JP5044933B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP5044933B2
JP5044933B2 JP2006008451A JP2006008451A JP5044933B2 JP 5044933 B2 JP5044933 B2 JP 5044933B2 JP 2006008451 A JP2006008451 A JP 2006008451A JP 2006008451 A JP2006008451 A JP 2006008451A JP 5044933 B2 JP5044933 B2 JP 5044933B2
Authority
JP
Japan
Prior art keywords
external terminal
battery
terminal
internal terminal
gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006008451A
Other languages
Japanese (ja)
Other versions
JP2007193966A (en
Inventor
徹 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006008451A priority Critical patent/JP5044933B2/en
Publication of JP2007193966A publication Critical patent/JP2007193966A/en
Application granted granted Critical
Publication of JP5044933B2 publication Critical patent/JP5044933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は電池、特にその端子部に関する。   The present invention relates to a battery, particularly to a terminal portion thereof.

近年では、AV機器あるいはパソコンや携帯型通信機器などの電子機器のポータブル化やコードレス化が急速に促進されており、これら電子機器の駆動用電源として、従来はニッケルカドミウム電池やニッケル水素電池が用いられていたが、近年では、特に、急速充電が可能でエネルギー密度が高く、高い安全性を有するリチウム二次電池に代表される非水電解液二次電池が主流になりつつある。この非水電解液二次電池では、高エネルギー密度や負荷特性に優れ、電子機器の薄型化に適し、スペース効率の良い角形の非水電解液二次電池が伸びている。角形の非水電解液二次電池は、発電要素の両極板にタブを取り付け、それを内部端子に接続し、内部端子と接続された外部端子を介して外部に電気を取り出すようにしている。金属製の電池ケースを使う場合、電池ケースと同じ極性を持つ極板に接続されたタブは、直接ケースに、もしくはケースに接合される金属製蓋体に接続されている。電池ケースと違う極性の極板に接続されたタブは、内部端子に接続され、内部端子は電池ケースあるいは金属製蓋体と、ガスケットで絶縁されている。さらに、ガスケットは気密性を確保する役目も担っている。   In recent years, portable and cordless electronic devices such as AV devices, personal computers, and portable communication devices have been rapidly promoted. Conventionally, nickel cadmium batteries and nickel hydrogen batteries have been used as power sources for driving these electronic devices. However, in recent years, non-aqueous electrolyte secondary batteries represented by lithium secondary batteries capable of rapid charging, high energy density, and high safety are becoming mainstream. In this non-aqueous electrolyte secondary battery, a rectangular non-aqueous electrolyte secondary battery that is excellent in high energy density and load characteristics, is suitable for thinning electronic devices, and has good space efficiency has been extended. In the rectangular nonaqueous electrolyte secondary battery, tabs are attached to the bipolar plates of the power generation element, connected to the internal terminals, and electricity is taken out through the external terminals connected to the internal terminals. When a metal battery case is used, the tab connected to the electrode plate having the same polarity as the battery case is directly connected to the case or a metal lid joined to the case. The tab connected to the electrode plate having a polarity different from that of the battery case is connected to the internal terminal, and the internal terminal is insulated from the battery case or the metal lid by a gasket. Furthermore, the gasket also plays a role of ensuring airtightness.

従来の電池の構造は、中空リベットの形状をした外部端子をかしめたものが用いられている。従来の電池の外部端子周辺の概略断面図を図4に示す。図4において、金属製の蓋体に穿設された取付孔に、上部ガスケットを配し、中空リベットを上方から挿入させている。中空リベットの下部に、下部ガスケットおよび内部端子を挿入させ、中空リベットの下端部をかしめ、中空リベットが上部ガスケットと下部ガスケットで封止されている(例えば、特許文献1を参照)。
特開2001−202933号公報
The structure of a conventional battery uses a caulked external terminal in the shape of a hollow rivet. A schematic cross-sectional view around the external terminal of a conventional battery is shown in FIG. In FIG. 4, an upper gasket is disposed in an attachment hole formed in a metal lid, and a hollow rivet is inserted from above. A lower gasket and internal terminals are inserted into the lower part of the hollow rivet, the lower end of the hollow rivet is caulked, and the hollow rivet is sealed with an upper gasket and a lower gasket (see, for example, Patent Document 1).
JP 2001-202933 A

しかしながら、前記従来の電池は上部ガスケットと下部ガスケットを介して中空リベットでかしめ、ガスケットを圧縮することにより封止している。かしめ寸法が変わることによりガスケットの圧縮率が変わり、封止性能に影響することとなる。そのため、かしめ寸法の変動を最小限に抑える精度の良いかしめ加工の技術やかしめ工法が必要とされ、生産性が上らないという課題を有していた。   However, the conventional battery is sealed by caulking with a hollow rivet through an upper gasket and a lower gasket and compressing the gasket. By changing the caulking dimension, the compression ratio of the gasket changes, which affects the sealing performance. For this reason, an accurate caulking technique and a caulking method for minimizing fluctuations in caulking dimensions are required, and there is a problem that productivity does not increase.

そこで、本発明はこのような従来の課題を解決するもので、かしめ寸法に依存しない封止性能を向上した電池を提供することを目的とする。   Therefore, the present invention solves such a conventional problem, and an object thereof is to provide a battery with improved sealing performance that does not depend on caulking dimensions.

前記従来の課題を解決するために、本発明の電池は、開口部を有する電池ケースに、正極板と負極板がセパレータを介して捲回された発電要素が収納され、前記電池ケースの前記開口部が蓋体で密封され、
前記発電要素から引き出されたタブと内部端子が電気的に接続され、前記内部端子の開孔部に外部端子がかしめにより接続され、
前記内部端子と前記外部端子が前記蓋体にガスケットを介して電気的に絶縁された状態で固定されており、
前記外部端子は、前記内部端子と接続する部分に段差部を有しており、
前記内部端子に接続する部分が前記内部端子の開孔部と嵌合する程度に細くなっており、前記内部端子とかしめにより接続した部分が溶接されていることを特徴としている。
In order to solve the above-described conventional problems, the battery of the present invention includes a battery case having an opening in which a power generation element in which a positive electrode plate and a negative electrode plate are wound via a separator is housed, and the opening of the battery case is Part is sealed with a lid,
The tab pulled out from the power generation element and the internal terminal are electrically connected, and the external terminal is connected to the opening portion of the internal terminal by caulking,
The internal terminal and the external terminal are fixed to the lid body in a state of being electrically insulated via a gasket,
The external terminal has a stepped portion at a portion connected to the internal terminal,
The portion connected to the internal terminal is thin enough to fit into the opening of the internal terminal, and the portion connected to the internal terminal by caulking is welded .

本発明の外部端子を用いることによって、かしめ寸法の変動を吸収し、封止性の確保が容易な構造となる。   By using the external terminal of the present invention, it is possible to absorb the variation of the caulking dimension and to ensure the sealing performance.

外部端子に段差を設けることにより、かしめ寸法の変動は外部端子の変形により吸収され、ガスケットの圧縮は外部端子の段差部高さで決定されるため、かしめ寸法が安定し、封止性能が向上することができる。   By providing a step on the external terminal, fluctuations in the caulking dimension are absorbed by the deformation of the external terminal, and the compression of the gasket is determined by the height of the stepped part of the external terminal, thus stabilizing the caulking dimension and improving the sealing performance. can do.

本発明によると、封止性能が向上した電池を得ることができる。   According to the present invention, a battery with improved sealing performance can be obtained.

本発明の実施の形態における非水電解液二次電池は、
開口部を有する電池ケースに、正極板と負極板がセパレータを介して捲回された発電要素が収納され、前記電池ケースの前記開口部が蓋体で密封され、
前記発電要素から引き出されたタブと内部端子が電気的に接続され、
前記内部端子の開孔部に外部端子がかしめにより接続され、
前記内部端子と前記外部端子が前記蓋体にガスケットを介して電気的に絶縁された状態で固定されており、
前記外部端子は、前記内部端子と接続する部分に段差部を有しており、
前記内部端子に接続する部分が前記内部端子の開孔部と嵌合する程度に細くなっている。
The non-aqueous electrolyte secondary battery in the embodiment of the present invention is
A battery case having an opening stores a power generation element in which a positive electrode plate and a negative electrode plate are wound through a separator, and the opening of the battery case is sealed with a lid,
The tab pulled out from the power generation element and the internal terminal are electrically connected,
An external terminal is connected to the opening of the internal terminal by caulking,
The internal terminal and the external terminal are fixed to the lid body in a state of being electrically insulated via a gasket,
The external terminal has a stepped portion at a portion connected to the internal terminal,
The portion connected to the internal terminal is thin enough to fit into the opening of the internal terminal.

こうすることにより、かしめ寸法の変動は外部端子の変形により吸収され、ガスケットの圧縮は外部端子の段差部高さで決定されるため、かしめ寸法が安定し、封止性能が向上することができる。   By doing so, variation in the caulking dimension is absorbed by deformation of the external terminal, and compression of the gasket is determined by the height of the stepped portion of the external terminal, so that the caulking dimension is stabilized and the sealing performance can be improved. .

本発明の好ましい実施の形態における非水電解液二次電池は、前記外部端子と内部端子のかしめにより接続された部分が溶接されている。   In the nonaqueous electrolyte secondary battery according to a preferred embodiment of the present invention, a portion connected by caulking of the external terminal and the internal terminal is welded.

こうすることにより、内部抵抗の変動を抑制することが出来る。   By so doing, fluctuations in internal resistance can be suppressed.

以下本発明を実施するための最良の形態について、図面を参照しながら説明する。ただし、本発明は以下に説明する実施例に限定されるものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the present invention is not limited to the examples described below.

(実施の形態1)
図1は本発明の一実施の形態におけるリチウムイオン二次電池を示す切断正面図、図2はその電池の切断右側面図である。電池ケース1は、アルミニウム合金からできており、上端に開口部を有する角形外装缶であり、正極端子を兼ねている。また、電池ケース1には表面にニッケルめっきを施した鉄を用いても良く、その場合は負極端子を兼ねる。
(Embodiment 1)
FIG. 1 is a cut front view showing a lithium ion secondary battery according to an embodiment of the present invention, and FIG. 2 is a cut right side view of the battery. The battery case 1 is made of an aluminum alloy, is a rectangular outer can having an opening at the upper end, and also serves as a positive electrode terminal. Further, the battery case 1 may be made of iron whose surface is nickel-plated, and in that case, also serves as a negative electrode terminal.

電池ケース1の内部には、発電要素2が絶縁テープなど(図示せず)によって底面に対し電気的絶縁状態で収納されており、発電要素2の上端部にはこれの上方の構成部材と電気的に絶縁するための上部絶縁板3が挿入されている。発電要素2は、図示を省略しているが、正極板と負極板とをセパレータを介在して非真円形の渦巻形状に捲回した後、プレス成形にて角形の電池ケース1に対応する扁平状に変形して作製し、その捲回軸が電池ケース1の開口部面に垂直となるように電池ケース内に挿入したものである。   Inside the battery case 1, a power generation element 2 is housed in an electrically insulated state with respect to the bottom surface by means of insulating tape or the like (not shown). An upper insulating plate 3 is inserted for electrical insulation. Although not shown, the power generation element 2 is flattened corresponding to the rectangular battery case 1 by press molding after winding the positive electrode plate and the negative electrode plate into a non-circular spiral shape with a separator interposed therebetween. The winding shaft is inserted into the battery case so that its winding axis is perpendicular to the opening surface of the battery case 1.

正極板は、従来公知の方法で作製すれば良く、アルミニウム製箔の集電体の両面に正極活物質、導電剤、および結着剤を溶剤に混練分散させたペーストを塗布、乾燥、そして圧
延して作製する。
The positive electrode plate may be prepared by a conventionally known method. A paste obtained by kneading and dispersing a positive electrode active material, a conductive agent, and a binder in a solvent is applied to both surfaces of an aluminum foil current collector, dried, and rolled. To make.

正極活物質、導電剤、結着剤、および溶剤は従来公知の物質を使用してもよい。本実施の形態においては、正極活物質としては、コバルト酸リチウム(LiCoO2)、導電剤としてはアセチレンブラック、結着剤としてはポリフッ化ビニリデン(PVDF)およびその共重合体、そして溶剤としてはN−メチル−2−ピロリドン(NMP)が好ましい。負極板は、従来公知の方法で作製すれば良く、銅製箔の集電体の両面に負極活物質、導電剤、および結着剤を溶剤に混練分散させたペーストを、塗布、乾燥、そして圧延して作製する。 As the positive electrode active material, the conductive agent, the binder, and the solvent, conventionally known materials may be used. In this embodiment, the positive electrode active material is lithium cobaltate (LiCoO 2 ), the conductive agent is acetylene black, the binder is polyvinylidene fluoride (PVDF) and its copolymer, and the solvent is N -Methyl-2-pyrrolidone (NMP) is preferred. The negative electrode plate may be produced by a conventionally known method. A paste obtained by kneading and dispersing a negative electrode active material, a conductive agent, and a binder in a solvent is applied to both sides of a copper foil current collector, dried, and rolled. To make.

負極活物質、導電剤、結着剤、および溶剤は従来公知の物質を使用してもよい。本実施の形態においては、負極活物質は黒鉛などの炭素材料、導電剤はアセチレンブラック、結着剤はPVDFおよびその共重合体、そして溶剤はNMPが好ましい。   A conventionally well-known substance may be used for a negative electrode active material, a electrically conductive agent, a binder, and a solvent. In the present embodiment, the negative electrode active material is preferably a carbon material such as graphite, the conductive agent is acetylene black, the binder is PVDF and a copolymer thereof, and the solvent is NMP.

セパレータは、ポリエチレン(PE)樹脂、ポリプロピレン樹脂などの微多孔性ポリオレフィン系樹脂が好ましい。   The separator is preferably a microporous polyolefin resin such as polyethylene (PE) resin or polypropylene resin.

発電要素2のプレス成型の方法は、極板に用いた結着剤の軟化点以下の温度に加温し、1.0MPa〜7.0MPaの圧力でプレスする。   The method of press-molding the power generating element 2 is heated to a temperature equal to or lower than the softening point of the binder used for the electrode plate and pressed at a pressure of 1.0 MPa to 7.0 MPa.

そして、電池ケース1の開口部は、金属製の蓋体4が嵌め込まれた後に、溶接部5をレーザー溶接することにより封口されている。さらに蓋体4は安全弁6を有している。安全弁6も従来公知のもので良いが、電池内部のガス圧が異常に高くなった時、破壊によりガスを放出する非復帰型のもので、具体的にはクラッド板式や刻印式の方が安価で、蓋体4が薄くても設置できるので好ましい。また、蓋体4には正極タブ7が接続されている。   The opening of the battery case 1 is sealed by laser welding the welded portion 5 after the metal lid 4 is fitted. Further, the lid 4 has a safety valve 6. The safety valve 6 may be a conventionally known one, but when the gas pressure inside the battery becomes abnormally high, it is a non-returning type that releases gas by destruction. Specifically, the clad plate type or the stamp type is cheaper Therefore, it is preferable because the lid 4 can be installed even if it is thin. A positive electrode tab 7 is connected to the lid 4.

さらに、内部端子8の開孔部に、リベット状の外部端子9を挿通してかしめることにより蓋体4に固定されている。内部端子8の開孔部は、外部端子9の軸先端を通り、段差部で留まるようになっている。内部端子8は下部ガスケット10と上部ガスケット11により蓋体4と電気的に絶縁されている。図2に示すように、内部端子8には上部絶縁板3の隙間20から引き出された負極タブ12が接続されている。下部ガスケット10とコの字状の上部絶縁板3が負極タブ12を閉塞するように配置されている。   Furthermore, the rivet-shaped external terminal 9 is inserted into the opening portion of the internal terminal 8 and caulked to be fixed to the lid body 4. The opening portion of the internal terminal 8 passes through the shaft tip of the external terminal 9 and stays at the stepped portion. The internal terminal 8 is electrically insulated from the lid 4 by the lower gasket 10 and the upper gasket 11. As shown in FIG. 2, a negative electrode tab 12 drawn out from the gap 20 of the upper insulating plate 3 is connected to the internal terminal 8. A lower gasket 10 and a U-shaped upper insulating plate 3 are arranged so as to close the negative electrode tab 12.

内部端子8と外部端子9の材質は、端子同士の電気的接続を容易にするために、ステンレスや表面にニッケルめっきを施した鉄、あるいは成形性のよい銅または銅合金を用いることが好ましい。また、外部端子と主にニッケルである外部リード、および内部端子と負極タブを溶接する場合にも上記材質が好ましい。上部ガスケット11は、電池ケース1と蓋体4とを嵌合してレーザー溶接する際の熱の影響による非水電解液の漏液を防ぐため、耐熱温度の高いフッ素樹脂を主材料に用いることが好ましい。一方、下部ガスケット10は、前述した上部ガスケット11と同じ理由により、耐熱温度の高いフッ素樹脂を主材料に用いることが好ましく、また、電池幅のサイズや形状によっては、ポリプロピレン(PP)やポリフェニレンサルファイド(PPS)などの樹脂を使い分けて用いるのが好ましい。   As the material of the internal terminal 8 and the external terminal 9, it is preferable to use stainless steel, iron whose surface is nickel-plated, or copper or copper alloy with good formability in order to facilitate electrical connection between the terminals. The above materials are also preferable when welding the external terminal and the external lead, which is mainly nickel, and the internal terminal and the negative electrode tab. The upper gasket 11 uses a fluororesin having a high heat resistance temperature as a main material in order to prevent leakage of the non-aqueous electrolyte due to the influence of heat when the battery case 1 and the lid 4 are fitted and laser-welded. Is preferred. On the other hand, for the same reason as the upper gasket 11 described above, the lower gasket 10 is preferably made of a fluororesin having a high heat resistance as a main material. Depending on the size and shape of the battery width, polypropylene (PP) or polyphenylene sulfide is preferable. It is preferable to use different resins such as (PPS).

蓋体4には、非水電解液を注入するための注液孔13が設けられている。電池ケース1内に、注液孔14から非水電解液(図示せず)が注入される。非水電解液は、非水溶媒と電解質塩からなり、非水溶媒は主成分としては環状カーボネートおよび鎖状カーボネートの混合物からなる。環状カーボネートはエチレンカーボネート(EC)が好ましく、鎖状カーボネートはジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)から選ばれる少なくとも一種が好ましい。電解
質塩は、例えば、電子吸引性の強いリチウム塩を使用し、具体的にはLiPF6、LIBF4、LiCF3SO3、LiN(SO2CF32、およびLiN(SO2252等が挙げられる。これらの電解質塩は、二種類以上組み合わせて使用しても良く、非水溶媒に対して0.5〜1.5mol/Lの濃度で溶解させるのが好ましい。
The lid 4 is provided with a liquid injection hole 13 for injecting a nonaqueous electrolytic solution. A nonaqueous electrolytic solution (not shown) is injected into the battery case 1 from the injection hole 14. The nonaqueous electrolytic solution is composed of a nonaqueous solvent and an electrolyte salt, and the nonaqueous solvent is composed of a mixture of a cyclic carbonate and a chain carbonate as main components. The cyclic carbonate is preferably ethylene carbonate (EC), and the chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). As the electrolyte salt, for example, a lithium salt having a strong electron-withdrawing property is used. Specifically, LiPF 6 , LIBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 are used. ) 2 etc. These electrolyte salts may be used in combination of two or more, and are preferably dissolved at a concentration of 0.5 to 1.5 mol / L in the non-aqueous solvent.

非水電解液の注入が終了すると、注液孔13は、アルミニウム板とゴム栓とを一体成型した封栓14を嵌め込み、レーザー溶接で密閉封止される。   When the injection of the non-aqueous electrolyte is finished, the injection hole 13 is fitted with a sealing plug 14 formed by integrally molding an aluminum plate and a rubber plug, and hermetically sealed by laser welding.

なお、実施例において、リチウムイオン二次電池を例に挙げたが、発電要素自体はアルカリ蓄電池等その他の電池系であっても構わない。
また、断面がコの字状の上部絶縁板を用いた例を挙げたが、コの字形状の下部ガスケットと平板の上部絶縁板との組み合わせでも、さらに他の形状であっても負極タブとケースが絶縁される構造であれば構わない。
In the embodiment, the lithium ion secondary battery is taken as an example, but the power generation element itself may be another battery system such as an alkaline storage battery.
In addition, although an example using an upper insulating plate having a U-shaped cross section was given, the negative electrode tab may be used in combination with a U-shaped lower gasket and a flat upper insulating plate, or in other shapes. Any structure may be used as long as the case is insulated.

(実施の形態2)
図3は本発明の別の実施の形態における封止構造部分の切断正面図である。内部端子8の開孔部に、リベット状の外部端子9を挿通してかしめることにより蓋体4に固定されている。その後、外部端子9と内部端子8を溶接している。こうすることにより、内部抵抗の変動を抑制することが出来る。
(Embodiment 2)
FIG. 3 is a cut front view of a sealing structure portion according to another embodiment of the present invention. A rivet-shaped external terminal 9 is inserted into the opening portion of the internal terminal 8 and caulked to be fixed to the lid body 4. Thereafter, the external terminal 9 and the internal terminal 8 are welded. By so doing, fluctuations in internal resistance can be suppressed.

電池内部に部品の接触で導通を保つ場合、より信頼性を向上するために溶接することが望ましい。図5に段差のない中実の外部端子209をかしめた、封止構造部分の切断正面図を示す。段差部のない中実リベット形状である外部端子209を用いて、内部端子208の開孔部を外部端子209に挿通してかしめる場合、外部端子209の先端径は内部端子208の開孔部径より0.01〜0.2mm程度大きくなる。段差部のない外部端子を用いてかしめた後、外部端子と内部端子との界面をレーザー溶接した場合、前述したように外部端子209の先端径と内部端子208の開孔部径の差が極めて小さいため、レーザー光が外部端子209と内部端子208の隅間に入り込み、下部ガスケット210または上部ガスケット211を溶融し、電池として気密性が低下することとなる。そこで、本発明による構造では外部端子9と内部端子8の界面をレーザー溶接した場合、溶接部分は内部端子8の上であり、溶け込みが深くなっても外部端子9の段差部(内部端子の留まる面)となり、ガスケットの溶融は見られず、封止性も低下しない。ここで、段付外部端子の先端径と根元径の差は0.2mm以上あることが好ましい。   In the case of maintaining continuity by contact of components inside the battery, it is desirable to perform welding in order to improve reliability. FIG. 5 shows a cut front view of a sealing structure portion in which a solid external terminal 209 without a step is caulked. When the external terminal 209 having a solid rivet shape without a stepped portion is used and the opening portion of the internal terminal 208 is inserted and caulked through the external terminal 209, the tip diameter of the external terminal 209 is the opening portion of the internal terminal 208. About 0.01 to 0.2 mm larger than the diameter. After caulking with an external terminal having no stepped portion, when the interface between the external terminal and the internal terminal is laser-welded, as described above, the difference between the tip diameter of the external terminal 209 and the aperture diameter of the internal terminal 208 is extremely large. Since it is small, the laser light enters between the corners of the external terminal 209 and the internal terminal 208, melts the lower gasket 210 or the upper gasket 211, and the airtightness of the battery is lowered. Therefore, in the structure according to the present invention, when the interface between the external terminal 9 and the internal terminal 8 is laser-welded, the welded portion is on the internal terminal 8 and the stepped portion of the external terminal 9 (the internal terminal stays) even if the penetration becomes deep. Surface), the gasket is not melted, and the sealing performance is not lowered. Here, the difference between the tip diameter and the root diameter of the stepped external terminal is preferably 0.2 mm or more.

本発明の電池は、高エネルギー密度の密閉型電池を使用する電子機器等に有用である。例えば、携帯電話やノート型パソコン等の民生用モバイルツールの主電源、電動ドライバー等のパワーツールの主電源、およびEV自動車等の産業用主電源の用途に適している。   The battery of the present invention is useful for an electronic device using a high energy density sealed battery. For example, it is suitable for use as a main power source for consumer mobile tools such as mobile phones and laptop computers, a main power source for power tools such as an electric screwdriver, and an industrial main power source such as an EV car.

本発明の実施の形態1に示す電池の切断正面図Cutting front view of the battery shown in Embodiment 1 of the present invention 本発明の実施の形態1に示す電池の切断右側面図Cut right side view of the battery shown in Embodiment 1 of the present invention 本発明の実施の形態2に示す封止構造部分の切断正面図Cutting front view of the sealing structure shown in Embodiment 2 of the present invention 従来の電池における封止構造部分の切断正面図(中空外部端子)Cutting front view of a sealing structure in a conventional battery (hollow external terminal) 従来の電池における封止構造部分の切断正面図(中実外部端子、溶接)Cutting front view of the sealing structure in a conventional battery (solid external terminal, welding)

符号の説明Explanation of symbols

1 電池ケース
2 発電要素
3 上部絶縁板
4 蓋体
5 溶接部
6 安全弁
7 正極タブ
8 内部端子
9 外部端子
10 下部ガスケット
11 上部ガスケット
12 負極タブ
13 注液孔
14 封栓
20 上部絶縁板の隙間
21 外部端子と内部端子の溶接部
104 従来例(中空外部端子)の蓋体
108 従来例(中空外部端子)内部端子
109 従来例(中空外部端子)の外部端子(中空リベット)
110 従来例(中空外部端子)の下部ガスケット
111 従来例(中空外部端子)の上部ガスケット
204 従来例(中実外部端子)の蓋体
208 従来例(中実外部端子)の内部端子
209 従来例(中実外部端子)の外部端子(中実リベット)
210 従来例(中実外部端子)の下部ガスケット
211 従来例(中実外部端子)の上部ガスケット
DESCRIPTION OF SYMBOLS 1 Battery case 2 Power generation element 3 Upper insulating plate 4 Cover body 5 Welding part 6 Safety valve 7 Positive electrode tab 8 Internal terminal 9 External terminal 10 Lower gasket 11 Upper gasket 12 Negative electrode tab 13 Injection hole 14 Sealing plug 20 Upper insulating plate gap 21 Welded part of external terminal and internal terminal 104 Cover of conventional example (hollow external terminal) 108 Conventional example (hollow external terminal) Internal terminal 109 External terminal of conventional example (hollow external terminal) (hollow rivet)
110 Conventional gasket (hollow external terminal) lower gasket 111 Conventional gasket (hollow external terminal) upper gasket 204 Lid of conventional example (solid external terminal) 208 Internal terminal of conventional example (solid external terminal) 209 Conventional example ( External terminal (solid rivet)
210 Lower gasket of conventional example (solid external terminal) 211 Upper gasket of conventional example (solid external terminal)

Claims (2)

開口部を有する電池ケースに、正極板と負極板がセパレータを介して捲回された発電要素が収納され、前記電池ケースの前記開口部が蓋体で密封された電池において、
前記発電要素から引き出されたタブと内部端子が電気的に接続され、
前記内部端子の開孔部に外部端子がかしめにより接続され、
前記内部端子と前記外部端子が前記蓋体にガスケットを介して電気的に絶縁された状態で固定されている電池であって、
前記外部端子は、前記内部端子と接続する部分に段差部を有しており、
前記内部端子に接続する部分が前記内部端子の開孔部と嵌合する程度に細くなっており、前記内部端子とかしめにより接続した部分が溶接されている電池。
In a battery case having an opening, a power generation element in which a positive electrode plate and a negative electrode plate are wound via a separator is housed, and the opening of the battery case is sealed with a lid,
The tab pulled out from the power generation element and the internal terminal are electrically connected,
An external terminal is connected to the opening of the internal terminal by caulking,
The battery in which the internal terminal and the external terminal are fixed to the lid body in a state of being electrically insulated via a gasket,
The external terminal has a stepped portion at a portion connected to the internal terminal,
A battery in which a portion connected to the internal terminal is thin enough to fit into an opening of the internal terminal, and a portion connected to the internal terminal by caulking is welded.
前記外部端子において、先端径と根元径との差は0.2mm以上である請求項1記載の電池。The battery according to claim 1, wherein in the external terminal, a difference between the tip diameter and the root diameter is 0.2 mm or more.
JP2006008451A 2006-01-17 2006-01-17 battery Active JP5044933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008451A JP5044933B2 (en) 2006-01-17 2006-01-17 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008451A JP5044933B2 (en) 2006-01-17 2006-01-17 battery

Publications (2)

Publication Number Publication Date
JP2007193966A JP2007193966A (en) 2007-08-02
JP5044933B2 true JP5044933B2 (en) 2012-10-10

Family

ID=38449516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008451A Active JP5044933B2 (en) 2006-01-17 2006-01-17 battery

Country Status (1)

Country Link
JP (1) JP5044933B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076394A (en) * 2007-09-21 2009-04-09 Toshiba Corp Battery
JP2009080975A (en) * 2007-09-25 2009-04-16 Toshiba Corp Manufacturing method of battery
WO2020066241A1 (en) * 2018-09-25 2020-04-02 パナソニック株式会社 Secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173950A (en) * 1983-03-19 1984-10-02 Hitachi Maxell Ltd Sealed battery
JP3043912B2 (en) * 1992-09-25 2000-05-22 旭化成工業株式会社 Positive electrode pin structure and lithium ion battery having the same
JPH0831402A (en) * 1994-07-13 1996-02-02 A T Battery:Kk Sealed electrode terminal structure
JPH09320553A (en) * 1996-05-29 1997-12-12 Matsushita Electric Ind Co Ltd Sealed battery and manufacture of seal body used therefor
KR19990031352A (en) * 1997-10-10 1999-05-06 손욱 Battery safety device
JP2000113865A (en) * 1998-10-02 2000-04-21 At Battery:Kk Secondary battery
JP2000348709A (en) * 1999-06-03 2000-12-15 Toshiba Corp Battery and its manufacture
JP3571262B2 (en) * 1999-12-22 2004-09-29 Necトーキン栃木株式会社 Sealed battery
JP4201301B2 (en) * 2000-01-24 2008-12-24 Necトーキン株式会社 Sealed battery
JP3736789B2 (en) * 2000-04-10 2006-01-18 Necトーキン栃木株式会社 Sealed battery

Also Published As

Publication number Publication date
JP2007193966A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
KR100995417B1 (en) Secondary Battery
JP6631626B2 (en) Cylindrical battery, current collecting member used therefor, and method of manufacturing the same
JP6801645B2 (en) Cylindrical battery
JP5173095B2 (en) Sealed battery
US20120148884A1 (en) Secondary battery
JP3891047B2 (en) battery
JP2010033949A (en) Battery
JP6208258B2 (en) Prismatic secondary battery
JP5958712B2 (en) Square battery
JP6097030B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR101871231B1 (en) Lithium ion secondary battery
JPWO2012147782A1 (en) Sealed battery and method for manufacturing the same
JP2011210390A (en) Battery and battery module
JP6241676B2 (en) Sealed battery
JP2014035938A (en) Non-aqueous electrolyte secondary battery
JP2013197102A (en) Secondary battery
JP6037713B2 (en) Nonaqueous electrolyte secondary battery
JP5951404B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6451985B2 (en) Nonaqueous electrolyte secondary battery
JP6241529B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5044933B2 (en) battery
JP2009289589A (en) Battery's complex lid, sealed battery using the same, and method of manufacturing battery's complex lid
JP2012124007A (en) Secondary battery, and method of manufacturing the same
JP2012155957A (en) Cylindrical lithium-ion battery
JP6213615B2 (en) Method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5044933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151