irradiation
JP2004191232A (en) Calibration method for light quantity detector, and luminous energy measuring instrument
JP2007114764A (en) Apparatus and method for detection with scanning microscope
JP2004191232A5 (en)
JP5249777B2 (en) Method and apparatus for measuring fluorescence of a sample and use thereof
JP2011017721A (en) Device and method for measuring luminous energy
JP2010281842A (en) Device and method for measuring luminous energy
WO2008024986A3 (en) Apparatus and methods for determining optical tissue properties
KR100759914B1 (en) Bio chip scanner having a function of adjusting focus
KR20120107976A (en) Fluorescence measuring apparatus and fluorescence measuring method
US10677734B2 (en) Method and apparatus for optical measurement of liquid sample
JP5370286B2 (en) Fluorescence detection device
JP2007212478A (en) Light quantity measuring device
JP2009058405A (en) Optical analysis apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100924

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20120127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Effective date: 20121115

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130529

Free format text: JAPANESE INTERMEDIATE CODE: A02