JP2010277785A - Sealed battery and its manufacturing method - Google Patents

Sealed battery and its manufacturing method Download PDF

Info

Publication number
JP2010277785A
JP2010277785A JP2009127910A JP2009127910A JP2010277785A JP 2010277785 A JP2010277785 A JP 2010277785A JP 2009127910 A JP2009127910 A JP 2009127910A JP 2009127910 A JP2009127910 A JP 2009127910A JP 2010277785 A JP2010277785 A JP 2010277785A
Authority
JP
Japan
Prior art keywords
battery
sealed battery
safety valve
sealed
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009127910A
Other languages
Japanese (ja)
Inventor
Shuichi Matsuura
周一 松浦
Shuichi Yamashita
修一 山下
Kenji Yamato
賢治 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009127910A priority Critical patent/JP2010277785A/en
Publication of JP2010277785A publication Critical patent/JP2010277785A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery equipped with a sealing body with a safety valve excellent in conductivity. <P>SOLUTION: The manufacturing method of a sealed battery sealed by caulking-fixing of a sealing body on an opening of a bottomed cylindrical outer can includes: a step for preparing a terminal cap equipped with an external terminal part made of an iron system material and projecting outside of the battery, a flange part located on a circumference of the external terminal part, and a spot facing hole provided on the flange part and having a tapered part; a step for preparing a safety valve (3) which is made of an aluminum system material and is provided with a conductive contact part (3a) projecting inside the battery, a peripheral part (3b) located at a circumference of the conductive contact part (3a), and an arch-shaped projection (3c) in a plan-view provided on the peripheral part (3b); and a rivet-fixing step for engaging the projection (3c) into the spot facing hole, crushing a tip end portion of the projection (3c), and rivet-fixing the projection (3c) and the spot facing hole. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、密閉型電池およびその製造方法に関し、より詳しくは安全弁付き封口体を備えた密閉型電池の導電性の向上に関する。   The present invention relates to a sealed battery and a method for manufacturing the same, and more particularly to improving the conductivity of a sealed battery provided with a sealing body with a safety valve.

非水電解質二次電池は、高いエネルギー密度を有し、高容量であるため、携帯機器や電動工具等の駆動電源として広く利用されている。   Nonaqueous electrolyte secondary batteries have high energy density and high capacity, and are therefore widely used as drive power sources for portable devices and electric tools.

非水電解質二次電池には、電解質として可燃性の有機溶媒が用いられているため、電池の安全性の確保が求められている。このため、電池を密閉する封口体に、電池内圧が上昇した場合に動作する電流遮断機構を組み込むことが行われている。   Since nonflammable secondary batteries use flammable organic solvents as electrolytes, it is required to ensure the safety of the batteries. For this reason, a current interrupting mechanism that operates when the battery internal pressure rises is incorporated into a sealing body that seals the battery.

図8に、電流遮断機構を組み込んだ封口体を備えた従来の密閉型電池を示す。図8に示すように、封口体10は、端子キャップ5と、端子キャップの電池内方面に位置する安全弁3と、安全弁の電池内方面に位置する端子板1と、安全弁3と端子板1とを離隔し絶縁する絶縁板2とを有している。   FIG. 8 shows a conventional sealed battery provided with a sealing body incorporating a current interruption mechanism. As shown in FIG. 8, the sealing body 10 includes a terminal cap 5, a safety valve 3 positioned on the battery inner surface of the terminal cap, a terminal plate 1 positioned on the battery inner surface of the safety valve, the safety valve 3, and the terminal plate 1. And an insulating plate 2 that separates and insulates.

この密閉型電池の電流遮断機構の動作について説明する。電池内圧が上昇したとき、安全弁3の電池内側に向かって突出した凹部(通電接触部)が、電池外方に向かって膨らむように変形する。電池内圧の上昇が続くと、安全弁3の通電接触部に接続された端子板1が破断して、端子キャップ5への電流供給が遮断される。   The operation of the current interruption mechanism of the sealed battery will be described. When the battery internal pressure rises, the recess (energizing contact portion) protruding toward the inside of the battery of the safety valve 3 is deformed so as to swell toward the outside of the battery. When the battery internal pressure continues to rise, the terminal plate 1 connected to the energizing contact portion of the safety valve 3 is broken, and the current supply to the terminal cap 5 is interrupted.

このような電流遮断機構においては、安全弁では上記の動作がスムースに行われる必要があり、その材料には変形しやすい材質が求められる。他方、端子キャップは外部環境に面するため、その材料には一定の強度が求められる。このため、端子キャップには鉄系材料(鉄又は鉄合金)が用いられ、安全弁にはアルミニウム系材料(純アルミニウム及びアルミニウム合金)が用いられている。   In such a current interruption mechanism, the above-described operation needs to be performed smoothly in the safety valve, and a material that is easily deformable is required. On the other hand, since the terminal cap faces the external environment, the material is required to have a certain strength. For this reason, an iron-based material (iron or iron alloy) is used for the terminal cap, and an aluminum-based material (pure aluminum and aluminum alloy) is used for the safety valve.

ところで、電動工具など大電流で放電する用途に用いる非水電解質二次電池は、放電時に電池温度が80℃以上の高温となることがある。電池の使用により繰り返し高温に曝されると、やがて絶縁板2やガスケット30のような樹脂製部品の弾力性が失われる。樹脂製部品の弾性が失われると、それら樹脂部品に挟まれている端子キャップ5と安全弁3との間の押圧力が減少するため、接触が緩み、電池の内部抵抗が上昇したり不安定になったりする。よって、端子キャップ5と安全弁3とを確実に固定する必要がある。   By the way, the battery temperature of the non-aqueous electrolyte secondary battery used for the purpose of discharging with a large current such as an electric tool may become a high temperature of 80 ° C. or higher during discharging. When the battery is repeatedly exposed to high temperatures, the elasticity of resin parts such as the insulating plate 2 and the gasket 30 is lost. If the elasticity of the resin parts is lost, the pressing force between the terminal cap 5 and the safety valve 3 sandwiched between the resin parts decreases, so that the contact is loosened and the internal resistance of the battery increases or becomes unstable. It becomes. Therefore, it is necessary to securely fix the terminal cap 5 and the safety valve 3.

電池の端子キャップ部の固定に関する技術としては、下記の特許文献1が挙げられる。   The following patent document 1 is mentioned as a technique regarding fixation of the terminal cap part of a battery.

特公平5−74904号公報Japanese Patent Publication No. 5-74904

特許文献1は、円筒状部とこの円筒状部の外周に設けられ複数の孔を有するツバ部を形成した電池キャップと、電池キャップの板厚よりも大きい突出高さを持つ複数の凸状部を設けた金属板とより構成され、電池キャップの孔部を金属板の凸状部に嵌め合わせ、電池キャップの孔部より突出した金属板の凸状部の端面を圧接して両者を固定した電池キャップの組立体を開示している。   Patent Document 1 discloses a battery cap having a cylindrical portion and a flange portion provided on the outer periphery of the cylindrical portion, and a plurality of convex portions having a protruding height larger than the plate thickness of the battery cap. The battery cap hole is fitted into the convex portion of the metal plate, and the end surface of the convex portion of the metal plate protruding from the hole of the battery cap is pressed to fix both. A battery cap assembly is disclosed.

本発明は、封口体を形成する端子キャップと安全弁との固定を確実なものとし、高い導電性を維持できる密閉型電池を提供することを目的とする。   An object of the present invention is to provide a sealed battery in which a terminal cap forming a sealing body and a safety valve are securely fixed, and high conductivity can be maintained.

本発明は、上記課題を解決するための密閉型電池およびその製造方法を提供する。本発明の製造方法は、有底筒状の外装缶の開口部に封口体がカシメ固定され密閉された密閉型電池の製造方法において、鉄系材料からなり、電池外方に突出した外部端子部と、前記外部端子部の周縁に位置するフランジ部と、前記フランジ部に設けられた、電池外方面側の大径部と電池内方面側の小径部とを有するザグリ穴と、を有する端子キャップを準備する端子キャップ準備ステップと、アルミニウム系材料からなり、電池内方に突出した通電接触部と、前記通電接触部の周縁に位置する周辺部と、前記周辺部に設けられた、平面視でアーチ形状の突起と、を有する安全弁を準備する安全弁準備ステップと、前記安全弁の突起を前記端子キャップのザグリ穴に嵌め込み、前記突起の先端部を押しつぶして、前記突起と前記ザグリ穴とをリベット固定するリベット固定ステップと、を備えることを特徴とする。また、本発明の密閉型電池は、有底筒状の外装缶(20)の開口部に封口体(10)がカシメ固定され密閉された密閉型電池において、前記封口体(10)は、電池外方に突出した外部端子部(5a)と、前記外部端子部(5a)の周縁に位置するフランジ部(5b)と、前記フランジ部(5b)に設けられた、電池外方面側の大径部と電池内方面側の小径部とを有するザグリ穴(5c)と、を有する端子キャップ(5)、電池内方に突出した通電接触部(3a)と、前記通電接触部(3a)の周縁に位置する周辺部(3b)と、前記周辺部(3b)に設けられた、平面視でアーチ形状の突起(3c)と、を有する安全弁(3)を備え、前記安全弁の突起(3c)は前記端子キャップのザグリ穴(5c)に嵌め込まれており、前記突起(3c)の先端部が押しつぶされて、前記突起(3c)と前記ザグリ穴(5c)とがリベット固定されていることを特徴とする。   The present invention provides a sealed battery and a method for manufacturing the same to solve the above problems. The manufacturing method of the present invention is a manufacturing method of a sealed battery in which a sealing body is caulked and sealed in an opening of a bottomed cylindrical outer can, and is made of an iron-based material and protrudes outward from the battery. A terminal cap having a flange portion located at a peripheral edge of the external terminal portion, and a counterbore hole provided in the flange portion and having a large diameter portion on the battery outer surface side and a small diameter portion on the battery inner surface side A terminal cap preparation step for preparing a battery, an energizing contact portion made of an aluminum-based material, projecting inward of the battery, a peripheral portion located at a periphery of the energizing contact portion, and provided in the peripheral portion in plan view A safety valve preparing step for preparing a safety valve having an arch-shaped protrusion, and the protrusion of the safety valve is fitted into the counterbore hole of the terminal cap, the tip of the protrusion is crushed, and the protrusion and the counterbore hole are removed. And riveting steps of Tsu bets fixed, characterized in that it comprises a. The sealed battery of the present invention is a sealed battery in which a sealing body (10) is caulked and sealed in an opening of a bottomed cylindrical outer can (20), and the sealing body (10) is a battery. External terminal portion (5a) protruding outward, flange portion (5b) located at the periphery of the external terminal portion (5a), and large diameter on the battery outer surface side provided on the flange portion (5b) Terminal cap (5) having a countersunk portion and a small-diameter portion on the inner side of the battery, a terminal cap (5a) protruding inward of the battery, and a peripheral edge of the power supply contact portion (3a) A safety valve (3) having a peripheral portion (3b) located at the top and an arch-shaped protrusion (3c) provided in the peripheral portion (3b) in plan view, the protrusion (3c) of the safety valve The terminal cap is fitted in a counterbore hole (5c), and the protrusion (3c It is crushed tip of the a projection (3c) and said counterbore (5c) is characterized in that it is riveting.

本明細書における「アーチ形状」とは、図6(a)に示すように、半径の違う2つの同心円に挟まれた円環の一部を切り取った平面形状をいう。また本明細書における「アーチ形状突起」は、平面視でアーチ形状を有する突起をいう。   As shown in FIG. 6A, the “arch shape” in this specification refers to a planar shape obtained by cutting off a part of an annulus sandwiched between two concentric circles having different radii. Further, the “arch-shaped protrusion” in this specification refers to a protrusion having an arch shape in plan view.

かかる形状であれば、従来のピン状突起の場合よりカシメ部の面積が大きくなり、安定したリベット固定が得られ好適である。   With such a shape, the area of the caulking portion is larger than in the case of the conventional pin-shaped protrusion, and stable rivet fixing is obtained, which is preferable.

前記突起の大きさは、安全弁の半径に対して0.1〜0.2倍の幅を持つことが好ましく、アーチの元になる仮想円周に対して15°〜50°の長さのアーチであることが好ましい。この範囲より小さい突起では本願の作用効果が小さくなり、大きい突起では製造に不都合が生じるおそれがある。   The size of the protrusion is preferably 0.1 to 0.2 times the width of the safety valve radius, and the arch has a length of 15 ° to 50 ° with respect to the virtual circumference of the arch. It is preferable that If the protrusion is smaller than this range, the effect of the present application is reduced, and if the protrusion is larger, there is a possibility that inconvenience may occur in manufacturing.

本発明の第2の態様は、ザグリ穴の前記小径部が、電池内面側において開口面積が広く、電池外方に行くにつれて開口面積が狭くなるテーパ部(図3の5d参照)を有することを特徴とする。   According to a second aspect of the present invention, the small-diameter portion of the counterbore has a tapered portion (see 5d in FIG. 3) having a large opening area on the battery inner surface side and a decreasing opening area toward the outside of the battery. Features.

ここで、ザグリ穴とは、図2(a)の5cに示すように、大径部と小径部とを有する段差のある穴を意味する。この構成によると、ザグリ穴の段差部分を利用して都合よくリベット固定を行うことができる。   Here, the counterbore hole means a stepped hole having a large diameter portion and a small diameter portion, as indicated by 5c in FIG. According to this configuration, the rivet can be conveniently fixed using the stepped portion of the counterbore hole.

前記突起の側面の根元部には、製造上、図4(a)に示すようなR部が発生する。通常のザグリ穴にこの突起が嵌合される場合、この突起のR部とザグリ穴の下端とが接触するため、かかる部分で隙間(g)ができる(図4(a)参照)。このため、電池カシメ時の圧縮の際、この隙間を埋める力がリベットカシメ部に作用し、安全弁と端子キャップとの接触圧が低減され、電気抵抗が大きくなるため好ましくない。   In manufacturing, an R portion as shown in FIG. 4A is generated at the base of the side surface of the protrusion. When this protrusion is fitted in a normal counterbore hole, the R portion of this protrusion and the lower end of the counterbore hole come into contact with each other, and thus a gap (g) is formed at this portion (see FIG. 4A). For this reason, at the time of compression at the time of battery caulking, the force to fill this gap acts on the rivet caulking portion, the contact pressure between the safety valve and the terminal cap is reduced, and the electric resistance is increased, which is not preferable.

しかし、ザグリ穴にテーパ部を設けることで上記の隙間は生じず、この部分における電池の抵抗の上昇も防ぐことができる(図4(b)参照)。   However, by providing a tapered portion in the counterbore hole, the above gap does not occur, and an increase in battery resistance in this portion can also be prevented (see FIG. 4B).

リベットカシメ固定は、図5に示すように、前記突起をザグリ穴に入れ、前記突起の先端部を押圧することで、カシメ固定が行われる。   As shown in FIG. 5, rivet caulking is performed by inserting the protrusion into a counterbore hole and pressing the tip of the protrusion to fix the rivet.

本発明の第3の態様は、前記突起及び前記ザグリ穴が、それぞれ複数設けられていることを特徴とする。   A third aspect of the present invention is characterized in that a plurality of the protrusions and the counterbore holes are provided.

前記突起及び前記ザグリ穴を、それぞれ複数設けることで、リベット固定の後に端子キャップと安全弁とが回転することを防止することができる。また、前記突起及び前記ザグリ穴によるカシメ固定を複数とすると、固定効果が一層高まる。しかし突起の数が多すぎるとカシメ工程や溶接工程が煩雑になるので、2〜4個にするのが好ましい。複数のアーチ形状突起は、安全弁上に均一に分散して設けると、端子キャップと安全弁の固定が安定するので好ましい。   By providing a plurality of the protrusions and counterbores, it is possible to prevent the terminal cap and the safety valve from rotating after rivet fixation. In addition, when a plurality of crimps are fixed by the protrusions and the counterbore holes, the fixing effect is further enhanced. However, if the number of protrusions is too large, the caulking process and the welding process become complicated, so 2 to 4 are preferable. It is preferable that the plurality of arch-shaped protrusions are provided uniformly distributed on the safety valve because the terminal cap and the safety valve are fixed stably.

本発明の第4の態様は、前記突起が複数設けられた場合に、前記突起のそれぞれが、同一の円周上に位置することを特徴とする(図6(a)参照)。   According to a fourth aspect of the present invention, when a plurality of the protrusions are provided, each of the protrusions is located on the same circumference (see FIG. 6A).

すべての突起が同一の円周上にあると、接合部をリベット固定した状態で、レーザ発射部を固定して端子キャップ及び安全弁をターンテーブルで回転させながらレーザ等の溶接ができるため、製造効率の向上を図ることができる。なお、複数のアーチ形状突起は、それぞれ異なった半径のアーチの一部分でもよく、またすべてのアーチ形状突起が同一円周上に存在しなくても本願の作用効果を発揮できる。   If all the protrusions are on the same circumference, the laser emitting part can be fixed and the terminal cap and safety valve can be rotated on the turntable while the joint is fixed with rivets. Can be improved. The plurality of arch-shaped protrusions may be part of arches having different radii, and the effects of the present application can be exhibited even if all the arch-shaped protrusions do not exist on the same circumference.

本発明の第5の態様は、前記リベット固定ステップの後、前記リベット固定部近傍の前記端子キャップに高エネルギー線を照射し、溶接する溶接ステップを行うことを特徴とする。溶接を行うことで、より確実な固定が可能となる。   According to a fifth aspect of the present invention, after the rivet fixing step, a welding step is performed in which a high energy ray is applied to the terminal cap in the vicinity of the rivet fixing portion to perform welding. By performing welding, more reliable fixation is possible.

図7に示すように、溶接部では、端子キャップの材料である鉄と安全弁の材料であるアルミニウムとが渾然一体となった溶融凝固領域9を有している。なお、図7では、図中左側のみがレーザ照射された状態を示している。   As shown in FIG. 7, the welded portion has a molten and solidified region 9 in which iron, which is a material for a terminal cap, and aluminum, which is a material for a safety valve, are naturally integrated. FIG. 7 shows a state where only the left side in the drawing is irradiated with laser.

本発明の第6の態様は、前記高エネルギー線がレーザであることを特徴とする。レーザを用いれば、エネルギーの制御が容易であり、正確な溶接を行うことができるので好ましい。   The sixth aspect of the present invention is characterized in that the high energy beam is a laser. Use of a laser is preferable because energy control is easy and accurate welding can be performed.

ここで、上記溶接ステップにおいては、鉄系材料の端子キャップとアルミニウム系材料の安全弁とを溶接することになるが、両者は融点や電気特性が大きく異なるので、これらを強固に溶接することが難しい。よって、融点の高い鉄系材料からなる端子キャップ側に高エネルギー線を照射して溶接するのが好ましい。この方法によると、高エネルギー線により端子キャップの融点の高い鉄系材料が溶融し、この溶融した鉄系材料が、照射スポットの近傍に位置するリベット固定部に流れ込み、溶融鉄材料の有する熱エネルギーにより、リベット固定部のアルミニウム系材料(安全弁の突起)が溶融し、この結果として、安全弁と端子キャップとが良好に且つ強固に溶接される。   Here, in the welding step, the terminal cap of the iron-based material and the safety valve of the aluminum-based material are welded. However, since the melting point and the electric characteristics are greatly different from each other, it is difficult to weld them firmly. . Therefore, it is preferable to irradiate the terminal cap made of an iron-based material having a high melting point with high energy rays for welding. According to this method, the iron-based material having a high melting point of the terminal cap is melted by the high energy wire, and the melted iron-based material flows into the rivet fixing portion located in the vicinity of the irradiation spot, and the thermal energy possessed by the molten iron material. As a result, the aluminum-based material (safety valve protrusion) of the rivet fixing portion is melted, and as a result, the safety valve and the terminal cap are well and firmly welded.

さらに、端子キャップと安全弁との溶接は、リベット固定部の外周を全て囲うように行ってもよく、1点から数点のスポット溶接であってもよい。   Furthermore, the welding of the terminal cap and the safety valve may be performed so as to surround the entire outer periphery of the rivet fixing portion, or may be spot welding of one to several points.

本発明によると、端子キャップと安全弁とを安定的にリベット固定できるので、導電性に優れた安全弁付き封口体を得ることができ、これにより密閉型電池の電流取り出し効率を高めることができるという顕著な効果が得られる。   According to the present invention, since the terminal cap and the safety valve can be stably rivet-fixed, it is possible to obtain a sealing body with a safety valve that is excellent in conductivity, and thus, the current extraction efficiency of the sealed battery can be increased. Effects can be obtained.

本発明の密閉型電池の部分断面図である。It is a fragmentary sectional view of the sealed battery of the present invention. 本発明にかかる密閉型電池に用いる封口体の端子キャップと安全弁とを示す断面図である。It is sectional drawing which shows the terminal cap and safety valve of the sealing body used for the sealed battery concerning this invention. 本発明の端子キャップのザグリ穴に設けられたテーパ部を説明する部分断面図である。It is a fragmentary sectional view explaining the taper part provided in the counterbore of the terminal cap of this invention. 本発明にかかる端子キャップと安全弁とのカシメ時における、端子キャップのザグリ穴と安全弁の突起との位置関係を説明する部分断面図である。It is a fragmentary sectional view explaining the positional relationship of the counterbore hole of a terminal cap and the projection of a safety valve at the time of caulking with a terminal cap and a safety valve concerning the present invention. 本発明にかかる密閉型電池において、端子キャップと安全弁とをカシメ固定する工程を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a process of caulking and fixing a terminal cap and a safety valve in the sealed battery according to the present invention. (a)本発明にかかる密閉型電池における安全弁の1つを例示する平面図である。(b)本発明にかかる密閉型電池における安全弁の1つを例示する斜視図である。(A) It is a top view which illustrates one of the safety valves in the sealed battery concerning this invention. (B) It is a perspective view which illustrates one of the safety valves in the sealed battery concerning this invention. 本発明にかかる密閉型電池において、端子キャップと安全弁との溶接を説明する部分断面図である。In the sealed battery according to the present invention, it is a partial cross-sectional view for explaining welding of a terminal cap and a safety valve. 従来の密閉型電池の部分断面図である。It is a fragmentary sectional view of the conventional sealed battery.

本発明を実施するための形態を、図面及び実施例を用いて詳細に説明する。図1は、本実施の形態にかかる密閉型電池の要部拡大断面図である。なお、本発明は、下記の実施形態及び実施例に限定されるものではない。その要旨を変更しない範囲において適宜変更して実施することができる。   A mode for carrying out the present invention will be described in detail with reference to the drawings and examples. FIG. 1 is an enlarged cross-sectional view of a main part of the sealed battery according to the present embodiment. In addition, this invention is not limited to the following embodiment and Example. As long as the gist of the invention is not changed, the present invention can be implemented with appropriate modifications.

〔実施形態〕
本実施の形態にかかる密閉型電池に用いる封口体10は、図1に示すように、電極タブ8を介して正極又は負極と電気的に接続される端子板1と、電池外方に突出した外部端子部を有する端子キャップ5と、端子板1と端子キャップ5との間に介在し、電池内部圧力が上昇した際に変形して、端子板1と端子キャップ5との電気的接続を遮断する安全弁3と、安全弁3が電流を遮断する際、安全弁3と端子板1との電気的接触を防止する絶縁部材2と、を備えている。そして、電極体40の一方の電極と端子板1とが、電極タブ8を介して接続されている。
Embodiment
As shown in FIG. 1, the sealing body 10 used for the sealed battery according to the present embodiment protrudes outward from the battery terminal plate 1 electrically connected to the positive electrode or the negative electrode via the electrode tab 8. The terminal cap 5 having an external terminal portion is interposed between the terminal plate 1 and the terminal cap 5 and is deformed when the internal pressure of the battery rises, thereby interrupting the electrical connection between the terminal plate 1 and the terminal cap 5. And the insulating member 2 that prevents electrical contact between the safety valve 3 and the terminal plate 1 when the safety valve 3 cuts off the current. One electrode of the electrode body 40 and the terminal plate 1 are connected via the electrode tab 8.

さらに、図1に示すように、電極体40と非水電解質とを収容した外装缶10の開口部に、絶縁ガスケット30を介して、この封口体10がカシメ固定されている。カシメ固定は、安全弁3の突起3cによるリベット締めにてなされる。   Further, as shown in FIG. 1, the sealing body 10 is caulked and fixed through an insulating gasket 30 to the opening of the outer can 10 containing the electrode body 40 and the nonaqueous electrolyte. The caulking is fixed by riveting with the protrusion 3c of the safety valve 3.

上記のリチウムイオン二次電池の作製方法について説明する。   A method for manufacturing the above lithium ion secondary battery will be described.

<正極の作製>
コバルト酸リチウム(LiCoO2)からなる正極活物質と、アセチレンブラック又はグラファイト等の炭素系導電剤と、ポリビニリデンフルオライド(PVdF)からなる結着剤とを、質量比90:5:5の割合で量り採り、これらをN−メチル−2−ピロリドンからなる有機溶媒等に溶解させた後、混合し、正極活物質スラリーを調製した。
<Preparation of positive electrode>
A ratio of 90: 5: 5 in a mass ratio of a positive electrode active material made of lithium cobaltate (LiCoO 2 ), a carbon-based conductive agent such as acetylene black or graphite, and a binder made of polyvinylidene fluoride (PVdF). These were dissolved in an organic solvent made of N-methyl-2-pyrrolidone, and then mixed to prepare a positive electrode active material slurry.

次に、ダイコーター又はドクターブレード等を用いて、アルミニウム箔(厚み:20μm)からなる正極芯体の両面に、この正極活物質スラリーを均一な厚みで塗布した。   Next, using a die coater or a doctor blade, this positive electrode active material slurry was applied to both surfaces of a positive electrode core made of aluminum foil (thickness: 20 μm) with a uniform thickness.

この極板を乾燥機内に通して上記有機溶媒を除去し、乾燥極板を作製した。この乾燥極板を、ロールプレス機を用いて圧延し、裁断して、正極板を作製した。   The electrode plate was passed through a dryer to remove the organic solvent, thereby preparing a dried electrode plate. The dried electrode plate was rolled using a roll press and cut to produce a positive electrode plate.

<負極の作製>
人造黒鉛からなる負極活物質と、スチレンブタジエンゴムからなる結着剤と、カルボキシメチルセルロースからなる増粘剤とを、質量比98:1:1の割合で量り採り、これらを適量の水と混合し、負極活物質スラリーを調製した。
<Production of negative electrode>
A negative electrode active material made of artificial graphite, a binder made of styrene butadiene rubber, and a thickener made of carboxymethylcellulose are weighed in a mass ratio of 98: 1: 1 and mixed with an appropriate amount of water. A negative electrode active material slurry was prepared.

次に、ダイコーター又はドクターブレード等を用いて、銅箔(厚み:15μm)からなる負極芯体の両面に、この負極活物質スラリーを均一な厚さで塗布した。   Next, using a die coater or a doctor blade, this negative electrode active material slurry was applied to both surfaces of a negative electrode core made of copper foil (thickness: 15 μm) with a uniform thickness.

この極板を乾燥機内に通して水分を除去し、乾燥極板を作製した。その後、この乾燥極板を、ロールプレス機により圧延し、裁断して、負極板を作製した。   The electrode plate was passed through a dryer to remove moisture, and a dried electrode plate was produced. Then, this dry electrode plate was rolled with a roll press and cut to prepare a negative electrode plate.

<電極体の作製>
上記正極と負極とポリエチレン製微多孔膜からなるセパレータとを、巻き取り機により捲回し、絶縁性の巻き止めテープを設け、巻回電極体を完成させた。
<Production of electrode body>
The positive electrode, the negative electrode, and a separator made of a polyethylene microporous film were wound with a winder, and an insulating anti-winding tape was provided to complete a wound electrode body.

<封口体の作製>
まず、端子キャップ5を作製した。ニッケルメッキされた厚さ0.5mmの鉄板の中心部を、プレス器具を用いてプレスして外部端子部5a(凸部)を形成した、次に、フランジ部5b(凸部の外周部分)に治具を用いてアーチ形状の打ち抜き穴を開けた。次いで、穴を上方向からプレス器具を用いてプレスして、さらに一回りサイズの大きいアーチ形状の治具を用いて再び穴を打ち抜くことでプレスにより狭まった穴を拡大後、打ち抜いた逆側の穴のエッジ部をテーパ状とした。この後、直径16.5mmの円盤状に打ち抜いて、テーパ部を有するザグリ穴を備えた端子キャップ5を得た。
<Production of sealing body>
First, the terminal cap 5 was produced. The central portion of the nickel-plated 0.5 mm thick iron plate was pressed using a pressing device to form the external terminal portion 5a (convex portion). Next, the flange portion 5b (outer peripheral portion of the convex portion) was formed. An arch-shaped punch hole was made using a jig. Next, press the hole from above with a pressing tool, and further punch the hole again using an arcuate jig that is one size larger. The edge of the hole was tapered. Thereafter, a terminal cap 5 having a counterbore hole having a tapered portion was obtained by punching into a disk shape having a diameter of 16.5 mm.

次に、安全弁3を作製した。プレス器具を用いて厚さ0.4mmのアルミニウム板の中心部をプレスし、通電接触部(凹部3a)を形成した。続いて、周辺部3b(凸部の外周部分)を下面からプレス器具を用いて押圧し、本発明の突起として平面視がアーチ形状の突起3cを形成した(幅1.2mm×長さ5.0mm×高さ0.55mm)。この後、直径16.5mmの円盤状に打ち抜いて、安全弁3を得た。   Next, the safety valve 3 was produced. The center part of the aluminum plate having a thickness of 0.4 mm was pressed using a pressing device to form an energizing contact part (concave part 3a). Subsequently, the peripheral portion 3b (outer peripheral portion of the convex portion) was pressed from the lower surface using a press instrument, and a projection 3c having a arch shape in plan view was formed as the projection of the present invention (width 1.2 mm × length 5. 0mm x height 0.55mm). Thereafter, the safety valve 3 was obtained by punching into a disk shape having a diameter of 16.5 mm.

上記で作製した安全弁3の上面に、上記の端子キャップ5を配置し、端子キャップ5のザグリ穴5cに安全弁3の突起3cを嵌合した(図5(a)参照)。次いで、リベット固定具51a及び51bを用いて上下方向から押圧し(図5(b)参照)、突起3cの先端部をつぶして、リベット固定部を形成してリベット固定した(図5(c)参照)。   The terminal cap 5 is disposed on the upper surface of the safety valve 3 produced as described above, and the protrusion 3c of the safety valve 3 is fitted into the counterbore hole 5c of the terminal cap 5 (see FIG. 5A). Next, the rivet fixing tools 51a and 51b are used to press from above and below (see FIG. 5 (b)), and the tip of the projection 3c is crushed to form a rivet fixing portion and fix the rivet (FIG. 5 (c)). reference).

さらに、リベット固定部近傍の端子キャップのザグリ穴の壁面にレーザを照射し(図7(a)参照)、リベット固定部を溶接した(図7(b)参照)。   Further, the wall surface of the counterbore hole of the terminal cap near the rivet fixing portion was irradiated with laser (see FIG. 7A), and the rivet fixing portion was welded (see FIG. 7B).

最後に、この安全弁3の下面に、ポリプロピレン製の絶縁板2を介してアルミニウム製の端子板1を溶接し、封口体10を作製した。   Finally, an aluminum terminal plate 1 was welded to the lower surface of the safety valve 3 via a polypropylene insulating plate 2 to produce a sealing body 10.

<電解液の作製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)とジエチルカーボネート(DEC)とを体積比1:1:8の割合(1気圧、25℃と換算した場合における)で混合した非水溶媒に、電解質塩としてのLiPF6を1.0M(モル/リットル)の割合で溶解したものを電解液とした。
<Preparation of electrolyte>
An electrolyte salt is added to a nonaqueous solvent in which ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1: 8 (when converted to 1 atm and 25 ° C.). The electrolyte solution was obtained by dissolving LiPF 6 at a rate of 1.0 M (mol / liter).

<電池の組み立て>
上記電極体の負極集電体と円筒形外装缶の缶底とを溶接し、上記電解液を外装缶内に注液し、封口体の端子板と正極集電体とを電極タブを介して電気的に接続した。次いで、外装缶の開口部を、ガスケットを介して封口体10を用いてカシメ加工して封止し、本実施形態にかかる円筒形電池(直径18mm×高さ65mm)を組み立てた。
<Battery assembly>
Weld the negative electrode current collector of the electrode body and the bottom of the cylindrical outer can, inject the electrolyte into the outer can, and connect the terminal plate of the sealing body and the positive electrode current collector through the electrode tab. Electrically connected. Next, the opening of the outer can was caulked using a sealing body 10 via a gasket and sealed, and a cylindrical battery (diameter 18 mm × height 65 mm) according to this embodiment was assembled.

(実施例1)
上記の実施形態に従って、実施例1に係る電池を作製した。
Example 1
A battery according to Example 1 was fabricated according to the above embodiment.

(実施例2)
リベット固定部にレーザ照射しなかった(リベット固定までを行った)こと以外は、上記の実施形態と同様にして、実施例2に係る電池を作製した。
(Example 2)
A battery according to Example 2 was fabricated in the same manner as in the above embodiment except that the rivet fixing part was not irradiated with laser (up to rivet fixing).

(実施例3)
リベット固定部にレーザ照射しなかった(リベット固定までを行った)ことと、端子キャップのザグリ穴にテーパ部を設けなかったこと以外は、上記の実施形態と同様にして、実施例3に係る電池を作製した。
(Example 3)
Example 3 is similar to the above embodiment except that the rivet fixing part is not irradiated with laser (the rivet fixing is performed) and the tapered part is not provided in the counterbore hole of the terminal cap. A battery was produced.

(比較例1)
安全弁のアーチ形状突起をピン形状突起(φ0.95)にしたこと以外は、上記の実施形態と同様にして、比較例1に係る電池を作製した。
(Comparative Example 1)
A battery according to Comparative Example 1 was fabricated in the same manner as in the above embodiment except that the arch-shaped protrusion of the safety valve was changed to a pin-shaped protrusion (φ0.95).

(比較例2)
安全弁のアーチ形状突起をピン形状突起にしたことと、リベット固定部にレーザ照射しなかった(リベット固定までを行った)こと以外は、上記の実施形態と同様にして、比較例2に係る電池を作製した。
(Comparative Example 2)
A battery according to Comparative Example 2 in the same manner as in the above embodiment except that the arch-shaped protrusion of the safety valve is a pin-shaped protrusion and the rivet fixing portion is not irradiated with laser (the rivet fixing is performed). Was made.

(比較例3)
安全弁のアーチ形状突起をピン形状突起にしたことと、リベット固定部にレーザ照射しなかった(リベット固定までを行った)ことと、端子キャップのザグリ穴にテーパ部を設けなかったこと以外は、上記の実施形態と同様にして、比較例4に係る電池を作製した。
(Comparative Example 3)
Except that the arch-shaped protrusion of the safety valve is a pin-shaped protrusion, the rivet fixing part was not irradiated with laser (the rivet fixing was performed), and the counterbore hole of the terminal cap was not provided with a taper part. A battery according to Comparative Example 4 was produced in the same manner as in the above embodiment.

上記の各実施例及び各比較例の条件設定を表1に示す。

Figure 2010277785
Table 1 shows the condition settings for each of the above examples and comparative examples.
Figure 2010277785

〔抵抗の測定〕
上記の実施例及び比較例で作製された各電池をそれぞれ30個ずつ作製した。このとき、リベット固定後、レーザ溶接後、最終的に電池缶の開口部を封止した後(以下、この時点を「電池カシメ後」とする。)の各工程段階の封口体、及び定電流1250mA(1It)で電圧が4.2Vとなるまで充電し、その後定電圧4.2Vで電流が62.5mA(0.05It)となるまで充電後、75℃、湿度90%の恒温槽に10日間保存した後の電池の封口体の電気抵抗を測定した。この結果を下記表2に示す。示した抵抗値は、それぞれ30個の電池の抵抗値の平均及びバラツキである。
(Measurement of resistance)
Thirty pieces of each battery produced in the above examples and comparative examples were produced. At this time, after fixing the rivet, after laser welding, and finally sealing the opening of the battery can (hereinafter referred to as “after battery caulking”), the sealing body and the constant current in each process step The battery is charged at 1250 mA (1 It) until the voltage reaches 4.2 V, and then charged at a constant voltage of 4.2 V until the current reaches 62.5 mA (0.05 It). The electrical resistance of the battery seal after storage for a day was measured. The results are shown in Table 2 below. The resistance values shown are the average and variation of the resistance values of 30 batteries, respectively.

Figure 2010277785
(*)一番左の欄にある記号は、以下を表す。
A:アーチ形状突起 P:ピン形状突起 T:ザグリ穴のテーパ L:レーザ溶接
Figure 2010277785
(*) The symbols in the leftmost column represent the following.
A: Arch shaped protrusion P: Pin shaped protrusion T: Counterbore taper L: Laser welding

実施例と比較例との比較を行い、以下のような考察を得た。   The example and the comparative example were compared and the following consideration was obtained.

<実施例1と比較例1との比較>
共にザグリ穴がテーパ部を有し、リベット固定後にレーザ溶接を行なった。ピン形状突起を有する比較例1で抵抗値が上がった。特に、レーザ溶接前のリベットカシメのみで固定した時点では、比較例1は、実施例1の抵抗値の3倍以上であり、また抵抗値のバラツキも大きかった。また、レーザ溶接後においても比較例1の方で抵抗値が高かった。これらのことから、アーチ形状突起を有することで、リベットカシメ固定の時点から、端子キャップと安全弁との固定が十分なものとなることがわかった。
<Comparison between Example 1 and Comparative Example 1>
Both counterbored holes had a tapered portion, and laser welding was performed after rivet fixation. The resistance value increased in Comparative Example 1 having pin-shaped protrusions. In particular, at the time of fixing only with rivet caulking before laser welding, Comparative Example 1 was more than three times the resistance value of Example 1, and there was a large variation in resistance value. Moreover, the resistance value was higher in Comparative Example 1 even after laser welding. From these facts, it was found that the terminal cap and the safety valve are sufficiently fixed from the point of fixing the rivet caulking by having the arch-shaped protrusion.

<実施例2と比較例2との比較>
共にザグリ穴にテーパを施しているが、レーザ溶接を行わなかった。アーチ形状突起を有する実施例2は、電池カシメ後及び保存後においても、抵抗値の上昇は見られなかった。一方、ピン形状突起の比較例2は、リベットカシメ後、電池カシメ後、そして保存後となるにつれて抵抗が上昇した。これは、アーチ形状突起を用いず、さらにレーザ溶接もしない場合には、経時的に固定が不十分となり、抵抗値が上がったと考えられる。
<Comparison between Example 2 and Comparative Example 2>
In both cases, the counterbore holes are tapered, but laser welding was not performed. In Example 2 having arch-shaped protrusions, no increase in resistance value was observed even after battery caulking and after storage. On the other hand, in the comparative example 2 of the pin-shaped protrusion, the resistance increased as it became after rivet caulking, after battery caulking, and after storage. This is considered to be that when the arch-shaped protrusion is not used and laser welding is not performed, the fixing becomes insufficient with time and the resistance value is increased.

<実施例3と比較例3との比較>
共にザグリ穴にテーパを施さず、レーザ溶接も行わなかった。この比較においても、アーチ形状突起を有した実施例3の方が抵抗値が低いことが確認された。
<Comparison between Example 3 and Comparative Example 3>
In both cases, the counterbored holes were not tapered and laser welding was not performed. Also in this comparison, it was confirmed that Example 3 having the arch-shaped protrusion had a lower resistance value.

<実施例1と実施例2との比較>
安全弁のアーチ形状突起及びザグリ穴のテーパを備えるものは、レーザ溶接の有無にかかわらず、共に低い抵抗値を示した。ただし、レーザ溶接した実施例1の方が若干抵抗値が低く、好ましいことがわかった。
<Comparison between Example 1 and Example 2>
Both the safety valve with the arch-shaped protrusion and the counterbore taper showed a low resistance value with or without laser welding. However, it was found that the laser welded Example 1 was preferable because the resistance value was slightly lower.

まとめれば、他の条件を同一とした場合には、アーチ形状突起を備える実施例の抵抗値の方が、ピン形状突起を備える比較例に比べ、いずれも低かった。これは、安全弁の突起をピン形状からアーチ形状にすることで、端子キャップと安全弁との固定が改良されることを実証している。また、この固定においても、リベットカシメのリベット固定の後にレーザ溶接することで、さらに向上することも見出された。
(追加事項)
In summary, when the other conditions are the same, the resistance value of the example including the arch-shaped protrusion is lower than that of the comparative example including the pin-shaped protrusion. This demonstrates that fixing the terminal cap and the safety valve is improved by changing the protrusion of the safety valve from the pin shape to the arch shape. It has also been found that this fixing can be further improved by laser welding after rivet fixing of the rivet caulking.
(extra content)

本発明の非水電解質二次電池で用いる正極活物質としては、実施例で用いたコバルト酸リチウム以外にも、例えば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)リン酸鉄リチウム(LiFePO4)、マンガンニッケルコバルト酸リチウム(LiMnxNiyCoz2、x+y+z=1)、又はこれらの酸化物に含まれる遷移金属の一部を他の元素で置換した酸化物等のリチウム含有遷移金属複合酸化物を単独で、あるいは二種以上を混合して用いることができる。 As the positive electrode active material used in the nonaqueous electrolyte secondary battery of the present invention, for example, lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) phosphate other than lithium cobaltate used in Examples the lithium iron (LiFePO 4), lithium manganese nickel cobalt oxide (LiMn x Ni y Co z O 2, x + y + z = 1), or oxide obtained by replacing part of the transition metal contained in these oxides with other elements such as These lithium-containing transition metal composite oxides can be used alone or in admixture of two or more.

本発明の非水電解質二次電池で用いる負極材料としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、あるいはこれらの焼成体等の炭素質物、又は前記炭素質物と、リチウム、リチウム合金、およびリチウムを吸蔵及び放出できる金属酸化物からなる群から選ばれる材料を1種以上との混合物を用いることができる。   Examples of the negative electrode material used in the nonaqueous electrolyte secondary battery of the present invention include carbonaceous materials such as natural graphite, artificial graphite, carbon black, coke, glassy carbon, carbon fiber, or a fired body thereof, or the carbonaceous material. And one or more materials selected from the group consisting of lithium, lithium alloys, and metal oxides capable of inserting and extracting lithium can be used.

本発明の非水電解質二次電池で用いる非水溶媒としては、実施例の組み合わせに限定されるものではなく、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等のリチウム塩の溶解度が高い高誘電率溶媒と、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、4−メチル−2−ペンタノン、シクロヘキサノン、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、スルホラン、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸エチル等の低粘性溶媒とを混合させて用いることができる。さらに、前記の高誘電率溶媒又は低粘性溶媒をそれぞれ二種以上の混合溶媒とすることもできる。   The non-aqueous solvent used in the non-aqueous electrolyte secondary battery of the present invention is not limited to the combination of the examples. For example, the solubility of lithium salts such as ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone is limited. High dielectric constant solvent, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, anisole, 1,4-dioxane, 4-methyl-2-pentanone, cyclohexanone, acetonitrile, propionitrile, It can be used by mixing with a low viscosity solvent such as dimethylformamide, sulfolane, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, ethyl propionate. Furthermore, the high dielectric constant solvent or the low viscosity solvent may be a mixed solvent of two or more.

本発明の非水電解質二次電池で用いる電解質塩としては、実施例で用いた上記LiPF6以外にも、例えばLiN(C25SO22、LiN(CF3SO22、LiClO4又はLiBF4等を単独で、あるいは2種以上混合して用いることができる。 Examples of the electrolyte salt used in the nonaqueous electrolyte secondary battery of the present invention include LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiClO, in addition to the LiPF 6 used in the examples. 4 or LiBF 4 or the like may be used alone, or in combination of two or more.

以上説明したように、本発明によると、導電性に優れた安全弁付き封口体を実現でき、これを備えた密閉型電池の電流の取り出し効率を向上できる。よって、産業上の意義は大きい。   As described above, according to the present invention, a sealing body with a safety valve excellent in conductivity can be realized, and the current extraction efficiency of a sealed battery equipped with the same can be improved. Therefore, the industrial significance is great.

1 端子板
2 絶縁板
3 安全弁
3a 通電接触部
3b 周辺部
3c 突起(アーチ形状突起)
5 端子キャップ
5a 外部端子部
5b フランジ部
5c ザグリ穴
5d ザグリ穴のテーパ部
7 溶接部
8 電極タブ
9 溶融凝固領域
10 封口体
20 外装缶
30 絶縁ガスケット
40 電極体
51 リベット固定具
DESCRIPTION OF SYMBOLS 1 Terminal board 2 Insulation board 3 Safety valve 3a Current supply contact part 3b Peripheral part 3c Protrusion (arch-shaped protrusion)
DESCRIPTION OF SYMBOLS 5 Terminal cap 5a External terminal part 5b Flange part 5c Counterbore hole 5d Counterbore hole taper part 7 Weld part 8 Electrode tab 9 Melting | solidification area 10 Sealing body 20 Exterior can 30 Insulating gasket 40 Electrode body 51 Rivet fixing tool

Claims (10)

有底筒状の外装缶(20)の開口部に封口体(10)がカシメ固定され密閉された密閉型電池の製造方法において、以下の(a)〜(c)の工程を備えることを特徴とする密閉型電池の製造方法:
(a)電池外方に突出した外部端子部(5a)と、
前記外部端子部(5a)の周縁に位置するフランジ部(5b)と、
前記フランジ部(5b)に設けられた、電池外方面側の大径部と電池内方面側の小径部とを有するザグリ穴(5c)と、
を有する端子キャップ(5)を準備する端子キャップ準備ステップ;
(b)電池内方に突出した通電接触部(3a)と、
前記通電接触部(3a)の周縁に位置する周辺部(3b)と、
前記周辺部(3b)に設けられた、平面視でアーチ形状の突起(3c)と、
を有する安全弁(3)を準備する安全弁準備ステップ;及び
(c)前記安全弁の突起(3c)を前記端子キャップのザグリ穴(5c)に嵌め込み、前 記突起(3c)の先端部を押しつぶして、前記突起(3c)と前記ザグリ穴(5c)と をリベット固定するリベット固定ステップ。
In the manufacturing method of the sealed battery in which the sealing body (10) is caulked and sealed in the opening of the bottomed cylindrical outer can (20), the following steps (a) to (c) are provided. Manufacturing method of sealed battery:
(A) an external terminal portion (5a) protruding outward from the battery;
A flange portion (5b) located at the periphery of the external terminal portion (5a);
A counterbore hole (5c) provided in the flange portion (5b) and having a large diameter portion on the battery outer surface side and a small diameter portion on the battery inner surface side;
Preparing a terminal cap (5) having a terminal cap preparation step;
(B) an energizing contact portion (3a) protruding inward of the battery;
A peripheral portion (3b) located at the periphery of the energization contact portion (3a);
An arch-shaped protrusion (3c) provided in the peripheral portion (3b) in plan view;
A safety valve preparation step for preparing a safety valve (3) having: and (c) fitting the protrusion (3c) of the safety valve into the counterbore hole (5c) of the terminal cap, and crushing the tip of the protrusion (3c), A rivet fixing step of rivet fixing the protrusion (3c) and the counterbore hole (5c).
請求項1に記載の密閉型電池の製造方法において、
ザグリ穴の前記小径部が、電池内面側において開口面積が広く、電池外方に行くにつれて開口面積が狭くなるテーパ部を有する、
ことを特徴とする密閉型電池の製造方法。
In the manufacturing method of the sealed battery according to claim 1,
The small-diameter portion of the counterbored hole has a taper portion where the opening area is wide on the battery inner surface side and the opening area becomes narrower toward the outside of the battery.
A method for producing a sealed battery, comprising:
請求項1又は2に記載の密閉型電池の製造方法において、
前記突起及び前記ザグリ穴が、それぞれ複数設けられている、
ことを特徴とする密閉型電池の製造方法。
In the manufacturing method of the sealed battery according to claim 1 or 2,
A plurality of the protrusions and counterbore holes are provided,
A method for producing a sealed battery, comprising:
請求項3に記載の密閉型電池の製造方法において、
前記突起のそれぞれが、同一の円周上に位置する、
ことを特徴とする密閉型電池の製造方法。
In the manufacturing method of the sealed battery according to claim 3,
Each of the protrusions is located on the same circumference;
A method for producing a sealed battery, comprising:
請求項1から4のいずれかに記載の密閉型電池の製造方法において、
前記リベット固定ステップの後、前記リベット固定部近傍の前記端子キャップに高エネルギー線を照射し、前記端子キャップと前記安全弁とを溶接する溶接ステップが加わる、
ことを特徴とする密閉型電池の製造方法。
In the manufacturing method of the sealed battery according to any one of claims 1 to 4,
After the rivet fixing step, a welding step of irradiating the terminal cap in the vicinity of the rivet fixing portion with high energy rays and welding the terminal cap and the safety valve is added,
A method for producing a sealed battery, comprising:
請求項5に記載の密閉型電池の製造方法において、
前記高エネルギー線が、レーザである、
ことを特徴とする密閉型電池の製造方法。
In the manufacturing method of the sealed battery according to claim 5,
The high energy beam is a laser;
A method for producing a sealed battery, comprising:
有底筒状の外装缶(20)の開口部に封口体(10)がカシメ固定され密閉された密閉型電池において、
前記封口体(10)は、
電池外方に突出した外部端子部(5a)と、
前記外部端子部(5a)の周縁に位置するフランジ部(5b)と、
前記フランジ部(5b)に設けられた、電池外方面側の大径部と電池内方面側の小径 部とを有するザグリ穴(5c)と、
を有する端子キャップ(5)と、
電池内方に突出した通電接触部(3a)と、
前記通電接触部(3a)の周縁に位置する周辺部(3b)と、
前記周辺部(3b)に設けられた、平面視でアーチ形状の突起(3c)と、
を有する安全弁(3)と、
を備え、
前記安全弁の突起(3c)は前記端子キャップのザグリ穴(5c)に嵌め込まれており、前記突起(3c)の先端部が押しつぶされて、前記突起(3c)と前記ザグリ穴(5c)とがリベット固定されている、
ことを特徴とする密閉型電池。
In the sealed battery in which the sealing body (10) is caulked and sealed in the opening of the bottomed cylindrical outer can (20),
The sealing body (10)
An external terminal portion (5a) protruding outward from the battery;
A flange portion (5b) located at the periphery of the external terminal portion (5a);
A counterbore hole (5c) provided in the flange portion (5b) having a large diameter portion on the battery outer surface side and a small diameter portion on the battery inner surface side;
A terminal cap (5) having:
An energizing contact portion (3a) protruding inward of the battery;
A peripheral portion (3b) located at the periphery of the energization contact portion (3a);
An arch-shaped protrusion (3c) provided in the peripheral portion (3b) in plan view;
A safety valve (3) having
With
The protrusion (3c) of the safety valve is fitted in the counterbore hole (5c) of the terminal cap, and the tip of the protrusion (3c) is crushed so that the protrusion (3c) and the counterbore hole (5c) Rivet fixed,
A sealed battery characterized by that.
請求項7に記載の密閉型電池において、
ザグリ穴の前記小径部が、電池内面側において開口面積が広く、電池外方に行くにつれて開口面積が狭くなるテーパ部を有する、
ことを特徴とする密閉型電池。
The sealed battery according to claim 7,
The small-diameter portion of the counterbored hole has a taper portion where the opening area is wide on the battery inner surface side and the opening area becomes narrower toward the outside of the battery.
A sealed battery characterized by that.
請求項7又は8に記載の密閉型電池において、
前記突起及び前記ザグリ穴が、それぞれ複数設けられている、
ことを特徴とする密閉型電池。
The sealed battery according to claim 7 or 8,
A plurality of the protrusions and counterbore holes are provided,
A sealed battery characterized by that.
請求項9に記載の密閉型電池において、
前記突起のそれぞれが、同一の円周上に位置する、
ことを特徴とする密閉型電池。





The sealed battery according to claim 9, wherein
Each of the protrusions is located on the same circumference;
A sealed battery characterized by that.





JP2009127910A 2009-05-27 2009-05-27 Sealed battery and its manufacturing method Pending JP2010277785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127910A JP2010277785A (en) 2009-05-27 2009-05-27 Sealed battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127910A JP2010277785A (en) 2009-05-27 2009-05-27 Sealed battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2010277785A true JP2010277785A (en) 2010-12-09

Family

ID=43424581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127910A Pending JP2010277785A (en) 2009-05-27 2009-05-27 Sealed battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2010277785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162460A (en) * 2014-02-27 2015-09-07 三星エスディアイ株式会社Samsung SDI Co.,Ltd. secondary battery
WO2021200737A1 (en) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 Sealing body and battery
WO2023077268A1 (en) * 2021-11-02 2023-05-11 宁德时代新能源科技股份有限公司 End cap assembly, battery cell, battery, and electric apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431258U (en) * 1990-07-06 1992-03-13
JP2010086782A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Sealed type battery and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431258U (en) * 1990-07-06 1992-03-13
JP2010086782A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Sealed type battery and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162460A (en) * 2014-02-27 2015-09-07 三星エスディアイ株式会社Samsung SDI Co.,Ltd. secondary battery
US10388936B2 (en) 2014-02-27 2019-08-20 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing the same
WO2021200737A1 (en) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 Sealing body and battery
WO2023077268A1 (en) * 2021-11-02 2023-05-11 宁德时代新能源科技股份有限公司 End cap assembly, battery cell, battery, and electric apparatus

Similar Documents

Publication Publication Date Title
JP5420219B2 (en) Sealed battery and method for manufacturing the same
JP5737481B2 (en) Sealed non-aqueous electrolyte secondary battery
JP6058400B2 (en) Non-aqueous electrolyte secondary battery
US8435658B2 (en) Sealed cell with terminal cap and safety valve
JP2017010819A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
WO2012147782A1 (en) Hermetic battery and method for manufacturing same
JP2007265846A (en) Cylindrical battery and its manufacturing method
JP2012079476A (en) Square sealed battery manufacturing method
JP5173095B2 (en) Sealed battery
JP2008305646A (en) Battery
JP2010238558A (en) Sealed square battery
JP5420315B2 (en) Sealed battery and method for manufacturing the same
JP2007324015A (en) Secondary battery and its manufacturing method
JP2010277785A (en) Sealed battery and its manufacturing method
KR101833609B1 (en) Method of manufacturing electric power storage device, and electric power storage device
JP2009289589A (en) Battery&#39;s complex lid, sealed battery using the same, and method of manufacturing battery&#39;s complex lid
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP5420288B2 (en) Sealed battery
JP2015043258A (en) Sealed battery
JP5044933B2 (en) battery
JP6184104B2 (en) Non-aqueous electrolyte battery
JP2010244788A (en) Nonaqueous secondary battery
JP2005209395A (en) Nonaqueous electrolytic solution secondary battery
JP2001052672A (en) Sealed battery
JP2013077457A (en) Cylindrical nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107