JP2008305646A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2008305646A
JP2008305646A JP2007150883A JP2007150883A JP2008305646A JP 2008305646 A JP2008305646 A JP 2008305646A JP 2007150883 A JP2007150883 A JP 2007150883A JP 2007150883 A JP2007150883 A JP 2007150883A JP 2008305646 A JP2008305646 A JP 2008305646A
Authority
JP
Japan
Prior art keywords
battery
insulating gasket
rivet
mounting hole
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007150883A
Other languages
Japanese (ja)
Inventor
Nobukazu Suzuki
信和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007150883A priority Critical patent/JP2008305646A/en
Publication of JP2008305646A publication Critical patent/JP2008305646A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery capable of preventing liquid leakage when subjected to a heat cycle. <P>SOLUTION: The battery includes: a container 1; a battery cap 5 which is disposed in an opening of the container 1 and has a mounting hole 11; an insulating gasket 7 having a cylindrical portion 16 inserted into the mounting hole 11 of the battery cap 5, and a collar 15 which is formed on an end of the cylindrical portion 16 and covers the periphery of the mounting hole 11 of the battery cap 5; and a rivet 8 for an output terminal of the positive or negative electrode, provided with a shank swaged and fixed to the battery cap 5 in the state of being inserted into the cylindrical portion 16 of the insulating gasket 7 and a head 18 which is formed on an end of the shank and is disposed on the collar 15 of the insulating gasket 7, wherein a surface coming into contact with the collar 15 on the head 18 of the rivet 8 is formed with a groove 21 which has a loop shape along the border line of the outside of the surface or a loop shape to be a concentric pattern with respect to the shank. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電池に関するものである。   The present invention relates to a battery.

近年、電子機器の発達に伴い、小型で軽量かつエネルギー密度が高く、更に繰り返し充放電が可能な非水電解質二次電池としてリチウム二次電池が発達してきた。また、最近では、ハイブリッド車や電気自動車に搭載する車載用二次電池、電力平準化に使用される電力貯蔵用二次電池として好適な、急速充電および高出力放電が可能でかつサイクル性能に優れた非水電解質二次電池の開発が要望されている。このような二次電池として、例えば特許文献1に記載されているような、負極活物質として小粒径(一次粒子の平均粒子径が1μm以下)のリチウムチタン酸化物(リチウムチタン複合酸化物)を用いた、急速充電および高出力放電が可能でかつサイクル性能に優れた非水電解質二次電池の開発がなされている。   In recent years, with the development of electronic devices, lithium secondary batteries have been developed as non-aqueous electrolyte secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged. Recently, it is suitable for in-vehicle secondary batteries mounted on hybrid cars and electric cars, and secondary batteries for power storage used for power leveling. Development of non-aqueous electrolyte secondary batteries is also desired. As such a secondary battery, for example, as described in Patent Document 1, lithium titanium oxide (lithium titanium composite oxide) having a small particle size (average particle size of primary particles is 1 μm or less) as a negative electrode active material. A non-aqueous electrolyte secondary battery that can be rapidly charged and discharged with high power and has excellent cycle performance has been developed.

一方、上記のような非水電解質二次電池を収納する外装部材として、金属缶が実用化されている。このような密閉型の電池においては、電池ケースの開口を蓋で密封する。蓋には、出力端子用リベットがプラスチック製のガスケットを介して、蓋壁を内外に貫通する状態で固定される。また、ガスケットはリベットと蓋との直接接触を避ける絶縁体を兼ねる。この場合、リベットはガスケットの外面に露出する頭部と、ガスケットに内嵌する軸部とを有し、軸部の下端をカシメることによって、ガスケットと一体化され、蓋に固定される。   On the other hand, a metal can has been put into practical use as an exterior member for housing the nonaqueous electrolyte secondary battery as described above. In such a sealed battery, the opening of the battery case is sealed with a lid. An output terminal rivet is fixed to the lid through a plastic gasket so as to penetrate the lid wall inward and outward. The gasket also serves as an insulator that avoids direct contact between the rivet and the lid. In this case, the rivet has a head portion exposed on the outer surface of the gasket and a shaft portion fitted into the gasket, and is crimped to the lower end of the shaft portion so as to be integrated with the gasket and fixed to the lid.

しかしながら、軸部及び軸挿入穴の仕上り寸法のバラツキや、カシメ時の軸部の変形量のバラツキ等によって、軸部の軸挿入穴に対する密着度合いが不足してシール不良を生じ、液漏れの原因になることがあった。特に、例えば−30℃〜80℃の温度範囲において低温環境下での使用と高温環境下での使用が繰り返し交互に行われるヒートサイクルがかかった場合は、ガスケットの膨張収縮によるクリープが生じ封止性能の低下が見られた。   However, due to variations in the finished dimensions of the shaft and the shaft insertion hole, variations in the amount of deformation of the shaft during caulking, etc., the degree of close contact with the shaft insertion hole of the shaft is insufficient, resulting in a seal failure and causing liquid leakage There was a case. In particular, when a heat cycle in which a use in a low temperature environment and a use in a high temperature environment are repeated alternately in a temperature range of, for example, −30 ° C. to 80 ° C., creep occurs due to expansion and contraction of the gasket. A decrease in performance was observed.

特許文献2,3に記載の密閉型電池は、電池缶の極性と異なる極性の電極端子を絶縁性部材を介してかしめによって取り付けた構成を有している。この密閉型電池の密閉性を向上させるため、特許文献2,3では、次に説明するような電極端子を使用している。特許文献2で用いられている電極端子は、つば部分とつば部分に結合する円柱部から構成された電極導出ピンであって、表面の絶縁性部材との接触部分に、円柱部とつば部との会合部よりも径が大きな部分を有している。このような電極導出ピンは、かしめの際の変形量が少なくて済むため、これが挿入される各部材(内部絶縁板、金属板及び外部絶縁板)の変形量も小さなものとなり、電極導出ピンと各部材間の気密性が良好になるとしている。一方、特許文献3では、電極導出ピンのフランジ部における絶縁性部材との接触面に先端が鋭角な凸部と凹部を形成することにより、電極導出ピンのフランジ部を絶縁性部材に食い込ませ、電極導出ピンをかしめによって取り付ける際の絶縁性部材の位置ずれを解消している。   The sealed batteries described in Patent Documents 2 and 3 have a configuration in which electrode terminals having a polarity different from the polarity of the battery can are attached by caulking through an insulating member. In order to improve the sealing performance of this sealed battery, Patent Documents 2 and 3 use electrode terminals as described below. The electrode terminal used in Patent Document 2 is an electrode lead-out pin composed of a collar portion and a cylindrical portion coupled to the collar portion, and the cylindrical portion and the collar portion are in contact with the insulating member on the surface. It has a part whose diameter is larger than the meeting part. Since such an electrode lead-out pin requires only a small amount of deformation at the time of caulking, the amount of deformation of each member (inner insulating plate, metal plate and external insulating plate) into which the electrode is inserted becomes small. It is said that the airtightness between the members is improved. On the other hand, in Patent Document 3, the flange portion of the electrode lead-out pin is bitten into the insulating member by forming a convex portion and a concave portion having a sharp tip at the contact surface with the insulating member in the flange portion of the electrode lead-out pin, The displacement of the insulating member when the electrode lead-out pin is attached by caulking is eliminated.

しかしながら、特許文献2に記載の密閉型電池によると、電極導出ピンの上下から加圧するかしめ固定では、常に径の大きな部分が拡径するとは限らず、封止強度のばらつきが大きくなり、ヒートサイクル時の耐漏液特性が十分でない。一方、特許文献3では、電極導出ピンのフランジ部を絶縁性部材に食い込ませるために、凸部及び凹部の形状を鋭角な形状としていることから、絶縁性部材に傷がつきやすく、やはりヒートサイクル時の耐漏液特性が十分でない。
特開2005−123183 特開2001−185100 特開2003−173767
However, according to the sealed battery described in Patent Document 2, in the caulking and fixing by pressing from above and below the electrode lead-out pin, the large-diameter portion does not always expand, and the variation in the sealing strength increases, resulting in a heat cycle. Insufficient liquid leakage resistance. On the other hand, in Patent Document 3, in order to cause the flange portion of the electrode lead-out pin to bite into the insulating member, the shape of the convex portion and the concave portion is an acute shape. Insufficient liquid leakage resistance.
JP-A-2005-123183 JP 2001-185100 A JP 2003-173767 A

本発明は、ヒートサイクルが施された際の漏液を防止することが可能な電池を提供することを目的とする。   An object of this invention is to provide the battery which can prevent the liquid leakage at the time of performing a heat cycle.

本発明に係る電池は、容器と、
前記容器内に収納された正極及び負極と、
前記容器の開口部に配置され、取付穴を有する電池蓋と、
前記電池蓋の前記取付穴に挿入された筒状部と、前記筒状部の一端に形成され、前記電池蓋の前記取付穴の周縁を覆う鍔部とを有する絶縁ガスケットと、
前記絶縁ガスケットの前記筒状部に挿入された状態で前記電池蓋にかしめ固定された軸部と、前記軸部の一端に形成され、前記絶縁ガスケットの前記鍔部上に配置された頭部とを有する、前記正極または前記負極の出力端子用リベットと
を具備する電池であって、
前記リベットの前記頭部における前記鍔部と接する面には、この面の外側の輪郭線に沿った環状か、前記軸部と同心円となる環状の溝部が形成されていることを特徴とする。
The battery according to the present invention includes a container,
A positive electrode and a negative electrode housed in the container;
A battery lid disposed in the opening of the container and having a mounting hole;
An insulating gasket having a cylindrical portion inserted into the mounting hole of the battery lid, and a flange formed at one end of the cylindrical portion and covering a peripheral edge of the mounting hole of the battery lid;
A shaft portion that is caulked and fixed to the battery lid in a state of being inserted into the cylindrical portion of the insulating gasket; and a head portion that is formed at one end of the shaft portion and disposed on the flange portion of the insulating gasket; A battery comprising the positive electrode or the negative electrode output terminal rivet,
The surface of the rivet that is in contact with the flange portion is formed with an annular groove portion that is concentric with the shaft portion or an annular shape along a contour line outside the surface.

本発明によれば、ヒートサイクルが施された際の漏液を防止することが可能な電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the battery which can prevent the liquid leakage at the time of performing a heat cycle can be provided.

本発明の実施形態に係る非水電解質電池を図1〜図5を参照して説明する。図1及び図2に示すように、上面が開口している縦長角箱状の電池ケース(容器)1内には、電極体2および電解液が収納されている。電池ケース1は、アルミニウム板もしくはアルミニウム合金板を深絞り加工することにより形成され、正極側の出力端子を兼ねている。電極体2は、LiCoO2のようなリチウム含有コバルト酸化物を活物質とするシート状の正極と、黒鉛を活物質とするシート状の負極とをセパレータを間にして渦巻状に巻回した後、全体をその横断面が電池ケース1の横断面形状と同じ四角形状となるように加圧することにより形成される。 A nonaqueous electrolyte battery according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG.1 and FIG.2, the electrode body 2 and electrolyte solution are accommodated in the battery case (container) 1 of the oblong box shape which the upper surface opened. The battery case 1 is formed by deep drawing an aluminum plate or an aluminum alloy plate and also serves as an output terminal on the positive electrode side. The electrode body 2 is obtained by winding a sheet-like positive electrode using a lithium-containing cobalt oxide such as LiCoO 2 as an active material and a sheet-like negative electrode using graphite as an active material in a spiral shape with a separator interposed therebetween. The whole is formed by pressing so that the cross section thereof is the same square shape as the cross section of the battery case 1.

正極及び負極の活物質は、上記種類に限定されるものではなく、例えば、正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物(例えば、LiMn24、LiMnO2)、リチウム含有ニッケル酸化物、(例えば、LiNiO2)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.22)、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。一方、負極活物質としては、例えば、黒鉛以外の黒鉛質材料もしくは炭素質材料(例えば、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブ等)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金等)、リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)等を挙げることができる。また、セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。 The active materials for the positive electrode and the negative electrode are not limited to the above types. For example, as the positive electrode active material, various oxides such as manganese dioxide, lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2). ), Lithium-containing nickel oxide (eg, LiNiO 2 ), lithium-containing nickel cobalt oxide (eg, LiNi 0.8 Co 0.2 O 2 ), lithium-containing iron oxide, lithium-containing vanadium oxide, titanium disulfide, Examples include chalcogen compounds such as molybdenum disulfide. On the other hand, examples of the negative electrode active material include graphite materials or carbonaceous materials other than graphite (for example, coke, carbon fiber, spherical carbon, pyrolytic vapor phase carbonaceous material, resin fired body, etc.), chalcogen compounds (for example, two (E.g., titanium sulfide, molybdenum disulfide, niobium selenide, etc.), light metals (eg, aluminum, aluminum alloys, magnesium alloys, lithium, lithium alloys, etc.), lithium titanium oxides (eg, spinel type lithium titanate), etc. Can do. Moreover, as a separator, a microporous film | membrane, a woven fabric, a nonwoven fabric, the laminated material of the same material or different materials among these, etc. can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer.

非水電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製される。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/Lとすることが望ましい。 The non-aqueous electrolyte is prepared by dissolving an electrolyte (for example, a lithium salt) in a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluoromethanesulfone. Examples thereof include lithium salts such as lithium acid lithium (LiCF 3 SO 3 ). The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / L to 3 mol / L.

正極導電タブ3は、電極体2の正極と電気的に接続されており、その先端が電極体2の上面から導出されている。一方、負極導電タブ4は、電極体2の負極と電気的に接続されており、その先端が電極体2の同じ上面から導出されている。   The positive electrode conductive tab 3 is electrically connected to the positive electrode of the electrode body 2, and the tip thereof is led out from the upper surface of the electrode body 2. On the other hand, the negative electrode conductive tab 4 is electrically connected to the negative electrode of the electrode body 2, and the tip thereof is led out from the same upper surface of the electrode body 2.

封口部材は、電池ケース1の上面開口を塞ぐ電池蓋5と、電池蓋5の裏面に配置されるプラスチック製の絶縁プレート6と、電池蓋5に対して絶縁ガスケット7を介してカシメ固定される負極の出力端子用リベット8と、リベット8と同時にカシメ固定されるワッシャー9とを具備する。   The sealing member is caulked and fixed to the battery lid 5 via the insulating gasket 7, the battery lid 5 closing the upper surface opening of the battery case 1, the plastic insulating plate 6 disposed on the back surface of the battery lid 5. A negative output terminal rivet 8 and a washer 9 that is fixed simultaneously with the rivet 8 are provided.

電池蓋5は、電池ケース1の上面開口部に配置され、例えば溶接等によって電池ケース1に固定されている。電池蓋5はアルミニウム板材もしくはアルミニウム合金板材を素材にしたプレス成型品からなり、上面の中央付近には、絶縁ガスケット用の受け座となる矩形状の凹部10が形成されている。電池蓋5の凹部10内には、取付穴11が円柱状に開口している。電池蓋5の一方の端(図2では右側)には、ケース内圧が一定値を越えると破断してガスを放出するベント12が形成されている。電池蓋5の他方の端(図2では左側)には、電解液注入口13が開口されている。電解液注入口13は、電解液注入後、プラグ14で閉止される。プラグ14は、電池蓋5に溶接により固定されている。   The battery lid 5 is disposed in the upper surface opening of the battery case 1 and is fixed to the battery case 1 by welding or the like, for example. The battery lid 5 is made of a press-molded product made of an aluminum plate material or an aluminum alloy plate material, and a rectangular recess 10 serving as a receiving seat for an insulating gasket is formed near the center of the upper surface. A mounting hole 11 is opened in a cylindrical shape in the recess 10 of the battery lid 5. A vent 12 is formed at one end of the battery lid 5 (on the right side in FIG. 2) to break and release gas when the case internal pressure exceeds a certain value. An electrolyte solution inlet 13 is opened at the other end of the battery lid 5 (left side in FIG. 2). The electrolyte solution inlet 13 is closed with a plug 14 after the electrolyte solution is injected. The plug 14 is fixed to the battery lid 5 by welding.

絶縁プレート6は、中央付近にリベットの軸部が挿入される円形穴6aが開口された矩形の絶縁樹脂板である。   The insulating plate 6 is a rectangular insulating resin plate having a circular hole 6a in which a shaft portion of a rivet is inserted near the center.

絶縁ガスケット7は、図2及び図3に示すように、電池蓋5の取付穴11の周縁を覆うフランジ部(鍔部)15と、フランジ部15の下面に突設した丸軸状のボス部(筒状部)16とを一体に形成したプラスチック成形品からなる。ボス部16の中央に、リベットの軸部が嵌合する軸挿入穴17を上下貫通状に設けてある。フランジ部15は、矩形状で、その外周部分に上方に立ち上がった外壁部15aを有している。   As shown in FIGS. 2 and 3, the insulating gasket 7 includes a flange portion (a flange portion) 15 that covers the periphery of the mounting hole 11 of the battery lid 5, and a round shaft-shaped boss portion that protrudes from the lower surface of the flange portion 15. (Cylindrical part) 16 is formed of a plastic molded product integrally formed. A shaft insertion hole 17 into which the shaft portion of the rivet is fitted is provided in the center of the boss portion 16 so as to penetrate vertically. The flange portion 15 has a rectangular shape, and has an outer wall portion 15a that rises upward at an outer peripheral portion thereof.

負極の出力端子用リベット8は、矩形状の頭部18と、頭部18より小径の軸部19及び軸部19の下端に形成されたカシメ軸部20を有する軸体とを備える。カシメ軸部20は下向きに開口する中空の筒軸状を呈している。かしめ固定を行う際、カシメ軸部20の筒壁の下半側を拡径しカシメ変形させる。頭部18におけるフランジ部15(外壁部15aを除く)と接する面(以下、シール面と称す)には、図3及び図4に示すように、軸部19,20に対して同心円となるように円環状の溝部21(図4において斜線で示す領域)が複数形成されている。溝部21は、図3に示すように、頭部18を径方向に切断した際に得られる断面が、矩形状をしている。リベット8は、アルミニウムあるいはアルミニウム合金から形成される。   The negative output terminal rivet 8 includes a rectangular head portion 18, a shaft portion 19 having a smaller diameter than the head portion 18, and a shaft body having a caulking shaft portion 20 formed at the lower end of the shaft portion 19. The caulking shaft portion 20 has a hollow cylindrical shaft shape that opens downward. When performing caulking and fixing, the lower half side of the cylindrical wall of the caulking shaft portion 20 is expanded in diameter and caulked and deformed. As shown in FIGS. 3 and 4, a surface (hereinafter referred to as a seal surface) in contact with the flange portion 15 (excluding the outer wall portion 15 a) in the head portion 18 is concentric with the shaft portions 19 and 20. A plurality of annular grooves 21 (regions indicated by hatching in FIG. 4) are formed. As shown in FIG. 3, the groove 21 has a rectangular cross section obtained when the head 18 is cut in the radial direction. The rivet 8 is formed from aluminum or an aluminum alloy.

なお、溝部21を軸部19,20に対して同心円状に形成する代わりに、シール面の外側の輪郭線に沿って環状に溝部を形成しても良い。この例を図5に示す。リベット8の頭部18の上面は、図2に示す通りに矩形状をしているため、頭部18のシール面の外側の輪郭線が描く形状は矩形である。この外側の輪郭線に沿って環状の溝部21が複数形成されている。   Instead of forming the groove portion 21 concentrically with respect to the shaft portions 19 and 20, the groove portion may be formed in an annular shape along the contour line outside the seal surface. An example of this is shown in FIG. Since the upper surface of the head portion 18 of the rivet 8 has a rectangular shape as shown in FIG. 2, the shape drawn by the contour line outside the sealing surface of the head portion 18 is rectangular. A plurality of annular grooves 21 are formed along the outer contour line.

ワッシャー9は、円環状で、例えば、アルミニウムあるいはアルミニウム合金から形成される。   The washer 9 has an annular shape and is made of, for example, aluminum or an aluminum alloy.

封口部材の組み付けは、以下の手順で行われる。図2に示すように、電池蓋5の凹部10内に絶縁ガスケット7のフランジ部15を配置すると共に、絶縁ガスケット7のボス部16を電池蓋5の取付穴11に挿入し、これらを嵌め合せる。絶縁ガスケット7のフランジ部15内にリベット8の頭部18を挿入し、さらにリベット8の軸部19を絶縁ガスケット7の軸挿入穴17に挿入し、嵌め合せる。その後、電池蓋5から下方に貫通した軸部19に絶縁プレート6を介して孔開きのワッシャー9を挿入する。次いで、リベット8の頭部18を下方に加圧してその位置を固定しながらカシメ軸部20の下端を上方に加圧すると、リベット8の軸部19及びカシメ軸部20が自由状態よりも僅かに拡径変形(膨張変形)する。その結果、リベット8の軸部19が絶縁ガスケット7の軸挿入穴17と密着し、電池蓋5の取付穴11と絶縁ガスケット7との隙間が封止される、つまり、リベット8が電池蓋5に絶縁ガスケット7を介してかしめ固定される。   The sealing member is assembled in the following procedure. As shown in FIG. 2, the flange portion 15 of the insulating gasket 7 is disposed in the concave portion 10 of the battery lid 5, and the boss portion 16 of the insulating gasket 7 is inserted into the mounting hole 11 of the battery lid 5 and these are fitted together. . The head portion 18 of the rivet 8 is inserted into the flange portion 15 of the insulating gasket 7, and the shaft portion 19 of the rivet 8 is further inserted into the shaft insertion hole 17 of the insulating gasket 7 and fitted. Thereafter, a perforated washer 9 is inserted through the insulating plate 6 into the shaft portion 19 penetrating downward from the battery lid 5. Next, when the head 18 of the rivet 8 is pressed downward to fix the position thereof and the lower end of the caulking shaft 20 is pressed upward, the shaft 19 and the caulking shaft 20 of the rivet 8 are slightly more than in the free state. The diameter is expanded (expanded). As a result, the shaft portion 19 of the rivet 8 comes into close contact with the shaft insertion hole 17 of the insulating gasket 7 and the gap between the mounting hole 11 of the battery lid 5 and the insulating gasket 7 is sealed. It is fixed by caulking through an insulating gasket 7.

上記の組立て体のワッシャー9に負極側の導電タブ4を溶接し、正極側の導電タブ3を電池蓋5の内面に溶接する。この後に、電池蓋5を電池ケース1の開口部に嵌め合わせた後、電池蓋5と電池ケース1との嵌合面を溶接して封止する。最後に、電解液注入口13から電解液を電池ケース1内に注入したのち、電解液注入口13にプラグ14を挿入して溶接し、電解液注入口13を封止することにより電池を完成する。   The conductive tab 4 on the negative electrode side is welded to the washer 9 of the assembly, and the conductive tab 3 on the positive electrode side is welded to the inner surface of the battery lid 5. Thereafter, the battery lid 5 is fitted into the opening of the battery case 1, and then the fitting surface between the battery lid 5 and the battery case 1 is welded and sealed. Finally, after injecting the electrolyte into the battery case 1 from the electrolyte inlet 13, the plug 14 is inserted into the electrolyte inlet 13 and welded, and the electrolyte inlet 13 is sealed to complete the battery. To do.

本発明者は鋭意研究の結果、ヒートサイクルで漏液が生じる原因が、以下の(1)、(2)にあることを究明した。   As a result of diligent research, the present inventor has determined that the cause of leakage in the heat cycle is the following (1) and (2).

(1)ヒートサイクルのように低温環境下での使用と高温環境下での使用が交互に行われると、絶縁ガスケット7は、高温環境下での膨張反応と低温環境下での収縮反応を交互に繰り返すこととなる。その結果、絶縁ガスケット7にクリープが生じる。   (1) When the use in a low temperature environment and the use in a high temperature environment are performed alternately as in a heat cycle, the insulating gasket 7 alternates between an expansion reaction in a high temperature environment and a shrinkage reaction in a low temperature environment. Will be repeated. As a result, creep occurs in the insulating gasket 7.

(2)絶縁ガスケット7に加わる応力は、リベット8の軸部19,20と電池蓋5の取付穴11との間に位置するボス部16で最も大きく、従来の構成によると、絶縁ガスケット7のフランジ部15にはほとんどかかっていない。それゆえ、従来の構成によると、応力はボス部16からフランジ部15に逃げやすく、その結果がボス部16において応力緩和として現れる。   (2) The stress applied to the insulating gasket 7 is the largest at the boss portion 16 located between the shaft portions 19 and 20 of the rivet 8 and the mounting hole 11 of the battery lid 5. The flange portion 15 is hardly applied. Therefore, according to the conventional configuration, the stress easily escapes from the boss portion 16 to the flange portion 15, and the result appears as stress relaxation in the boss portion 16.

ヒートサイクルを繰り返した際に、上記(1)、(2)の現象が生じる結果、絶縁ガスケット7のボス部16にかかっている応力が徐々に低下する。その結果、絶縁ガスケットの位置ずれが生じやすくなり、その際にできた隙間から漏液を生じる。   When the heat cycle is repeated, as a result of the above phenomena (1) and (2), the stress applied to the boss portion 16 of the insulating gasket 7 gradually decreases. As a result, the position of the insulating gasket is likely to shift, and liquid leakage occurs from the gap formed at that time.

本願発明では、リベット8の頭部18のシール面に、軸部19,20に対して同心円状に環状の溝部21を形成するか、あるいはシール面の外側の輪郭線に沿って環状に溝部21を複数形成する。ヒートサイクルでは、絶縁ガスケット7が膨張・収縮を繰り返すものの、この結果として生じた体積変化が溝部21で吸収されるため、リベット8の頭部18と電池蓋5の凹部10との間に隙間が形成され難くなる。   In the present invention, an annular groove portion 21 is formed concentrically with the shaft portions 19 and 20 on the seal surface of the head portion 18 of the rivet 8 or is annularly formed along the contour line outside the seal surface. A plurality of are formed. In the heat cycle, although the insulating gasket 7 repeatedly expands and contracts, the resulting volume change is absorbed by the groove 21, so that there is a gap between the head 18 of the rivet 8 and the recess 10 of the battery lid 5. It becomes difficult to form.

また、溝部21の形成は、リベット8の頭部18のシール面と絶縁ガスケット7のフランジ部15との接触面積の増加をもたらす。その結果、絶縁ガスケット7のフランジ部15に加わる応力が増加することから、ボス部16にかかっている応力がフランジ部15に逃げ難くなる。従って、ボス部16での応力緩和を抑制することができる。   Further, the formation of the groove portion 21 increases the contact area between the sealing surface of the head portion 18 of the rivet 8 and the flange portion 15 of the insulating gasket 7. As a result, since the stress applied to the flange portion 15 of the insulating gasket 7 increases, the stress applied to the boss portion 16 is difficult to escape to the flange portion 15. Therefore, stress relaxation at the boss portion 16 can be suppressed.

これらの結果、ヒートサイクルにおける絶縁ガスケット7の応力緩和が抑制され、また、隙間が出来難い構造になっていることも相まって、ヒートサイクルにおける漏液を回避することが可能となる。   As a result, stress relaxation of the insulating gasket 7 in the heat cycle is suppressed, and in addition to the structure in which the gap is difficult to be formed, it is possible to avoid leakage in the heat cycle.

さらに、溝部21が、リベット8の頭部18を径方向に切断した際に得られる断面におて、矩形状を有することによって、溝部21が鋭角を持たないため、絶縁ガスケット7に傷が付くのを防止することができる。   Further, since the groove portion 21 has a rectangular shape in a cross section obtained when the head portion 18 of the rivet 8 is cut in the radial direction, the groove portion 21 does not have an acute angle, so that the insulating gasket 7 is damaged. Can be prevented.

溝部21の深さDは、絶縁ガスケット7のフランジ部15(外壁部15a)の厚さTの1/2以上かつ4/5以下であることが望ましい。これにより、溝部21による効果を十分に得ることができる。なお、フランジ部15の厚さTは、リベット8の頭部18のシール面と電池蓋5の上面との間にない部分、すなわち、外壁部15aの厚さを意味する。   The depth D of the groove portion 21 is desirably 1/2 or more and 4/5 or less of the thickness T of the flange portion 15 (outer wall portion 15a) of the insulating gasket 7. Thereby, the effect by the groove part 21 can fully be acquired. In addition, the thickness T of the flange portion 15 means a thickness of a portion not between the sealing surface of the head portion 18 of the rivet 8 and the upper surface of the battery lid 5, that is, the thickness of the outer wall portion 15a.

溝部21の深さDとフランジ部15の外壁部15aの厚さTは、以下に説明する方法で測定される。   The depth D of the groove portion 21 and the thickness T of the outer wall portion 15a of the flange portion 15 are measured by the method described below.

電池蓋5のリベットかしめ部分を取り出し、断面製作用にエポキシ樹脂に埋め込み、これを硬化させることによりリベットかしめ断面製作用サンプルを作成する。次に、このサンプルのリベット部分が2等分され、リベットの中心線を含む断面が観察可能なサンプル(一例を図3に示す)を作成する。溝部21の深さDとフランジ部15の外壁部15aの厚さTの寸法は、該当部分の顕微鏡観察により測定する。   The rivet caulking portion of the battery lid 5 is taken out, embedded in an epoxy resin in the cross-section manufacturing operation, and cured to prepare a rivet caulking cross-section manufacturing sample. Next, the rivet portion of this sample is divided into two equal parts, and a sample (an example is shown in FIG. 3) in which a cross section including the center line of the rivet can be observed is created. The dimension of the depth D of the groove part 21 and the thickness T of the outer wall part 15a of the flange part 15 is measured by microscopic observation of the corresponding part.

溝部21は、前述した図3に示すように複数形成することが望ましいが、1つでも良い。また、頭部18のシール面と軸部19との境界部分に溝部21を設けない方が、絶縁ガスケット7のボス部16での応力緩和を抑制する効果が高くなる。   As shown in FIG. 3 described above, it is desirable to form a plurality of grooves 21, but one groove may be used. Further, the effect of suppressing stress relaxation at the boss portion 16 of the insulating gasket 7 is enhanced when the groove portion 21 is not provided at the boundary portion between the seal surface of the head portion 18 and the shaft portion 19.

絶縁ガスケット7は、例えば、ポリプロピレン(PP)、熱可塑性フッ素樹脂等から形成される。特に、熱可塑性フッ素樹脂が望ましい。熱可塑性フッ素樹脂製の絶縁ガスケット7は、電解液により腐食され難い。また、この絶縁ガスケット7は、耐熱性に優れているため、クリープ現象と応力緩和がもともと起こり難い。従って、熱可塑性フッ素樹脂製の絶縁ガスケット7を使用すると、低温から高温までの広い温度範囲に亘って(例えば−40℃〜100℃の範囲)絶縁ガスケット7が弾性体としての性質を維持できるため、温度変化に伴う応力変動がほぼ規則的に生じ、ヒートサイクルにおける応力緩和をさらに抑制することができる。熱可塑性フッ素樹脂としては、例えば、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等を挙げることができる。   The insulating gasket 7 is made of, for example, polypropylene (PP), thermoplastic fluororesin, or the like. In particular, a thermoplastic fluororesin is desirable. The insulating gasket 7 made of thermoplastic fluororesin is hardly corroded by the electrolytic solution. In addition, since this insulating gasket 7 is excellent in heat resistance, creep phenomenon and stress relaxation hardly occur from the beginning. Therefore, when the insulating gasket 7 made of thermoplastic fluororesin is used, the insulating gasket 7 can maintain the properties as an elastic body over a wide temperature range from low temperature to high temperature (for example, in the range of −40 ° C. to 100 ° C.). The stress fluctuation accompanying the temperature change occurs almost regularly, and the stress relaxation in the heat cycle can be further suppressed. Examples of the thermoplastic fluororesin include tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).

上記の実施の形態では、リベット8が負極の端子である場合について説明したが、正極側の端子であっても良い。また、リベット8を絶縁ガスケット7のフランジ部15を介して電池蓋5の上面に配置したが、電池蓋5の下面に配置することもできる。   In the above embodiment, the case where the rivet 8 is a negative terminal has been described, but it may be a positive terminal. Further, although the rivet 8 is disposed on the upper surface of the battery lid 5 via the flange portion 15 of the insulating gasket 7, it can also be disposed on the lower surface of the battery lid 5.

以下、本発明の好ましい実施例を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

(実施例1)
前述した図1〜図4に示す実施の形態において、リベット8の頭部18のシール面に、軸部19,20に対して同心円状に円環状の溝部21を2条形成し、溝部21の深さDを2/3T(Tは絶縁ガスケットのフランジ部の外壁部の厚さで、実施例の場合、0.3mm)とし、溝部21の幅を0.4mmとし、密閉型の角型リチウムイオン電池を組み立てた。
Example 1
In the embodiment shown in FIGS. 1 to 4 described above, two annular groove portions 21 are formed concentrically with the shaft portions 19 and 20 on the seal surface of the head portion 18 of the rivet 8. The depth D is 2 / 3T (T is the thickness of the outer wall of the flange portion of the insulating gasket, 0.3 mm in the embodiment), the width of the groove 21 is 0.4 mm, and the sealed square lithium An ion battery was assembled.

なお、絶縁ガスケット7には、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)製のものを使用し、電池ケース1、電池蓋5、リベット8及びワッシャー9の材質はアルミニウムとした。   The insulating gasket 7 made of tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) was used, and the material of the battery case 1, the battery lid 5, the rivet 8, and the washer 9 was aluminum.

(実施例2)
溝部21の深さDを1/2Tにする以外は、実施例1と同様な構成の密閉型の角型リチウムイオン電池を組み立てた。
(Example 2)
A sealed prismatic lithium ion battery having the same configuration as in Example 1 was assembled except that the depth D of the groove portion 21 was set to 1 / 2T.

(実施例3)
溝部21の深さDを4/5Tにする以外は、実施例1と同様な構成の密閉型の角型リチウムイオン電池を組み立てた。
(Example 3)
A sealed prismatic lithium ion battery having the same configuration as in Example 1 was assembled except that the depth D of the groove 21 was 4 / 5T.

(実施例4)
溝部21の深さDを1/3Tにする以外は、実施例1と同様な構成の密閉型の角型リチウムイオン電池を組み立てた。
Example 4
A sealed prismatic lithium ion battery having the same configuration as in Example 1 was assembled except that the depth D of the groove portion 21 was set to 1 / 3T.

(比較例)
溝部を設けないこと以外は、実施例1と同様な方法により密閉型の角型リチウムイオン電池を組み立てた。
(Comparative example)
A sealed prismatic lithium ion battery was assembled in the same manner as in Example 1 except that the groove was not provided.

上記の実施例、比較例の角型リチウムイオン電池に対して、ヒートサイクル試験を行った。方法は、−30℃で2時間保持し、次いで+80℃で2時間保持する。これを1サイクルとして、100サイクル実施した後、電解液の漏液状況を調べた。試験セルはそれぞれ100個である。表1に、その結果を示す。   A heat cycle test was performed on the prismatic lithium ion batteries of the above-described Examples and Comparative Examples. The method is held at −30 ° C. for 2 hours and then at + 80 ° C. for 2 hours. This was regarded as one cycle, and after 100 cycles, the leakage of the electrolyte was examined. There are 100 test cells each. Table 1 shows the results.

また、ヒートサイクル試験後の実施例の電池に対し、60℃で湿度93%の環境下で1年間の貯蔵試験を行った。貯蔵試験前の容量を100%とした際の貯蔵試験後の容量を下記表1に示す。

Figure 2008305646
Moreover, the storage test for 1 year was done with respect to the battery of the Example after a heat cycle test in the environment of a humidity of 93% at 60 degreeC. The capacity after the storage test when the capacity before the storage test is 100% is shown in Table 1 below.
Figure 2008305646

表1から明らかな通りに、リベット頭部のシール面に溝部を形成した実施例1〜4の角型リチウムイオン電池は、ヒートサイクルにおける漏液発生率が比較例に比して少なく、高い信頼性を有することが分かる。また、実施例1〜4の比較により、溝部の深さDが絶縁ガスケットのフランジ部(外壁部)の厚さTの1/2〜4/5にする実施例1〜3において、漏液発生率が皆無となり、かつ高温貯蔵後の容量劣化が少なくなることがわかった。   As is clear from Table 1, the prismatic lithium ion batteries of Examples 1 to 4 in which the groove portion was formed on the sealing surface of the rivet head had less leakage rate in the heat cycle than the comparative example, and high reliability. It turns out that it has sex. Further, by comparing Examples 1 to 4, leakage occurred in Examples 1 to 3 in which the depth D of the groove was set to 1/2 to 4/5 of the thickness T of the flange portion (outer wall portion) of the insulating gasket. It was found that there was no rate, and capacity deterioration after storage at high temperature was reduced.

以上詳述したように、本発明によれば、出力端子用リベットをカシメてガスケットに固定する構造をとり、かつ、ヒートサイクル等により液漏れの無い信頼性に優れた密閉型の電池を提供でき、特にハイブリッド車や電気自動車に搭載する車載用二次電池、電力平準化に使用される電力貯蔵用二次電池として好適なものとなる。   As described above in detail, according to the present invention, it is possible to provide a sealed battery having a structure in which a rivet for an output terminal is caulked and fixed to a gasket, and excellent in reliability without liquid leakage due to a heat cycle or the like. In particular, it is suitable as a vehicle-mounted secondary battery mounted on a hybrid vehicle or an electric vehicle, and a power storage secondary battery used for power leveling.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明の実施形態に係る電池の斜視図。The perspective view of the battery which concerns on embodiment of this invention. 図1に示す電池の分解斜視図。The disassembled perspective view of the battery shown in FIG. 図1の電池の封口部材の要部拡大断面図。The principal part expanded sectional view of the sealing member of the battery of FIG. 図1の電池で用いるリベットについての軸側から見た平面図。The top view seen from the axial side about the rivet used with the battery of FIG. 図1の電池で用いる別のリベットについての軸側から見た平面図。The top view seen from the axial side about another rivet used with the battery of FIG.

符号の説明Explanation of symbols

1…電池ケース、2…電極体、3…正極タブ、4…負極タブ、5…電池蓋、6…絶縁プレート、6a…円形穴、7…絶縁ガスケット、8…リベット、9…ワッシャー、10…凹部、11…取付穴、12…ベント、13…電解液注入口、14…プラグ、15…フランジ部、15a…外壁部、16…ボス部、17…軸挿入穴、18…頭部、19…軸部、20…カシメ軸部、21…溝部。   DESCRIPTION OF SYMBOLS 1 ... Battery case, 2 ... Electrode body, 3 ... Positive electrode tab, 4 ... Negative electrode tab, 5 ... Battery cover, 6 ... Insulating plate, 6a ... Circular hole, 7 ... Insulating gasket, 8 ... Rivet, 9 ... Washer, 10 ... Recessed part, 11 ... Mounting hole, 12 ... Vent, 13 ... Electrolyte inlet, 14 ... Plug, 15 ... Flange part, 15a ... Outer wall part, 16 ... Boss part, 17 ... Shaft insertion hole, 18 ... Head, 19 ... Shaft part, 20 ... caulking shaft part, 21 ... groove part.

Claims (5)

容器と、
前記容器内に収納された正極及び負極と、
前記容器の開口部に配置され、取付穴を有する電池蓋と、
前記電池蓋の前記取付穴に挿入された筒状部と、前記筒状部の一端に形成され、前記電池蓋の前記取付穴の周縁を覆う鍔部とを有する絶縁ガスケットと、
前記絶縁ガスケットの前記筒状部に挿入された状態で前記電池蓋にかしめ固定された軸部と、前記軸部の一端に形成され、前記絶縁ガスケットの前記鍔部上に配置された頭部とを有する、前記正極または前記負極の出力端子用リベットと
を具備する電池であって、
前記リベットの前記頭部における前記鍔部と接する面には、この面の外側の輪郭線に沿った環状か、前記軸部と同心円となる環状の溝部が形成されていることを特徴とする電池。
A container,
A positive electrode and a negative electrode housed in the container;
A battery lid disposed in the opening of the container and having a mounting hole;
An insulating gasket having a cylindrical portion inserted into the mounting hole of the battery lid, and a flange formed at one end of the cylindrical portion and covering a peripheral edge of the mounting hole of the battery lid;
A shaft portion that is caulked and fixed to the battery lid in a state of being inserted into the cylindrical portion of the insulating gasket; and a head portion that is formed at one end of the shaft portion and disposed on the flange portion of the insulating gasket; A battery comprising the positive electrode or the negative electrode output terminal rivet,
The battery is characterized in that the surface of the rivet in contact with the flange portion is formed with an annular groove portion along the outline of the outer surface of the rivet or an annular groove portion concentric with the shaft portion. .
前記溝部の深さは、前記絶縁ガスケットの前記鍔部の厚さの1/2以上かつ4/5以下であることを特徴とする請求項1記載の電池。   2. The battery according to claim 1, wherein a depth of the groove portion is ½ or more and 4/5 or less of a thickness of the flange portion of the insulating gasket. 前記絶縁ガスケットは熱可塑性フッ素樹脂から形成されていることを特徴とする請求項1〜2いずれか1項記載の電池。   The battery according to claim 1, wherein the insulating gasket is made of a thermoplastic fluororesin. 前記絶縁ガスケットの前記鍔部が前記電池蓋の上面の前記取付穴の周縁を覆っていることを特徴とする請求項1〜3いずれか1項記載の電池。   The battery according to any one of claims 1 to 3, wherein the flange portion of the insulating gasket covers a peripheral edge of the mounting hole on the upper surface of the battery lid. 請求項1〜4いずれか1項記載の電池は、非水電解質電池であることを特徴とする。   The battery according to any one of claims 1 to 4 is a nonaqueous electrolyte battery.
JP2007150883A 2007-06-06 2007-06-06 Battery Withdrawn JP2008305646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150883A JP2008305646A (en) 2007-06-06 2007-06-06 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150883A JP2008305646A (en) 2007-06-06 2007-06-06 Battery

Publications (1)

Publication Number Publication Date
JP2008305646A true JP2008305646A (en) 2008-12-18

Family

ID=40234190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150883A Withdrawn JP2008305646A (en) 2007-06-06 2007-06-06 Battery

Country Status (1)

Country Link
JP (1) JP2008305646A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243559A (en) * 2010-04-20 2011-12-01 Hitachi Vehicle Energy Ltd Secondary battery
WO2012029593A1 (en) * 2010-08-30 2012-03-08 エリーパワー株式会社 Battery cover with attached electrode terminal, method for producing battery cover with attached electrode terminal, and airtight battery
JP2012049076A (en) * 2010-08-30 2012-03-08 Eliiy Power Co Ltd Battery lid with electrode terminal, method for manufacturing battery lid with electrode terminal, and sealed battery
JP2012248451A (en) * 2011-05-30 2012-12-13 Hitachi Vehicle Energy Ltd Secondary battery
JP5368660B1 (en) * 2012-09-28 2013-12-18 日立ビークルエナジー株式会社 Prismatic secondary battery
JP2014072190A (en) * 2013-09-12 2014-04-21 Hitachi Vehicle Energy Ltd Square secondary battery
JP2014127277A (en) * 2012-12-25 2014-07-07 Toyota Motor Corp Sealed battery
EP2849248A1 (en) * 2013-09-12 2015-03-18 Samsung SDI Co., Ltd. Rechargeable battery
US9017861B2 (en) 2012-03-15 2015-04-28 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
WO2016170920A1 (en) * 2015-04-21 2016-10-27 日立オートモティブシステムズ株式会社 Rectangular secondary battery
US10199629B2 (en) 2015-11-24 2019-02-05 Samsung Sdi Co., Ltd. Secondary battery with terminal pin
CN112331973A (en) * 2020-04-17 2021-02-05 宁德时代新能源科技股份有限公司 End cover assembly, battery monomer, battery module and device
JP2022532463A (en) * 2020-04-17 2022-07-15 寧徳時代新能源科技股▲分▼有限公司 End cover assembly, battery cell, battery module and equipment
EP4120451A4 (en) * 2020-03-11 2024-03-27 Lg Energy Solution Ltd Button-type secondary battery

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243559A (en) * 2010-04-20 2011-12-01 Hitachi Vehicle Energy Ltd Secondary battery
WO2012029593A1 (en) * 2010-08-30 2012-03-08 エリーパワー株式会社 Battery cover with attached electrode terminal, method for producing battery cover with attached electrode terminal, and airtight battery
JP2012049076A (en) * 2010-08-30 2012-03-08 Eliiy Power Co Ltd Battery lid with electrode terminal, method for manufacturing battery lid with electrode terminal, and sealed battery
CN103180996A (en) * 2010-08-30 2013-06-26 艾利电力能源有限公司 Battery cover with attached electrode terminal, method for producing battery cover with attached electrode terminal, and airtight battery
KR101867374B1 (en) * 2010-08-30 2018-06-14 에리 파워 가부시키가이샤 Battery cover with attached electrode terminal, method for producing battery cover with attached electrode terminal, and airtight battery
KR20140016232A (en) * 2010-08-30 2014-02-07 에리 파워 가부시키가이샤 Battery cover with attached electrode terminal, method for producing battery cover with attached electrode terminal, and airtight battery
JP2012248451A (en) * 2011-05-30 2012-12-13 Hitachi Vehicle Energy Ltd Secondary battery
US9017861B2 (en) 2012-03-15 2015-04-28 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP5368660B1 (en) * 2012-09-28 2013-12-18 日立ビークルエナジー株式会社 Prismatic secondary battery
WO2014049855A1 (en) * 2012-09-28 2014-04-03 日立ビークルエナジー株式会社 Rectangular secondary battery
US10147925B2 (en) 2012-09-28 2018-12-04 Hitachi Automotive Systems, Ltd. Square secondary battery
JP2014127277A (en) * 2012-12-25 2014-07-07 Toyota Motor Corp Sealed battery
EP2849248A1 (en) * 2013-09-12 2015-03-18 Samsung SDI Co., Ltd. Rechargeable battery
KR20150030548A (en) * 2013-09-12 2015-03-20 삼성에스디아이 주식회사 Rechargeable battery
US9337450B2 (en) 2013-09-12 2016-05-10 Samsung Sdi Co., Ltd. Rechargeable battery
KR101724003B1 (en) 2013-09-12 2017-04-06 삼성에스디아이 주식회사 Rechargeable battery
JP2014072190A (en) * 2013-09-12 2014-04-21 Hitachi Vehicle Energy Ltd Square secondary battery
JPWO2016170920A1 (en) * 2015-04-21 2018-02-08 日立オートモティブシステムズ株式会社 Prismatic secondary battery
WO2016170920A1 (en) * 2015-04-21 2016-10-27 日立オートモティブシステムズ株式会社 Rectangular secondary battery
US11728518B2 (en) 2015-04-21 2023-08-15 Vehicle Energy Japan Inc. Rectangular secondary battery
US10199629B2 (en) 2015-11-24 2019-02-05 Samsung Sdi Co., Ltd. Secondary battery with terminal pin
EP4120451A4 (en) * 2020-03-11 2024-03-27 Lg Energy Solution Ltd Button-type secondary battery
CN112331973A (en) * 2020-04-17 2021-02-05 宁德时代新能源科技股份有限公司 End cover assembly, battery monomer, battery module and device
WO2021208317A1 (en) * 2020-04-17 2021-10-21 宁德时代新能源科技股份有限公司 End cap assembly, battery cell, battery module, and apparatus
JP2022532463A (en) * 2020-04-17 2022-07-15 寧徳時代新能源科技股▲分▼有限公司 End cover assembly, battery cell, battery module and equipment
JP7259063B2 (en) 2020-04-17 2023-04-17 寧徳時代新能源科技股▲分▼有限公司 End cover assemblies, battery cells, battery modules and devices
US11715867B2 (en) * 2020-04-17 2023-08-01 Contemporary Amperex Technology Co., Limited End cover assembly, battery cell, battery module and device

Similar Documents

Publication Publication Date Title
JP2008305646A (en) Battery
JP6794502B2 (en) Batteries and battery packs
JP6490053B2 (en) Cylindrical sealed battery and battery pack
JP6162826B2 (en) Battery and sealing unit
JP2008305645A (en) Battery
JP5420219B2 (en) Sealed battery and method for manufacturing the same
JP5823604B2 (en) Battery and battery pack
JP5173095B2 (en) Sealed battery
JPWO2012147782A1 (en) Sealed battery and method for manufacturing the same
JP2016110838A (en) Sealed battery and method of manufacturing the same
JP2009076394A (en) Battery
JP2009054531A (en) Battery
CN106025110B (en) Sealed battery
JP2008305644A (en) Battery
JP2001084991A (en) Battery
JP5897271B2 (en) Nonaqueous electrolyte secondary battery
JP4984359B2 (en) Sealed battery and its sealing plate
WO2019082712A1 (en) Cylindrical battery
JP2010033941A (en) Battery
US20140373342A1 (en) Method for producing battery
JP2015043258A (en) Sealed battery
JP2017004640A (en) Secondary battery
JP5420288B2 (en) Sealed battery
JP2009123529A (en) Sealed battery
JP6184104B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907