JP2010279103A - Power supply device and power consumption measurement system - Google Patents

Power supply device and power consumption measurement system Download PDF

Info

Publication number
JP2010279103A
JP2010279103A JP2009127026A JP2009127026A JP2010279103A JP 2010279103 A JP2010279103 A JP 2010279103A JP 2009127026 A JP2009127026 A JP 2009127026A JP 2009127026 A JP2009127026 A JP 2009127026A JP 2010279103 A JP2010279103 A JP 2010279103A
Authority
JP
Japan
Prior art keywords
power
unit
power supply
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009127026A
Other languages
Japanese (ja)
Other versions
JP5452078B2 (en
Inventor
Masahiro Naruo
誠浩 鳴尾
Masanori Mishima
正徳 三嶋
Shigeru Ido
滋 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009127026A priority Critical patent/JP5452078B2/en
Publication of JP2010279103A publication Critical patent/JP2010279103A/en
Application granted granted Critical
Publication of JP5452078B2 publication Critical patent/JP5452078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply device and a power consumption measurement system wherein a configuration for measuring power consumption is insusceptible to a voltage of an external power source and an increase in size is less prone to be incurred. <P>SOLUTION: The power supply device includes: a direct-current power supply unit 1 that converts power inputted from an external alternating-current power source AC into direct-current power of a predetermined voltage and outputs it; a power conversion unit 2 that converts direct-current power inputted from the direct-current power supply unit 1 and supplies it to a discharge lamp FL; a first resistor R1 that generates higher detection voltage V1 with an increase in the current passed through a switching element Q2 of the power conversion unit 2; and a computation unit 41 that computes power consumption using the detection voltage V1. The detection voltage V1 generated at the first resistor R1 that is located in the stage subsequent to the direct-current power supply unit 1 and is insusceptible to a difference in the power of the alternating-current power source AC is used for the computation of power consumption. Therefore, an error caused by a difference in the power of the alternating-current power source AC is suppressed. In addition, an increase in size is less prone to be incurred as compared with cases where a current transformer is used. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電源装置及び消費電力測定システムに関するものである。   The present invention relates to a power supply device and a power consumption measurement system.

従来から、外部の電源から供給された電力を適宜変換して負荷に供給するとともに、消費電力を検出して外部に報知する電源装置が提供されている(例えば、特許文献1及び特許文献2参照)。   Conventionally, there has been provided a power supply device that appropriately converts power supplied from an external power source and supplies the power to a load, and detects power consumption and notifies the outside (see, for example, Patent Document 1 and Patent Document 2). ).

さらに、この種の電源装置において、消費電力を測定して報知するものが提供されている。このような電源装置から得られる消費電力の測定結果は、使用者が節電に役立てることができる。消費電力を測定する方法としては、例えばカレントトランスを用いるものがある。   Further, in this type of power supply device, there is provided a device that measures and notifies power consumption. The measurement result of the power consumption obtained from such a power supply device can be used by the user for power saving. As a method for measuring power consumption, for example, there is a method using a current transformer.

実開昭64−13695号公報Japanese Utility Model Publication No. 64-13695 特許第3947139号公報Japanese Patent No. 3947139

しかし、カレントトランスを用いると大型化を招いてしまう。   However, using a current transformer leads to an increase in size.

また、近年では外部の電源として100V電源と200V電源といったように複数種類の電源を使用可能な電源装置も提供されているが、消費電力を検出する方法の中には、実際の消費電力に変化がなくとも、上記のような外部の電源の電圧が変化すると、検出結果としての消費電力が変化してしまうようなものもある。   In recent years, a power supply device that can use a plurality of types of power supplies such as a 100 V power supply and a 200 V power supply as an external power supply has been provided. However, in a method of detecting power consumption, there is a change in actual power consumption. Even if the voltage of the external power source changes as described above, the power consumption as a detection result may change.

本発明は、上記事由に鑑みて為されたものであり、その目的は、消費電力を測定する構成が外部の電源の電圧の影響を受けにくく且つ大型化を招きにくい電源装置及び消費電力測定システムを提供することにある。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a power supply device and a power consumption measurement system in which a configuration for measuring power consumption is not easily affected by the voltage of an external power supply and does not easily increase in size. Is to provide.

請求項1の発明は、外部の電源から入力された電力を所定電圧の直流電力に変換して出力する直流電源部と、少なくとも1個のスイッチング素子を含み、直流電源部から入力された直流電力を適宜変換して負荷に供給する電力変換部と、電力変換部のスイッチング素子に流れる電流が多いほど高い値を示す出力を生成する電流検出部と、電流検出部の出力の値Vsと、定数α,βとを用いて、消費電力Winを式Win=α×Vs+βにより演算する演算部と、演算部によって演算された消費電力Winを外部に報知する報知部とを備えることを特徴とする。   The invention of claim 1 includes a DC power supply unit that converts electric power input from an external power source into DC power of a predetermined voltage and outputs the DC power, and at least one switching element, and the DC power input from the DC power supply unit A power conversion unit that appropriately converts the current to supply to the load, a current detection unit that generates an output that shows a higher value as the current flowing through the switching element of the power conversion unit increases, an output value Vs of the current detection unit, and a constant A calculation unit that calculates power consumption Win by the expression Win = α × Vs + β using α and β, and a notification unit that notifies the power consumption Win calculated by the calculation unit to the outside are provided.

この発明によれば、外部の電源から入力された電力はいったん直流電源部で所定電圧の直流電力に変換されるので、直流電源部の後段にある電流検出部の出力は外部の電源から入力される電力の差を受けにくいことにより、この電流検出部の出力を用いた演算によって得られる消費電力では、外部の電源から入力される電力の差に起因する誤差が抑えられる。また、電流検出部はスイッチング素子に直列に接続された抵抗で構成することができるから、カレントトランスを用いる場合に比べて大型化を招きにくい。   According to the present invention, since the power input from the external power source is once converted into DC power of a predetermined voltage by the DC power source unit, the output of the current detection unit at the subsequent stage of the DC power source unit is input from the external power source. In the power consumption obtained by the calculation using the output of the current detection unit, an error due to the difference in power input from an external power source can be suppressed. In addition, since the current detection unit can be configured by a resistor connected in series to the switching element, it is less likely to increase in size compared to the case where a current transformer is used.

請求項2の発明は、少なくとも1個のスイッチング素子を含み、外部の直流電源から入力された直流電力を適宜変換して負荷に供給する電力変換部と、電力変換部のスイッチング素子に流れる電流が多いほど高い値を示す出力を生成する電流検出部と、外部の直流電源から電力変換部への入力電圧を検出する電源電圧検出部と、消費電力Winの演算に用いられる定数α、βが複数種類、それぞれ、電源電圧検出部によって検出される入力電圧の範囲に対応付けて格納された記憶部とを備え、電流検出部の出力の値Vsと、電源電圧検出部によって検出された入力電圧に応じて記憶部から読み出された定数α,βとを用いて、消費電力Winを式Win=α×Vs+βにより演算する演算部と、演算部によって演算された消費電力Winを外部に報知する報知部とを備えることを特徴とする。   The invention according to claim 2 includes at least one switching element, a power converter that appropriately converts DC power input from an external DC power source and supplies the power to the load, and a current flowing through the switching element of the power converter. A current detection unit that generates an output that indicates a higher value as the number increases, a power supply voltage detection unit that detects an input voltage from an external DC power supply to the power conversion unit, and a plurality of constants α and β used for calculating power consumption Win A storage unit that is stored in association with the range of the input voltage detected by the power supply voltage detection unit, and outputs the value Vs of the output of the current detection unit and the input voltage detected by the power supply voltage detection unit. In response, the constants α and β read from the storage unit are used to calculate the power consumption Win by the equation Win = α × Vs + β, and the power consumption Win calculated by the calculation unit is externally output. Characterized in that it comprises a notification unit that knowledge.

この発明によれば、電源電圧検出部によって検出された入力電圧に応じた定数α、βが消費電力の演算に用いられることで、入力電圧の差すなわち外部の電源から入力される電力の差に起因する誤差が抑えられる。   According to the present invention, the constants α and β corresponding to the input voltage detected by the power supply voltage detection unit are used for the calculation of power consumption, so that the difference in input voltage, that is, the difference in power input from an external power supply is obtained. The resulting error is suppressed.

請求項3の発明は、請求項1の発明において、直流電源部は複数種類の電力のいずれかが択一的に入力されるものであって、直流電源部に入力される電力の種別を判別する入力判別部と、消費電力Winの演算に用いられる定数α、βが複数種類、それぞれ、入力判別部によって判定される電力の種別に対応付けて格納された記憶部とを備え、演算部は、消費電力Winを演算する際、入力判別部によって判別されている電力の種別に対応する定数α、βを記憶部から読み出して演算に用いることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, the DC power supply unit is one in which any of a plurality of types of power is selectively input, and the type of power input to the DC power supply unit is determined. A plurality of constants α and β used for calculating the power consumption Win, each of which is stored in association with the type of power determined by the input determining unit. When calculating the power consumption Win, constants α and β corresponding to the type of power determined by the input determining unit are read from the storage unit and used for the calculation.

この発明によれば、直流電源部に入力される電力の種別の違いに起因する誤差を抑えることができる。   According to the present invention, it is possible to suppress errors caused by differences in the types of power input to the DC power supply unit.

請求項4の発明は、請求項1の発明において、出力電力の指示が入力される指示入力部を備え、電力変換部は、指示入力部に入力された指示に応じて出力電力を増減させるものであって、消費電力Winの演算に用いられる定数α、βが複数種類、それぞれ、電力変換部の出力電力の範囲に対応付けて格納された記憶部を備え、演算部は、消費電力Winを演算する際、電力変換部の出力電力に対応する定数α、βを記憶部から読み出して演算に用いることを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the invention, an instruction input unit to which an instruction for output power is input is provided, and the power conversion unit increases or decreases the output power in accordance with the instruction input to the instruction input unit. A plurality of constants α and β used for calculation of power consumption Win, each of which is stored in association with the range of output power of the power conversion unit, and the calculation unit calculates the power consumption Win When performing the calculation, constants α and β corresponding to the output power of the power conversion unit are read from the storage unit and used for the calculation.

この発明によれば、電力変換部の出力電力の変動に起因する誤差を抑えることができる。   According to the present invention, errors caused by fluctuations in output power of the power conversion unit can be suppressed.

請求項5の発明は、請求項1の発明において、電力変換部は、それぞれ電流検出部の出力の値Vsと消費電力Winとの関係が異なる複数種類の動作を実行可能であって、消費電力Winの演算に用いられる定数α、βが複数種類、それぞれ、電力変換部の動作の種類に対応付けて格納された記憶部を備え、演算部は、消費電力Winを演算する際、電力変換部が行っている動作の種類に対応する定数α、βを記憶部から読み出して演算に用いることを特徴とする。   According to a fifth aspect of the present invention, in the first aspect of the invention, the power conversion unit can execute a plurality of types of operations in which the relationship between the output value Vs of the current detection unit and the power consumption Win is different. A plurality of types of constants α and β used for the calculation of Win are provided, each of which is stored in association with the type of operation of the power conversion unit, and when the calculation unit calculates the power consumption Win, the power conversion unit The constants α and β corresponding to the type of operation performed by the are read from the storage unit and used for the calculation.

この発明によれば、電力変換部の動作の種類の違いに起因する誤差を抑えることができる。   According to the present invention, it is possible to suppress errors due to differences in the types of operations of the power conversion unit.

請求項6の発明は、請求項1の発明において、温度を検出する温度検出部と、消費電力Winの演算に用いられる定数α、βが複数種類、それぞれ、温度検出部によって検出される温度の範囲に対応付けて格納された記憶部とを備え、演算部は、消費電力Winを演算する際、温度検出部によって検出された温度に対応する定数α、βを記憶部から読み出して演算に用いることを特徴とする。   A sixth aspect of the present invention is the first aspect of the present invention, wherein, in the first aspect of the present invention, a temperature detector that detects the temperature, and a plurality of constants α and β used for calculating the power consumption Win, each of the temperatures detected by the temperature detector. And a storage unit stored in association with the range. When calculating the power consumption Win, the calculation unit reads constants α and β corresponding to the temperature detected by the temperature detection unit from the storage unit and uses them in the calculation. It is characterized by that.

この発明によれば、温度差に起因する誤差を抑えることができる。   According to the present invention, errors due to temperature differences can be suppressed.

請求項7の発明は、請求項1〜6のいずれかの発明において、電流検出部は、電力変換部のスイッチング素子に流れる電流が多いほど高いアナログ電圧を出力するアナログ電流検出部と、電圧値が正負両側に跨って周期的に変化するアナログ電圧である周期信号を生成する周期信号生成部と、アナログ電流検出部の出力電圧に周期信号が重畳された電圧をA/D変換して出力するA/D変換部と、所定の測定期間毎に、A/D変換部への入力電圧に対する周期信号生成部の出力電圧の寄与の総計が0となるように選択された複数個ずつの測定タイミングでそれぞれA/D変換部の出力を得るとともに、得られたA/D変換部の出力の値を合計した値を演算部への出力の値Vsとする累積加算部とからなることを特徴とする。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the current detector includes an analog current detector that outputs a higher analog voltage as the current flowing through the switching element of the power converter increases, and a voltage value A / D-converts and outputs a periodic signal generator that generates a periodic signal that is an analog voltage that periodically changes across both the positive and negative sides, and a voltage in which the periodic signal is superimposed on the output voltage of the analog current detector A plurality of measurement timings selected so that the sum of contributions of the output voltage of the periodic signal generation unit to the input voltage to the A / D conversion unit and the A / D conversion unit is 0 for each predetermined measurement period. And a cumulative addition unit that obtains the value Vs of the output to the arithmetic unit as a value obtained by summing the values of the outputs of the A / D conversion unit obtained respectively. To do.

この発明によれば、A/D変換の前の周期信号の重畳によりA/D変換の結果に発生する差異が、全体として、A/D変換に伴って発生する量子化誤差を相殺するものとなることで、結果的に量子化誤差が抑制される。   According to the present invention, the difference occurring in the result of A / D conversion due to the superimposition of the periodic signal before A / D conversion as a whole cancels the quantization error caused by the A / D conversion. As a result, the quantization error is suppressed as a result.

請求項8の発明は、請求項7の発明において、測定期間は周期信号の複数周期に跨っていて、周期信号の位相と測定タイミングとの関係が周期信号の周期毎にずらされていることを特徴とする。   The invention of claim 8 is that in the invention of claim 7, the measurement period extends over a plurality of periods of the periodic signal, and the relationship between the phase of the periodic signal and the measurement timing is shifted for each period of the periodic signal. Features.

請求項9の発明は、請求項8の発明において、周期信号の1周期の長さTと、2以上の自然数pと、自然数qとを用いて、測定期間の長さが(p+1/q)Tと表され、1個の測定期間中の測定タイミングの個数がp×q個と表され、1≦i≦p×qである各iについて、それぞれ、整数m=(i−1)/q(端数切捨て)を用いて、測定期間の開始からi番目の測定タイミングまでの時間が、(T/q)×(i−1)+m×T/(p×q)と表されることを特徴とする。   The invention of claim 9 is the invention of claim 8, wherein the length of the measurement period is (p + 1 / q) using the length T of one period of the periodic signal, the natural number p of 2 or more, and the natural number q. The number of measurement timings in one measurement period is expressed as p × q, and for each i where 1 ≦ i ≦ p × q, an integer m = (i−1) / q The time from the start of the measurement period to the i-th measurement timing is expressed as (T / q) × (i−1) + m × T / (p × q) using (rounded down). And

この発明によれば、実際の測定タイミング間の間隔をT/q以上としながらも、測定タイミングと周期信号の位相との関係を全体としてみれば測定タイミング間の間隔をT/(p×q)としたのと同様となる。   According to the present invention, the interval between the measurement timings is T / (p × q) when the relationship between the measurement timing and the phase of the periodic signal is taken as a whole while the interval between the actual measurement timings is set to T / q or more. It becomes the same as that.

請求項10の発明は、外部の電源から入力された電力を所定電圧の直流電力に変換して出力する直流電源部と、少なくとも1個のスイッチング素子を含み、直流電源部から入力された直流電力を適宜変換して負荷に供給する電力変換部と、電力変換部のスイッチング素子に流れる電流が多いほど高いアナログ電圧を出力するアナログ電流検出部と、電圧値が正負両側に跨って周期的に変化するアナログ電圧である周期信号を生成する周期信号生成部と、アナログ電流検出部の出力電圧に周期信号が重畳された電圧をA/D変換して出力するA/D変換部と、所定の測定期間毎に、A/D変換部への入力電圧に対する周期信号生成部の出力電圧の寄与の総計が0となるように選択されたn(n≧2)個ずつの測定タイミングでそれぞれA/D変換部の出力D(i)を得るとともに、測定期間全体で得られた出力D(i)の合計と定数α、βとを用いて次式   The invention of claim 10 includes a DC power source that converts power input from an external power source into DC power having a predetermined voltage and outputs the DC power, and at least one switching element, and that receives DC power input from the DC power source. A power converter that converts the current appropriately and supplies it to the load, an analog current detector that outputs a higher analog voltage as the current flowing through the switching element of the power converter increases, and the voltage value periodically changes across both positive and negative sides A periodic signal generation unit that generates a periodic signal that is an analog voltage to be output, an A / D conversion unit that performs A / D conversion and outputs a voltage in which the periodic signal is superimposed on the output voltage of the analog current detection unit, and predetermined measurement For each period, each A / D is measured at n (n ≧ 2) measurement timings selected so that the total contribution of the output voltage of the periodic signal generator to the input voltage to the A / D converter is zero. Strange Together give D a (i) output parts, the following equation using the sum and constants alpha, and β output D obtained by the entire measurement period (i)

Figure 2010279103
Figure 2010279103

により消費電力Winを演算する累積演算部と、演算部によって演算された消費電力Winを外部に報知する報知部とを備えることを特徴とする。 And a cumulative calculation unit that calculates the power consumption Win, and a notification unit that notifies the power consumption Win calculated by the calculation unit to the outside.

この発明によれば、外部の電源から入力された電力はいったん直流電源部で所定電圧の直流電力に変換されるので、直流電源部の後段にある電流検出部の出力電圧は外部の電源から入力される電力の差を受けにくいことにより、この電流検出部の出力電圧を用いた演算によって得られる消費電力では、外部の電源から入力される電力の差に起因する誤差が抑えられる。また、電流検出部はスイッチング素子に直列に接続された抵抗で構成することができるから、カレントトランスを用いる場合に比べて大型化を招きにくい。さらに、A/D変換の前の周期信号の重畳によりA/D変換の結果に発生する差異が、全体として、A/D変換に伴って発生する量子化誤差を相殺するものとなることで、結果的に量子化誤差が抑制される。   According to the present invention, since the power input from the external power source is once converted into DC power of a predetermined voltage by the DC power source unit, the output voltage of the current detection unit at the subsequent stage of the DC power source unit is input from the external power source. Since the power consumption obtained by the calculation using the output voltage of the current detection unit is less susceptible to the difference in power that is input, errors due to the difference in power input from an external power source can be suppressed. In addition, since the current detection unit can be configured by a resistor connected in series to the switching element, it is less likely to increase in size compared to the case where a current transformer is used. Furthermore, the difference that occurs in the result of A / D conversion due to the superimposition of the periodic signal before A / D conversion as a whole cancels the quantization error that occurs with A / D conversion. As a result, the quantization error is suppressed.

請求項11の発明は、請求項1〜10のいずれかの発明において、直流電源部は入力された交流電力を直流電力に変換するものであることを特徴とする。   An eleventh aspect of the invention is characterized in that, in any one of the first to tenth aspects of the invention, the DC power supply unit converts the input AC power into DC power.

請求項12の発明は、請求項1又は請求項3〜6のいずれかの発明において、直流電源部は、外部の交流電源から入力された交流電力を全波整流するダイオードブリッジと、スイッチング電源からなりダイオードブリッジの出力電力を所定電圧の直流電力に変換して出力するDC−DCコンバータとからなり、電流検出部は、電力変換部のスイッチング素子に流れる電流が多いほど高いアナログ電圧を出力するアナログ電流検出部と、アナログ電流検出部の出力電圧に周期信号が重畳された電圧をA/D変換して出力するA/D変換部と、所定の測定期間毎に、アナログ電流検出部の出力電圧に対するDC−DCコンバータの出力のリプル成分の寄与の総計が0となるように選択されたn(n≧2)個ずつの測定タイミングでそれぞれA/D変換部の出力D(i)を得るとともに、得られたA/D変換部の出力の値を合計した値を演算部への出力の値Vsとする累積加算部とからなることを特徴とする。   According to a twelfth aspect of the present invention, in the invention according to the first aspect or the third to sixth aspects, the DC power supply unit includes a diode bridge that full-wave rectifies AC power input from an external AC power supply, and a switching power supply. And a DC-DC converter that converts the output power of the diode bridge into DC power of a predetermined voltage and outputs it, and the current detection unit outputs an analog voltage that increases as the current flowing through the switching element of the power conversion unit increases. A current detector, an A / D converter for A / D converting and outputting a voltage in which a periodic signal is superimposed on the output voltage of the analog current detector, and an output voltage of the analog current detector for each predetermined measurement period A / D at each of n (n ≧ 2) measurement timings selected so that the total contribution of ripple components of the output of the DC-DC converter to 0 is zero It comprises an accumulating unit that obtains an output D (i) of the conversion unit and uses a value obtained by summing up the obtained output values of the A / D conversion unit as a value Vs of an output to the arithmetic unit. .

この発明によれば、DC−DCコンバータの出力のリプル成分に起因する誤差とA/D変換部でのA/D変換による量子化誤差とが互いに相殺されることでそれぞれ抑えられる。   According to the present invention, the error caused by the ripple component of the output of the DC-DC converter and the quantization error due to the A / D conversion in the A / D conversion unit are canceled each other, thereby being suppressed.

請求項13の発明は、請求項1〜12のいずれかの発明において、電力変換部に接続される負荷が光源であることを特徴とする。   A thirteenth aspect of the invention is characterized in that, in any one of the first to twelfth aspects of the invention, the load connected to the power converter is a light source.

請求項14の発明は、消費電力を示すデータを送信する報知部としての通信部を備える請求項1〜13のいずれか1項に記載の電源装置と、電源装置から送信された消費電力を受信する通信部並びに通信部に受信されたデータに示された消費電力を表示する表示部を有する表示装置とを備えることを特徴とする。   The invention according to claim 14 is provided with the power supply device according to any one of claims 1 to 13 and the power consumption transmitted from the power supply device, comprising a communication unit as a notification unit for transmitting data indicating power consumption. And a display device having a display unit for displaying the power consumption indicated in the data received by the communication unit.

請求項15の発明は、請求項14の発明において、電源装置の通信部は、演算部が演算した消費電力を所定の単位電力で除して端数を切り捨てた数を消費電力を示すデータとして送信し、表示装置の表示部は、通信部に受信されたデータから得られた数に単位電力を乗じた消費電力を表示することを特徴とする。   According to a fifteenth aspect of the present invention, in the fourteenth aspect of the present invention, the communication unit of the power supply device transmits the number obtained by dividing the power consumption calculated by the calculation unit by a predetermined unit power and rounded down as data indicating the power consumption. The display unit of the display device displays power consumption obtained by multiplying the number obtained from the data received by the communication unit by unit power.

この発明によれば、消費電力を示すデータとして消費電力の数値をそのままデジタルデータとして送信する場合に比べ、データ量を少なくして通信の負荷を低減することができる。   According to the present invention, the data load can be reduced and the communication load can be reduced as compared with the case where the power consumption value is directly transmitted as digital data as the data indicating the power consumption.

請求項1,10の発明によれば、それぞれ、外部の電源から入力された電力はいったん直流電源部で所定電圧の直流電力に変換されるので、直流電源部の後段にある電流検出部の出力は外部の電源から入力される電力の差を受けにくいことにより、この電流検出部の出力を用いた演算によって得られる消費電力では、外部の電源から入力される電力の差に起因する誤差が抑えられる。また、電流検出部はスイッチング素子に直列に接続された抵抗で構成することができるから、カレントトランスを用いる場合に比べて大型化を招きにくい。また、請求項10の発明によれば、A/D変換の前の周期信号の重畳によりA/D変換の結果に発生する差異が、全体として、A/D変換に伴って発生する量子化誤差を相殺するものとなることで、結果的に量子化誤差が抑制される。   According to the first and tenth aspects of the present invention, since the power input from the external power source is once converted into DC power of a predetermined voltage by the DC power source unit, the output of the current detection unit at the subsequent stage of the DC power source unit Is less susceptible to the difference in power input from the external power supply, so the power consumption obtained by the calculation using the output of the current detection unit suppresses errors due to the difference in power input from the external power supply. It is done. In addition, since the current detection unit can be configured by a resistor connected in series to the switching element, it is less likely to increase in size compared to the case where a current transformer is used. According to the invention of claim 10, the difference that occurs in the result of the A / D conversion due to the superimposition of the periodic signal before the A / D conversion is, as a whole, a quantization error that occurs due to the A / D conversion. As a result, the quantization error is suppressed.

請求項2の発明によれば、電源電圧検出部によって検出された入力電圧に応じた定数α、βが消費電力の演算に用いられることで、入力電圧の差すなわち外部の電源から入力される電力の差に起因する誤差が抑えられる。   According to the second aspect of the present invention, the constants α and β corresponding to the input voltage detected by the power supply voltage detector are used for calculating the power consumption, so that the difference between the input voltages, that is, the power input from the external power supply. Errors due to the difference between the two are suppressed.

本発明の実施形態1を示す回路ブロック図である。It is a circuit block diagram which shows Embodiment 1 of this invention. 同上において検出電圧V1と消費電力Winとの関係を示す説明図である。It is explanatory drawing which shows the relationship between detection voltage V1 and power consumption Win in the same as the above. 同上の変更例を示す回路ブロック図である。It is a circuit block diagram which shows the example of a change same as the above. 同上の別の変更例を示す回路ブロック図である。It is a circuit block diagram which shows another example of a change same as the above. 本発明の実施形態2を示す回路ブロック図である。It is a circuit block diagram which shows Embodiment 2 of this invention. 本発明の実施形態3を示す回路ブロック図である。It is a circuit block diagram which shows Embodiment 3 of this invention. 同上の動作を示す説明図である。It is explanatory drawing which shows operation | movement same as the above. 同上の比較例の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the comparative example same as the above. 同上の変更例の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the example of a change same as the above. 同上の別の変更例の動作を示す説明図である。It is explanatory drawing which shows operation | movement of another modified example same as the above. 本発明の実施形態4を示す回路ブロック図である。It is a circuit block diagram which shows Embodiment 4 of this invention. 消費電力測定システムの一例を示すブロック図である。It is a block diagram which shows an example of a power consumption measuring system.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施形態1)
本実施形態は、図1に示すように、負荷としての熱陰極型の放電灯FLに交流電力を供給して点灯させるものであって、外部の交流電源ACから入力された交流電力を全波整流するダイオードブリッジDBと、ダイオードブリッジDBの出力電力を所定電圧Vdcの直流電力に変換するDC−DCコンバータ10と、DC−DCコンバータ10の出力端間に接続された2個のスイッチング素子Q1,Q2と第1抵抗R1との直列回路からなるスイッチング部21と、スイッチング部21の2個のスイッチング素子Q1,Q2の接続点とDC−DCコンバータ10の低電圧側の出力端との間に接続され放電灯FLとともに共振回路を構成する共振部22と、スイッチング部21の2個のスイッチング素子Q1,Q2を交互にオンオフ駆動する制御部20とを備える。DC−DCコンバータ10は、ダイオードブリッジDBとともに、交流電源ACから入力された交流電力を所定の電圧Vdcの直流電力に変換する直流電源部1を構成する。また、スイッチング部21と共振部22とで、いわゆるハーフブリッジ型のインバータ回路からなり直流電源部1が出力した直流電力を交流電力に変換する電力変換部が構成されている。さらに、第1抵抗R1とスイッチング素子Q2との接続点の電位は、スイッチング部Q2に流れる電流に比例する。
(Embodiment 1)
In the present embodiment, as shown in FIG. 1, AC power is supplied to a hot cathode discharge lamp FL as a load for lighting, and the AC power input from an external AC power supply AC is fully waved. A diode bridge DB that rectifies, a DC-DC converter 10 that converts output power of the diode bridge DB into DC power of a predetermined voltage Vdc, and two switching elements Q1, connected between output terminals of the DC-DC converter 10. Connected between the switching unit 21 composed of a series circuit of Q2 and the first resistor R1, and the connection point between the two switching elements Q1, Q2 of the switching unit 21 and the output terminal on the low voltage side of the DC-DC converter 10 Then, the resonance unit 22 that forms a resonance circuit together with the discharge lamp FL and the two switching elements Q1 and Q2 of the switching unit 21 are alternately turned on and off. And a section 20. The DC-DC converter 10 and the diode bridge DB constitute a DC power supply unit 1 that converts AC power input from the AC power supply AC into DC power of a predetermined voltage Vdc. In addition, the switching unit 21 and the resonance unit 22 constitute a power conversion unit that is formed of a so-called half-bridge type inverter circuit and converts DC power output from the DC power supply unit 1 into AC power. Furthermore, the potential at the connection point between the first resistor R1 and the switching element Q2 is proportional to the current flowing through the switching unit Q2.

DC−DCコンバータ10は、出力コンデンサC10を有して出力コンデンサC10の両端電圧Vdcを出力電圧とする例えば周知のブーストコンバータ(昇圧チョッパ回路)からなり、出力電圧Vdcを所定の目標電圧とするようにフィードバック制御されている。一般に、上記のブーストコンバータのようなスイッチング電源を用いると、ダイオードブリッジDBの出力端間に直接出力コンデンサC10を接続して用いる場合に比べ、力率が改善される。   The DC-DC converter 10 includes, for example, a well-known boost converter (step-up chopper circuit) having an output capacitor C10 and using the voltage Vdc across the output capacitor C10 as an output voltage so that the output voltage Vdc is a predetermined target voltage. Is feedback controlled. In general, when a switching power supply such as the above-described boost converter is used, the power factor is improved as compared with the case where the output capacitor C10 is directly connected between the output terminals of the diode bridge DB.

また、本実施形態は、放電灯FLの光出力を指示する入力を受け付ける指示入力部31を有する。指示入力部31への入力は、例えば伝送線を介して伝送される電気信号であってもよいし、例えば電波や赤外光を媒体とするワイヤレス信号によって送受信されるものであってもよいし、操作入力であってもよい。いずれの場合にも指示入力部31は周知技術で実現可能であるので詳細な図示並びに説明は省略する。   Moreover, this embodiment has the instruction | indication input part 31 which receives the input which instruct | indicates the light output of the discharge lamp FL. The input to the instruction input unit 31 may be, for example, an electrical signal transmitted via a transmission line, or may be transmitted / received by a wireless signal using radio waves or infrared light as a medium, for example. An operation input may be used. In any case, since the instruction input unit 31 can be realized by a well-known technique, detailed illustration and description thereof are omitted.

制御部20は、始動時、放電灯FLの各フィラメントをそれぞれ予熱させる予熱動作を行い、次に放電灯FLの点灯を開始させるための始動動作を行った後、放電灯FLの点灯を維持させる定常動作に移行する。また、制御部20は、定常動作中には、第1抵抗R1とスイッチング素子Q2との接続点の電位と、指示入力部31に入力された指示に応じた電力とに基いて、共振部22から放電灯FLに出力される電力を、指示入力部31に入力された指示に応じた電力とするように、スイッチング部21のスイッチング素子Q1,Q2をオンオフする周波数とオンデューティとの少なくとも一方をフィードバック制御する。   The controller 20 performs a preheating operation for preheating each filament of the discharge lamp FL at the time of starting, and then performs a starting operation for starting the lighting of the discharge lamp FL, and then maintains the lighting of the discharge lamp FL. Transition to steady operation. In addition, during the steady operation, the control unit 20 resonates the resonance unit 22 based on the potential at the connection point between the first resistor R1 and the switching element Q2 and the power corresponding to the instruction input to the instruction input unit 31. Is set to at least one of a frequency for turning on / off the switching elements Q1 and Q2 of the switching unit 21 and an on-duty so that the power output to the discharge lamp FL is the power corresponding to the instruction input to the instruction input unit 31. Feedback control.

また、一端がグランドに接続されるとともに他端が第2抵抗R2を介して第1抵抗R1とスイッチング素子Q2との接続点に接続された検出用コンデンサC1を備える。すなわち、検出用コンデンサC1の両端電圧V1は、スイッチング部21のローサイド(低電圧側)のスイッチング素子Q2に流れる電流に応じた電圧となるのであり、第1抵抗R1と第2抵抗R2と検出用コンデンサC1とで請求項における電流検出部が構成されている。スイッチング部21の一方のスイッチング素子Q1に流れる電流の平均値と他方のスイッチング素子Q2に流れる電流の平均値とは互いに略等しいので、検出用コンデンサC1の両端電圧V1は、ハイサイド(高電圧側)のスイッチング素子Q1に流れる電流、すなわち、電力変換部2に入力される電力を反映したものとなる。   In addition, a detection capacitor C1 having one end connected to the ground and the other end connected to a connection point between the first resistor R1 and the switching element Q2 via the second resistor R2 is provided. That is, the voltage V1 across the detection capacitor C1 is a voltage corresponding to the current flowing through the switching element Q2 on the low side (low voltage side) of the switching unit 21, and the first resistor R1, the second resistor R2, and the detection The capacitor C1 constitutes the current detection unit in the claims. Since the average value of the current flowing through one switching element Q1 of the switching unit 21 and the average value of the current flowing through the other switching element Q2 are substantially equal to each other, the voltage V1 across the detection capacitor C1 is the high side (high voltage side). ) Reflecting the current flowing through the switching element Q1, that is, the power input to the power converter 2.

さらに、本実施形態は、検出用コンデンサC1の両端電圧に基いて消費電力を演算する演算部41と、演算部41によって演算された消費電力を外部に報知する報知部42とを有する。演算部41は電子回路を用いて周知技術で実現可能であるので、詳細な図示並びに説明は省略する。   Furthermore, the present embodiment includes a calculation unit 41 that calculates power consumption based on the voltage across the detection capacitor C1, and a notification unit 42 that notifies the power consumption calculated by the calculation unit 41 to the outside. Since the calculation unit 41 can be realized by a known technique using an electronic circuit, detailed illustration and description thereof are omitted.

報知部42は例えば消費電力を表示する表示手段であってもよいし、消費電力を表示する外部の装置に対し消費電力を通知する通信手段であってもよい。表示手段としては、7セグメント発光ダイオードや、液晶ディスプレイといった、周知の表示装置を用いることができる。また、通信手段としては、伝送線を介して電気信号を送信するものや、ワイヤレス信号を送信するものを用いることができる。さらに、報知部42が周知の例えばRAMのような書込可能な記憶手段を有してこれに消費電力をいったん保持するとともに適宜のタイミングで(例えば外部からの要求に応じて)出力する構成としてもよい。いずれの場合にも報知部42は周知技術で実現可能であるので、詳細な図示並びに説明は省略する。   For example, the notification unit 42 may be a display unit that displays power consumption, or may be a communication unit that notifies power consumption to an external device that displays power consumption. As the display means, a known display device such as a 7-segment light emitting diode or a liquid crystal display can be used. Moreover, as a communication means, what transmits an electrical signal via a transmission line and what transmits a wireless signal can be used. Further, the notification unit 42 has a known writable storage means such as a RAM, and once holds power consumption and outputs it at an appropriate timing (for example, in response to an external request). Also good. In any case, since the notification unit 42 can be realized by a well-known technique, detailed illustration and description thereof are omitted.

ここで、検出用コンデンサC1の両端電圧(以下、「検出電圧」と呼ぶ。)V1と、測定された消費電力Winとの関係を図2に示す。黒いマークはダイオードブリッジDBへの入力電圧の振幅(以下、単に「入力電圧」と呼ぶ。)Vinが100Vである場合を示し、白いマークは入力電圧Vinが200Vである場合を示す。図2を見てもわかるように、検出電圧V1と消費電力Winとの関係は、入力電圧Vinが異なっていても略同じ直線状となる。   Here, FIG. 2 shows the relationship between the voltage across the detection capacitor C1 (hereinafter referred to as “detection voltage”) V1 and the measured power consumption Win. A black mark indicates a case where the amplitude (hereinafter simply referred to as “input voltage”) Vin of the input voltage to the diode bridge DB is 100V, and a white mark indicates a case where the input voltage Vin is 200V. As can be seen from FIG. 2, the relationship between the detection voltage V1 and the power consumption Win is substantially the same linear shape even when the input voltage Vin is different.

本実施形態は上記の点に着目したものであり、演算部41は、検出電圧V1と定数α、βを用いて、消費電力Winを、式Win=α×V1+βによって演算する。ここで、定数βは直流電源部1を電源とする図示しない回路(例えば、演算部41や制御部20の電源を生成する回路)で消費される電力を示し、定数αは直流電源部1の出力電圧Vdcを直流電源部1の回路効率ηと第1抵抗R1の抵抗値R1との積で除した数Vdc/(η×R1)程度となるが、各定数α、βはそれぞれ演算よりも実測によって決定することが望ましい。このような演算部41は周知の電子回路によって実現可能であるので詳細な図示並びに説明は省略する。   This embodiment pays attention to the above points, and the calculation unit 41 calculates the power consumption Win by the expression Win = α × V1 + β using the detection voltage V1 and the constants α and β. Here, the constant β indicates power consumed by a circuit (not shown) that uses the DC power supply unit 1 as a power supply (for example, a circuit that generates power for the arithmetic unit 41 and the control unit 20). The output voltage Vdc is approximately the number Vdc / (η × R1) obtained by dividing the circuit efficiency η of the DC power supply unit 1 by the product of the resistance value R1 of the first resistor R1. It is desirable to determine by actual measurement. Since such a calculation unit 41 can be realized by a known electronic circuit, detailed illustration and description thereof will be omitted.

上記構成によれば、外部の交流電源ACから入力された電力はいったん直流電源部1で所定電圧Vdcの直流電力に変換されるので、直流電源部1の後段から得られた検出電圧V1は外部の交流電源ACから入力される電力の差を受けにくいことにより、この検出電圧V1を用いた演算によって得られる消費電力には、外部から入力される電力の差に起因する誤差が生じにくい。また、カレントトランスを用いる場合に比べて大型化を招きにくい。   According to the above configuration, the electric power input from the external AC power source AC is once converted into DC power of the predetermined voltage Vdc by the DC power source unit 1, so that the detection voltage V1 obtained from the subsequent stage of the DC power source unit 1 is external. Since it is difficult to receive a difference in power input from the AC power supply AC, an error due to a difference in power input from the outside hardly occurs in power consumption obtained by calculation using the detection voltage V1. Further, it is difficult to increase the size as compared with the case where a current transformer is used.

なお、消費電力Winの演算に用いる定数α、βを一定とする代わりに、図3に示すように、例えばROMからなり複数通りの状況に対応した複数組の定数α、βが格納された記憶部43を設け、演算部41が状況に応じた定数α、βを記憶部43から読み出して消費電力Winの演算に用いるようにすれば、さらに正確な消費電力Winを得ることができる。   Instead of making constants α and β used for calculation of power consumption Win constant, as shown in FIG. 3, for example, a memory comprising a ROM and storing a plurality of sets of constants α and β corresponding to a plurality of situations. If the unit 43 is provided, and the calculation unit 41 reads constants α and β corresponding to the situation from the storage unit 43 and uses them in the calculation of the power consumption Win, a more accurate power consumption Win can be obtained.

図3の例では、ダイオードブリッジDBの出力電圧に基いて入力電圧Vinが100V,200V,242Vの3通りの電圧のうちいずれであるかを判別する入力電圧判別部32が設けられており、記憶部43には、入力電圧判別部32によって判別される3通りの入力電圧Vinに一対一に対応付けられた3組の定数α、βが格納されていて、演算部41は、入力電圧判別部32による判別結果に応じた定数α、βを記憶部43から読み出して消費電力Winの演算に用いる。この構成によれば、入力電圧Vinの差に起因する消費電力Winの誤差をさらに小さくすることができる。なお、この場合、電源のオン状態が継続されている期間には入力電圧Vinが変化することはないので、演算部41は電源がオンされた直後にのみ入力電圧判別部32の判別結果の参照と記憶部43からの定数α、βの読み出しとを行えばよい。   In the example of FIG. 3, an input voltage determination unit 32 that determines which of the three voltages of 100 V, 200 V, and 242 V is provided based on the output voltage of the diode bridge DB is provided. The unit 43 stores three sets of constants α and β associated with the three input voltages Vin determined by the input voltage determination unit 32 in a one-to-one manner. The constants α and β corresponding to the determination result by 32 are read from the storage unit 43 and used for calculating the power consumption Win. According to this configuration, it is possible to further reduce the error of the power consumption Win due to the difference in the input voltage Vin. In this case, since the input voltage Vin does not change during the period in which the power supply is on, the calculation unit 41 refers to the determination result of the input voltage determination unit 32 only immediately after the power supply is turned on. And reading the constants α and β from the storage unit 43.

定数α、βを異ならせる条件としては、図3の例のような入力電圧Vinの他に、動作状態も考えられる。具体的には、上記の予熱動作と始動動作と定常動作とでそれぞれ異なる定数α、βを用いる。また、一般に電源装置では通常の定常動作とは出力を異ならせるウォームアップ動作が行われる場合があるが、このような場合にもウォームアップ動作中には定常動作中とは異なる定数α、βを用いるようにしてもよい。   As conditions for making the constants α and β different, in addition to the input voltage Vin as in the example of FIG. Specifically, constants α and β that are different for the preheating operation, the starting operation, and the steady operation are used. In general, the power supply device may perform a warm-up operation that makes the output different from the normal steady-state operation. In such a case, constants α and β that are different from those during the normal operation are also set during the warm-up operation. You may make it use.

又は、放電灯FLの定格電力に対する放電灯FLへの出力電力の目標値の比(以下、「調光比」と呼ぶ。)に応じて異なる定数α、βを用いてもよい。具体的には例えば、調光比100%〜90%では第1組の定数α、βを用い、調光比90%〜80%では第2組の定数α、βを用いるといったように、調光比10%毎に異なる定数α、βを用いる。   Alternatively, different constants α and β may be used depending on the ratio of the target value of the output power to the discharge lamp FL with respect to the rated power of the discharge lamp FL (hereinafter referred to as “dimming ratio”). Specifically, for example, the first set of constants α and β is used at a dimming ratio of 100% to 90%, and the second set of constants α and β is used at a dimming ratio of 90% to 80%. Different constants α and β are used for each light ratio of 10%.

また、検出電圧V1と実際の消費電力との関係は周囲温度によっても異なるので、図4に示すように温度を検出する温度検出部33を設け、複数通りの定数α、βのうちから温度検出部33によって検出される温度に応じて選択された定数α、βが用いられるようにしてもよい。温度検出部44としては例えば直流電源部1や電力変換部2が実装されたプリント配線板(図示せず)にサーミスタを実装してこれを用いることができる。または、温度検出部44は、ネットワークに接続されてネットワークを介して外部の装置から気温のデータを取得するものとしてもよい。   Further, since the relationship between the detection voltage V1 and the actual power consumption varies depending on the ambient temperature, a temperature detection unit 33 for detecting the temperature is provided as shown in FIG. 4, and temperature detection is performed from among a plurality of constants α and β. Constants α and β selected according to the temperature detected by the unit 33 may be used. As the temperature detection unit 44, for example, a thermistor can be mounted on a printed wiring board (not shown) on which the DC power supply unit 1 and the power conversion unit 2 are mounted. Alternatively, the temperature detection unit 44 may be connected to a network and acquire temperature data from an external device via the network.

さらに、指示入力部31への入力に応じて放電灯FLの光出力を変化させる方法としては、上記のようにスイッチング部21のスイッチング素子Q1,Q2をオンオフする周波数やオンデューティを変化させるという方法の他、直流電源部1の出力電圧Vdcを変化させるという方法もある。いずれの場合であっても、指示入力部31への入力に応じた制御は、指示入力部31への入力とこれに応じて変化させるべきパラメータ(例えばDC−DCコンバータ10の出力電圧の目標値)との関係を示すデータテーブルを例えば周知のROMのような記憶手段に予め保持させてこのデータテーブルを用いて実現してもよいし、演算によって実現してもよい。上記のように直流電源部1の出力電圧Vdcを変化させる場合であっても、記憶部43に格納された複数通りのα、βのうちから光出力(調光比)に応じて選択された適切な定数α、βを演算部41が消費電力Winの演算に用いる上記構成を採用することで、直流電源部1の出力電圧Vdcの変化による消費電力Winの誤差を抑えることができる。   Further, as a method of changing the light output of the discharge lamp FL in accordance with the input to the instruction input unit 31, a method of changing the frequency and on-duty of turning on / off the switching elements Q1 and Q2 of the switching unit 21 as described above. In addition, there is a method of changing the output voltage Vdc of the DC power supply unit 1. In any case, the control according to the input to the instruction input unit 31 is performed according to the input to the instruction input unit 31 and the parameter to be changed according to the input (for example, the target value of the output voltage of the DC-DC converter 10). The data table indicating the relationship with () may be realized by using a data table stored in advance in a storage means such as a well-known ROM, for example, or by calculation. Even when the output voltage Vdc of the DC power supply unit 1 is changed as described above, it is selected according to the light output (dimming ratio) from among a plurality of α and β stored in the storage unit 43. By adopting the above-described configuration in which the arithmetic unit 41 uses the appropriate constants α and β for calculating the power consumption Win, an error in the power consumption Win due to the change in the output voltage Vdc of the DC power supply unit 1 can be suppressed.

(実施形態2)
本実施形態では、図5に示すように、電力変換部2は、ハーフブリッジ形のインバータ回路ではなく、トランスT1の一次巻線と制御部20によってオンオフ制御されるスイッチング素子Q3との直列回路と、トランスT1の二次巻線の両端間に接続されたダイオードとコンデンサとの直列回路とを含む周知のフライバックコンバータと、このフライバックコンバータの出力電力を、発光ダイオードLEDを点灯させるための直流電力に変換する点灯部23とで構成されている。このような負荷及び電力変換部2に対する適宜の変更は、他の実施形態でも可能である。
(Embodiment 2)
In the present embodiment, as shown in FIG. 5, the power conversion unit 2 is not a half-bridge type inverter circuit, but a series circuit of a primary winding of the transformer T1 and a switching element Q3 that is on / off controlled by the control unit 20. , A known flyback converter including a series circuit of a diode and a capacitor connected between both ends of the secondary winding of the transformer T1, and a direct current for lighting the light emitting diode LED using the output power of the flyback converter. It is comprised with the lighting part 23 converted into electric power. Such appropriate changes to the load and the power conversion unit 2 are possible in other embodiments.

また、本実施形態は、電力変換部2のスイッチング素子Q3に直列に接続された第1抵抗R1と、一端が第2抵抗R2を介してスイッチング素子Q3と第1抵抗R1との接続点に接続されるとともに他端がグランドに接続された検出用コンデンサC1とからなる電流検出部と、発光ダイオードLEDの光出力を指示する入力を受け付ける指示入力部31と、指示入力部31に入力された指示に応じた電力が発光ダイオードLEDに供給されるようなオンデューティでスイッチング素子Q3を周期的にオンオフ駆動する制御部20と、検出用コンデンサC1の両端電圧に基いて消費電力を演算する演算部41と、演算部41によって演算された消費電力を外部に報知する報知部42と、演算部41の演算に用いられる定数α、βが複数通り格納された記憶部43とを、実施形態1と同様に備える。実施形態1と共通する部分についての説明は省略する。   In the present embodiment, the first resistor R1 connected in series to the switching element Q3 of the power converter 2 and one end connected to the connection point of the switching element Q3 and the first resistor R1 via the second resistor R2. A current detection unit including a detection capacitor C1 having the other end connected to the ground, an instruction input unit 31 that receives an input for instructing the light output of the light-emitting diode LED, and an instruction input to the instruction input unit 31 A control unit 20 that periodically drives the switching element Q3 on and off with an on-duty such that power corresponding to the light-emitting diode LED is supplied, and a calculation unit 41 that calculates power consumption based on the voltage across the detection capacitor C1. And a notification unit 42 that notifies the power consumption calculated by the calculation unit 41 to the outside, and a plurality of constants α and β used for the calculation of the calculation unit 41 are stored. The storage unit 43 is provided in the same manner as in the first embodiment. A description of parts common to the first embodiment will be omitted.

さらに、本実施形態は、実施形態1と違い、所定電圧の直流電力を出力する直流電源部1を備えておらず、また、外部の電源としても、交流電源ACではなく、出力電圧Vdcが変動しうる電池のような直流電源Eを用いている。   Furthermore, unlike the first embodiment, the present embodiment does not include the DC power supply unit 1 that outputs DC power of a predetermined voltage, and the output voltage Vdc varies as an external power supply, not the AC power supply AC. A DC power source E such as a possible battery is used.

そして、本実施形態では、直流電源Eからの入力電圧Vdcを検出する電源電圧検出部(図示せず)が設けられるとともに、記憶部43には直流電源Eからの入力電圧Vdcの段階(範囲)毎の定数α、βが格納されていて、演算部41は電源電圧検出部によって検出された入力電圧Vdcに応じた定数α、βを記憶部43から読み出して消費電力Winの演算に用いる。上記のような電源電圧検出部及び演算部41は周知技術で実現可能であるので、詳細な説明は省略する。   In this embodiment, a power supply voltage detection unit (not shown) for detecting the input voltage Vdc from the DC power supply E is provided, and the storage unit 43 has a stage (range) of the input voltage Vdc from the DC power supply E. The constants α and β for each are stored, and the calculation unit 41 reads the constants α and β corresponding to the input voltage Vdc detected by the power supply voltage detection unit from the storage unit 43 and uses them for calculation of the power consumption Win. Since the power supply voltage detection unit and calculation unit 41 as described above can be realized by a well-known technique, a detailed description thereof will be omitted.

上記構成によれば、外部の直流電源Eからの入力電力Vdcの差に起因する消費電力Winの誤差を抑えることができる。また、カレントトランスを用いる場合に比べて大型化を招きにくい。   According to the above configuration, it is possible to suppress an error in the power consumption Win due to the difference in the input power Vdc from the external DC power supply E. Further, it is difficult to increase the size as compared with the case where a current transformer is used.

(実施形態3)
本実施形態の基本構成は実施形態1の図1の例と共通であるので、共通する部分については説明を省略する。
(Embodiment 3)
Since the basic configuration of the present embodiment is common to the example of FIG. 1 of the first embodiment, the description of the common parts is omitted.

本実施形態は、図6に示すように、検出電圧V1をA/D変換するA/D変換部44と、所定の測定期間毎にA/D変換部44の出力を複数回ずつ得て得られた出力の合計値(以下、「累計電圧Vs」と呼ぶ。)を演算部41に出力するという動作を周期的に繰り返す累積加算部45とを備える。なお、図6では、制御部20及び指示入力部31の図示は省略している。   In the present embodiment, as shown in FIG. 6, the A / D converter 44 that A / D converts the detection voltage V1 and the output of the A / D converter 44 are obtained a plurality of times for each predetermined measurement period. A cumulative addition unit 45 that periodically repeats the operation of outputting the total value of the output (hereinafter referred to as “cumulative voltage Vs”) to the calculation unit 41. In FIG. 6, the control unit 20 and the instruction input unit 31 are not shown.

さらに、本実施形態は、電圧値が正負両側に跨って周期的に変化し且つ1周期での電圧値の平均値が0となるような出力(以下、「周期信号」と呼ぶ。)を生成して第3抵抗R3を介して検出用コンデンサC1に出力する周期信号生成部46を備える。すなわち、本実施形態における検出電圧V1は、スイッチング部21に流れる電流に応じた電圧に、周期信号分の電圧が重畳された電圧となっている。周期信号は例えば正弦波である。   Furthermore, in the present embodiment, an output (hereinafter referred to as “periodic signal”) is generated such that the voltage value periodically changes over both positive and negative sides and the average value of the voltage value in one cycle becomes zero. The periodic signal generator 46 that outputs to the detection capacitor C1 via the third resistor R3 is provided. That is, the detection voltage V <b> 1 in the present embodiment is a voltage in which a voltage corresponding to a periodic signal is superimposed on a voltage corresponding to a current flowing through the switching unit 21. The periodic signal is, for example, a sine wave.

そして、累積加算部45は、所定の測定期間毎に、A/D変換部44への入力電圧(すなわち検出電圧)V1に対する周期信号の寄与の測定期間全体での総計が0となるように選択された複数個のタイミング(以下、「測定タイミング」と呼ぶ。)でそれぞれA/D変換部44の出力を得るとともに、得られたA/D変換部44の出力を合計した値を演算部41に出力する。測定タイミングは例えば図7にt1〜t8及びt10〜t13で示すようなものとなる。図7の例では、検出電圧V1から周期信号の寄与を除いた電圧が図7上段のグラフに破線で示すように一定であり、周期信号が正弦波であって、測定期間は周期信号の1周期T分とされ、図7にt1,t10で示すタイミングでそれぞれ測定期間が開始されており、各測定期間において測定タイミングは8個ずつであり、測定タイミングt1〜t8,t10〜t13の間隔は等間隔(周期信号の周期Tの1/8倍)とされている。   Then, the cumulative addition unit 45 selects the total of the contribution of the periodic signal to the input voltage (that is, the detection voltage) V1 to the A / D conversion unit 44 over the entire measurement period for every predetermined measurement period. The output of the A / D conversion unit 44 is obtained at each of the plurality of timings (hereinafter referred to as “measurement timing”), and the value obtained by summing the obtained outputs of the A / D conversion unit 44 is calculated. Output to. For example, the measurement timing is as shown by t1 to t8 and t10 to t13 in FIG. In the example of FIG. 7, the voltage obtained by removing the contribution of the periodic signal from the detection voltage V1 is constant as shown by the broken line in the upper graph of FIG. 7, the periodic signal is a sine wave, and the measurement period is 1 of the periodic signal. The measurement period is started at the timing indicated by t1 and t10 in FIG. 7, and there are eight measurement timings in each measurement period. The intervals between the measurement timings t1 to t8 and t10 to t13 are as follows. They are equally spaced (1/8 times the period T of the periodic signal).

また、累計電圧Vsは測定期間毎に新たに演算され、累積加算部45は、図7下段に示すように、1個の測定期間の測定タイミングt1〜t8が全て終了して累計電圧Vsを演算部41に出力した後、次の測定期間が開始されるt10までの適宜のタイミングt9で、記憶している合計値を0に戻す。   Further, the cumulative voltage Vs is newly calculated for each measurement period, and the cumulative adder 45 calculates the cumulative voltage Vs after all the measurement timings t1 to t8 of one measurement period have been completed as shown in the lower part of FIG. After being output to the unit 41, the stored total value is returned to 0 at an appropriate timing t9 until t10 when the next measurement period starts.

演算部41は、測定期間毎に累積加算部45から出力される累計電圧Vsと定数α、βとを用いて、消費電力Winを式Win=α×Vs+βにより演算する。すなわち、1個の測定期間中の測定タイミングの総数(以下、「測定回数」と呼ぶ。)をnとおき、このn回中のi番目のA/D変換部44の出力をD(i)とおくと、最終的に得られる消費電力Winは次式のように表される。   The calculation unit 41 calculates the power consumption Win by the equation Win = α × Vs + β using the cumulative voltage Vs output from the cumulative addition unit 45 and constants α and β every measurement period. That is, the total number of measurement timings in one measurement period (hereinafter referred to as “measurement count”) is set to n, and the output of the i-th A / D conversion unit 44 in n times is D (i). Then, the finally obtained power consumption Win is expressed as the following equation.

Figure 2010279103
Figure 2010279103

ここで、A/D変換部44が、所定の電圧(以下、「単位電圧」と呼ぶ。)kを単位として検出電圧V1をA/D変換するものであり、検出電圧V1が単位電圧kと整数Dとを用いてV1≒k×Dと表されるときにA/D変換部44の出力が整数Dとなるものであるとする。つまり、V1がとり得る電圧値の幅を5Vとして、これをA/D変換部44が10bitの整数Dで表現する場合、k=5/1024(V)となる。本実施形態での定数αは、実施形態1での定数α、すなわち、直流電源部1の出力電圧Vdcを直流電源部1の回路効率ηと第1抵抗R1の抵抗値R1との積で除した数Vdc/(η×R1)程度の数値に、単位電圧kを測定回数nで除した数(k/n)を乗じた数k×Vdc/(n×η×R1)程度となる。また、定数βは、実施形態1での定数βと同様に、直流電源部1を電源とする図示しない回路(例えば、演算部41や制御部20の電源を生成する回路)で消費される電力を示す。ただし、実施形態1での定数α、βと同様に、本実施形態での定数α、βも実測によって決定することが望ましい。   Here, the A / D conversion unit 44 performs A / D conversion of the detection voltage V1 in units of a predetermined voltage (hereinafter referred to as “unit voltage”) k, and the detection voltage V1 is the unit voltage k. Assume that the output of the A / D converter 44 is an integer D when V1≈k × D using the integer D. That is, when the voltage value width that V1 can take is 5V, and this is expressed by the 10-bit integer D by the A / D converter 44, k = 5/1024 (V). The constant α in this embodiment is the constant α in Embodiment 1, that is, the output voltage Vdc of the DC power supply unit 1 is divided by the product of the circuit efficiency η of the DC power supply unit 1 and the resistance value R1 of the first resistor R1. It is about a number k × Vdc / (n × η × R1) obtained by multiplying a numerical value of about the number Vdc / (η × R1) by a number (k / n) obtained by dividing the unit voltage k by the number n of measurements. In addition, the constant β is the power consumed by a circuit (not shown) that uses the DC power supply unit 1 as a power supply (for example, a circuit that generates the power supply for the calculation unit 41 and the control unit 20), similarly to the constant β in the first embodiment. Indicates. However, like the constants α and β in the first embodiment, it is desirable to determine the constants α and β in the present embodiment by actual measurement.

さらに、整数Dについて検出電圧V1がk×(D−0.5)≦V1<k×(D+0.5)の範囲であるときに出力を整数Dとするものである場合を考える。この場合、検出電圧V1がk×(D−0.5)よりも僅かに小さければA/D変換部44の出力はD−1となり、検出電圧V1がk×(D+0.5)又はこれより僅かに大きい程度であればA/D変換部44の出力はD+1となる。つまり、上記のA/D変換に伴い、最大でk×0.5の量子化誤差が発生する。   Further, consider a case where the output is an integer D when the detection voltage V1 is in the range of k × (D−0.5) ≦ V1 <k × (D + 0.5) for the integer D. In this case, if the detection voltage V1 is slightly smaller than k × (D−0.5), the output of the A / D converter 44 is D−1, and the detection voltage V1 is k × (D + 0.5) or more. If it is slightly larger, the output of the A / D converter 44 is D + 1. That is, with the A / D conversion described above, a maximum k × 0.5 quantization error occurs.

検出電圧V1に周期信号が重畳されない場合、図8上段に示すように検出電圧V1が継続して上記範囲の中央k×Dを僅かに下回る電圧Voとなることが考えられる。このような場合、図8中段に示すようにA/D変換部44の出力(AD値)は継続してDとなり、正の量子化誤差が発生し続けることにより、A/D変換部44の出力を複数回分合計した値には上記の量子化誤差が蓄積されてしまう。これにより、図8下段に示すように測定期間の終了時t9にはD(i)の総計は8Dとなっている。これに対し、図7上段に示すように、もともと破線で示すようにk×Dを僅かに下回る一定値Voであった検出電圧V1が周期信号生成部46の出力を重畳されることで実線で示すように正弦波状となっていた場合、図7中段に示すように、もとの検出電圧V1(図7の破線)が上記範囲の中央k×Dを下回る程度に応じた回数(図では3回)だけA/D変換部44の出力(AD値)がD−1となり、図7下段に示すように測定期間の終了時t9におけるD(i)の総計(すなわち累積加算部45の出力)は8D−3となっている。このように、もとの検出電圧V1がA/D変換後の電圧k×Dに対して負側にずれていて正の量子化誤差が発生する場合には、A/D変換部44の出力がD−1となる確率が高くなる。逆に、もとの検出電圧V1がA/D変換後の電圧k×Dに対して正側にずれていて負の量子化誤差が発生する場合には、A/D変換部44の出力がD+1となる確率が高くなる。すなわち、A/D変換部44の出力を複数回分合計した結果である累積加算部45の出力においては、上記の量子化誤差がある程度相殺されることで、A/D変換部44の分解能の改善と同様に測定精度の向上が期待できる。測定タイミングでの検出電圧V1における周期信号の寄与分が取りうる値が多様であればあるほど、A/D変換部44の出力の期待値と、もとの検出電圧V1との関係(すなわちスイッチング素子Q2に流れる電流の電流値との関係)が直線に近づくことで、上記の効果は大きくなる。   When the periodic signal is not superimposed on the detection voltage V1, it is conceivable that the detection voltage V1 continues and becomes a voltage Vo slightly lower than the center k × D of the above range as shown in the upper part of FIG. In such a case, as shown in the middle part of FIG. 8, the output (AD value) of the A / D converter 44 continues to be D, and positive quantization errors continue to occur, so that the A / D converter 44 The above quantization error is accumulated in a value obtained by summing the output for a plurality of times. Thereby, as shown in the lower part of FIG. 8, the total of D (i) is 8D at the end of the measurement period t9. On the other hand, as shown in the upper part of FIG. 7, the detection voltage V <b> 1 that was originally a constant value Vo slightly lower than k × D, as indicated by the broken line, is superimposed on the output of the periodic signal generation unit 46 by a solid line. As shown in FIG. 7, the number of times corresponding to the degree to which the original detected voltage V1 (broken line in FIG. 7) falls below the center k × D of the above range is shown (3 in the figure). The output (AD value) of the A / D conversion unit 44 becomes D−1, and the total of D (i) at the end of the measurement period t9 (that is, the output of the cumulative addition unit 45) as shown in the lower part of FIG. Is 8D-3. As described above, when the original detection voltage V1 is shifted to the negative side with respect to the voltage k × D after A / D conversion and a positive quantization error occurs, the output of the A / D conversion unit 44 is output. Is likely to be D-1. On the contrary, when the original detection voltage V1 is shifted to the positive side with respect to the voltage k × D after A / D conversion and a negative quantization error occurs, the output of the A / D conversion unit 44 is The probability of becoming D + 1 increases. That is, in the output of the cumulative adder 45 that is the result of summing the output of the A / D converter 44 a plurality of times, the above-described quantization error is offset to some extent, so that the resolution of the A / D converter 44 is improved. As with, improvement in measurement accuracy can be expected. The more values that can be taken by the contribution of the periodic signal in the detection voltage V1 at the measurement timing, the more the relationship between the expected value of the output of the A / D converter 44 and the original detection voltage V1 (ie, switching). The above-described effect is enhanced when the relationship between the current flowing through the element Q2 and the current value approaches a straight line.

累積加算部45がA/D変換部44の出力を得る測定タイミングとしては、周期信号の寄与による系統誤差の発生を避けるために、各測定期間についてそれぞれ測定タイミングでの検出電圧V1に対する周期信号の寄与の総計が0となるように選択されていればよい。周期信号の波形が正弦波であれば、測定期間の長さを周期信号の周期の自然数倍とするとともに、測定タイミングの間隔を等間隔とすれば、上記の条件の達成は比較的に容易となる。   The measurement timing at which the cumulative addition unit 45 obtains the output of the A / D conversion unit 44 is such that the periodic signal with respect to the detection voltage V1 at the measurement timing is measured for each measurement period in order to avoid occurrence of systematic errors due to the contribution of the periodic signal. It is only necessary that the total contribution is selected to be zero. If the waveform of the periodic signal is a sine wave, the above condition can be achieved relatively easily if the length of the measurement period is set to a natural number multiple of the period of the periodic signal and the measurement timings are equally spaced. It becomes.

ここで、周期信号によって重畳される電圧の振幅(絶対値の最大値)は、単位電圧の半分k/2を上回っていても効果は得られるが、単位電圧の半分k/2以下とすることが望ましい。   Here, although the effect can be obtained even if the amplitude (maximum absolute value) of the voltage superimposed by the periodic signal exceeds half k / 2 of the unit voltage, the effect is obtained, but it should be less than half k / 2 of the unit voltage. Is desirable.

なお、周期信号の1周期の長さをTとおき、pを2以上の自然数とし、qを自然数として、測定期間の長さを(p+1/q)Tとして測定回数をp×q回とする場合、測定タイミングと周期信号の位相との関係を、測定期間内で周期信号の周期毎に異ならせ、整数m=(i−1)/q(端数切捨て)としてi番目の測定タイミングを測定期間の開始から(T/q)×(i−1)+m×T/(p×q)の経過時とすれば、測定タイミング間の実際の間隔をT/q以上としながらも、周期信号の位相との関係を全体としてみれば測定タイミング間の間隔をT/(p×q)としたのと同様となる。従って、図7の例のように測定タイミングの間隔を常に一定とする場合に比べ、測定タイミングでの検出電圧V1における周期信号の寄与分が取りうる値が多様となるから、A/D変換部44の出力の期待値とスイッチング素子Q2に流れる電流との関係がより直線に近くなり、すなわち量子化誤差がより抑えられる。   Note that the length of one cycle of the periodic signal is T, p is a natural number of 2 or more, q is a natural number, the length of the measurement period is (p + 1 / q) T, and the number of measurements is p × q. In this case, the relationship between the measurement timing and the phase of the periodic signal is made different for each period of the periodic signal within the measurement period, and the i-th measurement timing is set as the integer m = (i−1) / q (rounded down) to the measurement period. If (T / q) × (i−1) + m × T / (p × q) has elapsed from the start of the measurement, the phase of the periodic signal is maintained while the actual interval between measurement timings is equal to or greater than T / q. As a whole, the interval between measurement timings is the same as T / (p × q). Therefore, compared to the case where the interval of the measurement timing is always constant as in the example of FIG. 7, the value that can be taken by the contribution of the periodic signal in the detection voltage V1 at the measurement timing varies, so the A / D converter The relationship between the expected value of the output 44 and the current flowing through the switching element Q2 becomes closer to a straight line, that is, the quantization error is further suppressed.

例えば、p=3、q=8とした場合、測定回数はp×q=3×8=24回となり、図9に示すように、通常は測定タイミング間の間隔が周期信号の8分の1周期分T/8となり、1周期目の最後の測定タイミングt8と2周期目の最初の測定タイミングt9との間、並びに、2周期目の最後の測定タイミングt16と3周期目の最初の測定タイミングt17との間は、それぞれ通常の間隔T/8よりもT/(p×q)=T/24だけ長く、周期信号の6分の1周期分T/6となる。そして、1≦i≦8であって上記の整数mが0となる1周期目の測定タイミングtiは測定期間の開始から(T/8)×(i−1)の経過時点となり、9≦i≦16であって上記の整数mが1となる2周期目の測定タイミングtiは測定期間の開始から(T/8)×(i−1)+(T/24)の経過時点となり、17≦i≦24であって上記の整数mが2となる3周期目の測定タイミングtiは測定期間の開始から(T/8)×(i−1)+(2×T/24)の経過時点となる。従って、測定タイミングtiと周期信号の位相との関係を全体としてみると、周期信号の24分の1周期(T/24)毎に測定タイミングtiをとったのと同様となる。   For example, when p = 3 and q = 8, the number of measurements is p × q = 3 × 8 = 24 times, and the interval between measurement timings is usually 1/8 of the periodic signal as shown in FIG. It becomes a period T / 8, and is between the last measurement timing t8 of the first period and the first measurement timing t9 of the second period, and the last measurement timing t16 of the second period and the first measurement timing of the third period. Between t17, each is longer than the normal interval T / 8 by T / (p × q) = T / 24, which is T / 6 corresponding to 1/6 period of the periodic signal. The measurement timing ti in the first period when 1 ≦ i ≦ 8 and the integer m is 0 is the time when (T / 8) × (i−1) has elapsed from the start of the measurement period, and 9 ≦ i ≦ 16 and the measurement timing ti in the second period when the integer m is 1 is the time when (T / 8) × (i−1) + (T / 24) has elapsed since the start of the measurement period, and 17 ≦ The measurement timing ti in the third period when i ≦ 24 and the above-mentioned integer m is 2 is the time when (T / 8) × (i−1) + (2 × T / 24) has elapsed since the start of the measurement period. Become. Accordingly, when the relationship between the measurement timing ti and the phase of the periodic signal is taken as a whole, it is the same as taking the measurement timing ti every 1/24 period (T / 24) of the periodic signal.

ここで、q=1とした場合、周期信号の1周期毎に測定タイミングは1個となるが、周期信号の複数周期毎に測定タイミングを1個としてもよい。この場合、周期信号の実際の1周期の長さに測定タイミングの1個当りの周期信号の個数を乗じた時間を1周期とみなせば、周期信号の1周期毎に測定タイミングを1個とするのと同様と考えることができる。いずれの場合にも、測定タイミングと周期信号の位相との関係については、測定タイミングの間隔を短くした場合と同様となる。   Here, when q = 1, one measurement timing is provided for each period of the periodic signal, but one measurement timing may be provided for a plurality of periods of the periodic signal. In this case, if the time obtained by multiplying the actual length of one period signal by the number of period signals per measurement timing is regarded as one period, one measurement timing is set for each period signal period. Can be thought of as the same. In either case, the relationship between the measurement timing and the phase of the periodic signal is the same as when the measurement timing interval is shortened.

また、周期信号は正弦波に限られず、図10上段に示すように電圧値を直線状に徐々に増加させた後に急激に電圧値を低下させるという変化を周期的に繰り返す、いわゆる鋸波形としてもよい。このような周期信号を実現する周期信号生成部46も周期技術で実現可能であるので、詳細な図示並びに説明は省略する。図10の例では、周期信号が重畳されていない状態では図10上段に破線で示すようにk×Dよりも僅かに低い程度の一定値Voである検出電圧V1が、周期信号を重畳されることで実線で示す鋸波形となっている。この結果、図10中段に示すように、もとの検出電圧V1である上記の一定値Voが上記範囲の中央k×Dを下回る程度に応じた回数(図では4回)だけA/D変換部44の出力(AD値)がD−1となり、図10下段に示すように測定期間の終了時t9におけるD(i)の総計(すなわち累積加算部45が出力する累計電圧Vs)は8D−4となって量子化誤差が抑えられている。   Further, the periodic signal is not limited to a sine wave, and a so-called sawtooth waveform in which the voltage value is gradually increased linearly and then suddenly decreased as shown in the upper part of FIG. 10 is periodically repeated. Good. Since the periodic signal generator 46 that realizes such a periodic signal can also be realized by the periodic technique, detailed illustration and description thereof will be omitted. In the example of FIG. 10, in a state where the periodic signal is not superimposed, the detection voltage V1, which is a constant value Vo that is slightly lower than k × D, is superimposed on the periodic signal as indicated by a broken line in the upper part of FIG. Thus, the sawtooth waveform shown by the solid line is obtained. As a result, as shown in the middle stage of FIG. 10, the A / D conversion is performed by the number of times (four times in the figure) corresponding to the extent that the constant value Vo, which is the original detection voltage V1, falls below the center k × D of the range. The output (AD value) of the unit 44 becomes D-1, and the total of D (i) at the end of the measurement period t9 (that is, the cumulative voltage Vs output by the cumulative addition unit 45) is 8D− as shown in the lower part of FIG. 4 and the quantization error is suppressed.

本実施形態でも、実施形態1と同様に、消費電力Winの演算に用いる定数α、βを状況に応じて変更する構成を採用することができる。また、本実施形態のように累計電圧Vsを消費電力Winの演算に用いる構成は実施形態2のように直流電源部1を設けない構成にも適用可能である。   In the present embodiment, as in the first embodiment, it is possible to adopt a configuration in which the constants α and β used for calculating the power consumption Win are changed according to the situation. Further, the configuration using the cumulative voltage Vs for the calculation of the power consumption Win as in the present embodiment is also applicable to the configuration in which the DC power supply unit 1 is not provided as in the second embodiment.

(実施形態4)
本実施形態の基本構成は実施形態3と共通であるので、共通する部分については説明を省略する。
(Embodiment 4)
Since the basic configuration of this embodiment is the same as that of the third embodiment, the description of the common parts is omitted.

交流電源ACの交流電力をダイオードブリッジDBによって全波整流した脈流電力を直流電力に変換するスイッチング電源からなるDC−DCコンバータ10の出力電圧Vdcには、ダイオードブリッジDBの出力の周波数のリプル成分、すなわち、上記交流電力の周波数の2倍の周波数のリプル成分が含まれており、このリプル成分に起因して検出電圧V1にもリプル成分が発生する。本実施形態はこの点に着目し、検出電圧V1における上記のリプル成分を周期信号として用いることで、図11に示すように周期信号生成部46と第3抵抗R3とをそれぞれ省略したものである。   The output voltage Vdc of the DC-DC converter 10 comprising a switching power supply that converts pulsating power obtained by full-wave rectifying the AC power of the AC power supply AC by the diode bridge DB into DC power includes a ripple component of the output frequency of the diode bridge DB. That is, a ripple component having a frequency twice the frequency of the AC power is included, and a ripple component is also generated in the detection voltage V1 due to the ripple component. In this embodiment, paying attention to this point, the above-described ripple component in the detection voltage V1 is used as a periodic signal, thereby omitting the periodic signal generator 46 and the third resistor R3 as shown in FIG. .

より具体的には、各測定期間について、それぞれ、検出電圧V1における上記のリプル成分の寄与の総計が0となるように、累積加算部45がA/D変換部44の出力を得る測定タイミングが選択されている。測定期間の長さは、50msの整数倍とすれば、交流電源ACの交流電力の周波数が50Hzと60Hzとのいずれであっても、測定期間の長さを上記のリプル成分の周期の整数倍とすることができる。   More specifically, for each measurement period, the measurement timing at which the cumulative addition unit 45 obtains the output of the A / D conversion unit 44 is such that the total contribution of the ripple components in the detection voltage V1 is zero. Is selected. If the length of the measurement period is an integer multiple of 50 ms, the length of the measurement period is an integral multiple of the period of the ripple component, regardless of whether the frequency of the AC power of the AC power supply AC is 50 Hz or 60 Hz. It can be.

上記構成によれば、DC−DCコンバータ10の出力のリプル成分が検出電圧V1のリプル成分として反映されることによる誤差と、A/D変換部44でのA/D変換による量子化誤差とが、互いに相殺されることでそれぞれ抑えられる。   According to the above configuration, an error due to the ripple component of the output of the DC-DC converter 10 being reflected as the ripple component of the detection voltage V <b> 1 and a quantization error due to A / D conversion in the A / D conversion unit 44. , They can be suppressed by canceling each other.

なお、上記のリプル成分の振幅は、DC−DCコンバータ10のフィードバック制御におけるフィードバックゲインや、出力コンデンサC10の容量値に応じて変化する。   The amplitude of the ripple component changes according to the feedback gain in the feedback control of the DC-DC converter 10 and the capacitance value of the output capacitor C10.

実施形態1〜4で説明した各種の電源装置のうち、図12に示すように演算部41で演算された消費電力Winを外部装置に送信する報知部としての通信部42aを有する電源装置PSは、電源装置PSの通信部42aから送信された消費電力を表示する表示装置DPとともに消費電力測定システムを構成することができる。   Among the various power supply devices described in the first to fourth embodiments, the power supply device PS including the communication unit 42a serving as a notification unit that transmits the power consumption Win calculated by the calculation unit 41 to the external device as illustrated in FIG. The power consumption measurement system can be configured together with the display device DP that displays the power consumption transmitted from the communication unit 42a of the power supply device PS.

図12の例について具体的に説明すると、表示装置DPは、伝送線SLを介して各電源装置PSの通信部42aに接続されて各電源装置PSの通信部42aから送信された消費電力をそれぞれ受信する通信部51と、消費電力を表示する表示部52と、通信部51に受信された消費電力を表示するように表示部52を制御する制御部53と、通信部51に受信された消費電力等のデータの保存に適宜用いられる記憶部54とを備える。   When specifically explaining the example of FIG. 12, the display device DP is connected to the communication unit 42a of each power supply device PS via the transmission line SL, and the power consumption transmitted from the communication unit 42a of each power supply device PS, respectively. The communication unit 51 to receive, the display unit 52 to display power consumption, the control unit 53 to control the display unit 52 to display the power consumption received to the communication unit 51, and the consumption received to the communication unit 51 And a storage unit 54 used as appropriate for storing data such as electric power.

ここで、電源装置PSの演算部41において演算の結果得られる消費電力Winと、伝送線SLを介して送受信される消費電力とは、それぞれ、2進数で表現されたデジタルデータとなっているが、これらの表現に用いられるビット数は必ずしも互いに等しい必要はなく、伝送線SLを介して送受信される消費電力の表現に用いられるビット数を、演算部41における演算結果の消費電力Winの表現に用いられるビット数よりも少なくしてもよい。具体的には例えば演算部41における演算結果の消費電力Winの下位ビットを所定の個数だけ切り捨て、これを伝送線SLを介して送受信される消費電力の表現とする。仮に、伝送線SLを介して送受信される消費電力の分解能(請求項における単位電力)を5mWとし、すなわち消費電力を5mWの整数倍として表現する場合、2バイト(16ビット)で最大約327Wの幅の消費電力を表現することができ、これは、分解能としても、表現できる消費電力の幅としても、実用上十分である。この構成を採用すれば、電源装置PSの演算部41において演算の結果得られる消費電力Winがそのまま送受信される場合に比べ、通信の負荷や表示装置DPにおける処理の負荷が軽減される。   Here, the power consumption Win obtained as a result of calculation in the calculation unit 41 of the power supply apparatus PS and the power consumption transmitted / received via the transmission line SL are digital data expressed in binary numbers, respectively. The number of bits used for these expressions is not necessarily equal to each other, and the number of bits used for expressing the power consumption transmitted and received via the transmission line SL is used as the expression for the power consumption Win of the calculation result in the calculation unit 41. It may be less than the number of bits used. Specifically, for example, a predetermined number of lower bits of the power consumption Win of the calculation result in the calculation unit 41 are rounded down, and this is used as a representation of power consumption transmitted / received via the transmission line SL. If the power consumption resolution (unit power in the claims) transmitted / received via the transmission line SL is 5 mW, that is, when the power consumption is expressed as an integer multiple of 5 mW, the maximum of about 327 W in 2 bytes (16 bits). The power consumption of the width can be expressed, which is practically sufficient as the resolution and the width of the power consumption that can be expressed. By adopting this configuration, the communication load and the processing load on the display device DP are reduced as compared with the case where the power consumption Win obtained as a result of the calculation is directly transmitted and received in the calculation unit 41 of the power supply apparatus PS.

1 直流電源部
2 電力変換部
10 DC−DCコンバータ
31 指示入力部
32 入力電圧判別部(請求項における入力判別部)
33 温度検出部
41 演算部
42 報知部
42a 通信部
43 記憶部
44 A/D変換部
45 累積加算部
46 周期信号生成部
51 通信部
52 表示部
AC 交流電源
C1 検出用コンデンサ(請求項における電流検出部、アナログ電流検出部)
DB ダイオードブリッジ
DP 表示装置
E 直流電源
FL 放電灯(請求項における負荷)
LED 発光ダイオード(請求項における負荷)
PS 電源装置
Q2,Q3 スイッチング素子
R1 第1抵抗(請求項における電流検出部、アナログ電流検出部)
R2 第2抵抗(請求項における電流検出部、アナログ電流検出部)
DESCRIPTION OF SYMBOLS 1 DC power supply part 2 Power conversion part 10 DC-DC converter 31 Instruction input part 32 Input voltage discrimination | determination part (input discrimination | determination part in a claim)
33 Temperature Detection Unit 41 Calculation Unit 42 Notification Unit 42a Communication Unit 43 Storage Unit 44 A / D Conversion Unit 45 Cumulative Addition Unit 46 Periodic Signal Generation Unit 51 Communication Unit 52 Display Unit AC AC Power Supply C1 Detection Capacitor (Current Detection in Claims) Part, analog current detection part)
DB Diode bridge DP Display device E DC power supply FL Discharge lamp (Load in claims)
LED light emitting diode (load in claims)
PS power supply device Q2, Q3 switching element R1 first resistor (current detection unit, analog current detection unit in claims)
R2 second resistance (current detection unit, analog current detection unit in claims)

Claims (15)

外部の電源から入力された電力を所定電圧の直流電力に変換して出力する直流電源部と、
少なくとも1個のスイッチング素子を含み、直流電源部から入力された直流電力を適宜変換して負荷に供給する電力変換部と、
電力変換部のスイッチング素子に流れる電流が多いほど高い値を示す出力を生成する電流検出部と、
電流検出部の出力の値Vsと、定数α,βとを用いて、消費電力Winを式Win=α×Vs+βにより演算する演算部と、
演算部によって演算された消費電力Winを外部に報知する報知部とを備えることを特徴とする電源装置。
A DC power supply unit that converts electric power input from an external power source into DC power of a predetermined voltage and outputs it;
A power conversion unit including at least one switching element, appropriately converting DC power input from the DC power supply unit and supplying the converted power to a load;
A current detection unit that generates an output indicating a higher value as the current flowing through the switching element of the power conversion unit increases;
A calculation unit that calculates the power consumption Win by the expression Win = α × Vs + β using the output value Vs of the current detection unit and constants α and β,
A power supply device comprising: a notification unit that notifies the power consumption Win calculated by the calculation unit to the outside.
少なくとも1個のスイッチング素子を含み、外部の直流電源から入力された直流電力を適宜変換して負荷に供給する電力変換部と、
電力変換部のスイッチング素子に流れる電流が多いほど高い値を示す出力を生成する電流検出部と、
外部の直流電源から電力変換部への入力電圧を検出する電源電圧検出部と、
消費電力Winの演算に用いられる定数α、βが複数種類、それぞれ、電源電圧検出部によって検出される入力電圧の範囲に対応付けて格納された記憶部とを備え、
電流検出部の出力の値Vsと、電源電圧検出部によって検出された入力電圧に応じて記憶部から読み出された定数α,βとを用いて、消費電力Winを式Win=α×Vs+βにより演算する演算部と、
演算部によって演算された消費電力Winを外部に報知する報知部とを備えることを特徴とする電源装置。
A power conversion unit including at least one switching element, appropriately converting DC power input from an external DC power supply and supplying the converted power to a load;
A current detection unit that generates an output indicating a higher value as the current flowing through the switching element of the power conversion unit increases;
A power supply voltage detection unit for detecting an input voltage from an external DC power supply to the power conversion unit;
A plurality of types of constants α and β used for the calculation of the power consumption Win, each having a storage unit stored in association with the range of the input voltage detected by the power supply voltage detection unit,
Using the output value Vs of the current detection unit and the constants α and β read from the storage unit according to the input voltage detected by the power supply voltage detection unit, the power consumption Win is expressed by the equation Win = α × Vs + β. A computing unit for computing,
A power supply device comprising: a notification unit that notifies the power consumption Win calculated by the calculation unit to the outside.
直流電源部は複数種類の電力のいずれかが択一的に入力されるものであって、
直流電源部に入力される電力の種別を判別する入力判別部と、
消費電力Winの演算に用いられる定数α、βが複数種類、それぞれ、入力判別部によって判定される電力の種別に対応付けて格納された記憶部とを備え、
演算部は、消費電力Winを演算する際、入力判別部によって判別されている電力の種別に対応する定数α、βを記憶部から読み出して演算に用いることを特徴とする請求項1記載の電源装置。
The DC power supply unit is one in which any of a plurality of types of power is alternatively input,
An input discriminating unit for discriminating the type of power input to the DC power source unit;
A plurality of types of constants α and β used for calculating power consumption Win, each of which includes a storage unit stored in association with the type of power determined by the input determination unit;
2. The power supply according to claim 1, wherein when calculating the power consumption Win, the calculation unit reads constants α and β corresponding to the type of power determined by the input determination unit from the storage unit and uses them in the calculation. apparatus.
出力電力の指示が入力される指示入力部を備え、
電力変換部は、指示入力部に入力された指示に応じて出力電力を増減させるものであって、
消費電力Winの演算に用いられる定数α、βが複数種類、それぞれ、電力変換部の出力電力の範囲に対応付けて格納された記憶部を備え、
演算部は、消費電力Winを演算する際、電力変換部の出力電力に対応する定数α、βを記憶部から読み出して演算に用いることを特徴とする請求項1記載の電源装置。
An instruction input unit for inputting an instruction of output power is provided,
The power conversion unit increases or decreases the output power according to the instruction input to the instruction input unit,
A plurality of types of constants α and β used for calculating power consumption Win are provided, each having a storage unit stored in association with the range of output power of the power conversion unit,
The power supply device according to claim 1, wherein when calculating the power consumption Win, the calculation unit reads constants α and β corresponding to the output power of the power conversion unit from the storage unit and uses them in the calculation.
電力変換部は、それぞれ電流検出部の出力の値Vsと消費電力Winとの関係が異なる複数種類の動作を実行可能であって、
消費電力Winの演算に用いられる定数α、βが複数種類、それぞれ、電力変換部の動作の種類に対応付けて格納された記憶部を備え、
演算部は、消費電力Winを演算する際、電力変換部が行っている動作の種類に対応する定数α、βを記憶部から読み出して演算に用いることを特徴とする請求項1記載の電源装置。
Each of the power conversion units can execute a plurality of types of operations having different relationships between the output value Vs of the current detection unit and the power consumption Win,
A plurality of types of constants α and β used for calculating the power consumption Win are provided, each of which includes a storage unit stored in association with the type of operation of the power conversion unit,
2. The power supply device according to claim 1, wherein when calculating the power consumption Win, the calculation unit reads constants α and β corresponding to the type of operation performed by the power conversion unit from the storage unit and uses them in the calculation. .
温度を検出する温度検出部と、
消費電力Winの演算に用いられる定数α、βが複数種類、それぞれ、温度検出部によって検出される温度の範囲に対応付けて格納された記憶部とを備え、
演算部は、消費電力Winを演算する際、温度検出部によって検出された温度に対応する定数α、βを記憶部から読み出して演算に用いることを特徴とする請求項1記載の電源装置。
A temperature detector for detecting the temperature;
A plurality of types of constants α and β used for calculating the power consumption Win, each having a storage unit stored in association with a temperature range detected by the temperature detection unit;
2. The power supply device according to claim 1, wherein when calculating the power consumption Win, the calculation unit reads constants α and β corresponding to the temperature detected by the temperature detection unit from the storage unit and uses them in the calculation.
電流検出部は、
電力変換部のスイッチング素子に流れる電流が多いほど高いアナログ電圧を出力するアナログ電流検出部と、
電圧値が正負両側に跨って周期的に変化するアナログ電圧である周期信号を生成する周期信号生成部と、
アナログ電流検出部の出力電圧に周期信号が重畳された電圧をA/D変換して出力するA/D変換部と、
所定の測定期間毎に、A/D変換部への入力電圧に対する周期信号生成部の出力電圧の寄与の総計が0となるように選択された複数個ずつの測定タイミングでそれぞれA/D変換部の出力を得るとともに、得られたA/D変換部の出力の値を合計した値を演算部への出力の値Vsとする累積加算部とからなることを特徴とする請求項1〜6のいずれか1項に記載の電源装置。
The current detector is
An analog current detector that outputs a higher analog voltage as the current flowing through the switching element of the power converter increases,
A periodic signal generating unit that generates a periodic signal that is an analog voltage whose voltage value periodically changes across both positive and negative sides;
An A / D converter for A / D converting and outputting a voltage in which a periodic signal is superimposed on an output voltage of the analog current detector;
Each A / D converter at a plurality of measurement timings selected so that the total of the contribution of the output voltage of the periodic signal generator to the input voltage to the A / D converter is 0 for each predetermined measurement period. And an accumulative addition unit that uses a value obtained by summing the obtained output values of the A / D conversion unit as a value Vs of an output to the calculation unit. The power supply device according to any one of the above.
測定期間は周期信号の複数周期に跨っていて、周期信号の位相と測定タイミングとの関係が周期信号の周期毎にずらされていることを特徴とする請求項7記載の電源装置。   8. The power supply device according to claim 7, wherein the measurement period extends over a plurality of periods of the periodic signal, and the relationship between the phase of the periodic signal and the measurement timing is shifted for each period of the periodic signal. 周期信号の1周期の長さTと、2以上の自然数pと、自然数qとを用いて、測定期間の長さが(p+1/q)Tと表され、1個の測定期間中の測定タイミングの個数がp×q個と表され、
1≦i≦p×qである各iについて、それぞれ、整数m=(i−1)/q(端数切捨て)を用いて、測定期間の開始からi番目の測定タイミングまでの時間が、(T/q)×(i−1)+m×T/(p×q)と表されることを特徴とする請求項8記載の電源装置。
Using the length T of one period of the periodic signal, the natural number p of 2 or more, and the natural number q, the length of the measurement period is expressed as (p + 1 / q) T, and the measurement timing during one measurement period Is expressed as p × q,
For each i satisfying 1 ≦ i ≦ p × q, the time from the start of the measurement period to the i-th measurement timing is calculated using the integer m = (i−1) / q (rounded down) (T The power supply device according to claim 8, wherein the power supply device is represented by: / q) × (i−1) + m × T / (p × q).
外部の電源から入力された電力を所定電圧の直流電力に変換して出力する直流電源部と、
少なくとも1個のスイッチング素子を含み、直流電源部から入力された直流電力を適宜変換して負荷に供給する電力変換部と、
電力変換部のスイッチング素子に流れる電流が多いほど高いアナログ電圧を出力するアナログ電流検出部と、
電圧値が正負両側に跨って周期的に変化するアナログ電圧である周期信号を生成する周期信号生成部と、
アナログ電流検出部の出力電圧に周期信号が重畳された電圧をA/D変換して出力するA/D変換部と、
所定の測定期間毎に、A/D変換部への入力電圧に対する周期信号生成部の出力電圧の寄与の総計が0となるように選択されたn(n≧2)個ずつの測定タイミングでそれぞれA/D変換部の出力D(i)を得るとともに、測定期間全体で得られた出力D(i)の合計と定数α、βとを用いて次式
Figure 2010279103
により消費電力Winを演算する累積演算部と、
演算部によって演算された消費電力Winを外部に報知する報知部とを備えることを特徴とする電源装置。
A DC power supply unit that converts electric power input from an external power source into DC power of a predetermined voltage and outputs it;
A power conversion unit including at least one switching element, appropriately converting DC power input from the DC power supply unit and supplying the converted power to a load;
An analog current detector that outputs a higher analog voltage as the current flowing through the switching element of the power converter increases,
A periodic signal generating unit that generates a periodic signal that is an analog voltage whose voltage value periodically changes across both positive and negative sides;
An A / D converter for A / D converting and outputting a voltage in which a periodic signal is superimposed on an output voltage of the analog current detector;
Every n (n ≧ 2) measurement timings selected so that the total contribution of the output voltage of the periodic signal generation unit to the input voltage to the A / D conversion unit becomes 0 for each predetermined measurement period. The output D (i) of the A / D converter is obtained, and the following equation is used by using the sum of the outputs D (i) obtained over the entire measurement period and the constants α and β.
Figure 2010279103
A cumulative calculation unit for calculating the power consumption Win by
A power supply device comprising: a notification unit that notifies the power consumption Win calculated by the calculation unit to the outside.
直流電源部は入力された交流電力を直流電力に変換するものであることを特徴とする請求項1〜10のいずれか1項に記載の電源装置。   The power supply apparatus according to any one of claims 1 to 10, wherein the DC power supply unit converts input AC power into DC power. 直流電源部は、外部の交流電源から入力された交流電力を全波整流するダイオードブリッジと、スイッチング電源からなりダイオードブリッジの出力電力を所定電圧の直流電力に変換して出力するDC−DCコンバータとからなり、
電流検出部は、
電力変換部のスイッチング素子に流れる電流が多いほど高いアナログ電圧を出力するアナログ電流検出部と、
アナログ電流検出部の出力電圧に周期信号が重畳された電圧をA/D変換して出力するA/D変換部と、
所定の測定期間毎に、アナログ電流検出部の出力電圧に対するDC−DCコンバータの出力のリプル成分の寄与の総計が0となるように選択されたn(n≧2)個ずつの測定タイミングでそれぞれA/D変換部の出力D(i)を得るとともに、得られたA/D変換部の出力の値を合計した値を演算部への出力の値Vsとする累積加算部とからなることを特徴とする請求項1又は請求項3〜6のいずれか1項に記載の電源装置。
The DC power supply unit includes a diode bridge that performs full-wave rectification of AC power input from an external AC power supply, a DC-DC converter that includes a switching power supply, converts the output power of the diode bridge to DC power of a predetermined voltage, and outputs the DC power Consists of
The current detector is
An analog current detector that outputs a higher analog voltage as the current flowing through the switching element of the power converter increases,
An A / D converter for A / D converting and outputting a voltage in which a periodic signal is superimposed on an output voltage of the analog current detector;
Every n (n ≧ 2) measurement timings selected so that the total contribution of ripple components of the output of the DC-DC converter to the output voltage of the analog current detection unit becomes 0 for each predetermined measurement period. The output D (i) of the A / D conversion unit is obtained, and a cumulative addition unit that uses a value obtained by summing the obtained output values of the A / D conversion unit as a value Vs of an output to the calculation unit. The power supply device according to claim 1, wherein the power supply device is any one of claims 1 to 6.
電力変換部に接続される負荷が光源であることを特徴とする請求項1〜12のいずれか1項に記載の電源装置。   The power supply apparatus according to any one of claims 1 to 12, wherein a load connected to the power conversion unit is a light source. 消費電力を示すデータを送信する報知部としての通信部を備える請求項1〜13のいずれか1項に記載の電源装置と、
電源装置から送信された消費電力を受信する通信部並びに通信部に受信されたデータに示された消費電力を表示する表示部を有する表示装置とを備えることを特徴とする消費電力測定システム。
The power supply device according to any one of claims 1 to 13, further comprising a communication unit as a notification unit that transmits data indicating power consumption.
A power consumption measurement system comprising: a communication unit that receives power consumption transmitted from a power supply device; and a display device that displays a power consumption indicated in data received by the communication unit.
電源装置の通信部は、演算部が演算した消費電力を所定の単位電力で除して端数を切り捨てた数を消費電力を示すデータとして送信し、
表示装置の表示部は、通信部に受信されたデータから得られた数に単位電力を乗じた消費電力を表示することを特徴とする請求項14記載の消費電力測定システム。
The communication unit of the power supply device transmits, as data indicating the power consumption, the number obtained by dividing the power consumption calculated by the calculation unit by a predetermined unit power and rounded down.
15. The power consumption measuring system according to claim 14, wherein the display unit of the display device displays power consumption obtained by multiplying the number obtained from the data received by the communication unit by unit power.
JP2009127026A 2009-05-26 2009-05-26 Power supply device and power consumption measuring system Active JP5452078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127026A JP5452078B2 (en) 2009-05-26 2009-05-26 Power supply device and power consumption measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127026A JP5452078B2 (en) 2009-05-26 2009-05-26 Power supply device and power consumption measuring system

Publications (2)

Publication Number Publication Date
JP2010279103A true JP2010279103A (en) 2010-12-09
JP5452078B2 JP5452078B2 (en) 2014-03-26

Family

ID=43425548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127026A Active JP5452078B2 (en) 2009-05-26 2009-05-26 Power supply device and power consumption measuring system

Country Status (1)

Country Link
JP (1) JP5452078B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185510A (en) * 2011-05-09 2011-09-14 张承臣 Safety protective power system
JP2013164766A (en) * 2012-02-13 2013-08-22 Panasonic Corp Measurement system
CN103941085A (en) * 2014-04-18 2014-07-23 天津师范大学 Low-power-consumption electric energy acquisition device
CN104136929A (en) * 2011-12-20 2014-11-05 施耐德电器工业公司 Method for determining power consumption in an electrical installation, and alternating-current electrical installation
CN104764287A (en) * 2014-01-06 2015-07-08 Lg电子株式会社 Refrigerator and home appliance

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235050A (en) * 1998-02-10 1999-08-27 Fuji Electric Co Ltd Inverter
JP2000162255A (en) * 1998-11-26 2000-06-16 Aiwa Co Ltd Electronic equipment
JP2003232819A (en) * 2002-02-12 2003-08-22 Matsushita Electric Ind Co Ltd Image forming device and power consumption measuring method
JP2004249814A (en) * 2003-02-19 2004-09-09 Toyota Motor Corp Power consumption correction device and power consumption correction method
JP2005176532A (en) * 2003-12-12 2005-06-30 Hitachi Ltd Digital type dc power supply control device and method
JP2005210356A (en) * 2004-01-22 2005-08-04 Yazaki Corp A/d converter and its method
JP2008010153A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Discharge lamp lighting device and luminaire
JP2008074525A (en) * 2006-09-20 2008-04-03 Yokohama Rubber Co Ltd:The Assessment method for power consumption characteristics of conveyor belt, and estimation method for power consumption of belt conveyor device
JP2009063285A (en) * 2007-08-10 2009-03-26 Daikin Ind Ltd Monitoring system for air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235050A (en) * 1998-02-10 1999-08-27 Fuji Electric Co Ltd Inverter
JP2000162255A (en) * 1998-11-26 2000-06-16 Aiwa Co Ltd Electronic equipment
JP2003232819A (en) * 2002-02-12 2003-08-22 Matsushita Electric Ind Co Ltd Image forming device and power consumption measuring method
JP2004249814A (en) * 2003-02-19 2004-09-09 Toyota Motor Corp Power consumption correction device and power consumption correction method
JP2005176532A (en) * 2003-12-12 2005-06-30 Hitachi Ltd Digital type dc power supply control device and method
JP2005210356A (en) * 2004-01-22 2005-08-04 Yazaki Corp A/d converter and its method
JP2008010153A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Discharge lamp lighting device and luminaire
JP2008074525A (en) * 2006-09-20 2008-04-03 Yokohama Rubber Co Ltd:The Assessment method for power consumption characteristics of conveyor belt, and estimation method for power consumption of belt conveyor device
JP2009063285A (en) * 2007-08-10 2009-03-26 Daikin Ind Ltd Monitoring system for air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185510A (en) * 2011-05-09 2011-09-14 张承臣 Safety protective power system
CN104136929A (en) * 2011-12-20 2014-11-05 施耐德电器工业公司 Method for determining power consumption in an electrical installation, and alternating-current electrical installation
CN104136929B (en) * 2011-12-20 2016-10-26 施耐德电器工业公司 The method determining power consumption in electric device and alternating electromotive force device
JP2013164766A (en) * 2012-02-13 2013-08-22 Panasonic Corp Measurement system
CN104764287A (en) * 2014-01-06 2015-07-08 Lg电子株式会社 Refrigerator and home appliance
CN103941085A (en) * 2014-04-18 2014-07-23 天津师范大学 Low-power-consumption electric energy acquisition device

Also Published As

Publication number Publication date
JP5452078B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
EP1814214B1 (en) Discharge lamp lighting device, and lighting equipment and lighting system using the device
JP4193755B2 (en) Switching power supply device and power factor correction circuit
JP5452078B2 (en) Power supply device and power consumption measuring system
TWI352949B (en) Light source driving circuit
JP6386346B2 (en) LED driving method and LED driving apparatus
JP2012132905A (en) Detecting device and method, and program
JP5822304B2 (en) Charger
JP2008064539A (en) Electronic ammeter
RU2695817C2 (en) Circuit for driving load
JP2007295655A (en) Power converter
JP5163884B2 (en) Watt meter
JP2009195044A (en) Power supply apparatus and method of notifying remaining life of electrolytic capacitor
JP5506561B2 (en) Lighting device
JP2013021785A (en) Power supply control method and power supply control device
JP2010276386A (en) Voltage detector, power supply, lighting device, and electric power measuring system
JP2014079043A (en) Power supply device and lighting device
JP5660656B2 (en) Power supply device, lighting device, and power measurement system
JP2011145875A (en) Controller and control method for switching power supply
JP7188222B2 (en) monitoring module
JP2008157837A (en) Battery residual capacity detector and portable terminal device
JP5771769B2 (en) Lighting device, lighting fixture, lighting system
JP6722060B2 (en) Processor, power management device, and EMS server
JP5379560B2 (en) Lighting device and lighting apparatus and lighting system using the same
JP2011096411A (en) Power supply device, lighting device, and power measuring system
JP5439303B2 (en) Power supply

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5452078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150