JP2003035455A - Installation structure of underground longitudinal tube for geothermal air-conditioning - Google Patents

Installation structure of underground longitudinal tube for geothermal air-conditioning

Info

Publication number
JP2003035455A
JP2003035455A JP2001221010A JP2001221010A JP2003035455A JP 2003035455 A JP2003035455 A JP 2003035455A JP 2001221010 A JP2001221010 A JP 2001221010A JP 2001221010 A JP2001221010 A JP 2001221010A JP 2003035455 A JP2003035455 A JP 2003035455A
Authority
JP
Japan
Prior art keywords
tube
underground
ground
geothermal
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001221010A
Other languages
Japanese (ja)
Inventor
Satoshi U
穎 于
Motoyuki Ikeda
基行 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Daiwa General Research Institute Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Daiwa General Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd, Daiwa General Research Institute Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2001221010A priority Critical patent/JP2003035455A/en
Publication of JP2003035455A publication Critical patent/JP2003035455A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an installation structure for embedding an underground longitudinal tube for geothermal air-conditioning deeply in the ground while preventing cost increase in the embedding work of the tube. SOLUTION: The underground longitudinal tube 1 for geothermal air- conditioning has a steel outer pipe 2 which is driven longitudinally into the ground 13 by rotary pressure driving method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地熱利用空調用の
地中埋設縦型チューブの設置構造等に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an installation structure of a vertically buried underground tube for air conditioning using geothermal heat.

【0002】[0002]

【従来の技術】外気に左右されず年間を通して安定した
温度に保たれる地中領域に2重の管からなる地熱利用チ
ューブを縦向き状態に埋設し、外気を、このチューブに
通して地中熱と熱交換させて屋内に送り込み、屋内空間
を、夏は涼しく、冬は暖かくすることができるようにし
た地熱利用の空調システムが提供されている。
2. Description of the Related Art A geothermal utilization tube consisting of a double pipe is buried vertically in an underground area where a stable temperature is maintained throughout the year without being influenced by the outside air, and the outside air is passed through this tube to the underground. An air conditioning system using geothermal heat is provided that allows heat to be exchanged with heat to be sent indoors to keep the indoor space cool in summer and warm in winter.

【0003】この空調システムにおいて、チューブの埋
設工事は、従来、地面に縦穴を掘り、この縦穴にチュー
ブを挿入し、土を埋め戻すというようにして行われてい
た。
In this air conditioning system, the tube burying work has conventionally been carried out by digging a vertical hole in the ground, inserting the tube in the vertical hole, and backfilling the soil.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、空調の
ための地熱利用を有効的かつ効果的なものにするために
は、チューブを地中のできるだけ奥深くに埋め込まなけ
ればならないところ、上記のような埋込み方法では、埋
込み工事のコストが非常に高いものになってしまうとい
う問題があった。
However, in order to effectively and effectively use the geothermal heat for air conditioning, the tube must be embedded as deep as possible in the ground. The method has a problem that the cost of the embedding work becomes very high.

【0005】本発明は、上記のような背景において、チ
ューブを地中奥深くに埋め込み状態にすることができ、
それでいてチューブの埋込み工事のコストを低く抑える
ことができる地熱利用空調用の地中埋設縦型チューブの
設置構造等を提供することを課題とする。
The present invention is capable of embedding the tube deep in the ground in the above background,
Still, it is an object of the present invention to provide an installation structure of a vertically buried underground tube for geothermal utilization air conditioning that can keep the cost of tube embedding work low.

【0006】[0006]

【課題を解決するための手段】上記の課題は、少なくと
も2重の管からなる地熱利用空調用の縦型チューブの外
管が鋼管からなり、この鋼管が縦向きで回転圧入工法に
より地中に打ち込まれて設置されていることを特徴とす
る地熱利用空調用の地中埋設縦型チューブの設置構造に
よって解決される。
[Means for Solving the Problems] The above-mentioned problem is that the outer tube of the vertical tube for air conditioning using geothermal heat, which is composed of at least double tubes, is made of steel pipe, and the steel pipe is oriented vertically and is installed in the ground by the rotary press-in method. It is solved by the installation structure of the underground buried vertical tube for geothermal utilization air conditioning characterized by being driven in and installed.

【0007】また、外管が鋼管からなる少なくとも2重
の管からなる地熱利用空調用の縦型チューブの少なくと
も前記外管を、縦向きで回転圧入工法により地中に打ち
込んでチューブを地中埋込み状態にすることを特徴とす
る地熱利用空調用の地中埋設縦型チューブの設置方法に
よって解決される。
Further, at least the outer tube of the vertical tube for air conditioning using geothermal heat, which has at least double tube made of steel tube, is driven vertically into the ground by the rotary press-fitting method to embed the tube in the ground. This is solved by a method of installing a vertically buried underground tube for air conditioning using geothermal, which is characterized in that

【0008】更に、少なくとも2重の管からなり、外管
が、回転圧入工法による地中への打込み可能な鋼管から
なることを特徴とする地熱利用空調用の地中埋設縦型チ
ューブによって解決される。
Further, the present invention has been solved by a vertically buried underground tube for air conditioning using geothermal heat, characterized by comprising at least a double tube and an outer tube made of a steel tube which can be driven into the ground by a rotary press-in method. It

【0009】上記の設置構造、設置方法、チューブで
は、チューブの外管が鋼管で構成されており、少なくと
もこの外管鋼管を杭打ちの要領で直接地中に打ち込んで
いくことで、チューブを地中埋込み状態にするものであ
り、あるいは、することができるものであるから、チュ
ーブを施工容易に地中の奥深くに埋込み状態にすること
ができ、それでいて、工事コストを低く抑えることがで
きる。
In the above-mentioned installation structure, installation method, and tube, the outer tube of the tube is made of a steel tube, and at least this outer tube steel tube is driven directly into the ground by a method of pile driving, so that the tube is grounded. Since the tube is or is capable of being embedded in the inside, the tube can be embedded deep in the ground easily, and yet the construction cost can be kept low.

【0010】地盤に打ち込まれたチューブの外管鋼管
に、建物の基礎からの荷重が伝えられるようになされて
いる場合は、チューブの外管鋼管に建物の荷重を支えさ
せる杭としての機能をもたせることができ、建物の設置
状態を安定かつ強固なものにすることができる。即ち、
この場合は、例えば、杭打ちを要する地盤に建物を建築
するような場合に、杭として、地熱利用空調用のチュー
ブとしての構造をもたせたものを用い、この杭を打つこ
とで地熱利用空調用のチューブの埋設も同時に行ってし
まうことができ、地熱利用空調システムを安価に導入す
ることができる。
When the load from the foundation of the building is transmitted to the outer steel pipe of the tube driven into the ground, the outer steel pipe of the tube has a function as a pile for supporting the load of the building. Therefore, the installation condition of the building can be made stable and strong. That is,
In this case, for example, when constructing a building on the ground that requires pile driving, use a pile that has a structure as a tube for geothermal utilization air conditioning, and strike this pile for geothermal utilization air conditioning. The tube can be buried at the same time, and the geothermal air conditioning system can be introduced at low cost.

【0011】チューブが建物の床下に設置され、このチ
ューブの外管鋼管に側方突出部が備えられ、この側方突
出部で建物の基礎が支えられている場合は、チューブの
外管鋼管に、建物の基礎を支える杭としての機能を果た
させながら、チューブの埋設位置が建物基礎の位置に制
限されてしまうのを防ぐことができる。
When the tube is installed under the floor of the building, and the outer pipe steel pipe of this tube is provided with a side protrusion, and the foundation of the building is supported by this side protrusion, the outer pipe steel pipe of the tube is , It is possible to prevent the embedded position of the tube from being restricted to the position of the building foundation while performing the function as a pile that supports the foundation of the building.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施形態を図面に
基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0013】図1に示す地熱利用空調用の縦型チューブ
1は、2重管構造をしており、外管2は、地中への回転
圧入可能な鋼管からなっている。この外管鋼管2は、下
端が底板3で密閉状態に閉じられ、この下端部には先端
側に突出する掘削刃4が備えられると共に、下端外周部
に側方に張り出す拡底翼5が取り付けられている。
The vertical tube 1 for air conditioning using geothermal heat shown in FIG. 1 has a double tube structure, and the outer tube 2 is a steel tube that can be rotationally press-fitted into the ground. The outer steel pipe 2 has a lower end hermetically closed by a bottom plate 3, and a drilling blade 4 protruding toward the tip end is provided at the lower end, and a bottom expanding blade 5 is attached to the outer periphery of the lower end. Has been.

【0014】この外管鋼管2の内部に、内管6が同芯状
態に入れられ、内管6と外管2の間に上下方向に延びる
環状の通気部7が形成され、内管6の下端部の管壁に設
けられた通気孔8…を通じて、環状通気部7と内管6内
の通気部9とが連通されている。この環状通気部7は、
内管6の上端部において環板10で閉じられ、この環板
10の下側の位置において側方に開口する外気取入れ口
11…が設けられ、外管2の上端にはファン12が備え
られている。このファン12を駆動することにより、図
3又は図4に矢印で示すように、外気が、取入れ口11
を通じてチューブ1内の環状の通気部7に吸い込まれ、
環状通気部7を下って、内管6の下端の通気孔8…を通
じて内管6内の通気部9に吸い込まれ、この通気部9を
上昇して上方に吹き出すようになされている。
Inside the outer steel pipe 2, the inner pipe 6 is placed in a concentric state, and an annular ventilation portion 7 extending in the vertical direction is formed between the inner pipe 6 and the outer pipe 2. The annular ventilation portion 7 and the ventilation portion 9 in the inner pipe 6 are communicated with each other through the ventilation holes 8 provided in the pipe wall at the lower end portion. This annular ventilation part 7
The upper end of the inner pipe 6 is closed by a ring plate 10, and outside air intake ports 11 ... Opening to the side at a position below the ring plate 10 are provided, and a fan 12 is provided at the upper end of the outer pipe 2. ing. By driving this fan 12, outside air is taken in through the intake port 11 as shown by the arrow in FIG. 3 or 4.
Is sucked into the annular ventilation part 7 in the tube 1 through
It goes down the annular ventilation part 7 and is sucked into the ventilation part 9 in the inner pipe 6 through the ventilation holes 8 at the lower end of the inner pipe 6, and the ventilation part 9 is raised and blown out upward.

【0015】上記のチューブ1は、次のようにして地中
に埋設する。即ち、回転圧入式の杭打ち機を用い、この
杭打ち機で、図2に示すように、チューブ1を直接地中
13に打ち込んでいく。打込みは、チューブ1の外管鋼
管2のみを先に打ち込み、外管鋼管2を地中打込み状態
にしたのちに、この外管鋼管2に内管6やファン12等
を組み付けるようにして施工してもよいし、内管6を組
み付けた外管鋼管2を地中に打ち込み、打込み状態にお
いてファン12等を組み付けるようにしてもよいし、内
管6やファン12等を組み付けた外管鋼管2を地中に打
ち込んでいくようにしてもよい。
The above tube 1 is buried in the ground as follows. That is, a rotary press-fitting type pile driver is used, and the tube 1 is directly driven into the ground 13 as shown in FIG. For the driving, only the outer steel pipe 2 of the tube 1 is first driven, the outer steel pipe 2 is driven into the ground, and then the inner steel pipe 6 and the fan 12 are attached to the outer steel pipe 2. Alternatively, the outer pipe steel pipe 2 with the inner pipe 6 assembled therein may be driven into the ground, and the fan 12 or the like may be assembled in the driven state, or the outer pipe steel pipe 2 with the inner pipe 6 or the fan 12 or the like assembled therein. May be driven into the ground.

【0016】このように、チューブ1の外管2を地中へ
の回転圧入可能な鋼管で構成しているので、回転圧入式
の杭打ち機を用いることで、外管2を極めて容易に地中
13の奥深くに打ち込むことができ、それにより、チュ
ーブ1を地中13の奥深くに埋め込み状態にすることが
できる。しかも、地面への孔明けや、土の埋め戻しなど
行う必要はなく、回転圧入式の杭打ち機を用いて地中1
3に外管鋼管を直接打ち込んでいけばよいので、チュー
ブの埋込み工事に要するコストも低く抑えることができ
る。
As described above, since the outer tube 2 of the tube 1 is made of a steel tube which can be rotationally press-fitted into the ground, the outer tube 2 can be extremely easily grounded by using a rotary press-fitting pile driving machine. It can be driven deep into the inside 13, whereby the tube 1 can be embedded deep inside the ground 13. Moreover, there is no need to drill holes in the ground or backfill the soil.
Since it suffices to directly drive the outer steel pipe into 3, the cost required for the tube embedding work can be kept low.

【0017】因みに、従来の穴掘り、挿入、埋め戻しに
よる方法では、多くの手間をかけてチューブをせいぜい
4〜5mの深さに埋め込むことしか行われなかったが、
上記のような回転圧入による埋込み方法によれば、チュ
ーブ1を10mを越えるような深さにも極めて容易に埋
め込むことができ、地中熱利用による空調を効果高いも
のにすることができる。
By the way, in the conventional method of digging, inserting, and backfilling, the tube was buried at a depth of 4 to 5 m at the most, though much labor was required.
According to the embedding method by rotary press-fitting as described above, the tube 1 can be extremely easily embedded even at a depth exceeding 10 m, and the air conditioning by utilizing the underground heat can be highly effective.

【0018】図3には、こうして、地中13に埋め込ま
れたチューブ1の設置例のひとつを示す。この例では、
チューブ1は建物の床下の地中に打ち込まれており、外
気取入れ口11は床下空間部14に開放され、チューブ
1の上端は、床15に設けられた吹出口16と接続され
ている。17はフィルターで、ファン12の音が屋内1
9に伝わるのを抑える遮音性フィルターが用いられてい
るのが好ましい。また、18は防虫網などによるフィル
ターで、チューブ1内に虫やゴミなどが吸い込まれるの
を防ぐものである。
FIG. 3 shows one example of installation of the tube 1 thus buried in the ground 13. In this example,
The tube 1 is driven into the ground under the floor of the building, the outside air intake 11 is opened to the underfloor space portion 14, and the upper end of the tube 1 is connected to the air outlet 16 provided on the floor 15. 17 is a filter, and the sound of the fan 12 is indoors 1
It is preferable to use a sound-insulating filter that suppresses the transmission of the noise. Further, reference numeral 18 is a filter such as an insect screen, which prevents insects and dust from being sucked into the tube 1.

【0019】ファン12を駆動すると、床下空間部14
内の空気が、取入れ口11を通じてチューブ1内の環状
通気部7に吸い込まれ、この環状通気部7を下降してい
き、この下降の過程で、外管2の管壁を通じて地中熱と
熱交換を行い、夏期は地中熱で冷やされ、冬期は地中熱
で暖められる。外管2は熱伝導性の良い鋼管からなり、
しかも、地中奥深くに埋込み状態にされているので、地
中熱との熱交換が効果的に行われる。そして、熱交換さ
れた空気は、内管6の下端の通気孔8を通じて内管6内
に吸い込まれ、内管6内の通気部9を上昇し、外管2の
上端から吹出部16を通じて夏期は涼しい空気が屋内1
9に吹き出し、冬期は暖かい空気が屋内19に吹き出
す。
When the fan 12 is driven, the underfloor space portion 14
The air inside is sucked into the annular ventilation part 7 in the tube 1 through the intake port 11 and descends through the annular ventilation part 7, and in the process of this descending, the underground heat and the heat are passed through the pipe wall of the outer pipe 2. They are exchanged and are cooled by geothermal heat in summer and warm by geothermal heat in winter. The outer tube 2 is made of a steel tube with good thermal conductivity,
Moreover, since it is buried deep in the ground, heat exchange with the underground heat is effectively performed. Then, the heat-exchanged air is sucked into the inner pipe 6 through the vent hole 8 at the lower end of the inner pipe 6, rises in the ventilation part 9 in the inner pipe 6, and flows from the upper end of the outer pipe 2 through the blowing part 16 in the summer season. Is cool air indoors 1
It blows out to 9 and warm air blows out indoors 19 in winter.

【0020】このようなチューブ1内での空気の流れに
おいて、外気取入れ口11を通じてチューブ1内に吸い
込まれて未だ地中熱と熱交換していない空気と、地中熱
との熱交換を終えて内管6内の通気路9を上昇していく
空気とが、熱交換をしないよう、内管6は、断熱性に優
れた材料あるいは構造にしておくとよい。
In such a flow of air in the tube 1, the air that has been sucked into the tube 1 through the outside air intake port 11 and has not yet exchanged heat with the underground heat and the heat exchange with the underground heat are completed. The inner tube 6 is preferably made of a material or structure having excellent heat insulating properties so that the air that rises in the air passage 9 in the inner tube 6 does not exchange heat.

【0021】なお、夏期や梅雨期において、ファン12
を駆動すると、外気が、地中13の熱と熱交換して冷や
されることで結露を起こし、外管2の底に結露水が溜ま
るので、チューブ1の外管2内には、環状通気部7を通
じて水抜きパイプ20が入れられ、このパイプ20を通
じて結露水を外に排出できるようになっている。このよ
うな結露水などの水分による外管鋼管2の錆などの腐蝕
による弊害の発生を防ぐため、外管鋼管2の肉厚を大き
くしたり、外管鋼管2の壁面にコーティング層を設ける
ようにしておくのもよい。
During the summer and rainy season, fans 12
When the air is driven, the outside air exchanges heat with the underground 13 and is cooled to cause dew condensation, and condensed water is collected at the bottom of the outer tube 2, so that the outer tube 2 of the tube 1 has an annular ventilation part. A drainage pipe 20 is inserted through 7, and the dew condensation water can be discharged to the outside through this pipe 20. In order to prevent adverse effects due to corrosion such as rust of the outer steel pipe 2 due to water such as dew condensation water, it is necessary to increase the thickness of the outer steel pipe 2 or provide a coating layer on the wall surface of the outer steel pipe 2. It is good to leave it.

【0022】更に、この図3の例では、チューブ1の外
管鋼管2に、建物のコンクリート基礎21からの荷重が
伝えられるようになされて、チューブ1が杭としての機
能をも果たすようになされている。即ち、チューブ1の
外管鋼管2には鋼製の側方突出部22が片持ち状態に取
り付けられ、この側方突出部22が建物の基礎21の下
面側に突出され、建物の基礎21から荷重が側方突出部
22を介してチューブ1の外管鋼管2に伝えられるよう
になされている。このように、側方突出部22を用いて
建物の基礎21からの荷重をチューブ1の外管2に伝え
る構造とすることで、チューブ1を、基礎21の直下に
埋め込むことなく、杭として働かせることができ、チュ
ーブ1内を通過して地中熱と熱交換した空気を簡素な通
気構造で屋内19に送り込むことができる。もちろん、
基礎21の直下にチューブ1を打ち込んで基礎21を支
えるようにしてもよいし、また、屋外の地面にチューブ
を打ち込み、側方突出部で建物の基礎21を支えるよう
にしてもよい。
Further, in the example of FIG. 3, the load from the concrete foundation 21 of the building is transmitted to the outer steel pipe 2 of the tube 1, so that the tube 1 also functions as a pile. ing. That is, a steel side projection 22 is attached to the outer steel tube 2 of the tube 1 in a cantilevered state, and this side projection 22 is projected to the lower surface side of the building foundation 21 to The load is transmitted to the outer steel tube 2 of the tube 1 via the lateral protrusions 22. In this way, by using the side protrusions 22 to transfer the load from the building foundation 21 to the outer tube 2 of the tube 1, the tube 1 is made to work as a pile without being embedded right under the foundation 21. Therefore, the air that has passed through the inside of the tube 1 and exchanged heat with the underground heat can be sent into the interior 19 with a simple ventilation structure. of course,
The tube 1 may be driven directly below the foundation 21 to support the foundation 21, or the tube may be driven into the outdoor ground to support the foundation 21 of the building by the lateral protrusions.

【0023】このように、チューブ1に杭としての働き
をさせることで、杭打ちを要する土地に建物を建築する
際に、使用する杭として、本発明のような地熱利用空調
用のチューブを用いることで、地熱利用空調システムを
コスト的に非常有利に導入することができる。
In this way, by causing the tube 1 to function as a pile, a tube for air conditioning using geothermal heat as in the present invention is used as a pile to be used when constructing a building on land where pile driving is required. As a result, it is possible to install the geothermal heat utilization air conditioning system with great cost advantage.

【0024】図4に示す設置例は、チューブ1を、その
外管鋼管2が建物の基礎からの荷重を受けない地熱利用
空調専用のチューブとして、建物の床下の地中13に打
ち込んで設置した例である。このように、チューブ1に
杭としての働きをさせない設置構造とするのもよい。そ
の場合、拡底翼5などは省略されてもよい。
In the installation example shown in FIG. 4, the tube 1 is installed by driving it into the underground 13 under the floor of the building so that the outer steel tube 2 is a tube exclusively for air conditioning using geothermal heat that does not receive the load from the foundation of the building. Here is an example. In this way, the tube 1 may have an installation structure that does not function as a pile. In that case, the bottom expanding blades 5 and the like may be omitted.

【0025】以上に、本発明の実施形態を示したが、本
発明はこれに限られるものではなく、発明思想を逸脱し
ない範囲で、各種の変更が可能である。例えば、チュー
ブの外管を杭として機能させるか否かを問わず、外管の
外周部に側方に張り出す螺旋等による複数の翼を長手方
向に間隔的に備えさせておくようにするのもよく、それ
により、チューブの設置安定性を高いものにすることが
できると共に、チューブ内を通過する空気と地中熱との
熱交換効率を高いものにすることができる。もちろん、
チューブの外管を杭として機能させるか否かを問わず、
拡底翼等は省略されていてもよい。また、チューブ内の
構造に特段の制限はなく、各種内部構造を備えた地熱利
用空調用の縦型チューブに適用することができるのはい
うまでもない。
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention. For example, regardless of whether or not the outer tube of the tube functions as a stake, a plurality of blades, such as a spiral protruding laterally, are provided at the outer peripheral portion of the outer tube at intervals in the longitudinal direction. As a result, it is possible to enhance the installation stability of the tube and also to enhance the heat exchange efficiency between the air passing through the tube and the underground heat. of course,
Whether or not the outer tube of the tube functions as a pile,
The bottom expanding blades and the like may be omitted. Further, it is needless to say that the structure inside the tube is not particularly limited and can be applied to a vertical tube for air conditioning using geothermal heat having various internal structures.

【0026】[0026]

【発明の効果】本発明は、以上のとおりのものであるか
ら、チューブを地中奥深くに埋め込み状態にすることが
でき、それでいてチューブの埋込み工事のコストを低く
抑えることができる。
Since the present invention is as described above, the tube can be embedded deep in the ground, and the cost for burying the tube can be kept low.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態のチューブを示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a tube of an embodiment.

【図2】チューブの埋設方法を示す側面図である。FIG. 2 is a side view showing a method of burying a tube.

【図3】設置例を示す断面側面図である。FIG. 3 is a cross-sectional side view showing an installation example.

【図4】他の設置例を示す断面側面図である。FIG. 4 is a cross-sectional side view showing another installation example.

【符号の説明】[Explanation of symbols]

1…地熱利用空調用の縦型チューブ 2…外管(鋼管) 6…内管 13…地中 14…床下空間部 21…基礎 22…側方突出部 1 ... Vertical tube for geothermal air conditioning 2 ... Outer tube (steel tube) 6 ... Inner tube 13 ... Underground 14 ... Underfloor space 21 ... Basic 22 ... Side protrusion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 基行 奈良県奈良市左京六丁目6番地2 株式会 社大和総合技術研究所内 Fターム(参考) 2D050 AA06 AA16 CB23 3L049 BB20 3L103 AA32 BB42 CC22 DD37    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Motoyuki Ikeda             6-6 Sakyo 6-2, Nara, Nara Stock Association             Inside Yamato Research Institute F-term (reference) 2D050 AA06 AA16 CB23                 3L049 BB20                 3L103 AA32 BB42 CC22 DD37

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2重の管からなる地熱利用空
調用の縦型チューブの外管が鋼管からなり、この鋼管が
縦向きで回転圧入工法により地中に打ち込まれて設置さ
れていることを特徴とする地熱利用空調用の縦型チュー
ブの設置構造。
1. An outer tube of a vertical tube for air conditioning using geothermal heat, which is composed of at least double tubes, is made of a steel tube, and the steel tube is installed in a vertical orientation by being driven into the ground by a rotary press-fitting method. A characteristic vertical tube installation structure for geothermal air conditioning.
【請求項2】 地盤に打ち込まれた前記チューブの外管
鋼管に、建物の基礎からの荷重が伝えられるようになさ
れている請求項1に記載の地熱利用空調用の地中埋設縦
型チューブの設置構造。
2. The underground tube for underground air-conditioning for geothermal utilization as claimed in claim 1, wherein the load from the foundation of the building is transmitted to the outer steel tube of the tube driven into the ground. Installation structure.
【請求項3】 前記チューブが建物の床下に設置され、
このチューブの外管鋼管に側方突出部が備えられ、この
側方突出部で建物の基礎が支えられている請求項2に記
載の地熱利用空調用の地中埋設縦型チューブの設置構
造。
3. The tube is installed under a building floor,
The underground underground vertical tube installation structure for geothermal utilization air conditioning according to claim 2, wherein the outer steel pipe of the tube is provided with a lateral projection, and the lateral projection supports the foundation of the building.
【請求項4】 外管が鋼管からなる少なくとも2重の管
からなる地熱利用空調用の地中埋設縦型チューブの少な
くとも前記外管を、縦向きで回転圧入工法により地中に
打ち込んでチューブを地中埋込み状態にすることを特徴
とする地熱利用空調用の地中埋設縦型チューブの設置方
法。
4. A vertical tube which is at least buried in the underground tube for geothermal use air conditioning and which has at least a double tube made of a steel tube. The outer tube is vertically driven into the ground by a rotary press-fitting method to form a tube. A method for installing a vertically buried underground tube for air conditioning using geothermal, which is characterized by being buried in the ground.
【請求項5】 少なくとも2重の管からなり、外管が、
回転圧入工法による地中への打込み可能な鋼管からなる
ことを特徴とする地熱利用空調用の地中埋設縦型チュー
ブ。
5. An outer tube comprising at least a double tube,
Vertical underground tube for air conditioning using geothermal, characterized by consisting of steel pipe that can be driven into the ground by rotary press-in method.
JP2001221010A 2001-07-23 2001-07-23 Installation structure of underground longitudinal tube for geothermal air-conditioning Pending JP2003035455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001221010A JP2003035455A (en) 2001-07-23 2001-07-23 Installation structure of underground longitudinal tube for geothermal air-conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001221010A JP2003035455A (en) 2001-07-23 2001-07-23 Installation structure of underground longitudinal tube for geothermal air-conditioning

Publications (1)

Publication Number Publication Date
JP2003035455A true JP2003035455A (en) 2003-02-07

Family

ID=19054744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001221010A Pending JP2003035455A (en) 2001-07-23 2001-07-23 Installation structure of underground longitudinal tube for geothermal air-conditioning

Country Status (1)

Country Link
JP (1) JP2003035455A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233031A (en) * 2002-12-05 2004-08-19 Nippon Steel Corp Underground heat exchanger by hollow tubular body embedded by rotating press-fitting method, and highly efficient energy system using the same
JP2006153304A (en) * 2004-11-25 2006-06-15 Asahi Kasei Homes Kk Geotherm utilizing installation
FR2918086A1 (en) * 2007-06-26 2009-01-02 Climatisation Par Puits Canadi HEAT EXCHANGER VERTICAL BURNER FOR HEATING OR REFRESHING INSTALLATION
ITPD20090098A1 (en) * 2009-04-17 2010-10-18 Hydra Srl METHOD AND DEVICE FOR THE INSTALLATION OF A GEOTHERMAL PROBE
JP2010276329A (en) * 2009-06-01 2010-12-09 Ac Core:Kk Building using geothermal heat
GB2478130A (en) * 2010-02-25 2011-08-31 Nicholas James Wincott Geothermal screw pile with manifold
WO2013061406A1 (en) 2011-10-25 2013-05-02 パナセアディシンフェクタントカンパニーリミテッド Functional air conditioning device and functional air conditioning method
CN104501332A (en) * 2014-11-21 2015-04-08 吉林大学 Underground heat exchanger
US9897347B2 (en) 2013-03-15 2018-02-20 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233031A (en) * 2002-12-05 2004-08-19 Nippon Steel Corp Underground heat exchanger by hollow tubular body embedded by rotating press-fitting method, and highly efficient energy system using the same
JP2006153304A (en) * 2004-11-25 2006-06-15 Asahi Kasei Homes Kk Geotherm utilizing installation
JP4632760B2 (en) * 2004-11-25 2011-02-16 旭化成ホームズ株式会社 Geothermal equipment
FR2918086A1 (en) * 2007-06-26 2009-01-02 Climatisation Par Puits Canadi HEAT EXCHANGER VERTICAL BURNER FOR HEATING OR REFRESHING INSTALLATION
WO2009007606A2 (en) * 2007-06-26 2009-01-15 Climatisation Par Puits Canadiens Buried vertical threaded exchanger for heating or cooling apparatus
WO2009007606A3 (en) * 2007-06-26 2009-03-05 Climatisation Par Puits Canadi Buried vertical threaded exchanger for heating or cooling apparatus
ITPD20090098A1 (en) * 2009-04-17 2010-10-18 Hydra Srl METHOD AND DEVICE FOR THE INSTALLATION OF A GEOTHERMAL PROBE
JP2010276329A (en) * 2009-06-01 2010-12-09 Ac Core:Kk Building using geothermal heat
GB2478130A (en) * 2010-02-25 2011-08-31 Nicholas James Wincott Geothermal screw pile with manifold
US8821074B2 (en) 2010-02-25 2014-09-02 Stephen James Reid Load bearing construction pile
GB2478130B (en) * 2010-02-25 2015-10-21 Nicholas James Wincott Load bearing construction pile
WO2013061406A1 (en) 2011-10-25 2013-05-02 パナセアディシンフェクタントカンパニーリミテッド Functional air conditioning device and functional air conditioning method
US9897347B2 (en) 2013-03-15 2018-02-20 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
US11892201B2 (en) 2013-03-15 2024-02-06 Thomas Scott Breidenbach Installation apparatus/tool for tubular geothermal heat exchanger systems and methods
CN104501332A (en) * 2014-11-21 2015-04-08 吉林大学 Underground heat exchanger
CN104501332B (en) * 2014-11-21 2017-07-07 吉林大学 A kind of subterranean heat exchanger

Similar Documents

Publication Publication Date Title
US20070197158A1 (en) Duct assembly and method of using the duct assembly in an attic
JP2003035455A (en) Installation structure of underground longitudinal tube for geothermal air-conditioning
JP3827241B2 (en) Detached ventilation system using geothermal heat
JP2005061786A (en) Indoor temperature adjusting structure using geotherm
JP2003336910A (en) Air conditioner for building
JP2005024208A (en) Air conditioner utilizing convection of geothermal heat
JP2008261535A (en) Energy-saving constant-temperature ventilation system utilizing underground heat
WO2009149711A2 (en) Cooling system and a panel module for a cooling systεm
JP2010019502A (en) Air conditioning system using underground heat
JP2004340463A (en) Air conditioner utilizing geothermal heat
JP2793379B2 (en) Arrangement method of outdoor heat exchanger
JP4632760B2 (en) Geothermal equipment
JPH04366372A (en) Geothermal energy application system
JPS5950033B2 (en) Air conditioning equipment
JPH0587467U (en) Cooling ventilation system
JP2007139236A (en) Underfloor air-conditioning device and method
JPH01174833A (en) Air conditioner for building
KR100202429B1 (en) Temperature maintaining tank and heating and cooling system using earth heat
JP4270905B2 (en) Air conditioner outdoor unit
JP2003090565A (en) Air conditioner
JP2024124113A (en) Building dehumidification and drainage systems
US20190323713A1 (en) Building structure for crawl space mounted apparatus
JPS5818044A (en) Structure of wall for underground chamber
JPS63259336A (en) Building
JPH049974B2 (en)