JP2010276329A - Building using geothermal heat - Google Patents

Building using geothermal heat Download PDF

Info

Publication number
JP2010276329A
JP2010276329A JP2009132437A JP2009132437A JP2010276329A JP 2010276329 A JP2010276329 A JP 2010276329A JP 2009132437 A JP2009132437 A JP 2009132437A JP 2009132437 A JP2009132437 A JP 2009132437A JP 2010276329 A JP2010276329 A JP 2010276329A
Authority
JP
Japan
Prior art keywords
air
building
pipe
soil cement
geothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009132437A
Other languages
Japanese (ja)
Inventor
Kiyokazu Onishi
清和 大西
Kenichi Tsurusaki
健一 鶴▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AC CORE KK
Original Assignee
AC CORE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AC CORE KK filed Critical AC CORE KK
Priority to JP2009132437A priority Critical patent/JP2010276329A/en
Publication of JP2010276329A publication Critical patent/JP2010276329A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building using geothermal heat efficiently collecting geothermal heat without impairing safety of the building. <P>SOLUTION: Air circulating steel pipes 30 forming a U-shaped air passage are buried in soil cement columns 62 buried in the ground, and the plurality of air circulating steel pipes 30 are connected by connection pipes 80 on a mat foundation 70 to form a serial air passage. The temperature of air that enters from an air introducing end 81 of the serial air passage becomes substantially the same as that in the ground while flowing through the U-shaped air passage of the air circulating steel pipes 30, and the air is blown out into the building from an air discharge end 82. By using the soil cement columns 62 reinforcing the support ground of the building, the building using the geothermal heat can be built safely. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地中熱を利用して室温の調節を行うことができる住宅等の建物に関する。   The present invention relates to a building such as a house capable of adjusting the room temperature using geothermal heat.

地中の温度は、ある深さ以下になると、外気温に左右されず、年間を通してほぼ一定である。そのため、井戸の水が、夏には冷たく、冬には暖かく感じられる。この地中熱を利用して住宅の空調(冷暖房)を実現するシステムは、住宅の省エネルギー化や都市のヒートアイランド現象の緩和に有効であり、その普及が期待されている。
現在開発されているシステムでは、熱交換媒体をヒートポンプと地中との間で循環させるために樹脂性の熱交換パイプを用いており、この熱交換パイプを鋼管等に挿入して地中に埋設している。熱交換パイプ内を循環する熱交換媒体は、地中熱を地上に取り出し、ヒートポンプが、この熱交換媒体と、例えばエアコン用冷媒との間の熱交換を行う。
When the temperature in the ground is below a certain depth, it is almost constant throughout the year, regardless of the outside air temperature. Therefore, the well water feels cold in summer and warm in winter. This system that realizes air conditioning (cooling and heating) of houses using geothermal heat is effective for energy saving of houses and mitigation of urban heat island phenomenon, and is expected to spread.
In the currently developed system, a resin heat exchange pipe is used to circulate the heat exchange medium between the heat pump and the ground, and this heat exchange pipe is inserted into a steel pipe and buried in the ground. is doing. The heat exchange medium circulating in the heat exchange pipe takes ground heat to the ground, and the heat pump exchanges heat between the heat exchange medium and, for example, the air conditioner refrigerant.

従来の多くの地中熱利用システムでは、建築物(住宅)とは別の位置に熱交換パイプを埋設しているが、下記特許文献1及び2には、建築物の基礎杭を利用して熱交換パイプを地中に配置する工法が提案されている。
図13は、特許文献1に記載されている図である。この工法では、図13(a)に示すように、ヒートポンプ20から延びる熱交換パイプ13の一部が、建物の基礎として埋設された中空の鋼管杭10の内部に挿入されている。鋼管杭10の上端は、図13(b)に示すように、“べた基礎”12の立ち上り部12bの位置を避けて、コンクリートスラブ12aから突出している。しかし、鋼管杭10がコンクリートスラブ12aから突出したままでは、鋼管杭10のべた基礎12に対する支持力が弱いので、鋼管杭10に鍔状のプレート11を溶接し、このプレート11でべた基礎12を下から支えている。
In many conventional geothermal heat utilization systems, heat exchange pipes are buried at a position different from the building (house), but the following Patent Documents 1 and 2 use building foundation piles. A method of arranging a heat exchange pipe in the ground has been proposed.
FIG. 13 is a diagram described in Patent Document 1. In this construction method, as shown in FIG. 13A, a part of the heat exchange pipe 13 extending from the heat pump 20 is inserted into a hollow steel pipe pile 10 embedded as a foundation of a building. The upper end of the steel pipe pile 10 protrudes from the concrete slab 12a, avoiding the position of the rising portion 12b of the “solid foundation” 12, as shown in FIG. 13 (b). However, if the steel pipe pile 10 remains protruding from the concrete slab 12a, the supporting force of the steel pipe pile 10 to the solid foundation 12 is weak. Therefore, the hook-like plate 11 is welded to the steel pipe pile 10 and the foundation 12 solid with the plate 11 is attached. Support from below.

また、図14は、特許文献2に記載されている図である。この工法では、建物2を建てる際に、図14(a)に示すように、敷地の表層部分を掘削ライン24まで取り除き、べた基礎4の配設パターンに従って鋼管杭6を打設する。次いで、鋼管杭6内に、熱交換パイプ10を収容した後、その上部開口部に杭頭キャップ8を溶接する(図14(b))。また、複数本の鋼管杭6内に収容した熱交換パイプ10は、横引管12で相互に接続する。その後、掘削部位に土を埋め戻し、その上にべた基礎4を、その下面が杭頭キャップ8の上面に当接するように形成する。べた基礎4が完成した後、その上に建築物2を建設する。また、地中に埋め込まれた横引管12の端部を地上に取り出し、ヒートポンプ14に接続する。
このように、建築物の基礎杭を利用して地中熱を採熱する場合は、熱交換パイプ埋設用の敷地を建物とは別の場所に用意する必要が無い。そのため、建物の周囲に余裕が無い敷地に住宅等を建てる場合でも、地中熱の利用が可能になる。
FIG. 14 is a diagram described in Patent Document 2. In this construction method, when building the building 2, as shown in FIG. 14 (a), the surface layer portion of the site is removed up to the excavation line 24, and the steel pipe pile 6 is driven according to the arrangement pattern of the solid foundation 4. Next, after the heat exchange pipe 10 is accommodated in the steel pipe pile 6, the pile head cap 8 is welded to the upper opening (FIG. 14 (b)). Further, the heat exchange pipes 10 accommodated in the plurality of steel pipe piles 6 are connected to each other by a horizontal draw pipe 12. Thereafter, the excavation site is backfilled with soil, and the solid foundation 4 is formed so that the lower surface thereof is in contact with the upper surface of the pile head cap 8. After the solid foundation 4 is completed, the building 2 is constructed thereon. Further, the end of the horizontal pipe 12 embedded in the ground is taken out to the ground and connected to the heat pump 14.
Thus, when the underground heat is collected using the foundation pile of the building, it is not necessary to prepare a site for burying heat exchange pipes in a place different from the building. Therefore, even when a house or the like is built on a site where there is no room around the building, geothermal heat can be used.

特開2005−273235号公報JP 2005-273235 A 特開2009−8320号公報JP 2009-8320 A

しかし、基礎杭の本来の機能は建物の基礎を安定的に支持する点にあるが、地中熱の採熱に建物の基礎杭を利用する従来の工法では、この本来の機能を十分に果たせない虞がある。
例えば、特許文献1の工法では、建物の荷重が掛かるべた基礎の立ち上り部の位置と、べた基礎を支える基礎杭の位置とが一致していないため、べた基礎に加わる力がバランスせず、べた基礎に亀裂が生じる危険性がある。
また、特許文献2の工法では、べた基礎の立ち上り部の位置に基礎杭を打ち込むことができるものの、べた基礎を直接支えているのは、打ち込まれた基礎杭に溶接された杭頭キャップであるため、現場での溶接の出来、不出来が、べた基礎に対する支持力を大きく左右することになる。
However, the original function of the foundation pile is to stably support the foundation of the building, but the conventional method of using the foundation pile of the building for heat collection of the geothermal heat can sufficiently perform this original function. There is no fear.
For example, in the construction method of Patent Document 1, the position of the rising portion of the solid foundation on which the load of the building is applied and the position of the foundation pile supporting the solid foundation do not match, so the force applied to the solid foundation does not balance, There is a risk of cracks in the foundation.
Moreover, in the construction method of patent document 2, although the foundation pile can be driven into the position of the rising part of the solid foundation, it is the pile head cap welded to the foundation pile which is driven directly that supports the solid foundation. For this reason, the ability to weld or not perform on-site greatly affects the bearing capacity of the solid foundation.

また、地上に導いた地中熱を、ヒートポンプを介して利用する方式では、熱交換パイプ内で熱交換媒体を循環させるポンプと、ヒートポンプ内で冷媒を圧縮するコンプレッサーとが必要であり、これらの駆動にエネルギー(電力)が費やされるため、大きな省エネルギー効果が期待できない。   In addition, in the system that uses the underground heat guided to the ground via a heat pump, a pump that circulates the heat exchange medium in the heat exchange pipe and a compressor that compresses the refrigerant in the heat pump are necessary. Since energy (electric power) is consumed for driving, a large energy saving effect cannot be expected.

本発明は、こうした事情を考慮して創案したものであり、建物の敷地内で、建物の安全性を損なわずに地中熱を採熱することが可能であり、また、省エネルギー効果が高い地中熱利用建物を提供することを目的としている。   The present invention was devised in consideration of such circumstances, and it is possible to collect geothermal heat within a building site without impairing the safety of the building, and it has a high energy saving effect. The purpose is to provide buildings that use medium heat.

本発明の地中熱利用建物は、地中に埋設された複数本のソイルセメントコラムと、前記ソイルセメントコラムにU字状の空気通路を形成する本体部分が埋め込まれ、前記空気通路の導入口及び排出口に続く短管部分が前記ソイルセメントコラムから突出している空気循環金属管と、前記空気循環金属管の短管部分に貫かれた状態で前記ソイルセメントコラムに支持されているべた基礎と、複数の前記空気循環金属管の導入口と排出口とを繋ぐように、前記べた基礎のスラブ上の空間で前記短管部分を連結する連結管と、複数の前記空気循環金属管の空気通路を前記連結管で直列に接続した直列空気通路に空気が導入される空気導入端部と、前記直列空気通路を流れた空気が排出される空気排出端部と、前記直列空気通路での空気の流れを支援する送風手段または吸引手段と、を備え、前記直列空気通路を流れた空気が、前記空気排出端部から、前記べた基礎の上に建設された建物の内部または当該建物の下部の空間に排出されることを特徴とする。   A building using geothermal heat according to the present invention includes a plurality of soil cement columns embedded in the ground, and a body portion forming a U-shaped air passage embedded in the soil cement column, and an inlet for the air passage. And an air circulation metal pipe projecting from the soil cement column, and a solid foundation supported by the soil cement column in a state penetrating the short pipe part of the air circulation metal pipe. A connecting pipe that connects the short pipe portions in a space on the solid slab so as to connect the inlets and outlets of the plurality of air circulation metal pipes, and an air passage of the plurality of air circulation metal pipes An air introduction end for introducing air into a series air passage connected in series by the connecting pipe, an air discharge end for discharging air flowing through the series air passage, and air in the series air passage. Supporting the flow Air that flows through the series air passage is discharged from the air discharge end into the interior of the building constructed on the solid foundation or in the space below the building. It is characterized by that.

この建物では、べた基礎を支えるソイルセメントコラムに空気循環金属管が埋め込まれ、この空気循環金属管の一部(短管部分)がべた基礎の上の空間に突出し、複数本の空気循環金属管の短管部分が連結管で連結される。こうした構成により、空気導入端部から導入された空気が、各ソイルセメントコラムに埋め込まれた空気循環金属管内を通過した後、空気排出端部から排出される“直列空気通路”が形成される。この直列空気通路に流入した空気は、空気循環金属管内を通過する過程で、気温が地中温度より低い冬季には地中熱で暖められ、また、気温が地中温度より高い夏季には冷やされる。直列空気通路から排出される空気を建物内の部屋や床下の空間に導くことにより、建物内の室温を、冬季には上げ、夏季には下げることができる。   In this building, an air circulation metal pipe is embedded in the soil cement column that supports the solid foundation, and a part of this air circulation metal pipe (short pipe part) protrudes into the space above the solid foundation, and multiple air circulation metal pipes Are connected by a connecting pipe. With such a configuration, after the air introduced from the air introduction end passes through the air circulation metal pipe embedded in each soil cement column, a “series air passage” that is discharged from the air discharge end is formed. In the process of passing through the air circulation metal pipe, the air flowing into this series air passage is warmed by underground heat in the winter when the temperature is lower than the underground temperature, and is cooled in the summer when the temperature is higher than the underground temperature. It is. By guiding the air exhausted from the serial air passage to a room or an under-floor space in the building, the room temperature in the building can be raised in winter and lowered in summer.

また、本発明の地中熱利用建物では、前記直列空気通路に流れる空気を、前記建物の外に配置された前記空気導入端部から導入するようにしても良い。
特に、夏季には、できるだけ温度の低い、地表から離れた箇所の外気を直列空気通路に導入することで、室温を効果的に下げることができる。
Moreover, in the building using geothermal heat of the present invention, the air flowing through the series air passage may be introduced from the air introduction end arranged outside the building.
In particular, in summer, the room temperature can be effectively lowered by introducing the outside air at a temperature as low as possible away from the ground surface into the series air passage.

また、本発明の地中熱利用建物では、前記べた基礎の立ち上り部の下に前記ソイルセメントコラムを埋設し、当該ソイルセメントコラムから突出する前記空気循環金属管の短管部分を、前記立ち上り部と重ならない位置に突出させる。
このように、建物の荷重が掛かるべた基礎の立ち上り部の位置をソイルセメントコラムで支えることにより、べた基礎の安定的支持が可能になり、また、べた基礎から突出する複数の空気循環金属管の短管部分を連結管で連結することにより、簡単に直列空気通路を形成することができる。
In the geothermal building of the present invention, the soil cement column is embedded under the rising portion of the solid foundation, and the short pipe portion of the air circulation metal tube protruding from the soil cement column is connected to the rising portion. Project to a position that does not overlap.
In this way, the soil cement column supports the position of the rising portion of the solid foundation where the building load is applied, so that the solid foundation can be supported stably, and multiple air-circulating metal tubes protruding from the solid foundation can be used. By connecting the short pipe portions with the connecting pipe, the series air passage can be easily formed.

また、本発明の地中熱利用建物では、前記空気循環金属管の本体部分を、並列させた二本の角型金属管の接触面を接合して構成し、前記角型金属管のそれぞれの上端に前記短管部分を接続し、前記角型金属管のそれぞれの下端を封鎖して、下端の近傍の前記接触面に前記二本の角型金属管を連通する通気穴を形成する。
こうした構成により、U字状の空気通路を持つ空気循環金属管が形成できる。
Further, in the geothermal building of the present invention, the main body portion of the air circulation metal tube is configured by joining the contact surfaces of two parallel square metal tubes, and each of the square metal tubes The short tube portion is connected to the upper end, the lower ends of the rectangular metal tubes are sealed, and vent holes for communicating the two rectangular metal tubes are formed in the contact surface in the vicinity of the lower ends.
With such a configuration, an air circulation metal tube having a U-shaped air passage can be formed.

また、本発明の地中熱利用建物では、前記空気循環金属管の本体部分を、丸型金属管の両端に短い角型金属管を結合した複合金属管の二本を、前記角型金属管の箇所で接合して構成し、前記複合金属管の上端の角型金属管のそれぞれに前記短管部分を接続し、前記複合金属管の下端の角型金属管のそれぞれを封鎖して、当該角型金属管を接合した接合面に前記二本の複合金属管を連通する通気穴を形成するようにしても良い。
こうした構成により、丸型金属管を使って、U字状の空気通路を持つ空気循環金属管を形成することができる。
Further, in the geothermal building of the present invention, the main body portion of the air circulation metal tube is composed of two composite metal tubes in which a short square metal tube is coupled to both ends of the round metal tube, and the square metal tube. And connecting the short pipe portion to each of the square metal tubes at the upper end of the composite metal tube, sealing each of the square metal tubes at the lower end of the composite metal tube, You may make it form the vent hole which connects the said 2 composite metal pipes to the joint surface which joined the square metal pipe.
With such a configuration, an air circulation metal tube having a U-shaped air passage can be formed using a round metal tube.

また、本発明の地中熱利用建物では、前記空気循環金属管の下端に、先端が尖ったヘッダーを付加する。
先端に付加したヘッダーは、空気循環金属管を液状のソイルセメントに埋め込む際に、空気循環金属管の挿入を容易にする。
Moreover, in the geothermal building of the present invention, a header with a sharp tip is added to the lower end of the air circulation metal pipe.
The header added to the tip facilitates the insertion of the air circulation metal tube when the air circulation metal tube is embedded in the liquid soil cement.

また、本発明の地中熱利用建物では、前記空気循環金属管の下端近くの外周に、回転翼を付加しても良い。
回転翼は、液状のソイルセメントへの空気循環金属管の挿入を容易にする。
Moreover, in the geothermal building of this invention, you may add a rotary blade to the outer periphery near the lower end of the said air circulation metal pipe.
The rotors facilitate the insertion of the air circulating metal tube into the liquid soil cement.

また、本発明の地中熱利用建物では、さらに、太陽熱で管内の空気を暖める太陽熱集熱パネルを設け、前記管内の暖められた空気が、前記べた基礎の上に建設された建物の内部または当該建物の下部の空間に排出されるようにしても良い。
自然エネルギーの太陽熱を地中熱と共に利用することにより、省エネルギー効果がさらに向上する。
Further, in the building using geothermal heat of the present invention, a solar heat collecting panel for heating the air in the pipe with solar heat is further provided, and the heated air in the pipe is inside the building constructed on the solid foundation or You may make it discharge | emit to the space of the lower part of the said building.
By using solar energy of natural energy together with underground heat, the energy saving effect is further improved.

本発明により、建物の支持地盤を補強する補強体を利用して、地中熱利用の建物を安全に建てることができる。この建物では、地中熱の採熱機構が建物の下の地中に設けられるため、周囲に余裕が無い敷地でも建築が可能である。
また、本発明では、地中で暖められたり、冷やされたりした空気を、直接、建物内に吹き出させているため、地中熱の利用に要する設備が簡単であり、且つ、省エネルギー効果が高い。
According to the present invention, a building using geothermal heat can be safely built using a reinforcing body that reinforces a supporting ground of the building. In this building, a ground heat collection mechanism is provided in the ground below the building, so that it can be constructed even on a site where there is no room around.
Further, in the present invention, air that has been warmed or cooled in the ground is directly blown into the building, so that the equipment required for using the underground heat is simple and has a high energy saving effect. .

本発明の実施形態に係る空気循環鋼管の構成を示す図The figure which shows the structure of the air circulation steel pipe which concerns on embodiment of this invention. 図1の空気循環鋼管を埋め込んだソイルセメントコラムを示す図Figure showing a soil cement column in which the air circulation steel pipe of Fig. 1 is embedded. 図2のソイルセメントコラムの配置を示す図The figure which shows arrangement | positioning of the soil cement column of FIG. 図3のソイルセメントコラムの上にべた基礎を形成した状態を示す図The figure which shows the state which formed the solid foundation on the soil cement column of FIG. ソイルセメントコラムに埋め込んだ空気循環鋼管が連結管で繋がれる様子を示す図The figure which shows a mode that the air circulation steel pipe embedded in the soil cement column is connected with a connection pipe 図4のソイルセメントコラムに埋め込んだ空気循環鋼管を連結管で繋いだ状態を示す図The figure which shows the state which connected the air circulation steel pipe embedded in the soil cement column of FIG. 4 with the connection pipe 全てのソイルセメントコラムに埋め込んだ空気循環鋼管を繋いで一本の直列空気通路を形成した状態を示す図The figure which shows the state which connected the air circulation steel pipe embedded in all the soil cement columns and formed one serial air passage. 本発明の実施形態に係る建物を示す図The figure which shows the building which concerns on embodiment of this invention 空気循環鋼管の他の例を示す図The figure which shows the other example of the air circulation steel pipe 回転翼を付した空気循環鋼管を示す図Diagram showing air circulating steel pipe with rotor blades 地中熱及び太陽熱を利用する建物を示す図A diagram showing a building that uses geothermal and solar heat ソイルセメントコラムの形成方法を説明する図Diagram explaining how to form a soil cement column 鋼管杭を利用して地中熱を採熱する従来技術を示す図Diagram showing conventional technology for collecting underground heat using steel pipe piles 鋼管杭を利用して地中熱を採熱する他の従来技術を示す図The figure which shows other conventional technology which collects underground heat using a steel pipe pile

本発明の地中熱利用建物を建てるには、まず、建物の支持地盤を補強するため、建物の敷地内に空気循環鋼管を埋め込んだソイルセメントコラムを複数形成する。空気循環鋼管は、U字状の空気通路を有している。
次に、ソイルセメントコラムで補強された支持地盤上にべた基礎を形成する。このとき、空気循環鋼管の先端をべた基礎から突出させる。
次に、べた基礎から突出した空気循環鋼管を連結管で連結して、複数の空気循環鋼管の空気通路を直列に接続した直列空気通路を形成する。
こうした準備を経た後、べた基礎の上に建物を建設する。
In order to build a building using geothermal heat according to the present invention, first, a plurality of soil cement columns in which air circulating steel pipes are embedded in the site of the building are formed in order to reinforce the supporting ground of the building. The air circulation steel pipe has a U-shaped air passage.
Next, a solid foundation is formed on a supporting ground reinforced with a soil cement column. At this time, the tip of the air circulation steel pipe is protruded from the solid foundation.
Next, the air circulation steel pipe which protruded from the solid foundation is connected with a connection pipe, and the serial air path which connected the air passage of a plurality of air circulation steel pipes in series is formed.
After these preparations, the building will be built on a solid foundation.

ソイルセメントコラムの形成方法は、広く知られており、例えば、図12に示す装置により形成される。
この装置は、掘削ヘッド54を備える掘削軸53と、掘削軸53を吊り下げて昇降させる懸垂手段58と、掘削軸53を回転する回転手段59と、セメント系固化材を水と混合してミルク状のスラリーを生成するプラントミキサー51と、掘削軸53の内部に供給するスラリーの供給量を管理する管理装置52とを有している。
掘削ヘッド54は、掘削軸53と共に回転する掘削翼56と攪拌翼55とを有しており、掘削翼56の回転により、地盤60に掘削孔61が形成される。また、掘削軸53の先端近傍にはスラリーの吐出口が形成されており、この吐出口から吐出されたスラリー57と、掘削翼56で削られた土とが攪拌翼55で攪拌・混合されてソイルセメント(現地土とセメントとの流動状混合物)が生成される。
掘削ヘッド54を掘削孔61から引き上げて、掘削孔61を満たすソイルセメントが固化するまで放置すれば、円柱状のソイルセメントコラムが地中に形成される。ソイルセメントの固化には、掘削孔61の大きさやセメント系固化材の種類等にも依るが、数時間〜2日程度の時間が必要である。
A method for forming a soil cement column is widely known. For example, the soil cement column is formed by an apparatus shown in FIG.
This apparatus includes an excavation shaft 53 provided with an excavation head 54, suspension means 58 that suspends and lowers the excavation shaft 53, rotation means 59 that rotates the excavation shaft 53, and a cement-based solidified material mixed with water. A plant mixer 51 that generates a slurry in the form of a slurry, and a management device 52 that manages the amount of slurry supplied to the inside of the excavation shaft 53.
The excavation head 54 has an excavation blade 56 and a stirring blade 55 that rotate together with the excavation shaft 53, and an excavation hole 61 is formed in the ground 60 by the rotation of the excavation blade 56. A slurry discharge port is formed near the tip of the excavation shaft 53, and the slurry 57 discharged from the discharge port and the earth cut by the excavation blade 56 are agitated and mixed by the stirring blade 55. Soil cement (a fluid mixture of local soil and cement) is produced.
If the excavation head 54 is pulled up from the excavation hole 61 and left until the soil cement filling the excavation hole 61 is solidified, a cylindrical soil cement column is formed in the ground. The solidification of the soil cement requires several hours to two days, although it depends on the size of the excavation hole 61 and the type of cementitious solidification material.

本発明では、掘削孔61内のソイルセメントが流動状態のときに、掘削孔61に空気循環鋼管を挿入し、その状態でソイルセメントを固化させる。
図1には、空気循環鋼管の実施形態を示している。図1(a)は上面図、図1(b)は正面断面図、図1(c)は下面図である。
この空気循環鋼管30は、並列する二本の角型鋼管31、31の接触面を溶接して本体部分が形成されており、角型鋼管31、31の上端には、短管部分を構成する短い丸型鋼管32、32が溶接されている。角型鋼管31、31の下端は、板34で封鎖され、下端近傍の接触面に二本の角型鋼管31、31を連通する通気穴33が形成されている。そのため、この空気循環鋼管30は、短管部分32→角型鋼管31→通気穴33→角型鋼管31→短管部分32から成るU字状の空気通路を有している。
また、板34で塞がれた角型鋼管31、31の下端には、先端が尖ったヘッダー35が溶接されている。このヘッダー35は、空気循環鋼管30を掘削孔61のソイルセメントに挿入する際に、その挿入が容易になるように設けられている。
In the present invention, when the soil cement in the excavation hole 61 is in a fluid state, an air circulating steel pipe is inserted into the excavation hole 61 and the soil cement is solidified in that state.
FIG. 1 shows an embodiment of an air circulation steel pipe. 1A is a top view, FIG. 1B is a front sectional view, and FIG. 1C is a bottom view.
The air circulation steel pipe 30 has a main body portion formed by welding the contact surfaces of two parallel square steel pipes 31, 31. A short pipe portion is formed at the upper ends of the square steel pipes 31, 31. Short round steel pipes 32, 32 are welded. The lower ends of the square steel pipes 31 and 31 are sealed with a plate 34, and a vent hole 33 for communicating the two square steel pipes 31 and 31 is formed on the contact surface in the vicinity of the lower ends. Therefore, the air circulation steel pipe 30 has a U-shaped air passage composed of the short pipe portion 32 → the square steel pipe 31 → the vent hole 33 → the square steel pipe 31 → the short pipe portion 32.
A header 35 with a sharp tip is welded to the lower ends of the square steel pipes 31 and 31 closed by the plate 34. The header 35 is provided to facilitate the insertion of the air circulating steel pipe 30 into the soil cement of the excavation hole 61.

この空気循環鋼管30を懸垂手段58で吊り下げて、図2(a)に示すように、流動状態のソイルセメントで占められた掘削孔61の所定位置に、短管部分32だけがソイルセメントから突出するように挿入する。このとき、懸垂手段58によって降下する空気循環鋼管30が容易にソイルセメント中を進入するように、ソイルセメントに混ぜるスラリー57の水分量を予め調整する。
図2(a)の状態に空気循環鋼管30を保ちながらソイルセメントを固化させて、空気循環鋼管30が埋め込まれたソイルセメントコラム62を形成する。図2(b)は、その上面図を示している。
The air circulating steel pipe 30 is suspended by the suspension means 58, and as shown in FIG. 2 (a), only the short pipe portion 32 is formed from the soil cement at a predetermined position of the excavation hole 61 occupied by the fluid state soil cement. Insert so that it protrudes. At this time, the water content of the slurry 57 mixed with the soil cement is adjusted in advance so that the air circulating steel pipe 30 descending by the suspension means 58 easily enters the soil cement.
The soil cement is solidified while keeping the air circulation steel pipe 30 in the state of FIG. 2A, and the soil cement column 62 in which the air circulation steel pipe 30 is embedded is formed. FIG. 2B shows a top view thereof.

このソイルセメントコラム62は、図3に示すように、べた基礎の配設パターンに従って複数形成する。図3では、べた基礎の立ち上り部を点線で示している。ソイルセメントコラム62は、この立ち上り部が予定されている位置にバランス良く形成し、建物の支持地盤の更なる補強が必要であれば、立ち上り部を設けない箇所にも形成する。空気循環鋼管30は、ソイルセメントコラム62から突出する短管部分32が、立ち上り部の位置と重ならないように、ソイルセメントコラム62に埋め込む。   As shown in FIG. 3, a plurality of the soil cement columns 62 are formed according to a solid foundation arrangement pattern. In FIG. 3, the rising part of the solid foundation is indicated by a dotted line. The soil cement column 62 is formed in a well-balanced position where the rising portion is planned, and is formed in a place where the rising portion is not provided if further reinforcement of the supporting ground of the building is necessary. The air circulation steel pipe 30 is embedded in the soil cement column 62 so that the short pipe portion 32 protruding from the soil cement column 62 does not overlap the position of the rising portion.

支持地盤へのソイルセメントコラム62の形成が終了すると、次に、図4に示すように、ソイルセメントコラム62で補強した支持地盤上にべた基礎70を形成する。このとき、空気循環鋼管30の短管部分32の先端をべた基礎70のスラブ72上に突出させる。短管部分32の突出高さは、立ち上り部71の高さよりも低くなるように設定する。
べた基礎70が完成すると、図5、図6に示すように、べた基礎70から突出する空気循環鋼管30の短管部分32と、隣接する空気循環鋼管30の短管部分32とを伸縮可能な連結管80で接続する。こうすることで、図5に示すように、複数の空気循環鋼管30のU字状空気通路を直列に接続した直列空気通路が形成される。
図7には、ソイルセメントコラム62に埋め込まれた空気循環鋼管30の空気通路を連結管80で全て繋げて一本の直列空気通路を形成した例を示している。図7において、81、82は、後述する空気導入端部及び空気排出端部を示している。
When the formation of the soil cement column 62 on the supporting ground is completed, a solid foundation 70 is then formed on the supporting ground reinforced with the soil cement column 62 as shown in FIG. At this time, the tip of the short pipe portion 32 of the air circulation steel pipe 30 is projected onto the slab 72 of the solid foundation 70. The protruding height of the short pipe portion 32 is set to be lower than the height of the rising portion 71.
When the solid foundation 70 is completed, as shown in FIGS. 5 and 6, the short pipe portion 32 of the air circulation steel pipe 30 protruding from the solid foundation 70 and the short pipe portion 32 of the adjacent air circulation steel pipe 30 can be expanded and contracted. Connect with connecting pipe 80. By doing so, as shown in FIG. 5, a series air passage is formed in which the U-shaped air passages of the plurality of air circulation steel pipes 30 are connected in series.
FIG. 7 shows an example in which all the air passages of the air circulation steel pipe 30 embedded in the soil cement column 62 are connected by a connecting pipe 80 to form one serial air passage. In FIG. 7, 81 and 82 have shown the air introduction | transduction edge part and air discharge edge part which are mentioned later.

完成したべた基礎70の上に建物を建てる。
図8に示すように、直列空気通路に空気を吸い込む空気導入端部81は、例えば、建物の外に設置する。直列空気通路から空気を排出する空気排出端部82は、床下の空間や室内に設置する。また、空気導入端部81から吸い込んだ外気が直列空気通路を通って空気排出端部82から吹き出されるように、この空気通路に吸い込み用の送風機83及び吹き出し用の送風機84の両方、または、その一方だけを設置する。
空気導入端部81から吸い込まれた外気は、外気温に比べて地中温度の方が高い冬季には、空気循環鋼管30を通過する過程で暖められ、一方、外気温に比べて地中温度の方が低い夏季には、空気循環鋼管30を通過する過程で冷やされて、空気排出端部82から建物内に吹き出る。
A building is built on the completed solid foundation 70.
As shown in FIG. 8, the air introduction end portion 81 that sucks air into the series air passage is installed outside a building, for example. The air discharge end portion 82 for discharging air from the serial air passage is installed in a space under the floor or in a room. Further, both the suction fan 83 and the blower fan 84 are sucked into the air passage so that the outside air sucked from the air introduction end portion 81 is blown out from the air discharge end portion 82 through the series air passage, or Install only one of them.
The outside air sucked from the air introduction end 81 is warmed in the process of passing through the air circulation steel pipe 30 in the winter when the underground temperature is higher than the outside air temperature, while the underground temperature is compared with the outside temperature. In the summer, when it is lower, it is cooled in the process of passing through the air circulating steel pipe 30 and blows out from the air discharge end portion 82 into the building.

ソイルセメントコラム62は、その長さ(深度)が、多くの場合、3m〜15m程度に設定される。ソイルセメントコラム62に埋め込まれている空気循環鋼管30の本体部分の長さを10mと仮定すると、U字状の空気通路は20mとなるから、図7のように、20本のソイルセメントコラム62を形成し、それらに埋まる空気循環鋼管30を繋いで一本の直列空気通路を形成した場合には、地中に存在する直列空気通路の長さが、凡そ400mとなる。
この長さは、直列空気通路を流れる空気と地中とが熱交換を行うために十分過ぎる長さであり、空気導入端部81から吸い込まれた空気は、地中温度と略同じ温度になって空気排出端部82から吹き出される。
そのため、建物の室温は、空気排出端部82から吹き出される空気により、冬場には上昇し、夏場には下降する。
The length (depth) of the soil cement column 62 is often set to about 3 m to 15 m. Assuming that the length of the main body portion of the air circulating steel pipe 30 embedded in the soil cement column 62 is 10 m, the U-shaped air passage is 20 m, so that 20 soil cement columns 62 are provided as shown in FIG. When the air circulation steel pipe 30 buried in them is connected to form one serial air passage, the length of the serial air passage existing in the ground is about 400 m.
This length is long enough to exchange heat between the air flowing through the series air passage and the ground, and the air sucked from the air introduction end 81 has a temperature substantially equal to the underground temperature. Then, the air is discharged from the air discharge end portion 82.
Therefore, the room temperature of the building rises in winter and falls in summer due to the air blown from the air discharge end portion 82.

このように、この地中熱利用建物では、支持地盤を補強するソイルセメントコラムに空気循環鋼管30を埋め込んで地中熱を採熱しているため、地中との熱交換が十分に可能な長さの直列空気通路を確保することができ、この直列空気通路により、地中温度と略同じ温度の空気を得ることができる。この地中温度に同化された空気は、建物内に直接吹き出して室温を加減する空調システムに用いることができる。
この空調システムは、ヒートポンプ等の機器を必要としないため、設備機器に費やすコストや設備機器の稼動に要するエネルギーが削減できる。
Thus, in this geothermal building, the air circulation steel pipe 30 is embedded in the soil cement column that reinforces the supporting ground, and the ground heat is collected, so that the heat exchange with the ground is sufficiently possible. A series air passage can be secured, and air having substantially the same temperature as the underground temperature can be obtained by this series air passage. The air assimilated to the underground temperature can be directly blown into the building and used for an air conditioning system that adjusts the room temperature.
Since this air conditioning system does not require a device such as a heat pump, the cost of the equipment and the energy required to operate the equipment can be reduced.

また、冷暖房機を使用する空調システムでは、室内を気密にしないとエネルギー効率が著しく低下するが、地中で熱交換した空気を建物内に直接吹き出す本発明の空調システムでは、室内を特に気密に保つ必要がない。気密性が高い建物の場合、建材や壁紙塗料から揮発する有害物質が健康を損なう虞があるが、本発明の建物では、気密性を必要としないため、そうした不安から解放される。   In addition, in an air conditioning system using an air conditioner, the energy efficiency is remarkably reduced unless the room is airtight. However, in the air conditioning system of the present invention in which air exchanged in the ground is directly blown into the building, the room is particularly airtight. There is no need to keep. In the case of buildings with high airtightness, harmful substances volatilized from building materials and wallpaper paints may impair health. However, in the building of the present invention, since airtightness is not required, it is freed from such anxiety.

また、ソイルセメントコラムの直径は、通常50cm〜60cm程度であるから、空気循環鋼管30の断面積を10cm×20cm程度に設定すれば、べた基礎の立ち上り部の位置に形成するソイルセメントコラムに、立ち上り部の位置と重ならないように空気循環鋼管30を埋め込むことができる。そのため、建物の荷重が掛かるべた基礎の立ち上り部をソイルセメントコラムで支えて、建物の安全性を確保するとともに、そのソイルセメントコラムに空気循環鋼管を埋め込んで、地中熱の採熱に利用することができる。
また、ソイルセメントコラムに埋め込んだ空気循環鋼管は、ソイルセメントコラムを補強する効果もある。
In addition, since the diameter of the soil cement column is usually about 50 cm to 60 cm, if the cross-sectional area of the air circulation steel pipe 30 is set to about 10 cm × 20 cm, the soil cement column formed at the position of the rising portion of the solid foundation, The air circulation steel pipe 30 can be embedded so as not to overlap the position of the rising portion. Therefore, the foundation rises where the building load is applied are supported by a soil cement column to ensure the safety of the building, and an air circulation steel pipe is embedded in the soil cement column for use in collecting ground heat. be able to.
Moreover, the air circulation steel pipe embedded in the soil cement column has the effect of reinforcing the soil cement column.

なお、ここでは、直列空気通路の空気導入端部81を建物の外に配置した例を示しているが、建物の内側に設けても良い。ただ、建物の外に配置した方が、新鮮な外気を取り込めるので、好ましい。特に、夏季には、できるだけ温度の低い、地表から離れた位置の外気を取り込んだ方が、直列空気通路の通過中に地中温度に同化し易く、有利である。   In addition, although the example which has arrange | positioned the air introduction | transduction edge part 81 of a serial air passage outside the building is shown here, you may provide inside a building. However, it is preferable to place it outside the building because fresh outside air can be taken in. In particular, in summer, it is advantageous to take in the outside air at a temperature as low as possible and away from the ground surface because it is easy to assimilate to the ground temperature during passage through the series air passage.

また、空気循環鋼管は、図9に示すように構成しても良い。図9(a)は正面図、図9(b)は、図9(a)のA−A位置で切断したときの断面図、図9(c)は上面図、図9(d)は下面図である。この空気循環鋼管は、本体部分が、丸型鋼管36の両端に短い角型鋼管37、38を結合した二本の複合鋼管で構成され、この二本の複合鋼管が角型鋼管37及び角型鋼管38の位置で接合されている。また、角型鋼管38の接合面には、二本の複合鋼管を連通する通気穴33が設けられている。角型鋼管37の上端には、短管部分を構成する短い丸型鋼管32が結合され、角型鋼管38の下端は板34で封鎖され、板34の外面には先端が尖ったヘッダー35が溶接されている。この空気循環鋼管は、短管部分32→角型鋼管37→丸型鋼管36→角型鋼管38→通気穴33→角型鋼管38→丸型鋼管36→角型鋼管37→短管部分32から成るU字状の空気通路を有している。
この空気循環鋼管では、本体部分に丸型鋼管を使用することができる。
Moreover, you may comprise an air circulation steel pipe as shown in FIG. 9A is a front view, FIG. 9B is a cross-sectional view taken along the line AA in FIG. 9A, FIG. 9C is a top view, and FIG. 9D is a bottom surface. FIG. The air circulation steel pipe is composed of two composite steel pipes having a main body portion in which short square steel pipes 37 and 38 are coupled to both ends of a round steel pipe 36, and the two composite steel pipes are square steel pipe 37 and square steel pipe. Joined at the position of the steel pipe 38. The joint surface of the square steel pipe 38 is provided with a vent hole 33 for communicating the two composite steel pipes. A short round steel pipe 32 constituting a short pipe portion is coupled to an upper end of the square steel pipe 37, a lower end of the square steel pipe 38 is sealed with a plate 34, and a header 35 having a sharp tip is provided on the outer surface of the plate 34. Welded. This air circulation steel pipe is composed of a short pipe portion 32 → a square steel pipe 37 → a round steel pipe 36 → a square steel pipe 38 → a vent hole 33 → a square steel pipe 38 → a round steel pipe 36 → a square steel pipe 37 → a short pipe portion 32. And a U-shaped air passage.
In this air circulation steel pipe, a round steel pipe can be used for the main body portion.

また、空気循環鋼管をソイルセメント中に挿入し易くするため、図10(a)に示すように、空気循環鋼管の下端に先端が尖ったヘッダー35を設けるとともに、下端近くの外周に回転翼39を付加しても良い。図10(b)は上面図、図10(c)は下面図である。この空気循環鋼管は、懸垂手段で吊り下げて流動状態のソイルセメント中に降下させると、降下位置からずれること無く、回転しながらソイルセメント中に真っ直ぐ進入する。   In order to facilitate the insertion of the air circulating steel pipe into the soil cement, as shown in FIG. 10A, a header 35 having a sharp tip is provided at the lower end of the air circulating steel pipe, and the rotor blade 39 is provided on the outer periphery near the lower end. May be added. FIG. 10B is a top view, and FIG. 10C is a bottom view. When this air circulating steel pipe is suspended by the suspension means and lowered into the fluidized soil cement, it moves straight into the soil cement while rotating without deviating from the lowered position.

また、本発明の地中熱利用建物では、自然エネルギーの更なる利用を図るため、図11に示すように、太陽熱で管内の空気を暖める太陽熱集熱パネル90を屋根等に設置し、管内で暖められた空気を建物の内部や建物の下部の空間に導き、太陽熱と地中熱とを利用して省エネルギー効果を高めるようにしても良い。   In the geothermal building of the present invention, in order to further use natural energy, as shown in FIG. 11, a solar heat collecting panel 90 that warms the air in the tube with solar heat is installed on the roof or the like. The warmed air may be guided to the interior of the building or the space below the building, and the energy saving effect may be enhanced using solar heat and underground heat.

なお、ここで示した形態や数値などは、一例であって、本発明は、それに限定されるものではない。
敷地に埋設された複数のソイルセメントコラムに埋め込まれた空気循環鋼管は、必ずしも、一本の直列空気通路を形成するように繋ぐ必要は無い。複数のソイルセメントコラムを複数のグループに分け、グループ毎にソイルセメントコラムに埋め込まれた空気循環鋼管を繋いで複数の直列空気通路を形成するようにしても良い。
また、空気循環鋼管は、鉄合金やアルミ合金などの金属素材で形成しても良い。
また、地中温度に同化した空気を建物内に直接吹き出す本発明の空調システムは、他の空調システムと併用して、他のシステムを補完する補助システムとして用いても良い。
The forms and numerical values shown here are merely examples, and the present invention is not limited thereto.
The air circulating steel pipes embedded in a plurality of soil cement columns embedded in the site do not necessarily have to be connected so as to form one serial air passage. A plurality of soil cement columns may be divided into a plurality of groups, and a plurality of series air passages may be formed by connecting air circulation steel pipes embedded in the soil cement columns for each group.
The air circulation steel pipe may be formed of a metal material such as an iron alloy or an aluminum alloy.
In addition, the air conditioning system of the present invention that blows air assimilated to the underground temperature directly into the building may be used in combination with another air conditioning system as an auxiliary system that complements the other system.

本発明は、地中熱を利用して建物の省エネルギー化を図り、都市のヒートアイランド現象を緩和するものであり、個人集宅、共同住宅、工場、商業施設、公共建物など、建物の種類を問わずに、また、木造、鉄鋼造、鉄筋コンクリート造など、建物の構造を問わずに、広く用いることができる。   The present invention uses geothermal heat to save energy in buildings and mitigate urban heat island phenomenon, regardless of the type of building, such as personal housing, apartment buildings, factories, commercial facilities, and public buildings. In addition, it can be widely used regardless of the structure of the building such as wooden, steel, reinforced concrete.

30 空気循環鋼管
31 角型鋼管
32 短管部分
33 通気穴
34 板
35 ヘッダー
36 丸型鋼管
37 角型鋼管
38 角型鋼管
39 回転翼
51 プラントミキサー
52 管理装置
53 掘削軸
54 掘削ヘッド
55 攪拌翼
56 掘削翼
57 スラリー
58 懸垂手段
59 回転手段
60 地盤
61 掘削孔
70 べた基礎
71 立ち上り部
72 スラブ
80 連結管
81 空気導入端部
82 空気排出端部
83 吸い込み用送風機
84 吹き出し用送風機
90 太陽熱集熱パネル
DESCRIPTION OF SYMBOLS 30 Air circulation steel pipe 31 Square steel pipe 32 Short pipe part 33 Vent hole 34 Plate 35 Header 36 Round steel pipe 37 Square steel pipe 38 Square steel pipe 39 Rotary blade 51 Plant mixer 52 Management apparatus 53 Drilling shaft 54 Drilling head 55 Stirring blade 56 Excavation blade 57 Slurry 58 Suspension means 59 Rotation means 60 Ground 61 Excavation hole 70 Solid foundation 71 Rising portion 72 Slab 80 Connecting pipe 81 Air introduction end portion 82 Air discharge end portion 83 Blower for suction 84 Blower for blowout 90 Solar heat collecting panel

Claims (8)

地中熱を利用する地中熱利用建物であって、
地中に埋設された複数本のソイルセメントコラムと、
前記ソイルセメントコラムにU字状の空気通路を形成する本体部分が埋め込まれ、前記空気通路の導入口及び排出口に続く短管部分が前記ソイルセメントコラムから突出している空気循環金属管と、
前記空気循環金属管の短管部分に貫かれた状態で前記ソイルセメントコラムに支持されているべた基礎と、
複数の前記空気循環金属管の導入口と排出口とを繋ぐように、前記べた基礎のスラブ上の空間で前記短管部分を連結する連結管と、
複数の前記空気循環金属管の空気通路を前記連結管で直列に接続した直列空気通路に空気が導入される空気導入端部と、
前記直列空気通路を流れた空気が排出される空気排出端部と、
前記直列空気通路での空気の流れを支援する送風手段または吸引手段と、
を備え、前記直列空気通路を流れた空気が、前記空気排出端部から、前記べた基礎の上に建設された建物の内部または当該建物の下部の空間に排出されることを特徴とする地中熱利用建物。
A geothermal building that uses geothermal heat,
Multiple soil cement columns embedded in the ground,
An air circulation metal pipe in which a main body part forming a U-shaped air passage is embedded in the soil cement column, and a short pipe part following the introduction port and the discharge port of the air passage projects from the soil cement column;
A solid foundation supported by the soil cement column in a state penetrating the short pipe portion of the air circulation metal pipe;
A connecting pipe for connecting the short pipe portions in the space on the slab of the solid foundation so as to connect the inlets and outlets of the plurality of air circulation metal pipes;
An air introduction end portion through which air is introduced into a series air passage in which air passages of a plurality of the air circulation metal tubes are connected in series by the connection pipe;
An air discharge end from which air flowing through the series air passage is discharged;
Air blowing means or suction means for supporting air flow in the serial air passage;
The air flowing through the series air passage is discharged from the air discharge end into the interior of the building constructed on the solid foundation or in the space below the building. Thermal building.
請求項1に記載の地中熱利用建物であって、前記直列空気通路を流れる空気が、前記建物の外に配置された前記空気導入端部から導入されることを特徴とする地中熱利用建物。   It is a geothermal use building of Claim 1, Comprising: The air which flows through the said serial air path is introduce | transduced from the said air introduction | transduction edge part arrange | positioned outside the said building, The geothermal heat utilization characterized by the above-mentioned. building. 請求項1または2に記載の地中熱利用建物であって、前記べた基礎の立ち上り部の下に埋設された前記ソイルセメントコラムを有し、当該ソイルセメントコラムから突出する前記空気循環金属管の短管部分が、前記立ち上り部と重ならない位置に突出していることを特徴とする地中熱利用建物。   It is a geothermal use building of Claim 1 or 2, Comprising: It has the said soil cement column embed | buried under the standing part of the said solid foundation, The said air circulation metal pipe which protrudes from the said soil cement column A building using geothermal heat, characterized in that a short pipe portion protrudes at a position not overlapping with the rising portion. 請求項1から3のいずれかに記載の地中熱利用建物であって、前記空気循環金属管の本体部分が、並列させた二本の角型金属管の接触面を接合して構成され、前記角型金属管のそれぞれの上端に前記短管部分が接続され、前記角型金属管のそれぞれの下端が封鎖されて、下端の近傍の前記接触面に前記二本の角型金属管を連通する通気穴が形成されていることを特徴とする地中熱利用建物。   It is a building using geothermal heat according to any one of claims 1 to 3, wherein the main body portion of the air circulation metal tube is configured by joining contact surfaces of two parallel rectangular metal tubes, The short tube portion is connected to the respective upper ends of the rectangular metal tubes, the lower ends of the rectangular metal tubes are sealed, and the two rectangular metal tubes communicate with the contact surface in the vicinity of the lower ends. A building using geothermal heat, characterized by a vent hole to be formed. 請求項1から3のいずれかに記載の地中熱利用建物であって、前記空気循環金属管の本体部分が、丸型金属管の両端に短い角型金属管を結合した複合金属管の二本を、前記角型金属管の箇所で接合して構成され、前記複合金属管の上端の角型金属管のそれぞれに前記短管部分が接続され、前記複合金属管の下端の角型金属管のそれぞれが封鎖されて、当該角型金属管を接合した接合面に前記二本の複合金属管を連通する通気穴が形成されていることを特徴とする地中熱利用建物。   The building using geothermal heat according to any one of claims 1 to 3, wherein the main body portion of the air circulation metal tube is a composite metal tube in which a short square metal tube is coupled to both ends of a round metal tube. A book is formed by joining the square metal pipes, the short pipe portion is connected to each of the square metal pipes at the upper end of the composite metal pipe, and the square metal pipe at the lower end of the composite metal pipe. Each of the above is sealed, and a ventilation hole for communicating the two composite metal tubes is formed in a joint surface where the square metal tubes are joined. 請求項4または5に記載の地中熱利用建物であって、前記空気循環金属管の下端に、先端が尖ったヘッダーが付加されていることを特徴とする地中熱利用建物。   6. The geothermal building according to claim 4, wherein a header with a sharp tip is added to a lower end of the air circulation metal pipe. 請求項4から6のいずれかに記載の地中熱利用建物であって、前記空気循環金属管の下端近くの外周に、回転翼が付加されていることを特徴とする地中熱利用建物。   It is a geothermal use building in any one of Claim 4 to 6, Comprising: A rotary blade is added to the outer periphery near the lower end of the said air circulation metal pipe, The geothermal use building characterized by the above-mentioned. 請求項1に記載の地中熱利用建物であって、さらに、太陽熱で管内の空気を暖める太陽熱集熱パネルを有し、前記管内の暖められた空気が、前記べた基礎の上に建設された建物の内部または当該建物の下部の空間に排出されることを特徴とする地中熱利用建物。   The building using geothermal heat according to claim 1, further comprising a solar heat collecting panel that heats the air in the pipe with solar heat, wherein the warmed air in the pipe is constructed on the solid foundation. A geothermal building characterized by being discharged into the space inside the building or in the lower part of the building.
JP2009132437A 2009-06-01 2009-06-01 Building using geothermal heat Pending JP2010276329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132437A JP2010276329A (en) 2009-06-01 2009-06-01 Building using geothermal heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132437A JP2010276329A (en) 2009-06-01 2009-06-01 Building using geothermal heat

Publications (1)

Publication Number Publication Date
JP2010276329A true JP2010276329A (en) 2010-12-09

Family

ID=43423444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132437A Pending JP2010276329A (en) 2009-06-01 2009-06-01 Building using geothermal heat

Country Status (1)

Country Link
JP (1) JP2010276329A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272592A (en) * 1985-05-29 1986-12-02 Yasuo Igarashi Embedded heat exchange pipe
JPH04244538A (en) * 1991-01-25 1992-09-01 Souichi Matsuka Heat exchanging type force ventilation housing
JPH07127924A (en) * 1993-11-08 1995-05-19 Daishiyuu Kensetsu:Kk Air-conditioning method by use of underground heat
JP2003035455A (en) * 2001-07-23 2003-02-07 Daiwa House Ind Co Ltd Installation structure of underground longitudinal tube for geothermal air-conditioning
JP2005273235A (en) * 2004-03-24 2005-10-06 Fujishima Kensetsu:Kk Building using underground heat
JP2008075374A (en) * 2006-09-22 2008-04-03 Yoshiro Watanabe Mat foundation construction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272592A (en) * 1985-05-29 1986-12-02 Yasuo Igarashi Embedded heat exchange pipe
JPH04244538A (en) * 1991-01-25 1992-09-01 Souichi Matsuka Heat exchanging type force ventilation housing
JPH07127924A (en) * 1993-11-08 1995-05-19 Daishiyuu Kensetsu:Kk Air-conditioning method by use of underground heat
JP2003035455A (en) * 2001-07-23 2003-02-07 Daiwa House Ind Co Ltd Installation structure of underground longitudinal tube for geothermal air-conditioning
JP2005273235A (en) * 2004-03-24 2005-10-06 Fujishima Kensetsu:Kk Building using underground heat
JP2008075374A (en) * 2006-09-22 2008-04-03 Yoshiro Watanabe Mat foundation construction method

Similar Documents

Publication Publication Date Title
JP5384058B2 (en) Geothermal heat exchanger for geothermal heat pump system
JP5063669B2 (en) Tunnel construction method and its heat exchange path fixture.
JP2007024342A (en) Geothermal heat collecting system
CN102995627B (en) Geothermal energy collecting pile foundation
KR101535384B1 (en) Heating system of heat pump using solar energy and underground heat storage
JP4499700B2 (en) Air conditioning system and building construction method
KR101061494B1 (en) Heat exchange system using an earth heat
JPH0211836B2 (en)
US20180172318A1 (en) Induced groundwater flow closed loop geothermal system
EP2383525A1 (en) Temperature equilibrating methodology &amp; installation with water supply system
KR20090108795A (en) Geothermal exchanging system and constructing method the same
JP2010276329A (en) Building using geothermal heat
JP2005351514A (en) House ventilation system utilizing geothermal source
KR20160065502A (en) Geothermal heat exchange system using heat storage-tank of vertical pipe
JP2004340463A (en) Air conditioner utilizing geothermal heat
CN214833704U (en) Energy-saving heat-insulation building outer wall
JP2005273235A (en) Building using underground heat
JP2003302108A (en) U-tube type geothermal heat exchanger
JP4762623B2 (en) Geothermal heat utilization device and manufacturing method thereof
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
CN109083128A (en) Fashioned iron column assembled underground continuous wall with high-bearing capacity
JP2003336910A (en) Air conditioner for building
JP2004177012A (en) Steel pipe pile for heat exchange
JP2008261535A (en) Energy-saving constant-temperature ventilation system utilizing underground heat
JP2007127397A (en) Geothermal heat utilization system of house in cold area

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904