JP2007212478A - Light quantity measuring device - Google Patents

Light quantity measuring device Download PDF

Info

Publication number
JP2007212478A
JP2007212478A JP2007122547A JP2007122547A JP2007212478A JP 2007212478 A JP2007212478 A JP 2007212478A JP 2007122547 A JP2007122547 A JP 2007122547A JP 2007122547 A JP2007122547 A JP 2007122547A JP 2007212478 A JP2007212478 A JP 2007212478A
Authority
JP
Japan
Prior art keywords
light
light quantity
fluorescent
amount
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007122547A
Other languages
Japanese (ja)
Inventor
Takeo Tanaami
健雄 田名網
Yumiko Sugiyama
由美子 杉山
Saaya Sato
紗綾 佐藤
Hisao Katakura
久雄 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007122547A priority Critical patent/JP2007212478A/en
Publication of JP2007212478A publication Critical patent/JP2007212478A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light quantity measuring device which can measure not only shape but also absolute light quantity, while being able to directly estimate the number of fluorescence molecules, etc. <P>SOLUTION: This device is equipped with light quantity detector having one- or two-dimensionally-arranged photo acceptance units. The light quantity detector utilizes outgoing light beam from reference luminous source in which its own light quantity is measured to be valued by the power meter acquired traceability to national standard of optical power, calibrating relationship between received light quantity of each photo acceptance unit and its output signal all at once. Thus the device will measure absolute light quantity of fluorescence generated from biochip, cell, fluorescence coated object, or fluorescence dust. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、1次元または2次元状に配列された受光素子を有し、光パワーの国家標準にトレーサビリティがとれた光量検出器を用いた光量測定装置に関する。光量検出器としては、例えば、複数の受光素子からなる受光部を持つカメラである。   The present invention relates to a light quantity measuring device using a light quantity detector having light receiving elements arranged one-dimensionally or two-dimensionally and having traceability as a national standard of optical power. As a light quantity detector, it is a camera with the light-receiving part which consists of a some light receiving element, for example.

従来より、生体高分子などの同定・分画(例えば、DNAの検出、遺伝子DNAの有無検出)にはDNAチップが使用される。
DNAチップは、例えば数千から数万種類の既知のDNAの断片を基板上のサイトにそれぞれ固定したものである。このようなDNAチップに未知のDNAの断片を流すと、同じ種類のDNA同士がハイブリダイズして結合する。結合しなかった未知のDNAを洗浄により除去した後、残ったDNAに励起光(レーザ光)を照射する。未知のDNAにはあらかじめ蛍光物質が標識されており、励起光の照射により励起された蛍光物質からは蛍光が発生する。その結果、ハイブリダイゼーションが生じたか否かに対応してサイトごとに明暗が現れる。
Conventionally, DNA chips are used for identification and fractionation of biopolymers (for example, detection of DNA, detection of the presence or absence of genetic DNA).
A DNA chip is obtained by, for example, fixing thousands of tens of thousands of known DNA fragments to sites on a substrate. When an unknown DNA fragment is passed through such a DNA chip, the same kind of DNAs hybridize and bind to each other. After the unknown DNA that has not been bound is removed by washing, the remaining DNA is irradiated with excitation light (laser light). The unknown DNA is preliminarily labeled with a fluorescent material, and fluorescence is generated from the fluorescent material excited by irradiation with excitation light. As a result, light and dark appear for each site corresponding to whether or not hybridization has occurred.

この明暗観察は、共焦点レーザー光学系による蛍光スキャニング装置などで行われる(例えば、非特許文献1参照)。蛍光観察の検出器としては、高感度検出が可能なフォトマルチプライヤー(Photo multiplier)などが利用される。
なお、検出器としてパワーメータを利用する場合もあるが、パワーメータは零次元の検出しかできないため、DNAチップをはじめとするバイオチップや、プラズマディスプレイなどのような形状を持った試料は正確には計測できない。これは、サンプルの形状に依存して蛍光光量が空間的な分布を持つためである。
This bright / dark observation is performed by a fluorescence scanning apparatus using a confocal laser optical system (see, for example, Non-Patent Document 1). As a fluorescence observation detector, a photomultiplier (Photo multiplier) capable of high sensitivity detection is used.
In some cases, a power meter is used as a detector. However, since the power meter can only perform zero-dimensional detection, a sample having a shape such as a biochip such as a DNA chip or a plasma display is accurate. Cannot be measured. This is because the amount of fluorescent light has a spatial distribution depending on the shape of the sample.

牧野徹・狩野恭一、会誌「光学」 ライフサイエンスにおける光技術 「DNA解析と光技術」、第28巻10号(1999)、(社)応用物理学会分科会 日本光学会、1999年、p549〜552Toru Makino and Junichi Kano, Journal “Optics” Optical Technology in Life Science “DNA Analysis and Optical Technology”, Vol. 28, No. 10 (1999), Japan Society for Applied Physics, Japan Optical Society, 1999, p549-552

ところで、カメラや蛍光スキャニング装置などの検出器では、絶対光量が測定できないため次のような課題があった。
(1)装置間で検出器の出力信号の値が比較できない。
(2)バイオチップ計測においては遺伝子発現量が不明のため、既知の遺伝子などを混入させて比較測定するしかなく、そのため装置が高価になる。
By the way, detectors such as cameras and fluorescent scanning devices have the following problems because they cannot measure absolute light quantity.
(1) The value of the output signal of the detector cannot be compared between devices.
(2) In biochip measurement, since the gene expression level is unknown, there is no choice but to make a comparative measurement by mixing a known gene or the like, which makes the apparatus expensive.

本発明の目的は、上記の課題を解決するもので、形状とともに絶対光量を測定することができ、蛍光分子の数なども直接推定することのできる光量測定装置を提供することにある。   An object of the present invention is to solve the above-described problems, and to provide a light amount measuring apparatus capable of measuring an absolute light amount together with a shape and directly estimating the number of fluorescent molecules.

このような目的を達成するために、請求項1の発明は、1次元または2次元状に配列された受光素子を有し、光パワーの国家標準にトレーサビリティがとれたパワーメータで測定することによりその光量が値付けされた照明用基準光源からの出射光を利用して、各受光素子の受光光量とその出力信号との関係が一度に校正された光量検出器を備え、バイオチップまたは細胞または蛍光塗布体または蛍光性塵埃から発生される蛍光の絶対光量を測定することを特徴とする。
このような光量測定装置によれば、光量検出器での絶対光量測定が可能となる。また、光量検出器としては、複数の受光素子からなる受光部を持つカメラが使用可能である。
In order to achieve such an object, the invention of claim 1 has light receiving elements arranged one-dimensionally or two-dimensionally, and is measured by a power meter that is traceable to the national standard of optical power. A light amount detector in which the relationship between the received light amount of each light receiving element and its output signal is calibrated at a time using the emitted light from the illumination reference light source for which the light amount is valued, is provided with a biochip or cell or The absolute light quantity of the fluorescence generated from the fluorescent coated body or the fluorescent dust is measured.
According to such a light quantity measuring device, it is possible to measure an absolute light quantity with a light quantity detector. Moreover, as a light quantity detector, the camera with the light-receiving part which consists of a some light receiving element can be used.

また、請求項2の発明は、1次元または2次元状に配列された受光素子を有し、光パワーの国家標準にトレーサビリティがとれたパワーメータで測定することによりその光量が値付けされた照明用基準光源からの出射光を利用して、各受光素子の受光光量とその出力信号との関係が一度に校正された光量検出器と、蛍光物体からの蛍光光量を検出した前記光量検出器の出力信号と、蛍光色素から発生する光量の関係式とから、前記蛍光物体の分子数を算出する手段とを備え、前記蛍光物体の光量または分子数あるいは光量と分子数を直接推定することを特徴とする。   Further, the invention of claim 2 is an illumination having light receiving elements arranged in a one-dimensional or two-dimensional manner, and the amount of light of which is measured by a power meter that is traceable to the national standard of optical power. A light amount detector in which the relationship between the received light amount of each light receiving element and its output signal is calibrated at a time using the emitted light from the reference light source, and the light amount detector that detects the fluorescent light amount from the fluorescent object. Means for calculating the number of molecules of the fluorescent object from an output signal and a relational expression of the amount of light generated from the fluorescent dye, and directly estimating the light quantity or the number of molecules or the quantity of light and the number of molecules of the fluorescent object. And

本発明によれば次のような効果がある。
(1)受光素子を並べた受光部を持つカメラを、国家基準からトレーサブルなパワーメータにより各受光素子について受光光量とカメラ出力を校正するため、カメラ出力から絶対光量を直接測定できる。
(2)このように校正されたカメラを用いれば、蛍光測定用の各装置間の光量測定誤差を容易に減らすことができる。
The present invention has the following effects.
(1) Since a camera having a light receiving unit in which light receiving elements are arranged is calibrated with respect to each light receiving element by a power meter traceable from national standards, the absolute light quantity can be directly measured from the camera output.
(2) If the camera calibrated in this way is used, it is possible to easily reduce the light amount measurement error between the respective apparatuses for fluorescence measurement.

(3)蛍光分子の数も分るため、工程管理指標を明確化し、サンプル処理のプロセスの改善が容易になり、また容易に高精度化もできる。
(4)さらにサンプル自身もリファレンス用に付加するダミーサンプルを減らせるため、容易にコストダウンを図ることができる。
(3) Since the number of fluorescent molecules is also known, the process control index is clarified, the sample processing process can be easily improved, and the accuracy can be easily increased.
(4) Further, since the sample itself can reduce the number of dummy samples added for reference, the cost can be easily reduced.

以下、図面を用いて、本発明の光量測定装置を説明する。   Hereinafter, the light quantity measuring device of the present invention will be described with reference to the drawings.

図1は本発明に係る校正方法の原理を説明するための図である。図1(a)において、1はパワーメータ、2は光学系、3はLEDなどの照明用基準光源である。
パワーメータ1は、光パワーの国家標準にトレーサビリティがとれたものであり、国家標準と互換性のあるものである。このパワーメータ1により光学系2経由の照明用基準光源3の光量を測定し、パワーメータ1を基準にして照明用基準光源3の光量を値付けする。
FIG. 1 is a diagram for explaining the principle of a calibration method according to the present invention. In FIG. 1A, 1 is a power meter, 2 is an optical system, and 3 is an illumination reference light source such as an LED.
The power meter 1 is traceable to the national standard of optical power, and is compatible with the national standard. The power meter 1 measures the light quantity of the illumination reference light source 3 via the optical system 2, and values the light quantity of the illumination reference light source 3 based on the power meter 1.

次に、図1(b)に示すように、その校正された照明用基準光源3の光量を光学系2を介して光量検出器(例えばカメラ)4の受光素子(図示せず)で検出する。これによりカメラ4の受光素子の受光光量とカメラの出力信号の関係を一度に校正することができる。   Next, as shown in FIG. 1B, the light quantity of the calibrated illumination reference light source 3 is detected by the light receiving element (not shown) of the light quantity detector (for example, camera) 4 through the optical system 2. . As a result, the relationship between the amount of light received by the light receiving element of the camera 4 and the output signal of the camera can be calibrated at a time.

図2にこのような校正方法による校正結果の一例を示す。図は受光素子の単位面積当りの絶対光量とカメラの輝度信号出力の階調との関係を表す。光源3が緑色の光である場合は、Y=2.61E-06X+2.57E-05、光源3が赤色の光である場合は、Y=1.81E-06X−5.26E-05の関係となる。なお、式中のXは階調、Yは光量である。   FIG. 2 shows an example of a calibration result obtained by such a calibration method. The figure shows the relationship between the absolute light quantity per unit area of the light receiving element and the gradation of the luminance signal output of the camera. When the light source 3 is green light, Y = 2.61E-06X + 2.57E-05, and when the light source 3 is red light, Y = 1.81E-06X-5.26E-05. In the expression, X is a gradation and Y is a light quantity.

このようにして校正されたカメラをバイオチップ読取装置(例えば、本願出願人が提案した特開2001−311690号に記載のバイオチップ読取装置など)の受光器に用いると、測定した画像の階調値から直接蛍光光量を測定することができる。   When the camera calibrated in this way is used in a light receiver of a biochip reader (for example, a biochip reader described in Japanese Patent Application Laid-Open No. 2001-31690 proposed by the applicant of the present application), the gradation of the measured image is measured. The amount of fluorescence can be directly measured from the value.

他方、蛍光色素から発生する光量は以下の演算処理により求めることができる。
蛍光色素によって吸収される光のパワーΔIは、次式で与えられる。
ΔI=2.3×103×α×Io×n/(Na×S) [W] …(1)
ただし、
α : モル吸光係数 8×104[M-1 cm-1]
Io : 入射光量[W]
n : 分子数[個]
Na : アボガドロ数 6×1023
S : 面積[cm2]
である。
これに量子効率などを考慮することで蛍光色素から発生する蛍光光量を推定することができる。
On the other hand, the amount of light generated from the fluorescent dye can be obtained by the following arithmetic processing.
The power ΔI of light absorbed by the fluorescent dye is given by the following equation.
ΔI = 2.3 × 103 × α × Io × n / (Na × S) [W] (1)
However,
α: Molar extinction coefficient 8 × 104 [M-1 cm-1]
Io: Incident light intensity [W]
n: number of molecules [pieces]
Na: Avogadro number 6 × 1023
S: Area [cm2]
It is.
By considering the quantum efficiency and the like, the amount of fluorescent light generated from the fluorescent dye can be estimated.

したがって、上記校正方法によって校正されたカメラを用いて計測した蛍光光量と上記推定した蛍光光量の値を対応させることにより、バイオチップ上の蛍光分子の数nを直接推定することができる。   Therefore, the number n of fluorescent molecules on the biochip can be directly estimated by associating the fluorescence light quantity measured using the camera calibrated by the calibration method with the estimated fluorescence light quantity value.

なお、本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形をも含むものである。
例えば、バイオチップに限らず、一般の細胞や、半導体プロセスにおけるゴミ(蛍光性塵埃)、プラズマパネルなどの蛍光塗布体なども計測可能である。
The present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.
For example, not only a biochip, but also general cells, dust (fluorescent dust) in a semiconductor process, fluorescent coatings such as a plasma panel, and the like can be measured.

また、受光器としては、受光素子が2次元状に配列されたいわゆる2次元アレイ状のものに限らず、図3に示すように受光素子が1次元状に配列されたラインセンサ4aも使用可能である。この場合、ステージ(図示せず)を付加して、サンプル5をラインセンサ4aの配列方向と直交する方向に移動させて、サンプルの2次元画像を検出するようにしてもよい。   The light receiver is not limited to a so-called two-dimensional array in which the light receiving elements are arranged two-dimensionally, and a line sensor 4a in which the light receiving elements are arranged one-dimensionally as shown in FIG. 3 can also be used. It is. In this case, a two-dimensional image of the sample may be detected by adding a stage (not shown) and moving the sample 5 in a direction orthogonal to the arrangement direction of the line sensors 4a.

また、カメラと光学系の間にイメージインテンシファイアなどの光量増幅系を挿入してもよい。これによって微弱光も測定可能となる。なお、この場合は、イメージインテンシファイアも含めた形で校正を行う必要がある。   Further, a light quantity amplification system such as an image intensifier may be inserted between the camera and the optical system. This makes it possible to measure faint light. In this case, it is necessary to perform calibration in a form including the image intensifier.

本発明に係る校正方法の原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of the calibration method which concerns on this invention. 校正結果の一例を示す図である。It is a figure which shows an example of a calibration result. 1次元状に配列の受光素子を用いた場合の実施例図である。It is an Example figure at the time of using the light receiving element of a one-dimensional arrangement | sequence.

符号の説明Explanation of symbols

1 パワーメータ
2 光学系
3 照明用基準光源
4 光量検出器
4a ラインセンサ
5 サンプル
DESCRIPTION OF SYMBOLS 1 Power meter 2 Optical system 3 Reference light source for illumination 4 Light quantity detector 4a Line sensor 5 Sample

Claims (2)

1次元または2次元状に配列された受光素子を有し、光パワーの国家標準にトレーサビリティがとれたパワーメータで測定することによりその光量が値付けされた照明用基準光源からの出射光を利用して、各受光素子の受光光量とその出力信号との関係が一度に校正された光量検出器を備え、
バイオチップまたは細胞または蛍光塗布体または蛍光性塵埃から発生される蛍光の絶対光量を測定する光量測定装置。
Uses light emitted from a reference light source for illumination that has light receiving elements arranged in a one-dimensional or two-dimensional form and is measured by a power meter that is traceable to the national standard of optical power. And a light amount detector in which the relationship between the received light amount of each light receiving element and its output signal is calibrated at once,
A light quantity measuring device that measures the absolute light quantity of fluorescence generated from a biochip, a cell, a fluorescent coating, or fluorescent dust.
1次元または2次元状に配列された受光素子を有し、光パワーの国家標準にトレーサビリティがとれたパワーメータで測定することによりその光量が値付けされた照明用基準光源からの出射光を利用して、各受光素子の受光光量とその出力信号との関係が一度に校正された光量検出器と、
蛍光物体からの蛍光光量を検出した前記光量検出器の出力信号と、蛍光色素から発生する光量の関係式とから、前記蛍光物体の分子数を算出する手段とを備え、
前記蛍光物体の光量または分子数あるいは光量と分子数を直接推定することを特徴とする光量測定装置。

































Uses light emitted from a reference light source for illumination that has light receiving elements arranged in a one-dimensional or two-dimensional shape and is measured by a power meter that is traceable to the national standard of optical power. A light amount detector in which the relationship between the amount of light received by each light receiving element and its output signal is calibrated at once;
A means for calculating the number of molecules of the fluorescent object from the output signal of the light intensity detector that detects the amount of fluorescent light from the fluorescent object and the relational expression of the amount of light generated from the fluorescent dye;
A light quantity measuring apparatus for directly estimating the light quantity or the number of molecules or the quantity and number of molecules of the fluorescent object.

































JP2007122547A 2007-05-07 2007-05-07 Light quantity measuring device Withdrawn JP2007212478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122547A JP2007212478A (en) 2007-05-07 2007-05-07 Light quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122547A JP2007212478A (en) 2007-05-07 2007-05-07 Light quantity measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002360653A Division JP2004191232A (en) 2002-12-12 2002-12-12 Calibration method for light quantity detector, and luminous energy measuring instrument

Publications (1)

Publication Number Publication Date
JP2007212478A true JP2007212478A (en) 2007-08-23

Family

ID=38491017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122547A Withdrawn JP2007212478A (en) 2007-05-07 2007-05-07 Light quantity measuring device

Country Status (1)

Country Link
JP (1) JP2007212478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038772A (en) * 2009-08-06 2011-02-24 Yokogawa Electric Corp Method and device for measuring quantity of fluorescence or quantity of extinction
KR20220030296A (en) 2019-09-17 2022-03-10 주식회사 아도반테스토 Phantom and Fluorescence Detection Devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191232A (en) * 2002-12-12 2004-07-08 Yokogawa Electric Corp Calibration method for light quantity detector, and luminous energy measuring instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191232A (en) * 2002-12-12 2004-07-08 Yokogawa Electric Corp Calibration method for light quantity detector, and luminous energy measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038772A (en) * 2009-08-06 2011-02-24 Yokogawa Electric Corp Method and device for measuring quantity of fluorescence or quantity of extinction
KR20220030296A (en) 2019-09-17 2022-03-10 주식회사 아도반테스토 Phantom and Fluorescence Detection Devices
DE112020003379T5 (en) 2019-09-17 2022-03-31 Advantest Corporation PHANTOM AND FLUORESCENCE DETECTION DEVICE

Similar Documents

Publication Publication Date Title
Lapp et al. A new luminescence detection and stimulation head for the Risø TL/OSL reader
US6596483B1 (en) System and method for detecting molecules using an active pixel sensor
JP4286447B2 (en) Digital imaging system for assays in well plates, gels and blots
US9234237B2 (en) Optical lens system and method for microfluidic devices
JP2004191232A (en) Calibration method for light quantity detector, and luminous energy measuring instrument
JP6911016B2 (en) Device for reading IVD assay
EP2990781A1 (en) Fluoroscence detection apparatus and fluoroscence detection method
US20090194693A1 (en) Imaging Apparatus for Combined Temperature and Luminescence Spatial Imaging of an Object
JP4835730B2 (en) Method and apparatus for measuring fluorescence or absorbance
JP2004191232A5 (en)
JP2011513740A (en) Time-resolved spectroscopic analysis method and system using photon mixing detector
US20100068714A1 (en) Multivariate detection of molecules in biossay
US7978327B2 (en) Molecularity measurement instrument and molecularity measurement method
JP2007212478A (en) Light quantity measuring device
US20050190286A1 (en) Integrated array sensor for real time measurements of biological samples
JP5644544B2 (en) Luminescence intensity measuring device
JP2007046933A (en) Fluorescent image-detecting method, fluorescent image-detecting substrate, fluorescent image detector, program and recording medium
JP2009180516A (en) Fluorescence detection method and fluorescence detection device
KR101213703B1 (en) Time-resolved ultraviolet rays near-field scanning optical microscope and method of measuring using thereof
JP4174003B2 (en) Spectroscopic identification and quantification system
JP2011017721A (en) Device and method for measuring luminous energy
JP2012220361A (en) Light amount measuring apparatus and light amount measuring method
Klotchenko et al. A Scanning Hardware Analyzer for Recording and Processing Fluorescent Biochip Images
JP2007003363A (en) Probe carrier, and fluorescence reader
CN101008609A (en) Optical waveguide biological detecting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100617

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100809