JP2010278108A - 半導体素子の冷却構造 - Google Patents

半導体素子の冷却構造 Download PDF

Info

Publication number
JP2010278108A
JP2010278108A JP2009127418A JP2009127418A JP2010278108A JP 2010278108 A JP2010278108 A JP 2010278108A JP 2009127418 A JP2009127418 A JP 2009127418A JP 2009127418 A JP2009127418 A JP 2009127418A JP 2010278108 A JP2010278108 A JP 2010278108A
Authority
JP
Japan
Prior art keywords
heat transfer
semiconductor element
transfer diffusion
heat
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009127418A
Other languages
English (en)
Other versions
JP5075163B2 (ja
Inventor
Tadashi Yoshida
忠史 吉田
Yuji Osada
裕司 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2009127418A priority Critical patent/JP5075163B2/ja
Publication of JP2010278108A publication Critical patent/JP2010278108A/ja
Application granted granted Critical
Publication of JP5075163B2 publication Critical patent/JP5075163B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】優れた冷却効率が実現される半導体素子の冷却構造、を提供する。
【解決手段】半導体素子の冷却構造は、半導体素子26と、複数の伝熱拡散部31と、放熱用フィン41と、冷却用ファン51とを備える。複数の伝熱拡散部31は、半導体素子26を両側から挟持するように積層して配置される。伝熱拡散部31は、その積層方向に直交する方向に延在し、その延在する先に接合部32を有する。放熱用フィン41は、接合部32に接合される。放熱用フィン41は、半導体素子26で発生し、伝熱拡散部31を通じて伝わった熱を放熱する。冷却用ファン51は、放熱用フィン41に向けて冷却風を供給する。伝熱拡散部31は、積層方向における熱伝達率よりも延在方向における熱伝達率の方が大きくなる熱伝導率異方性部材から形成される。
【選択図】図3

Description

この発明は、一般的には、半導体素子の冷却構造に関し、より特定的には、車両に搭載されたインバータに適用される半導体素子の冷却構造に関する。
従来の半導体素子の冷却構造に関して、たとえば、特開2008−42074号公報には、装置が大型化することを防止するための半導体装置が開示されている(特許文献1)。特許文献1に開示された半導体装置は、第1半導体素子および第2半導体素子と、第1電力基板を介して第1半導体素子に対して積層された第1放熱器と、第2電力基板を介して第2半導体素子に対して積層された第2放熱器とを有する。
また、特開平4−7860号公報には、部品点数を少なくして組み立てることが可能であり、小型軽量化も可能な半導体スタックが開示されている(特許文献2)。特許文献2に開示された半導体スタックは、ヒートパイプの一端部に受熱部ブロックが埋め込まれ、ヒートパイプの他端部に放熱フィンが取り付けられたヒートパイプ式放熱器を備える。このような構成を備える複数個のヒートパイプ式放熱器と、複数個の半導体素子とが、サンドイッチ構造となるように積層される。
また、特開平11−97595号公報には、小型化、冷却性能の向上を図ることを目的とした半導体冷却装置が開示されている(特許文献3)。特許文献3に開示された半導体冷却装置においては、半導体素子と、ヒートパイプ式冷却器の受熱ブロックとが、交互に配置され、板バネのバネ力によって互いに圧接して積層されている。
また、特開2006−141096号公報には、電力回路とともに制御回路も十分に冷却し、かつ小型化することを目的とした半導体装置が開示されている(特許文献4)。特許文献4に開示された半導体装置においては、半導体素子部および冷却器からなる積層体の最上面に、熱伝導部材が接続されている。熱伝導部材は、熱伝導率の大きいグラファイトシートから構成されている。
また、特開2008−177275号公報には、筐体強度の確保や筐体の薄型化を実現すると同時に、端末の薄型化、小型化、軽量化、低価格化への要求を満たしつつ、効率的な放熱および熱伝導を実現することを目的とした放熱構造体が開示されている(特許文献5)。特許文献5に開示された放熱構造体としての放熱シートは、グラファイト材シートと、銅材シートと、プラスチックシートとが、密着した層構造を有する。グラファイト材シートは、厚み方向に対して略直角となる方向への伝熱性(熱伝導性)が非常に高い特性を有する。
特開2008−42074号公報 特開平4−7860号公報 特開平11−97595号公報 特開2006−141096号公報 特開2008−177275号公報
上述の特許文献1に開示されるように、インバータ回路などに使用される半導体素子の作動には、非常に大きい発熱を伴うため、各種の冷却構造が採用されている。このような構成において、採用される冷却構造によっては、十分な冷却効率が得られなかったり、構造の複雑化や部品点数の増加などを招いたりするおそれがある。
そこでこの発明の目的は、上記の課題を解決することであり、簡易な構成により、優れた冷却効率が実現される半導体素子の冷却構造を提供することである。
この発明に従った半導体素子の冷却構造は、半導体素子と、複数の伝熱拡散部と、フィンと、送風器とを備える。複数の伝熱拡散部は、半導体素子を両側から挟持するように積層して配置される。伝熱拡散部は、その積層方向に直交する方向に延在し、その延在する先に接合部を有する。フィンは、接合部に接合される。フィンは、半導体素子で発生し、伝熱拡散部を通じて伝わった熱を放熱する。送風器は、フィンに向けて冷却風を供給する。伝熱拡散部は、積層方向における熱伝達率よりも延在方向における熱伝達率の方が大きくなる熱伝導率異方性部材から形成される。
このように構成された半導体素子の冷却構造によれば、半導体素子で発生した熱を、積層方向よりも延在方向においてより大きい熱伝導率を有する伝熱拡散部を通じて、フィンに効率よく伝える。さらに、フィンに伝わった熱は、送風器による冷却風の供給を受けて放熱される。このように、伝熱拡散部による伝熱構造と、フィンおよび送風器による放熱構造とを備える簡易な構成により、優れた冷却効率を実現することができる。
また好ましくは、熱伝導率異方性部材は、自励式ヒートパイプまたは配向性グラファイトからなる。
このように構成された半導体素子の冷却構造によれば、積層方向よりも延在方向においてより大きい熱伝導率を有する伝熱拡散部を、自励式ヒートパイプまたは配向性グラファイトを用いて構成することができる。
また好ましくは、伝熱拡散部は、接合部に向けて、伝熱拡散部の積層方向に直交する平面内において2次元的に広がって形成されている。
このように構成された半導体素子の冷却構造によれば、半導体素子で発生した熱が2次元的に広がって拡散するため、半導体素子から接合部に向けて熱を効率よく伝えることができる。また、接合部に接合されるフィンを接合部が広がる2次元方向に配置することが可能となるため、フィンと空気との接触面積を増大させることができる。このため、半導体素子の冷却効率をさらに向上させることができる。
また好ましくは、伝熱拡散部は、伝熱拡散部の積層方向から見て、矩形形状、扇形状または円形状を有する。このように構成された半導体素子の冷却構造によれば、半導体素子の冷却効率をさらに向上させることができる。
また好ましくは、半導体モジュールと伝熱拡散部とが、伝熱拡散部の積層方向に沿って交互に配置される。
このように構成された半導体素子の冷却構造によれば、隣り合って配置される半導体素子間に必ず伝熱拡散部が配置されるため、半導体素子から発生した熱同士が干渉することを防止できる。これにより、半導体素子の冷却効率をさらに向上させることができる。
また好ましくは、半導体素子の冷却構造は、個別に樹脂モールドされた複数の半導体素子を備える。伝熱拡散部は、隣り合って配置される半導体素子に対して圧接して設けられる。このように構成された半導体素子の冷却構造によれば、樹脂モールドされた半導体素子を個々に分解可能となるため、装置のメンテナンス性を向上させることができる。
また好ましくは、送風器からの送風により、フィンに対して、伝熱拡散部の積層方向において均一な流量で冷却風が供給される。このように構成された半導体素子の冷却構造によれば、半導体素子間で冷却効率にばらつきが生じることを抑制できる。
以上に説明したように、この発明に従えば、簡易な構成により、優れた冷却効率が実現される半導体素子の冷却構造を提供することができる。
ハイブリッド自動車の駆動ユニットを模式的に表わす図である。 図1中のPCUの構成を示す電気回路図である。 図2中のインバータに適用される半導体素子の冷却構造を示す断面図である。 図3中のIV−IV線上に沿った半導体素子の冷却構造を示す上面図である。 図3中の2点鎖線Vに囲まれた範囲を拡大して示す断面図である。 図3中の伝熱拡散部およびフィンを示す断面図である。 図6中のVII−VII線上に沿った伝熱拡散部を示す断面図である。 図6中の伝熱拡散部の変形例を示す断面図である。 この発明の実施の形態2における半導体素子の冷却構造を示す平面図である。 図9中のX−X線上に沿った半導体素子の冷却構造を示す断面図である。 この発明の実施の形態3における半導体素子の冷却構造を示す平面図である。 図11中のXII−XII線上に沿った半導体素子の冷却構造を示す断面図である。
この発明の実施の形態について、図面を参照して説明する。なお、以下で参照する図面では、同一またはそれに相当する部材には、同じ番号が付されている。
(実施の形態1)
図1は、ハイブリッド自動車の駆動ユニットを模式的に表わす図である。本実施の形態では、本発明が、車両としてのハイブリッド自動車に搭載されるインバータに適用されている。まず、ハイブリッド自動車を駆動させるためのHVシステムについて説明する。
図1を参照して、駆動ユニット1は、ガソリンエンジンやディーゼルエンジン等の内燃機関と、充放電可能なバッテリ800とを動力源とするハイブリッド自動車に設けられている。駆動ユニット1は、モータジェネレータ100と、ハウジング200と、減速機構300と、ディファレンシャル機構400と、ドライブシャフト受け部900と、端子台600とを含んで構成される。
モータジェネレータ100は、電動機または発電機としての機能を有する回転電機である。モータジェネレータ100は、回転シャフト110と、ロータ130と、ステータ140とを含む。回転シャフト110は、軸受120を介してハウジング200に回転可能に取り付けられている。ロータ130は、回転シャフト110と一体となって回転する。
モータジェネレータ100から出力された動力は、減速機構300からディファレンシャル機構400を介してドライブシャフト受け部900に伝達される。ドライブシャフト
受け部900に伝達された駆動力は、ドライブシャフトを介して車輪に回転力として伝達されて、車両を走行させる。
一方、ハイブリッド自動車の回生制動時には、車輪は車体の慣性力により回転させられる。車輪からの回転力によりドライブシャフト受け部900、ディファレンシャル機構400および減速機構300を介してモータジェネレータ100が駆動される。このとき、モータジェネレータ100が発電機として作動する。モータジェネレータ100により発電された電力は、PCU(Power Control Unit)700を介してバッテリ800に供給される。
図2は、図1中のPCUの構成を示す電気回路図である。図2を参照して、PCU700は、コンバータ710と、インバータ720と、制御装置730と、コンデンサC1,C2と、電源ラインPL1〜PL3と、出力ライン740U,740V,740Wとを含む。
コンバータ710は、電源ラインPL1,PL3を介してバッテリ800と接続されている。インバータ720は、電源ラインPL2,PL3を介してコンバータ710と接続されている。インバータ720は、出力ライン740U,740V,740Wを介してモータジェネレータ100と接続されている。バッテリ800は、直流電源であって、たとえばニッケル水素電池やリチウムイオン電池等の2次電池から形成されている。バッテリ800は、蓄えた直流電力をコンバータ710に供給したり、コンバータ710から受け取る直流電力によって充電される。
コンバータ710は、半導体モジュールから構成された上アームおよび下アームと、リアクトルLとを含む。上アームおよび下アームは、電源ラインPL2,PL3間に直列に接続されている。電源ラインPL2に接続される上アームは、パワートランジスタ(IGBT:Insulated Gate Bipolar Transistor)Q1と、パワートランジスタQ1に逆並列に接続されるダイオードD1とからなる。電源ラインPL3に接続される下アームは、パワートランジスタQ2と、パワートランジスタQ2に逆並列に接続されるダイオードD2とからなる。リアクトルLは、電源ラインPL1と、上アームおよび下アームの接続点との間に接続されている。
コンバータ710は、バッテリ800から受け取る直流電圧をリアクトルLを用いて昇圧し、その昇圧した電圧を電源ラインPL2に供給する。コンバータ710は、インバータ720から受け取る直流電圧を降圧し、バッテリ800を充電する。
インバータ720は、U相アーム750Uと、V相アーム750Vと、W相アーム750Wとを含む。U相アーム750U、V相アーム750VおよびW相アーム750Wは、電源ラインPL2,PL3間に並列に接続されている。U相アーム750U、V相アーム750VおよびW相アーム750Wの各々は、半導体モジュールから構成された上アームおよび下アームからなる。各相アームの上アームおよび下アームは、電源ラインPL2,PL3間に直列に接続されている。
U相アーム750Uの上アームは、パワートランジスタ(IGBT)Q3と、パワートランジスタQ3に逆並列に接続されるダイオードD3とからなる。U相アーム750Uの下アームは、パワートランジスタQ4と、パワートランジスタQ4に逆並列に接続されるダイオードD4とからなる。V相アーム750Vの上アームは、パワートランジスタQ5と、パワートランジスタQ5に逆並列に接続されるダイオードD5とからなる。V相アーム750Vの下アームは、パワートランジスタQ6と、パワートランジスタQ6に逆並列に接続されるダイオードD6とからなる。W相アーム750Wの上アームは、パワートラ
ンジスタQ7と、パワートランジスタQ7に逆並列に接続されるダイオードD7とからなる。W相アーム750Wの下アームは、パワートランジスタQ8と、パワートランジスタQ8に逆並列に接続されるダイオードD8とからなる。各相アームのパワートランジスタの接続点は、対応する出力ライン740U,740V,740Wを介してモータジェネレータ100の対応する相のコイルの反中性点側に接続されている。
なお、図中では、U相アーム750UからW相アーム750Wの上アームおよび下アームが、それぞれ、パワートランジスタとダイオードとからなる1つの半導体モジュールから構成されている場合が示されているが、複数の半導体モジュールにより構成されてもよい。
インバータ720は、制御装置730からの制御信号に基づいて、電源ラインPL2から受け取る直流電圧を交流電圧に変換してモータジェネレータ100へ出力する。インバータ720は、モータジェネレータ100によって発電された交流電圧を直流電圧に整流して電源ラインPL2に供給する。
コンデンサC1は、電源ラインPL1,PL3間に接続され、電源ラインPL1の電圧レベルを平滑化する。コンデンサC2は、電源ラインPL2,PL3間に接続され、電源ラインPL2の電圧レベルを平滑化する。
制御装置730は、モータジェネレータ100のトルク指令値、各相電流値、およびインバータ720の入力電圧に基づいて、モータジェネレータ100の各相コイル電圧を演算する。制御装置730は、その演算結果に基づいて、パワートランジスタQ3〜Q8をオン/オフするPWM(Pulse Width Modulation)信号を生成してインバータ720へ出力する。モータジェネレータ100の各相電流値は、インバータ720の各アームを構成する半導体モジュールに組込まれた電流センサによって検出される。この電流センサは、S/N比が向上するように半導体モジュール内に配設されている。制御装置730は、上述したトルク指令値およびモータ回転数に基づいてインバータ720の入力電圧を最適にするためのパワートランジスタQ1,Q2のデューティ比を演算する。制御装置730は、その結果に基づいてパワートランジスタQ1,Q2をオン/オフするPWM信号を生成してコンバータ710へ出力する。
制御装置730は、モータジェネレータ100によって発電された交流電圧を直流電圧に変換してバッテリ800に充電するため、コンバータ710およびインバータ720におけるパワートランジスタQ1〜Q8のスイッチング動作を制御する。
続いて、本実施の形態における半導体素子の冷却構造について詳細に説明する。図3は、図2中のインバータに適用される半導体素子の冷却構造を示す断面図である。図4は、図3中のIV−IV線上に沿った半導体素子の冷却構造を示す上面図である。
図3および図4を参照して、本実施の形態における半導体素子の冷却構造は、図2中のパワートランジスタ(IGBT)を含んで構成される複数の半導体素子26と、複数の伝熱拡散部31と、放熱用フィン41と、冷却用ファン51とを有する。
複数の伝熱拡散部31は、半導体素子26を両側から挟み込むように積層して配置されている。複数の伝熱拡散部31は、図3中の矢印101Aに示す一方向(以下、伝熱拡散部31の積層方向ともいう)に積層されている。複数の伝熱拡散部31は、その積層方向において互いに間隔を隔てて配置されている。半導体素子26は、積層方向において隣り合う複数の伝熱拡散部31の間に配置されている。このような構成により、複数の半導体素子26が積層されて設けられており、積層型半導体装置を構成している。
本実施の形態では、伝熱拡散部31の積層方向において、半導体素子26と伝熱拡散部31とが、交互に配置されている。すなわち、隣り合う伝熱拡散部31間に、1つの半導体素子26が配置されている。
なお、本発明における半導体素子の冷却構造は、図3中に示す形態に限られず、隣り合う伝熱拡散部31間に、複数の半導体素子26が配置されてもよい。
伝熱拡散部31は、伝熱拡散部31の積層方向に直交する、図3および図4中の矢印101Bに示す方向(以下、伝熱拡散部31の延在方向ともいう)に延在して形成されている。本実施の形態では、伝熱拡散部31が、その延在方向に沿って帯状に延びて形成されている。伝熱拡散部31は、その延在方向における両端に位置して、接合部32および積層部33を有する。接合部32には、放熱用フィン41が接合されている。積層部33は、半導体素子26に対して積み重ねられている。接合部32と積層部33とは、伝熱拡散部31の延在方向において距離を隔てて配置されている。
伝熱拡散部31は、積層部33から接合部32に向けて、伝熱拡散部31の積層方向に直交する平面内において2次元的に広がって形成されている。本実施の形態では、伝熱拡散部31は、伝熱拡散部31の積層方向から見た場合に矩形形状を有する。伝熱拡散部31は、積層部33と接合部32との間で一定の幅を有して形成されている。
放熱用フィン41は、高熱伝導性を有する金属、たとえばアルミニウムにより形成されている。放熱用フィン41は、たとえば、コルゲート式のルーバフィンやオフセットフィンから形成されている。放熱用フィン41は、ロウ付け等により、接合部32に接合されている。複数の放熱用フィン41が、複数の伝熱拡散部31の各接合部32にそれぞれ接合されている。複数の放熱用フィン41は、それぞれ、隣り合う伝熱拡散部31の間に位置決めされた状態で、伝熱拡散部31の積層方向に沿って積層されている。
複数の放熱用フィン41の周囲を取り囲むように、送風ケース52が設けられている。送風ケース52は、その内部に、冷却風の流路となる冷却風通路53を形成している。
冷却用ファン51は、冷却風通路53に空気を供給可能なように、送風ケース52に取り付けられている。冷却用ファン51は、冷却風通路53を流通する冷却風の流量が、伝熱拡散部31の積層方向において均一となるように設けられている。より具体的には、冷却用ファン51は、積み重なった複数の接合部32に対して、伝熱拡散部31の延在方向において対向する位置に設けられている。
図5は、図3中の2点鎖線Vに囲まれた範囲を拡大して示す断面図である。図5を参照して、本実施の形態における半導体素子の冷却構造は、電極27Aおよび電極27B(以下、特に区別しない場合は、電極27という)と、絶縁板22Aおよび絶縁板22B(以下、特に区別しない場合は、絶縁板22という)と、樹脂モールド部28とをさらに有する。
電極27は、導電性の金属板から形成されている。電極27Aおよび電極27Bは、半導体素子26を両側から挟み込むように配置され、半導体素子26に接続されている。絶縁板22は、絶縁性の材料、たとえばセラミックから形成されている。絶縁板22Aは、絶縁板22Aと半導体素子26との間に電極27Aを挟み込むように設けられ、絶縁板22Bは、絶縁板22Bと半導体素子26との間に電極27Bを挟み込むように設けられている。
上記構成により、絶縁板22A、電極27A、半導体素子26、電極27Bおよび絶縁板22Bが、挙げた順に一方向に並んで積層されている。樹脂モールド部28は、積層された絶縁板22、電極27および半導体素子26を一体化するように設けられている。樹脂モールド部28は、電極27の一部分を露出させるように設けられている。樹脂モールド部28から露出した電極27の一部分には、図3中に示すように、電気系コネクタボックス50が接続される。
樹脂モールド部28によって一体化された絶縁板22、電極27および半導体素子26によって、半導体モジュール21が構成されている。本実施の形態では、複数の半導体素子26が、それぞれ個別に樹脂モールドされている。
伝熱拡散部31は、半導体モジュール21を両側から挟み込むように配置され、半導体モジュール21に対して圧接されている。図5中に示す断面を用いてより具体的に説明すると、伝熱拡散部31Aおよび伝熱拡散部31Bが、半導体モジュール21を両側から挟み込むように配置されている。半導体モジュール21は、伝熱拡散部31の積層方向において互いに反対側に面する表面21mおよび表面21nを有する。伝熱拡散部31Aは、表面21mに圧接され、伝熱拡散部31Bは、表面21nに圧接されている。
このような構成によれば、積層型半導体装置が完成した後も、個々の半導体モジュール21を分離して容易に取り外すことができる。このため、積層型半導体装置のメンテナンス性や、リマニュファクチュアリング性を向上させることができる。
なお、半導体モジュール21と伝熱拡散部31との接触面に、熱伝導性グリスや、高熱伝導性(フィラー入り)樹脂系の接着剤を介在させてもよい。これらの場合、熱伝達における接触抵抗を低減させ、半導体モジュール21から伝熱拡散部31に効率よく熱を伝えることができる。
図6は、図3中の伝熱拡散部およびフィンを示す断面図である。図7は、図6中のVII−VII線上に沿った伝熱拡散部を示す断面図である。
図6および図7を参照して、伝熱拡散部31は、その積層方向における熱伝達率よりも延在方向における熱伝達率の方が大きくなる熱伝導率異方性部材から形成されている。本実施の形態では、その熱伝導率異方性部材として、自励式ヒートパイプが用いられている。
自励式ヒートパイプの構造について説明すると、伝熱拡散部31は、熱媒体路36が形成された金属板37を有する。金属板37は、アルミニウムや銅、ステンレス等の金属から形成されている。熱媒体路36は、金属板37の内部に真空で封止された状態に形成されている。熱媒体路36は、受熱側である積層部33と、放熱側である接合部32との間で延びている。熱媒体路36は、金属板37が延在する平面内で蛇行しながら延び、閉じた経路(ループ孔)を形成している。
熱媒体路36の内部には、水やフレオン、エタノール、アンモニアなどの熱媒体が封入されている。熱媒体は、たとえば、熱媒体路36に対して体積比50%の割合で封入されている。
このような構成を備える自励式ヒートパイプでは、受熱部での冷媒蒸発による圧力上昇と、放熱部での蒸気凝縮による圧力降下とに起因したポンプ効果により、冷媒が受熱部と放熱部との間で振動しながら熱輸送を行なう。このため、ウィック構造を用いたヒートパイプと比較して、輸送される熱において、受熱部での冷媒蒸発による潜熱に、液冷媒移動の顕熱分が加わり、大きな輸送力を発揮することができる。また、ウィック構造を用いたヒートパイプと比較して、設置姿勢の影響が小さいというメリットもある。
自励式ヒートパイプから構成される伝熱拡散部31は、金属板37の面方向に対して厚み方向の熱伝達率が小さくなる特性を有し、たとえば、面方向の熱伝達率が、約800〜数1000W/mKであるのに対して、厚み方向の熱伝達率は、その1/10以下(アルミニウム:200W/mK、銅:400W/mK)となる。
なお、本実施の形態では、伝熱拡散部31に自励式ヒートパイプを用いたが、ウィック構造を有するヒートパイプを用いてもよい。
続いて、本実施の形態における半導体素子の冷却構造によって奏される作用、効果について説明する。
図3中には、半導体素子26で発生した熱の経路が矢印で示されている。図3を参照して、図2中のインバータ720の作動に伴っては、半導体素子26で大きな発熱が生じる。本実施の形態における半導体素子の冷却構造においては、半導体素子26で発生した熱が、電極27および絶縁板22を通じて伝熱拡散部31の積層部33に伝わる。この際、伝熱拡散部31と半導体素子26とが交互に配置される構成により、半導体素子25で発生した熱は、その両側に配置された伝熱拡散部31へと伝わる。また、伝熱拡散部31は、金属板37の面方向に対して厚み方向の熱伝達率が小さくなる特性を有する。このため、隣り合う半導体素子26で発生した熱同士が干渉するという現象を効果的に抑制することができる。
積層部33に伝わった熱は、伝熱拡散部31が備える熱伝導率異方性により、効率よく積層部33から接合部32へと伝わる。接合部32に伝わった熱は、さらに放熱用フィン41に伝わり、放熱用フィン41と冷却風通路53を流通する冷却風との熱交換により放熱される。
また、本実施の形態における半導体素子の冷却構造は、伝熱拡散部31による熱拡散機能と、放熱用フィン41による冷却機構とを具備した一体部品により構成されるため、積層型半導体装置の部品点数を減らし、その製造コストを削減することができる。
また、冷却用ファン51を用いた空冷構造のため、冷媒循環ポンプや放熱用ラジエータ等の冷媒配管部品を別途、設ける必要がない。これにより、冷却システムとして、小型化および低コスト化を図ることができる。加えて、液冷時のようなヘッダ構造や冷媒均等分配対策を講じることなく、複数の半導体素子26の均等な冷却を容易に実現することができる。
続いて、図6中に示す伝熱拡散部の変形例について説明する。図8は、図6中の伝熱拡散部の変形例を示す断面図である。
図8を参照して、本変形例では、伝熱拡散部31を形成する熱伝導率異方性部材として、配向性グラファイト38が用いられている。配向性グラファイト38は、接合部32と積層部33との間で板状に延在して形成されている。
配向性グラファイト38は、密集した2次元結晶構造を有し、面方向に対してフォノンによる熱伝導が飛躍的に向上した材料として使用される。配向性グラファイト38を用いた伝熱拡散部31においても、自励式ヒートパイプを用いた伝熱拡散部31と同様の熱伝導率異方性が得られる。
なお、図6中に示す自励式ヒートパイプを用いた構造と、図8中に示す配向性グラファイトを用いた構造とを組み合わせて、伝熱拡散部31を構成してもよい。
以上に説明した、この発明の実施の形態1における半導体素子の冷却構造の構成についてまとめて説明すると、本実施の形態における半導体素子の冷却構造は、半導体素子26と、複数の伝熱拡散部31と、フィンとしての放熱用フィン41と、送風器としての冷却用ファン51とを備える。複数の伝熱拡散部31は、半導体素子26を両側から挟持するように積層して配置される。伝熱拡散部31は、その積層方向に直交する方向に延在し、その延在する先に接合部32を有する。放熱用フィン41は、接合部32に接合される。放熱用フィン41は、半導体素子26で発生し、伝熱拡散部31を通じて伝わった熱を放熱する。冷却用ファン51は、放熱用フィン41に向けて冷却風を供給する。伝熱拡散部31は、積層方向における熱伝達率よりも延在方向における熱伝達率の方が大きくなる熱伝導率異方性部材としての自励式ヒートパイプまたは配向性グラファイトから形成される。
このように構成された、この発明の実施の形態1における半導体素子の冷却構造によれば、簡易で低コストな構成で、安定かつ高冷却性能を発揮する積層型半導体装置を実現することができる。
(実施の形態2)
図9は、この発明の実施の形態2における半導体素子の冷却構造を示す平面図である。図10は、図9中のX−X線上に沿った半導体素子の冷却構造を示す断面図である。本実施の形態における半導体素子の冷却構造は、実施の形態1における半導体素子の冷却構造と比較して、基本的には同様の構造を備える。以下、重複する構造については、その説明を繰り返さない。
図9および図10を参照して、本実施の形態では、伝熱拡散部31が、その積層方向から見た場合に扇形状を有する。伝熱拡散部31は、図9中の中心軸102に扇形に広がる形状を有する。伝熱拡散部31は、中心軸102側に積層部33を有し、その外周側に接合部32を有する。伝熱拡散部31は、中心軸102からその径方向に広がって形成され、その先に接合部32を有する。すなわち、中心軸102を中心とする径方向が、伝熱拡散部31の延在方向である。伝熱拡散部31は、積層部33から接合部32に向かうに従って、その延在方向における単位長さ当たりの面積が増大するように形成されている。
熱媒体路36は、中心軸102側に配置された積層部33と、その外周側に配置された接合部32との間で延びている。熱媒体路36は、伝熱拡散部31の積層方向から見た場合に、扇形状を有する伝熱拡散部31に対して平面的に広がるように形成されている。
積層方向に隣り合う伝熱拡散部31間には、隔壁56および隔壁57が設けられている。隔壁56および隔壁57は、径方向に距離を隔てて設けられており、両者の間には放熱用フィン41が配置されている。このような構成により、積層方向に隣り合う伝熱拡散部31間には、中心軸102を中心にその周方向に延在する冷却風通路53が形成されている。冷却用ファン51は、伝熱拡散部31の積層方向に並ぶ冷却風通路53に空気を均一に供給可能なように、積層された伝熱拡散部31の側部(中心軸102を中心に径方向に延在する伝熱拡散部31の端辺)に取り付けられている。
なお、図中には、中心角度が90°の伝熱拡散部31が示されているが、伝熱拡散部31が有する扇形の中心角度は、90°以外の角度であってもよい。
このように構成された、この発明の実施の形態2における半導体素子の冷却構造によれば、実施の形態1に記載の効果を同様に得ることができる。さらに、伝熱拡散部31は扇形状を有するため、積層部33から接合部32に向かう熱拡散経路に、2次元的な広がりを持たせることができる。また、放熱用フィン41と接合部32との接合面積を増大させることができる。これにより、放熱性能が大幅に向上し、半導体素子26の冷却効率を高めることができる。
(実施の形態3)
図11は、この発明の実施の形態3における半導体素子の冷却構造を示す平面図である。図12は、図11中のXII−XII線上に沿った半導体素子の冷却構造を示す断面図である。本実施の形態における半導体素子の冷却構造は、実施の形態1および2における半導体素子の冷却構造と比較して、基本的には同様の構造を備える。以下、重複する構造については、その説明を繰り返さない。
図11および図12を参照して、本実施の形態では、伝熱拡散部31が、その積層方向から見た場合に円形状を有する。伝熱拡散部31は、図11中の中心軸102を中心に円形に広がる形状を有する。伝熱拡散部31は、中心軸102側に積層部33を有し、その外周側に接合部32を有する。
熱媒体路36は、中心軸102側に配置された積層部33と、その外周側に配置された接合部32との間で延びている。熱媒体路36は、伝熱拡散部31の積層方向から見た場合に、円形状を有する伝熱拡散部31に対して平面的に広がるように形成されている。本実施の形態では、円形状を有する伝熱拡散部31を4等分にした各領域に、互いに独立してループを描く熱媒体路36が形成されている。
なお、図11中に示す形態に限られず、円形状を有する伝熱拡散部31の全体に、1つのループを描く熱媒体路36が形成されてもよい。
積層方向に隣り合う伝熱拡散部31間には、中心軸102を中心にその半径方向に延在する冷却風通路53が形成されている。伝熱拡散部31には、連通口61が形成されている。連通口61は、中心軸102を中心とする半径方向において、半導体モジュール21と放熱用フィン41との間に形成されている。連通口61は、伝熱拡散部31の積層方向に並ぶ冷却風通路53間を連通させるように形成されている。伝熱拡散部31の積層方向に並ぶ冷却風通路53間は、連通口61を通じて中心軸102の軸方向において連通している。
冷却用ファン51は、中心軸102の軸方向に沿って空気を供給可能なように、積層された伝熱拡散部31の頂面に取り付けられている。冷却用ファン51が取り付けられる伝熱拡散部31の頂面には、冷却風を冷却風通路53に取り込むための中央送風孔62が形成されている。
このように構成された、この発明の実施の形態3における半導体素子の冷却構造によれば、実施の形態2に記載の効果を同様に得ることができる。
なお、本発明を、燃料電池と2次電池とを動力源とする燃料電池ハイブリッド車(FCHV:Fuel Cell Hybrid Vehicle)または電気自動車(EV:Electric Vehicle)に搭載されるリアクトルに適用することもできる。本実施の形態におけるハイブリッド自動車では、燃費最適動作点で内燃機関を駆動するのに対して、燃料電池ハイブリッド車では、発電効率最適動作点で燃料電池を駆動する。また、2次電池の使用に関しては、両方のハイブリッド自動車で基本的に変わらない。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明は、車両に搭載される電力変換装置のほか、各種パワーモジュールに適用される。
1 駆動ユニット、21 半導体モジュール、21m,21n 表面、22,22A,22B 絶縁板、25,26 半導体素子、27,27A,27B 電極、28 樹脂モールド部、31,31A,31B 伝熱拡散部、32 接合部、33 積層部、36 熱媒体路、37 金属板、38 配向性グラファイト、41 放熱用フィン、50 電気系コネクタボックス、51 冷却用ファン、52 送風ケース、53 冷却風通路、56,57 隔壁、61 連通口、62 中央送風孔。

Claims (7)

  1. 半導体素子と、
    前記半導体素子を両側から挟持するように積層して配置され、その積層方向に直交する方向に延在し、その延在する先に接合部を有する複数の伝熱拡散部と、
    前記接合部に接合され、前記半導体素子で発生し、前記伝熱拡散部を通じて伝わった熱を放熱するフィンと、
    前記フィンに向けて冷却風を供給する送風器とを備え、
    前記伝熱拡散部は、積層方向における熱伝達率よりも延在方向における熱伝達率の方が大きくなる熱伝導率異方性部材から形成される、半導体素子の冷却構造。
  2. 前記熱伝導率異方性部材は、自励式ヒートパイプまたは配向性グラファイトからなる、請求項1に記載の半導体素子の冷却構造。
  3. 前記伝熱拡散部は、前記接合部に向けて、前記伝熱拡散部の積層方向に直交する平面内において2次元的に広がって形成されている、請求項1または2に記載の半導体素子の冷却構造。
  4. 前記伝熱拡散部は、前記伝熱拡散部の積層方向から見て、矩形形状、扇形状または円形状を有する、請求項3に記載の半導体素子の冷却構造。
  5. 前記半導体素子と前記伝熱拡散部とが、前記伝熱拡散部の積層方向に沿って交互に配置される、請求項1から4のいずれか1項に記載の半導体素子の冷却構造。
  6. 個別に樹脂モールドされた複数の前記半導体素子を備え、
    前記伝熱拡散部は、隣り合って配置される前記半導体素子に対して圧接して設けられる、請求項1から5のいずれか1項に記載の半導体素子の冷却構造。
  7. 前記送風器からの送風により、前記フィンに対して、前記伝熱拡散部の積層方向において均一な流量で冷却風が供給される、請求項1から6のいずれか1項に記載の半導体素子の冷却構造。
JP2009127418A 2009-05-27 2009-05-27 半導体素子の冷却構造 Expired - Fee Related JP5075163B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127418A JP5075163B2 (ja) 2009-05-27 2009-05-27 半導体素子の冷却構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127418A JP5075163B2 (ja) 2009-05-27 2009-05-27 半導体素子の冷却構造

Publications (2)

Publication Number Publication Date
JP2010278108A true JP2010278108A (ja) 2010-12-09
JP5075163B2 JP5075163B2 (ja) 2012-11-14

Family

ID=43424828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127418A Expired - Fee Related JP5075163B2 (ja) 2009-05-27 2009-05-27 半導体素子の冷却構造

Country Status (1)

Country Link
JP (1) JP5075163B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072618A (ja) * 2015-09-02 2016-05-09 株式会社日立製作所 発熱体の冷却構造
US9437797B2 (en) 2014-09-29 2016-09-06 Hitachi, Ltd. Cooling structure of heating element and power conversion device
CN114251844A (zh) * 2020-09-11 2022-03-29 东翰生技股份有限公司 导热件及具有该导热件的热风装置
US20220148745A1 (en) * 2019-03-29 2022-05-12 Mitsubishi Heavy Industries, Ltd. Nuclear power generation system and nuclear reactor unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100479U (ja) * 1981-12-25 1983-07-08 株式会社明電舎 高速スイツチング素子モジユ−ル
JP2002081874A (ja) * 2000-09-11 2002-03-22 Canon Inc プレート型ヒートパイプ及びその製造方法
JP2003008263A (ja) * 2001-06-27 2003-01-10 Sony Corp 熱伝導部材および熱伝導部材を有する電子機器
JP2007095875A (ja) * 2005-09-28 2007-04-12 Denso Corp 半導体装置の取付構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100479U (ja) * 1981-12-25 1983-07-08 株式会社明電舎 高速スイツチング素子モジユ−ル
JP2002081874A (ja) * 2000-09-11 2002-03-22 Canon Inc プレート型ヒートパイプ及びその製造方法
JP2003008263A (ja) * 2001-06-27 2003-01-10 Sony Corp 熱伝導部材および熱伝導部材を有する電子機器
JP2007095875A (ja) * 2005-09-28 2007-04-12 Denso Corp 半導体装置の取付構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437797B2 (en) 2014-09-29 2016-09-06 Hitachi, Ltd. Cooling structure of heating element and power conversion device
US9807913B2 (en) 2014-09-29 2017-10-31 Hitachi, Ltd. Cooling structure of heating element and power conversion device
JP2016072618A (ja) * 2015-09-02 2016-05-09 株式会社日立製作所 発熱体の冷却構造
US20220148745A1 (en) * 2019-03-29 2022-05-12 Mitsubishi Heavy Industries, Ltd. Nuclear power generation system and nuclear reactor unit
CN114251844A (zh) * 2020-09-11 2022-03-29 东翰生技股份有限公司 导热件及具有该导热件的热风装置

Also Published As

Publication number Publication date
JP5075163B2 (ja) 2012-11-14

Similar Documents

Publication Publication Date Title
WO2011064841A1 (ja) 半導体装置の冷却構造
JP5423877B2 (ja) 積層型冷却器
JP5488540B2 (ja) 半導体モジュール
AU2007210461B2 (en) Cooling structure of power semiconductor device and inverter
JP4769752B2 (ja) 半導体装置および電動車両
WO2014083976A1 (ja) インバータ装置
JP2010119300A (ja) 電力変換装置
JP6147893B2 (ja) 電力変換装置
JP5664472B2 (ja) 電力変換装置
JP2019075957A (ja) 電力変換装置
JP2019036609A (ja) リアクトル冷却構造
JP5075163B2 (ja) 半導体素子の冷却構造
JP2007173372A (ja) 電力変換装置
CA3063005A1 (en) Cooling structure of power conversion device
JP2005259748A (ja) 半導体装置,それを用いた電力変換装置,それを用いた電力変換装置3相インバータ装置,及びそれを搭載したハイブリット自動車
JP4729443B2 (ja) 半導体装置
JP2010165714A (ja) 半導体モジュールの冷却装置
JP5724474B2 (ja) 冷却装置
JP2012243808A (ja) 冷却装置
JP2012156373A (ja) 電気機器の冷却装置
JP2015053775A (ja) 半導体電力変換装置
JP5941944B2 (ja) 電力変換装置の製造方法
CN219876603U (zh) 一种散热结构及其无人机
JP5699659B2 (ja) 半導体素子の冷却構造
JP2013099214A (ja) インバータ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R151 Written notification of patent or utility model registration

Ref document number: 5075163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees