JP2010275076A - Light reflecting type component detecting system and component carrying device using the same - Google Patents

Light reflecting type component detecting system and component carrying device using the same Download PDF

Info

Publication number
JP2010275076A
JP2010275076A JP2009130074A JP2009130074A JP2010275076A JP 2010275076 A JP2010275076 A JP 2010275076A JP 2009130074 A JP2009130074 A JP 2009130074A JP 2009130074 A JP2009130074 A JP 2009130074A JP 2010275076 A JP2010275076 A JP 2010275076A
Authority
JP
Japan
Prior art keywords
light
component
detection
receiving element
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009130074A
Other languages
Japanese (ja)
Other versions
JP4504455B1 (en
Inventor
Atsushi Yamamoto
篤史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishin Inc
Original Assignee
Daishin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishin Inc filed Critical Daishin Inc
Priority to JP2009130074A priority Critical patent/JP4504455B1/en
Application granted granted Critical
Publication of JP4504455B1 publication Critical patent/JP4504455B1/en
Publication of JP2010275076A publication Critical patent/JP2010275076A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Attitude Control For Articles On Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light reflecting type component detecting system for facilitating the setting of discriminating conditions depending on detection environment while actualizing the certainty of discrimination. <P>SOLUTION: The light reflecting type component detecting system 110 includes a light receiving element 117 for detecting the amount of reflected light from a determined detection range Sp set in a carrying passage 102 through which components being carried pass, and a discriminating means 120 for discriminating the amount of the reflected light detected by the light receiving element in accordance with predetermined discriminating conditions. Behind detection range, an operation member 114 is arranged which has a light reflecting surface 114a. The operation member is operated to change the position or attitude of the light reflecting surface so that the amount of the reflected light from a background is changed when the components are not arranged in the detection range. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は部品検出システム及びこれを用いた部品搬送装置に係り、特に、光学的に部品を判別する場合に好適な部品検出システムの構造に関する。   The present invention relates to a component detection system and a component transport apparatus using the same, and more particularly to a structure of a component detection system suitable for optically identifying a component.

一般に、パーツフィーダ等の部品供給装置或いは部品搬送装置においては、搬送されてくる部品の種類、形状、姿勢等を判別し、その判別結果に応じて部品を選別したり姿勢を変更したりする部品選別部や部品反転部などが設けられる。これらの部品選別部や部品反転部では、部品の種類、形状、姿勢等を検出するための部品検出システムが設置される。この部品検出システムとしては、光学的に部品を検出する光学センサを備えたものが広く用いられている。   In general, in a component supply device such as a parts feeder or a component transport device, a component that determines the type, shape, orientation, etc. of the component being transported, and selects the component or changes the posture according to the determination result A sorting unit, a component reversing unit, and the like are provided. A component detection system for detecting the type, shape, orientation, etc. of the component is installed in these component selection unit and component reversing unit. As this component detection system, those equipped with an optical sensor for optically detecting a component are widely used.

部品検出システムとしては、以下の特許文献1に記載されているように、発光素子により部品に照射された光の反射光量を受光素子で検出する反射光型の光電センサを用い、当該反射光量を適宜に設定された閾値と比較することで判別を行う光反射型部品検出システムが知られている。例えば、部品供給装置に多く用いられるものとして、発光素子と受光素子を備える光電センサ本体に光ファイバを接続し、光ファイバの先端にレンズユニットを接続してなるものがある。このシステムでは、先端のレンズユニットにより発光素子が放射する光を集光して微細な光スポットを形成することができるとともに、当該光スポットから反射される光を選択的に検出できるので、微細な検出対象を精度よく検出することができる。   As a component detection system, as described in Patent Document 1 below, a reflected light type photoelectric sensor that detects a reflected light amount of light irradiated on a component by a light emitting element by a light receiving element is used. 2. Description of the Related Art A light reflection type component detection system that performs discrimination by comparing with an appropriately set threshold value is known. For example, there is one that is often used in a component supply apparatus in which an optical fiber is connected to a photoelectric sensor main body including a light emitting element and a light receiving element, and a lens unit is connected to the tip of the optical fiber. In this system, the light emitted from the light emitting element can be condensed by the lens unit at the tip to form a fine light spot, and the light reflected from the light spot can be selectively detected. The detection target can be detected with high accuracy.

このような光反射型部品検出システムにおいては、光電センサにより検出された反射光の検出光量と既定の閾値とを比較して、検出光量が閾値を上回ったときに所定の処理を行うための処理指令を出力するライトオン型のシステムと、検出光量が閾値を下回ったときに所定の処理を行うための処理指令を出力するダークオン型のシステムとが知られている。ライトオン型のシステムは所定の処理を行うべき部品からの反射光量が大きくなる場合に用いられ、ダークオン型のシステムは所定の処理を行うべき部品からの反射光量が小さくなる場合に用いられる。一例として、搬送部品のうち不良姿勢にある部品を排除する部品選別部に適合する部品検出システムについて説明すると、不良姿勢にある部品の光照射面の反射率が高い場合にはライトオン型のシステムが用いられ、不良姿勢にある部品の光照射面の反射率が低い場合にはダークオン型のシステムが用いられる。   In such a light reflection type component detection system, a process for performing a predetermined process when the detected light amount exceeds the threshold value by comparing the detected light amount of the reflected light detected by the photoelectric sensor with a predetermined threshold value. There are known a light-on type system that outputs a command and a dark-on type system that outputs a processing command for performing a predetermined process when the detected light amount falls below a threshold value. The light-on type system is used when the amount of reflected light from a component to be subjected to predetermined processing increases, and the dark-on type system is used when the amount of reflected light from a component to be subjected to predetermined processing is small. As an example, a description will be given of a component detection system that is suitable for a component selection unit that excludes a component in a defective posture from among conveyance components. When the reflectance of the light irradiation surface of a component in a defective posture is high, a light-on type system Is used, and a dark-on type system is used when the reflectance of the light irradiation surface of a component in a defective posture is low.

特開2005−010111号公報JP-A-2005-010111

ところで、上記従来の光反射型部品検出システムにおいて、例えば、部品の姿勢を検出し、特定姿勢の部品を排除したい場合について述べると、特定姿勢の部品の被検出面の反射率が高い場合には上記ライトオン型のシステムを選択し、当該被検出面の反射率が低い場合には上記ダークオン型のシステムを選択するのが通常である。したがって、排除したい部品の姿勢を変更する場合には、システムの型を変更すればよいが、いずれの型のシステムにおいても、搬送トラック上に部品が存在しないときに得られる搬送トラックの表面からの反射光量(背景の検出光量)が部品の被検出面からの反射光量と判別できるように構成する必要があり、通常は背景の検出光量が一方の型のシステムに適合していると、他方の型のシステムには適合しない場合が多いため、システムの型を変更することが難しいという問題点がある。   By the way, in the conventional light reflection type component detection system, for example, when the posture of a component is detected and a component in a specific posture is to be excluded, when the reflectance of the detection surface of a component in a specific posture is high, Usually, the light-on type system is selected, and the dark-on type system is selected when the reflectance of the detected surface is low. Therefore, when changing the posture of a part to be excluded, the system mold may be changed. However, in any type of system, the part from the surface of the transport truck obtained when there is no part on the transport truck. The reflected light amount (background detected light amount) must be configured so that it can be distinguished from the reflected light amount from the detected surface of the component. Normally, if the detected light amount of the background is suitable for one type of system, There is a problem that it is difficult to change the type of the system because it is often not compatible with the type system.

また、一般的には、部品の属性を判別するには、検出環境に応じた閾値などの判別条件を設定する必要があるが、この設定は、上記のように部品の検出条件だけでなく、部品が存在しないときの搬送トラックの表面等の背景による光学的影響をも考慮する必要があるため、検出環境によっては、判別条件の設定が困難で、その結果、検出環境によっては判別の確実性を担保することができなくなるという問題点があった。   In general, in order to determine the attribute of a part, it is necessary to set a determination condition such as a threshold value according to the detection environment. This setting is not limited to the part detection condition as described above. Since it is necessary to consider the optical effects of the background of the transport track when no parts are present, it is difficult to set the detection conditions depending on the detection environment. There was a problem that it was impossible to secure.

そこで、本発明は上記問題点を解決するものであり、その課題は、光反射型部品検出システムにおいて、検出環境に応じた判別条件の設定を容易にするとともに判別の確実性を得ることにある。   Therefore, the present invention solves the above-described problems, and its problem is to facilitate the setting of discrimination conditions according to the detection environment and to obtain the certainty of discrimination in the light reflection type component detection system. .

斯かる実情に鑑み、本発明の光反射型部品検出システムは、搬送される部品が通過する搬送経路中に設定された既定の検出範囲からの反射光の量を検出する受光素子と、該受光素子で検出された前記反射光の量を所定の判別条件に基づいて判別する判別手段とを具備する光反射型部品検出システムにおいて、前記検出範囲の背後に光反射面を備えた動作部材を配置し、該動作部材を動作させて前記光反射面の位置又は姿勢を変化させることで前記検出範囲に前記部品が配置されていないときの背景からの反射光量が変化するように構成されていることを特徴とする。これによれば、搬送される部品が通過する検出範囲の背後に配置された動作部材を動作させて光反射面の位置又は姿勢を変化させることで、検出範囲に部品が配置されていないときの背景からの反射光量が変化するので、動作部材の動作で背景の反射光量を変えることにより、検出環境の光学的条件を容易に変更することが可能になるため、検出環境に応じた閾値などの判別条件の設定が容易になるとともに判別の確実性を担保することができる。特に、後述するライトオン制御とダークオン制御を切り替えることも容易になる。   In view of such circumstances, the light reflection type component detection system of the present invention includes a light receiving element that detects an amount of reflected light from a predetermined detection range set in a conveyance path through which a component to be conveyed passes, In a light reflection type component detection system comprising: a discriminating means for discriminating the amount of reflected light detected by an element based on a predetermined discriminating condition, an operation member having a light reflecting surface is disposed behind the detection range In addition, the amount of reflected light from the background when the component is not arranged in the detection range is changed by operating the operating member to change the position or posture of the light reflecting surface. It is characterized by. According to this, when the component is not arranged in the detection range by operating the operation member arranged behind the detection range through which the conveyed component passes and changing the position or posture of the light reflecting surface Since the amount of reflected light from the background changes, it is possible to easily change the optical conditions of the detection environment by changing the amount of reflected background by the operation of the operation member. The determination conditions can be easily set and the certainty of the determination can be ensured. In particular, it becomes easy to switch between light-on control and dark-on control, which will be described later.

本発明の一の態様においては、前記検出範囲において前記部品の通過領域の背後若しくは手前に配置された壁面に開口する光学開口部を設け、前記光反射面の位置又は姿勢の変化可能な範囲内における少なくとも一つの位置又は姿勢において前記光学開口部を通して前記光学面による反射光が前記受光素子により検出可能となるように構成される。これによれば、光学開口部を通して光反射面による反射光が受光素子により検出可能となるため、受光素子において検出される反射光の通過範囲を限定することができることから、光反射面による反射光の受光素子の検出光量に対する寄与を大きくして感度を高めたり、光反射面の位置又は姿勢を変更したときの上記検出光量の変化幅を大きくしたりすることが可能になる。   In one aspect of the present invention, an optical opening that opens in a wall surface disposed behind or in front of the passage region of the component in the detection range is provided, and the position or posture of the light reflecting surface is within a changeable range. The light reflected by the optical surface can be detected by the light receiving element through the optical opening at at least one position or posture. According to this, since the reflected light from the light reflecting surface can be detected by the light receiving element through the optical opening, the passing range of the reflected light detected by the light receiving element can be limited. It is possible to increase the sensitivity by increasing the contribution of the light receiving element to the detected light amount, or to increase the change width of the detected light amount when the position or posture of the light reflecting surface is changed.

本発明の他の態様においては、前記動作部材は、前記検出範囲と前記光反射面の前記検出光軸に沿った距離が変更可能となるように構成される。これによれば、当該距離が変化することで、搬送経路上の検出範囲から出射する反射光に対する受光素子の検出感度と、光反射面から出射する反射光に対する受光素子の検出感度とが変化するため、背景の検出光量を増減させることが可能になる。   In another aspect of the present invention, the operating member is configured such that a distance along the detection optical axis of the detection range and the light reflecting surface can be changed. According to this, when the distance changes, the detection sensitivity of the light receiving element for the reflected light emitted from the detection range on the transport path and the detection sensitivity of the light receiving element for the reflected light emitted from the light reflecting surface change. For this reason, it is possible to increase or decrease the amount of light detected in the background.

この場合に、前記検出範囲と前記受光素子との間には前記反射光を前記受光素子に導く集光レンズが配置され、前記動作部材は前記光反射面の姿勢を維持したまま前記受光素子の検出光軸に沿って移動可能とされることが好ましい。これによれば、前記動作部材が光反射面の姿勢を維持したまま検出光軸に沿って移動可能に構成されるので、簡易な移動機構とすることができるとともに、光反射面からの反射光のうち集光レンズを介して受光素子で検出される反射光の量は、検出範囲からの反射光に合わせて設定される集光レンズの光学特性(焦点距離)により、光反射面が検出範囲から検出光軸に沿って離れるに従って漸減するので、動作部材の移動により確実に背景の反射光の検出量を増減させることができる。   In this case, a condensing lens that guides the reflected light to the light receiving element is disposed between the detection range and the light receiving element, and the operating member maintains the posture of the light reflecting surface of the light receiving element. It is preferable to be movable along the detection optical axis. According to this, since the operation member is configured to be movable along the detection optical axis while maintaining the posture of the light reflecting surface, a simple moving mechanism can be provided and reflected light from the light reflecting surface can be provided. The amount of reflected light detected by the light receiving element through the condenser lens is determined by the light reflecting surface depending on the optical characteristics (focal length) of the condenser lens set according to the reflected light from the detection range. Therefore, the detected amount of reflected light from the background can be reliably increased or decreased by the movement of the operating member.

本発明の別の態様においては、前記動作部材は、前記光反射面の前記検出光軸に対する角度が変更可能となるように構成される。これによれば、光反射面の検出光軸に対する角度を変更することで確実に背景の反射光の量を増減させることができる。   In another aspect of the invention, the operating member is configured such that an angle of the light reflecting surface with respect to the detection optical axis can be changed. According to this, the amount of reflected light of the background can be increased or decreased reliably by changing the angle of the light reflecting surface with respect to the detection optical axis.

上記の場合にはさらに、前記動作部材は、前記光反射面が前記検出光軸と交差する面に沿って移動可能となるように構成されることが好ましい。これによれば、光反射面を検出光軸から外すことで受光素子の検出光量を大きく変化させることができる。このとき、上記の光学開口部を設ける場合には、光反射面を検出光軸から外すことで光学開口部の開口範囲からも外れるように構成できるので、さらに確実に背景の反射光の量を増減させることができる。   In the above case, it is preferable that the operating member is configured such that the light reflecting surface is movable along a surface intersecting the detection optical axis. According to this, the detected light quantity of the light receiving element can be greatly changed by removing the light reflecting surface from the detection optical axis. At this time, in the case of providing the above-described optical aperture, it can be configured so that the light reflecting surface is also removed from the aperture range of the optical aperture by removing the light reflecting surface from the detection optical axis. It can be increased or decreased.

本発明の部品搬送装置は、前記搬送経路を備えた搬送体と、該搬送経路上の前記部品を移動させる搬送手段と、前記搬送経路上に前記検出範囲を備えた前記光反射型部品検出システムと、を具備することを特徴とする。このような部品搬送装置としては、搬送手段として搬送体を振動させる加振機構を備えた、搬送部品を搬送体の振動により搬送する振動型部品搬送装置が挙げられるが、これに限定されるものではなく、搬送手段として搬送ベルト及びその駆動機構を備えたベルトコンベアなど、何らかの部品を搬送経路に沿って搬送することができるものであればよい。   The component conveying apparatus according to the present invention includes a conveying body provided with the conveying path, a conveying means for moving the component on the conveying path, and the light reflection type component detection system including the detection range on the conveying path. It is characterized by comprising. Examples of such a component conveying device include, but are not limited to, a vibration type component conveying device that includes a vibration mechanism that vibrates the conveying member as conveying means and conveys conveying components by vibration of the conveying member. Instead, it is only necessary to be able to transport any part along the transport path, such as a conveyor belt including a transport belt and its driving mechanism as a transport means.

本発明によれば、光反射型部品検出システムにおいて、光反射面を備えた動作部材を動作させて位置又は姿勢を変更することで、判別条件を容易に設定することができるとともに判別の確実性を確保できるという優れた効果を奏し得る。   According to the present invention, in the light reflection type component detection system, the determination condition can be easily set and the certainty of the determination by operating the operation member having the light reflection surface to change the position or the posture. It is possible to achieve an excellent effect that can be secured.

本発明に係る第1実施形態の第1の状態における光反射型部品検出システムを部品搬送装置(ボウル型パーツフィーダ)に取り付けた状態を示す部分断面図。The fragmentary sectional view which shows the state which attached the light reflection type | mold component detection system in the 1st state of 1st Embodiment which concerns on this invention to the component conveyance apparatus (bowl type | mold part feeder). 第1実施形態の光反射型部品検出システムの第2の状態における光反射型部品検出システムを示す部分断面図。The fragmentary sectional view which shows the light reflection type component detection system in the 2nd state of the light reflection type component detection system of 1st Embodiment. 第1実施形態の部品搬送装置の一部を示す部分斜視図。The partial perspective view which shows a part of component conveying apparatus of 1st Embodiment. 第1実施形態の光反射型部品検出システムの搬送トラック近傍の構造を示す拡大部分断面図。FIG. 3 is an enlarged partial cross-sectional view illustrating a structure in the vicinity of a conveyance track of the light reflection type component detection system according to the first embodiment. 第1実施形態の光反射型部品検出システムを光検出側から見た様子を示す図。The figure which shows a mode that the light reflection type component detection system of 1st Embodiment was seen from the light detection side. 第1実施形態の検出対象である部品を搬送トラック上に配置した状態で示す、平面図、左側面図、正面図及び背面図。The top view, the left view, the front view, and the rear view which show in the state which has arrange | positioned the components which are the detection target of 1st Embodiment on the conveyance track. 第2実施形態の光反射型部品検出システムを部品搬送装置に取り付けた状態を示す部分断面図。The fragmentary sectional view which shows the state which attached the light reflection type | mold component detection system of 2nd Embodiment to the component conveyance apparatus. 第2実施形態の部分断面図。The fragmentary sectional view of 2nd Embodiment. 第3実施形態の部分断面図。The fragmentary sectional view of 3rd Embodiment. 第1実施形態の光学状態を示す説明図。Explanatory drawing which shows the optical state of 1st Embodiment. 第4実施形態の光学状態を示す説明図。Explanatory drawing which shows the optical state of 4th Embodiment. 第5実施形態の光学状態を示す説明図。Explanatory drawing which shows the optical state of 5th Embodiment.

次に、添付図面を参照して本発明の実施形態について詳細に説明する。図1は第1実施形態の光反射型部品検出システム110の動作部材が第1の位置にあるときの概略部分断面図、図2は第1実施形態の動作部材が第2の位置にあるときの概略部分断面図、図3は光反射型部品検出システム110の部品搬送装置100の搬送体に対する取り付け状態を示す概略斜視図、図4は部品選別部103の拡大縦断面図、図5は部品選別部103の拡大内面図である。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic partial sectional view when the operating member of the light reflection type component detection system 110 of the first embodiment is in the first position, and FIG. 2 is when the operating member of the first embodiment is in the second position. FIG. 3 is a schematic perspective view showing a mounting state of the light-reflective component detection system 110 with respect to the conveyance body, FIG. 4 is an enlarged vertical sectional view of the component selection unit 103, and FIG. FIG. 6 is an enlarged inner view of the sorting unit 103.

本実施形態では、図3に一部を示すボウル型パーツフィーダからなる部品搬送装置100に設けられたボウル状の搬送体101に螺旋状の搬送トラック102が設けられている。搬送トラック102は搬送体101の内面101a上に形成された段差部で構成され、搬送トラック102は、搬送体101の内側へ傾斜した内面101aの一部により形成される第1の搬送面102aと、この第1の搬送面102aと交差し、水平若しくは反対側へ傾斜した段差面よりなる第2の搬送面102bとによって構成されている。ただし、本実施形態は、搬送トラック102に相当する直線状の搬送トラックを備えたリニア型パーツフィーダなど、搬送経路を有する他の任意の部品搬送装置に適用することも可能である。   In the present embodiment, a spiral conveyance track 102 is provided on a bowl-shaped conveyance body 101 provided in a component conveyance device 100 including a bowl-type parts feeder partly shown in FIG. The transport track 102 includes a stepped portion formed on the inner surface 101 a of the transport body 101, and the transport track 102 includes a first transport surface 102 a formed by a part of the inner surface 101 a inclined to the inner side of the transport body 101. The second conveyance surface 102b is formed of a step surface that intersects the first conveyance surface 102a and is inclined horizontally or oppositely. However, the present embodiment can also be applied to any other component conveying device having a conveyance path, such as a linear part feeder provided with a linear conveyance track corresponding to the conveyance track 102.

搬送トラック102の一部には部品選別部103が設けられ、この部品選別部103及びこれに隣接した位置に部品検出システム110が構成される。部品検出システム110は、搬送体101に固定された支持アーム111に支持され、部品選別部103に対して斜め上方より臨むように固定されたレンズユニット112を備えている。このレンズユニット112は光ファイバ115、116の端部に接続される。レンズユニット112の内部には、光ファイバ116に接続された照明用の導光部と、当該照明用の導光部の周りに分散配置され、光ファイバ115に接続された複数の検出用の導光部とが同軸状に構成されるとともに、それらの先端側に集光用(投光用及び受光用)のレンズ(凸レンズ)若しくはレンズ群が設けられている。   A part sorting unit 103 is provided in a part of the transport track 102, and a part detection system 110 is configured at the part sorting unit 103 and a position adjacent thereto. The component detection system 110 includes a lens unit 112 that is supported by a support arm 111 that is fixed to the conveyance body 101 and that is fixed so as to face the component selection unit 103 obliquely from above. The lens unit 112 is connected to the ends of the optical fibers 115 and 116. Inside the lens unit 112, an illumination light guide connected to the optical fiber 116 and a plurality of detection guides connected to the optical fiber 115 are distributed around the light guide for illumination. The light portion is configured coaxially, and a condensing (light projecting and light receiving) lens (convex lens) or a lens group is provided on the tip side thereof.

光ファイバ115はフォトダイオード等の受光素子117に接続され、光ファイバ115内に入射した光を受光素子117で検出できるようになっている。光ファイバ116は発光ダイオード等の発光素子118に接続され、発光素子118から放出された光をレンズユニット112に向けて伝搬させるように構成される。発光素子118から放出された照明光はレンズユニット112から出射し、上記部品選別部103に後述する照明スポットSpを形成する。一方、上記照明光が部品選別部103で反射されてなる反射光はレンズユニット112にて集光されて受光素子117で検出される。本実施形態の場合、上記の照明光の光軸(以下、単に照明光軸という。)は部品選別部103に向けて伸び、検出光の光軸Xd(図4参照、以下、単に検出光軸という。)と一致している。   The optical fiber 115 is connected to a light receiving element 117 such as a photodiode so that light incident on the optical fiber 115 can be detected by the light receiving element 117. The optical fiber 116 is connected to a light emitting element 118 such as a light emitting diode, and is configured to propagate light emitted from the light emitting element 118 toward the lens unit 112. The illumination light emitted from the light emitting element 118 is emitted from the lens unit 112 and forms an illumination spot Sp described later on the component selection unit 103. On the other hand, the reflected light obtained by reflecting the illumination light by the component selecting unit 103 is collected by the lens unit 112 and detected by the light receiving element 117. In the case of the present embodiment, the optical axis of the illumination light (hereinafter simply referred to as the illumination optical axis) extends toward the component sorting unit 103, and the optical axis Xd of the detection light (see FIG. 4, hereinafter simply referred to as the detection optical axis). Is consistent with.

搬送体101には上記部品選別部103に対応して凹部104が設けられている。この凹部104は搬送体101の外周側から上記搬送トラック102の部品選別部103にまで達している。図示例の場合、特に限定されるものではないが、凹部104は、搬送トラック102の部品選別部103に向けて内面101aの傾斜方向に沿って縦にスリット状に形成された凹溝部と、該凹溝部の上部から側方へ広がる側方延長部とを有するL字状に構成される。   The transport body 101 is provided with a recess 104 corresponding to the component selection unit 103. The concave portion 104 reaches from the outer peripheral side of the transport body 101 to the component sorting section 103 of the transport track 102. In the case of the illustrated example, although not particularly limited, the concave portion 104 includes a concave groove portion that is vertically formed in a slit shape along the inclined direction of the inner surface 101a toward the component sorting portion 103 of the transport track 102, and It is comprised in the L-shape which has a side extension part extended from the upper part of a ditch | groove part to the side.

上記凹部104には取付ブロック105が嵌合固定される。取付ブロック105は、図5に示すように、上記凹溝部に挿入され、当該凹溝部によって搬送体101において搬送トラック102の第1の搬送面102aが欠損した部分に嵌合するトラック嵌合部105Aと、当該トラック嵌合部105Aの上端部から側方へ張り出した張出部105Bとを一体に備えたL字状に構成されている。張出部105Bは凹部104の上記側方延長部に挿入され、図3に示すように、ボルト等の固定部材106によって搬送体101に固定される。なお、図5は、ボルトや座金等の固定手段を省略して示してある。   A mounting block 105 is fitted and fixed to the recess 104. As shown in FIG. 5, the mounting block 105 is inserted into the concave groove portion, and a track fitting portion 105 </ b> A that fits into a portion where the first conveyance surface 102 a of the conveyance track 102 is missing in the conveyance body 101 by the concave groove portion. And an overhanging portion 105B projecting sideways from the upper end of the track fitting portion 105A. The overhang portion 105B is inserted into the lateral extension portion of the recess 104, and is fixed to the transport body 101 by a fixing member 106 such as a bolt as shown in FIG. In FIG. 5, fixing means such as bolts and washers are omitted.

図4に示すように、取付ブロック105の下部には、当該取付ブロック105の外側から内側の表面105tまで貫通する通孔105aが設けられている。この通孔105aは、上記部品選別部103において第1の搬送面を構成する表面105tにおいて開口し、その開口部105bが上記光学開口部に相当するものとなっている。図示例では、通孔105aの内側部分(開口部105b側部分)は小径(開口径Op)に、反対の外側部分は開口部105bよりも大径(内径Dp)に構成され、全体として段付孔形状を備えている。上記開口径Opはレンズユニット112から照射される照明光の照射スポットSpのスポット径(Ds)以上とされ、当該照射スポットSpを完全に包含するように開口部105bが形成されている。ただし、検出感度を多少犠牲にすることが可能であれば、照射スポットSpよりも開口部105bが小さくても構わない。この照射スポットSpが搬送トラック上の部品に照射された場合には、そのスポット範囲は部品検出システム110が部品からの反射光を検出する検出範囲と実質的に一致する。   As shown in FIG. 4, a through hole 105 a penetrating from the outside of the mounting block 105 to the inner surface 105 t is provided in the lower part of the mounting block 105. The through hole 105a is opened on the surface 105t constituting the first conveying surface in the component sorting unit 103, and the opening 105b corresponds to the optical opening. In the illustrated example, the inner portion (opening portion 105b side portion) of the through hole 105a has a small diameter (opening diameter Op), and the opposite outer portion has a larger diameter (inner diameter Dp) than the opening portion 105b. It has a hole shape. The opening diameter Op is not less than the spot diameter (Ds) of the irradiation spot Sp of the illumination light irradiated from the lens unit 112, and the opening 105b is formed so as to completely include the irradiation spot Sp. However, the opening 105b may be smaller than the irradiation spot Sp as long as the detection sensitivity can be sacrificed to some extent. When the irradiation spot Sp is irradiated onto a component on the transport track, the spot range substantially coincides with a detection range in which the component detection system 110 detects reflected light from the component.

通孔105aの外側部分にはエアシリンダ等よりなる駆動部材113が取り付けられ、この駆動部材113は、ロッド等よりなる動作部材114を出没方向である通孔105aの軸線方向に移動可能となるように構成されている。動作部材114の先端部は上記開口部105bの近くまで突出可能に構成され、その先端面は光を反射する光反射面114aとされている。ただし、光反射面114aは光を適宜の反射率で反射できる面となっていればよく、必ずしも鏡面のような高い反射率を備えたものでなくてもよい。光反射面114aの径Rpは図示例では動作部材114の外径と等しく、上記開口部105bの内径Opよりもやや小さく形成されてスムーズに動作部材114が通孔105a内を検出光軸Xd方向に移動可能に構成されている。   A driving member 113 made of an air cylinder or the like is attached to the outer portion of the through hole 105a, and this driving member 113 can move the operating member 114 made of a rod or the like in the axial direction of the through hole 105a which is the protruding and retracting direction. It is configured. The distal end portion of the operating member 114 is configured to be able to protrude to the vicinity of the opening 105b, and the distal end surface is a light reflecting surface 114a that reflects light. However, the light reflecting surface 114a only needs to be a surface that can reflect light with an appropriate reflectance, and does not necessarily have a high reflectance like a mirror surface. The diameter Rp of the light reflecting surface 114a is equal to the outer diameter of the operating member 114 in the illustrated example, and is slightly smaller than the inner diameter Op of the opening 105b, so that the operating member 114 smoothly passes through the through hole 105a in the direction of the detection optical axis Xd. It is configured to be movable.

光反射面114aは、開口部105bに対してレンズユニット112とは反対側に配置され、図4に二点鎖線で示すように開口部105bに近い位置までは移動可能とされるが、開口部105bよりも引きこまれた範囲に留まるように駆動される。これは、光反射面114aが開口部105bから突出し、部品選別部103において第1の搬送面102aに続く搬送面となる表面105t上に凸状に配置されると、部品Pの搬送を妨げることとなるからである。また、光反射面114aが開口部105bの開口面に沿って配置され、上記表面105tと光反射面114aとが同一平面上に配置される場合には、部品Pの搬送自体を妨げることはないものの、光反射面114aが搬送される部品Pと頻繁に接触することとなるため、光反射面114aが汚れることで光反射率が変動することで、判別精度の低下をもたらすことになるからである。   The light reflecting surface 114a is disposed on the side opposite to the lens unit 112 with respect to the opening 105b, and can move to a position close to the opening 105b as shown by a two-dot chain line in FIG. It is driven so as to stay in the range drawn from 105b. This is because if the light reflecting surface 114a protrudes from the opening 105b and is convexly arranged on the surface 105t which becomes the conveying surface following the first conveying surface 102a in the component sorting unit 103, the conveyance of the component P is hindered. Because it becomes. Further, when the light reflecting surface 114a is disposed along the opening surface of the opening 105b and the surface 105t and the light reflecting surface 114a are disposed on the same plane, the conveyance of the component P itself is not hindered. However, since the light reflecting surface 114a frequently comes into contact with the component P to be transported, the light reflecting surface 114a is contaminated and the light reflectance fluctuates, resulting in a decrease in discrimination accuracy. is there.

駆動部材113は動作部材114を駆動し、動作部材114を第1の位置と第2の位置に切り替えることができる。第1の位置は、図1に示す位置及び図4の実線で示す位置であり、光反射面114aが開口部105bの開口面からレンズユニット112とは反対側に最も離間した位置である。一方、第2の位置は、図2に示す位置及び図4の二点鎖線で示す位置であり、光反射面114aが開口部105bの開口面(表面105t)に最も近づいた位置である。この第2の位置では、前述の理由から光反射面114aと上記開口面との間隔Gが設定される。この間隔Gは、部品の大きさや開口部105bの開口面積にも依存するが、一般的に0.1mm〜2.0mmの範囲内とすることが好ましい。この範囲より間隔Gが大きくなると、後述する部品Pの被検出面と光反射面114aとの距離が増大するので、ダークオンにより部品Pの状態を検出する場合に、部品Pの被検出面を検出したときの受光素子117の検出光量と、部品Pが存在しないときの背景の反射光量に相当する検出光量との差が確保しにくくなる。逆に、間隔Gが上記範囲より小さくなると、部品Pとの接触が発生しやすくなり、部品Pの構成材料の一部、例えば、電極部の半田などが光反射面114aに付着して反射率の低下を起こしやすくなる。   The driving member 113 drives the operating member 114 and can switch the operating member 114 between the first position and the second position. The first position is the position shown in FIG. 1 and the position shown by the solid line in FIG. 4, and the light reflecting surface 114 a is the farthest away from the opening surface of the opening 105 b on the side opposite to the lens unit 112. On the other hand, the second position is the position shown in FIG. 2 and the position shown by the two-dot chain line in FIG. 4, and is the position where the light reflecting surface 114a is closest to the opening surface (surface 105t) of the opening 105b. In the second position, the gap G between the light reflecting surface 114a and the opening surface is set for the reason described above. The interval G depends on the size of the part and the opening area of the opening 105b, but is generally preferably in the range of 0.1 mm to 2.0 mm. If the gap G is larger than this range, the distance between the detected surface of the component P, which will be described later, and the light reflecting surface 114a increases. Therefore, when the state of the component P is detected by dark-on, the detected surface of the component P is detected. Thus, it is difficult to ensure a difference between the detected light amount of the light receiving element 117 and the detected light amount corresponding to the reflected light amount of the background when the component P is not present. On the other hand, when the gap G is smaller than the above range, contact with the component P is likely to occur, and a part of the constituent material of the component P, for example, solder of the electrode portion, adheres to the light reflecting surface 114a and reflects the reflectance. It becomes easy to cause the fall of.

なお、本実施形態の場合、通孔105aの軸線は、上記レンズユニット112の検出光軸Xd(照射光軸と同じ)と一致している。そして、動作部材114は、光反射面114aの姿勢を一定に維持しながら検出光軸Xdに沿って移動可能に構成されている。また、通孔105aの側方は取付ブロック105の下部底面において一部開口している。この開口は、取付ブロック105の下部底面が搬送体101の凹部104の内底面に当接することによって閉鎖されている。これによって、取付ブロック105を取り外すことにより、通孔105aの内部の点検、塵埃等の除去といった清掃などが容易に行うことができる。   In the case of this embodiment, the axis of the through hole 105a coincides with the detection optical axis Xd (same as the irradiation optical axis) of the lens unit 112. The operating member 114 is configured to be movable along the detection optical axis Xd while maintaining the posture of the light reflecting surface 114a constant. In addition, the side of the through hole 105 a is partially opened at the bottom bottom surface of the mounting block 105. This opening is closed by the lower bottom surface of the mounting block 105 coming into contact with the inner bottom surface of the recess 104 of the transport body 101. Thus, by removing the mounting block 105, cleaning such as inspection of the inside of the through hole 105a and removal of dust and the like can be easily performed.

取付ブロック105の上部には給気経路を構成する縦穴105c、横孔105d及び凹部105eが設けられている。縦穴105cの開口には空圧コネクタ107が取り付けられ、ここに図示しないエアチューブ等が接続されて、圧縮空気などが給気経路へ供給される。また、取付ブロック105の表面に形成された凹部105eには空圧制御板108が装着され、この空圧制御板108はボルト等の固定部材109により取付ブロック105上に固定される。   A vertical hole 105c, a horizontal hole 105d, and a recess 105e constituting an air supply path are provided on the upper portion of the mounting block 105. A pneumatic connector 107 is attached to the opening of the vertical hole 105c, and an air tube (not shown) or the like is connected to the opening to supply compressed air to the air supply path. In addition, a pneumatic control plate 108 is attached to the recess 105e formed on the surface of the mounting block 105, and the pneumatic control plate 108 is fixed on the mounting block 105 by a fixing member 109 such as a bolt.

空圧制御板108の下部には切り欠き部108aが形成され、この切り欠き部108aによって上記凹部105eを介して上記給気経路が部品選別部103の搬送面に開口した構成とされる。この切り欠き部108aで構成される空圧開口部(給気経路の開口)は上記開口部105bに隣接している。当該切り欠き部108aによって構成される空圧開口部は部品Pに所定の空圧作用を与えることができる位置に設定される。図示例では、開口部105bで構成される光学開口部の上方に切り欠き部108aで構成された空圧開口部が配置される。これは、部品選別部103に到達した部品Pの上部に空圧を作用させることで確実に部品Pを搬送トラック102上から排除するためである。また、開口部105bで構成される光学開口部より搬送方向(図示例では搬送方向逆側、もっとも搬送側でもよい。)にずれた位置に切り欠き部108aで構成される空圧開口部が設けられている。これは、検出時における検出範囲(例えば部品上の照射スポットSpの位置)と処理時の空圧作用点との位置関係を最適化し、部品Pの処理が行えない事態、或いは、処理が不十分となる事態の発生を防止するためである。このように、図示例では、開口部105bに対して部品Pの搬送方向斜め上方に切り欠き部108aが形成される。本実施形態では、上記空圧開口部から気流が部品Pに吹き付けられることによって図1及び図2に矢印で示すように部品Pが搬送トラック102上から排除される。なお、図5において図示二点鎖線で示す部品位置は検出時の想定位置である。   A notch part 108 a is formed in the lower part of the pneumatic control plate 108, and the notch part 108 a is configured to open the air supply path to the conveying surface of the component sorting part 103 through the recess 105 e. The pneumatic opening (opening of the air supply path) constituted by the notch 108a is adjacent to the opening 105b. The pneumatic opening formed by the notch 108a is set at a position where a predetermined pneumatic action can be applied to the component P. In the example shown in the drawing, a pneumatic opening formed by a notch 108a is disposed above an optical opening formed by the opening 105b. This is because the air pressure is applied to the upper part of the part P that has reached the part selection unit 103 to reliably remove the part P from the transport track 102. In addition, a pneumatic opening formed of a notch portion 108a is provided at a position shifted in the transport direction (in the illustrated example, on the opposite side of the transport direction, or may be the most transport side) from the optical opening formed of the opening 105b. It has been. This optimizes the positional relationship between the detection range at the time of detection (for example, the position of the irradiation spot Sp on the part) and the pneumatic action point at the time of processing, and the situation where the processing of the part P cannot be performed or the processing is insufficient. This is to prevent the occurrence of the situation. Thus, in the illustrated example, the notch 108a is formed obliquely above the opening 105b in the conveying direction of the component P. In the present embodiment, the air flow is blown from the pneumatic opening to the part P, so that the part P is removed from the transport track 102 as indicated by arrows in FIGS. In FIG. 5, the part position indicated by a two-dot chain line in the figure is an assumed position at the time of detection.

図1に示すように、本実施形態では、受光素子117の検出信号は、制御回路、プログラマブルコントローラ、マイクロコンピュータ、MPU(マイクロプロセッサユニット)などの種々の構成で実現できる主制御部120に出力される。主制御部120は電磁バルブ等の制御駆動部121、122に制御信号を送出し、上記駆動部材113による動作部材114の位置、及び、給気経路への空圧の供給の有無を制御する。なお、図示例では駆動部材113をエアシリンダとすることで、空圧で動作部材114を駆動しているが、電動機や油圧回路等で駆動部材を構成するなど、駆動部材113としては種々の構成を用いることができ、制御駆動部121も駆動部材113の構成に応じて適宜に構成できる。なお、主制御部120は本発明の判別手段を構成する。また、制御駆動部121及び給気経路は部品処理手段を構成し、主制御部120及び制御駆動部122は動作部材114の制御手段を構成し、制御駆動部121、122及び駆動部材113は動作部材114の駆動手段を構成する。   As shown in FIG. 1, in this embodiment, the detection signal of the light receiving element 117 is output to the main control unit 120 that can be realized by various configurations such as a control circuit, a programmable controller, a microcomputer, and an MPU (microprocessor unit). The The main control unit 120 sends control signals to the control drive units 121 and 122 such as electromagnetic valves, and controls the position of the operation member 114 by the drive member 113 and whether or not air pressure is supplied to the air supply path. In the illustrated example, the driving member 113 is an air cylinder so that the operating member 114 is driven by air pressure. However, the driving member 113 may be configured in various configurations such as an electric motor or a hydraulic circuit. The control drive unit 121 can also be appropriately configured according to the configuration of the drive member 113. The main control unit 120 constitutes a determination unit of the present invention. The control drive unit 121 and the air supply path constitute a component processing unit, the main control unit 120 and the control drive unit 122 constitute a control unit for the operation member 114, and the control drive units 121 and 122 and the drive member 113 operate. The drive means of the member 114 is comprised.

本実施形態では、動作部材114の光反射面114aが第1の位置にある場合、レンズユニット112から出射された照明光は開口部105b内に入射し、この開口部105b内で光反射面114aにて反射されるが、開口部105bから光反射面114aまでの距離が長いので、光反射面114aで反射された反射光の受光素子117での検出光量は、光反射面114aが開口部105bの近くの第2の位置にある場合と比べて小さくなる。例えば、図10に示すように、照明光Liが照射される照射スポットが実質的に検出範囲を構成する場合には、当該検出範囲において部品選別部103の搬送面上に配置された部品P(図示一点鎖線)の表面である被検出面による反射光Lrpが受光素子117の受光面上にちょうど結像するように構成されていたとすると、上記被検出面に近い第2の位置に配置される動作部材114(図示実線)の光反射面114aで反射される反射光Lr2は受光素子117の受光面で効率的に検出され、受光素子117の検出光量はそれほど低下しない。一方、上記被検出面から離れた第1の位置に配置される動作部材114(図示二点鎖線)の光反射面114aで反射される反射光Lr1は受光素子117の受光面から離れた位置で収束するので、受光素子117の検出光量は大きく低下する。   In the present embodiment, when the light reflecting surface 114a of the operating member 114 is at the first position, the illumination light emitted from the lens unit 112 enters the opening 105b, and the light reflecting surface 114a is within the opening 105b. However, since the distance from the opening 105b to the light reflecting surface 114a is long, the amount of light detected by the light receiving element 117 of the reflected light reflected by the light reflecting surface 114a is determined by the light reflecting surface 114a being the opening 105b. It becomes smaller than the case where it is in the 2nd position near. For example, as shown in FIG. 10, when the irradiation spot irradiated with the illumination light Li substantially constitutes a detection range, a component P (on the transport surface of the component sorting unit 103 in the detection range ( If the reflected light Lrp from the surface to be detected which is the surface of the dot-dash line in the figure is configured to form an image on the light receiving surface of the light receiving element 117, it is arranged at a second position close to the surface to be detected. The reflected light Lr2 reflected by the light reflecting surface 114a of the operating member 114 (solid line in the figure) is efficiently detected by the light receiving surface of the light receiving element 117, and the amount of light detected by the light receiving element 117 does not decrease so much. On the other hand, the reflected light Lr1 reflected by the light reflecting surface 114a of the operating member 114 (two-dot chain line in the figure) disposed at the first position away from the detected surface is at a position away from the light receiving surface of the light receiving element 117. Since it converges, the amount of light detected by the light receiving element 117 is greatly reduced.

本実施形態の場合、上記の理由により、光反射面114aが上記第1の位置に配置されるときと第2の位置に配置されるときとで光反射面114aの反射光に基づく受光素子117の検出光量は大きく増減する。したがって、動作部材114の光反射面114aを移動させることにより、部品Pが検出範囲に配置されていないときの受光素子117の検出光量、すなわち、背景の検出値を動作部材114の位置により制御することができる。   In the case of the present embodiment, for the reason described above, the light receiving element 117 based on the reflected light of the light reflecting surface 114a when the light reflecting surface 114a is disposed at the first position and when the light reflecting surface 114a is disposed at the second position. The detected light amount greatly increases or decreases. Therefore, by moving the light reflecting surface 114a of the operation member 114, the detected light amount of the light receiving element 117 when the component P is not arranged in the detection range, that is, the detected value of the background is controlled by the position of the operation member 114. be able to.

図6は、本実施形態において検出されるべき部品Pの一例を示す説明図である。図6に示す例では、部品Pは略直方体状に構成され、表面Pa及び裏面Pbと、これらの間に設けられる四つの側面とを備えている。図示の部品Pは表面実装型の水晶振動子であり、表面Paのほとんどの部分は部品容器の蓋体Plで構成され、高い反射率を備えている。一方裏面Pbには、複数の電極Peが設けられ、これらの電極Peは例えば半田や金などの金属で構成されるが、それ以外の部分は低い反射率を備えたセラミック素材等よりなる部品容器が露出した露出部Pnとなっている。   FIG. 6 is an explanatory diagram illustrating an example of a component P to be detected in the present embodiment. In the example illustrated in FIG. 6, the component P is configured in a substantially rectangular parallelepiped shape, and includes a front surface Pa and a back surface Pb, and four side surfaces provided therebetween. The component P shown in the figure is a surface-mount type crystal resonator, and most part of the surface Pa is constituted by a lid P1 of a component container and has a high reflectance. On the other hand, a plurality of electrodes Pe are provided on the back surface Pb, and these electrodes Pe are made of a metal such as solder or gold, but the other parts are component containers made of a ceramic material having a low reflectance. The exposed portion Pn is exposed.

例えば、上記部品選別部103において、部品Pの搬送トラック102上で表面Paを上に向けた姿勢と裏面Pbを上に向けた姿勢とを判別する場合には、照射スポットSp(検出範囲)が図6に示すように表面Paの蓋体Plの表面部位と、裏面Pbの露出部Pnの表面部位とに配置されるように設定する。このようにすると、両表面部位の反射率差に応じた受光素子117の検出光量の差によって部品Pの両姿勢を判別することができる。そして、この場合、表面Paと裏面Pbのいずれか一方を上記被検出面とし、当該被検出面が光反射型部品検出システム110により検出されたときに図1に示す主制御部120が制御駆動部121を制御し、制御駆動部122が給気経路への給気を開始することで、上記切り欠き部108aで構成される空圧開口部を通して部品Pが空圧作用を受けるようにすると、空圧作用を受けた部品Pを搬送トラック102上から排除することができる。   For example, when the component sorting unit 103 determines the posture with the front surface Pa facing up and the posture with the back surface Pb facing up on the transport track 102 of the component P, the irradiation spot Sp (detection range) is determined. As shown in FIG. 6, it sets so that it may arrange | position to the surface part of the cover body Pl of the surface Pa, and the surface part of the exposed part Pn of the back surface Pb. In this way, it is possible to determine both postures of the component P based on the difference in the amount of light detected by the light receiving element 117 in accordance with the difference in reflectance between the two surface portions. In this case, one of the front surface Pa and the back surface Pb is used as the detected surface, and when the detected surface is detected by the light reflection type component detection system 110, the main control unit 120 shown in FIG. When the part 121 is controlled and the control driving unit 122 starts supplying air to the supply path so that the component P is subjected to the pneumatic action through the pneumatic opening formed by the notch 108a, The parts P that have been subjected to the pneumatic action can be removed from the transport track 102.

ここで、上記の被検出面を表面Paと裏面Pbのいずれに設定するかはユーザの要求等によって決定される。本実施形態では、どちらの場合でも、被検出面が検出されたときの受光素子117の検出光量は、部品Pの他の面が検出されたときの検出光量と、部品Pが部品選別部103に存在しないときの検出光量(以下、単に背景の検出光量という。)のいずれに対しても識別できるように構成しなければならない。   Here, whether to set the detected surface as the front surface Pa or the back surface Pb is determined by a user request or the like. In this embodiment, in either case, the detected light amount of the light receiving element 117 when the detected surface is detected is the detected light amount when the other surface of the component P is detected, and the component P is the component sorting unit 103. It must be configured so that it can be identified with respect to any of the detected light amounts (hereinafter simply referred to as background detected light amounts).

本実施形態では、被検出面の判別方法として、被検出面の検出光量が他の面の検出光量と背景の検出光量のいずれよりも多い場合に処理を行うように制御するライトオン制御と、被検出面の検出光量が他の面の検出光量と背景の検出光量のいずれよりも低い場合に処理を行うように制御するダークオン制御のいずれかを行う。   In the present embodiment, as a method for determining the detected surface, a light-on control for performing processing when the detected light amount of the detected surface is larger than both the detected light amount of the other surface and the detected light amount of the background, Either dark-on control is performed to perform processing when the detected light amount of the detected surface is lower than either the detected light amount of the other surface or the detected light amount of the background.

ライトオン制御においては、図6に示す部品Pの場合、被検出面が高い反射率を有する表面Paとなり、この表面Paがレンズユニット112を向いた姿勢を有する部品Pが処理の対象とされる。この場合、裏面Pbの反射率は表面Paよりも低いので検出光量の条件面で問題はない。また、背景の検出光量については、これを表面Paよりも低くするために、動作部材114を第1の位置に配置すればよい。   In the light-on control, in the case of the component P shown in FIG. 6, the surface to be detected is a surface Pa having a high reflectance, and the component P having a posture in which the surface Pa faces the lens unit 112 is a processing target. . In this case, since the reflectance of the back surface Pb is lower than that of the front surface Pa, there is no problem in terms of the amount of detected light. Further, with respect to the detected light amount of the background, the operating member 114 may be disposed at the first position in order to make it lower than the surface Pa.

一方、ダークオン制御においては、被検出面が低い反射率を有する裏面Pbとなり、この裏面Pbがレンズユニット112を向いた姿勢を有する部品Pが処理の対象とされる。この場合、表面Paは裏面Pbよりも高反射率であるので検出光量の条件面で問題はない。また、背景の検出光量については、これを裏面Pbよりも高くするために、動作部材114を第2の位置に配置すればよい。   On the other hand, in the dark-on control, the surface to be detected is a back surface Pb having a low reflectance, and a component P having a posture in which the back surface Pb faces the lens unit 112 is a processing target. In this case, since the front surface Pa has a higher reflectance than the rear surface Pb, there is no problem in terms of the amount of detected light. Further, with respect to the detected light amount of the background, the operating member 114 may be arranged at the second position in order to make it higher than the back surface Pb.

以上のように、本実施形態では、動作部材114を第1の位置と第2の位置に切り替えるだけで、ライトオン制御とダークオン制御を切り替えて実現することができる。この切り替え動作は、例えば、主制御部120からの制御信号に基づいて制御駆動部121を介して駆動部材113により動作部材114を移動させることで容易に実現できる。さらに、上記制御態様の切り替えだけでなく、一般的には背景の反射光量を動作部材114の移動によって容易に調整することができるため、閾値などの判別条件の設定が容易になり、しかも、判別の確実性をも高めることができる。   As described above, in this embodiment, the light-on control and the dark-on control can be switched and realized only by switching the operation member 114 between the first position and the second position. This switching operation can be easily realized by moving the operation member 114 by the drive member 113 via the control drive unit 121 based on a control signal from the main control unit 120, for example. Furthermore, not only the switching of the control mode described above, but in general, the amount of reflected light in the background can be easily adjusted by the movement of the operation member 114, so that it is easy to set a determination condition such as a threshold, and the determination It is possible to improve the certainty.

また、本実施形態では、動作部材114の移動範囲の少なくとも一つの位置において光反射面114aによる反射光が開口部105b(光学開口部)を通して受光素子117により検出可能となるように構成されることで、受光素子117により検出される反射光の検出経路がより限定されたものとなるため、外光などの影響を低減することで光反射面114aによる反射光の受光素子117における検出感度を高めることができ、また、光反射面114aの位置を変更したときの受光素子117の検出光量の変化幅を大きくすることもできる。   In the present embodiment, the light reflected by the light reflecting surface 114a can be detected by the light receiving element 117 through the opening 105b (optical opening) at at least one position in the moving range of the operating member 114. Thus, the detection path of the reflected light detected by the light receiving element 117 becomes more limited, and thus the detection sensitivity of the reflected light by the light reflecting surface 114a in the light receiving element 117 is increased by reducing the influence of external light and the like. It is also possible to increase the amount of change in the amount of light detected by the light receiving element 117 when the position of the light reflecting surface 114a is changed.

さらに、本実施形態では、部品Pや光反射面114aからの反射光を受光素子117へ導く集光レンズを備えたレンズユニット112が設けられているとともに、動作部材114が光反射面114aの姿勢を維持したまま検出光軸Xdに沿って移動可能とされていることにより、光反射面114aが検出光軸Xdに沿って移動した場合に光反射面114aによる反射光の収束位置も検出光軸Xdに沿って移動するので、光反射面114aの移動により受光素子117における検出光量を大きく増減させることができる。したがって、動作部材114を動作させることにより光学的条件に応じた検出環境をより容易かつ広範囲に設定することが可能になる。   Further, in the present embodiment, a lens unit 112 including a condenser lens that guides the reflected light from the component P and the light reflecting surface 114a to the light receiving element 117 is provided, and the operating member 114 is in the posture of the light reflecting surface 114a. Is maintained along the detection optical axis Xd, so that when the light reflecting surface 114a moves along the detection optical axis Xd, the convergence position of the reflected light by the light reflecting surface 114a is also detected by the detection optical axis. Since it moves along Xd, the amount of light detected by the light receiving element 117 can be greatly increased or decreased by the movement of the light reflecting surface 114a. Therefore, it becomes possible to set the detection environment according to the optical condition more easily and in a wide range by operating the operation member 114.

なお、上記実施形態では、動作部材114を第1の位置と第2の位置の二か所に切り替える例について説明したが、一般的に背景の反射光量を制御するという意味では、二か所の切り替えに限定されるものではない。したがって、動作部材114を所定の動作範囲(移動範囲)内において判別するために好ましい適宜の位置に調整することはもちろん可能である。   In the above-described embodiment, the example in which the operation member 114 is switched between the first position and the second position has been described. However, in general, in order to control the amount of reflected light from the background, two positions are used. It is not limited to switching. Therefore, it is of course possible to adjust the operation member 114 to an appropriate position preferable for discriminating within the predetermined operation range (movement range).

次に、図7及び図8を参照して本発明に係る第2実施形態について説明する。この実施形態では、部品Pに対する処理内容が異なるだけであり、他の部分は第1実施形態と基本的に同様であるので、同一部分には同一符号を付し、それらの説明は省略する。   Next, a second embodiment according to the present invention will be described with reference to FIGS. In this embodiment, only the processing contents for the component P are different, and the other parts are basically the same as those in the first embodiment. Therefore, the same parts are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態では、図8に示すように第1実施形態と同様に構成された光反射式部品検出システム110′が部品反転部103′に形成されている。この部品反転部103′は、図7(a)に示すように、上記の搬送トラック102に沿って設けられた部品通過部103Aと、この部品通過部103Aの搬送方向と直交する側に隣接する部品移載部103Bとを備えている。部品通過部103Aは他の搬送トラック102と同じ断面形状を有し、上述のように取付ブロック105の表面105tで少なくとも一部が構成される傾斜した第1の搬送面103a1と、この第1の搬送面103a1に対向して逆向きに傾斜した第2の搬送面103a2とを有している。第2の搬送面103a2は部品Pの厚みより小さな幅を有し、部品Pが第2の搬送面103a2を越えて部品移載部103Bへ容易に倒伏可能となるように構成されている。一方、部品移載部103Bは、上記第1の搬送面103a1と対向し、これと逆向きに傾斜する第1の搬送面103b1と、この第1の搬送面103b1と対向しこれと逆向きに傾斜するとともに上記第2の搬送面103a2に隣接し、これと背中合わせの態様で逆向きに傾斜する第2の搬送面103b2とを有している。   In the present embodiment, as shown in FIG. 8, a light reflection type component detection system 110 ′ configured similarly to the first embodiment is formed in the component reversing unit 103 ′. As shown in FIG. 7A, the component reversing portion 103 ′ is adjacent to the component passage portion 103A provided along the conveyance track 102 and the side orthogonal to the conveyance direction of the component passage portion 103A. And a component transfer unit 103B. The component passage portion 103A has the same cross-sectional shape as the other conveyance tracks 102, and the inclined first conveyance surface 103a1 that is at least partially constituted by the surface 105t of the mounting block 105 as described above, and the first conveyance surface 103a1. It has the 2nd conveyance surface 103a2 which opposed to the conveyance surface 103a1 and inclined in the reverse direction. The second conveyance surface 103a2 has a width smaller than the thickness of the component P, and the component P is configured to easily fall over the component transfer unit 103B beyond the second conveyance surface 103a2. On the other hand, the component transfer unit 103B is opposed to the first conveyance surface 103a1 and is inclined opposite to the first conveyance surface 103b1, and the first conveyance surface 103b1 is opposed to and opposite to the first conveyance surface 103b1. It has a second transport surface 103b2 that is inclined and adjacent to the second transport surface 103a2 and that inclines in the opposite direction in a back-to-back manner.

そして、搬送トラック102内を搬送されてきた部品Pが図7(a)に示すように部品反転部103′の上記部品通過部103Aに到達し、第1実施形態と同様に当該部品Pが処理を行うべき部品である旨が判別されると、図示しない空圧開口部からの空圧作用により図7(b)に示すように部品Pは部品通過部103Aから部品移載部103Bに倒伏して移載される。部品反転部103′には、図7(c)に示すように、上記部品通過部103Aと部品移載部103Bの下流側に配置された部品合流部103Cが設けられ、この部品合流部103Cの搬送面103cは部品姿勢を拘束しない凹円弧状に形成されている。この搬送面130c上では、上記部品通過部103Aをそのまま通過してきた部品と、上記部品移載部103Bに移載されてから搬送されてきた部品とが共に搬送されていく。そして、さらに下流側の搬送トラック102上では、図7(d)に示すように再び部品Pが姿勢を規制された状態で搬送される。この場合、部品移載部103Bに移載された部品Pについては、部品反転部103′で処理される前の図7(a)に示す姿勢と処理後の図7(d)に示す姿勢とが表裏が反転した関係になる。なお、部品反転処理を行うための搬送経路の構造は上記構成に限らず、結果として部品の表裏が反転するように構成された構造となっていればよい。例えば、図7(a)及び(b)に示す断面構造の第2の搬送面103a2と103b2を省略し、第1の搬送面103a1と103b1のみからなるV字型の断面構造としてもよい。   Then, the part P that has been transported in the transport track 102 reaches the part passing part 103A of the part reversing part 103 ′ as shown in FIG. 7A, and the part P is processed as in the first embodiment. When it is determined that the component is to be performed, the component P falls from the component passing portion 103A to the component transfer portion 103B as shown in FIG. 7B due to the pneumatic action from the pneumatic opening (not shown). Are transferred. As shown in FIG. 7C, the component reversing unit 103 ′ is provided with a component merging unit 103C disposed on the downstream side of the component passing unit 103A and the component transfer unit 103B. The conveyance surface 103c is formed in a concave arc shape that does not restrict the component posture. On this conveyance surface 130c, the component that has passed through the component passage portion 103A as it is and the component that has been conveyed after being transferred to the component transfer portion 103B are conveyed together. Then, on the further downstream side of the transport track 102, as shown in FIG. 7D, the component P is transported again in a state in which the posture is restricted. In this case, for the component P transferred to the component transfer unit 103B, the posture shown in FIG. 7A before being processed by the component reversing unit 103 ′ and the posture shown in FIG. Will be reversed. In addition, the structure of the conveyance path | route for performing component inversion processing is not restricted to the said structure, What is necessary is just the structure comprised so that the front and back of components may be reversed as a result. For example, the second conveying surfaces 103a2 and 103b2 having the sectional structure shown in FIGS. 7A and 7B may be omitted, and a V-shaped sectional structure including only the first conveying surfaces 103a1 and 103b1 may be used.

次に、図9を参照して、本発明に係る第3実施形態について説明する。この実施形態では、先に説明した実施形態とは光反射型部品検出システムの構成が異なる。なお、他の部分は第2実施形態と基本的に同様であるので、同一部分には同一符号を付し、それらの説明は省略する。なお、本実施形態は第2実施形態をベースに構成しているが、以下の部品反転部103′を部品選別部103に置き換えることで第1実施形態にも同様に適用できることは明らかである。   Next, a third embodiment according to the present invention will be described with reference to FIG. In this embodiment, the configuration of the light reflection type component detection system is different from the above-described embodiment. Since the other parts are basically the same as those in the second embodiment, the same parts are denoted by the same reference numerals and description thereof is omitted. Although the present embodiment is configured based on the second embodiment, it is obvious that the following can be similarly applied to the first embodiment by replacing the following component reversing unit 103 ′ with the component sorting unit 103.

本実施形態の部品検出システム110″では、第1実施形態と同様のレンズユニット112′が、第1実施形態の駆動部材113及び動作部材114の代わりに部品反転部103′に対して下方(搬送面の背後から)から臨む姿勢で取付ブロック105の通孔105aに装着されている。また、駆動部材113′及びこれに駆動される動作部材114′は、上記とは逆に、部品反転部103′に対して上方(搬送面に向かう側)から臨む姿勢で第1実施形態のレンズユニット112と同様の方法で搬送体101に取り付けられている。ここで、動作部材114′の部品反転部103′に向かう面が第1実施形態の光反射面114と同様の光反射面114a′とされている。   In the component detection system 110 ″ of the present embodiment, a lens unit 112 ′ similar to that of the first embodiment is moved downward (conveyed) with respect to the component reversing unit 103 ′ instead of the driving member 113 and the operation member 114 of the first embodiment. The drive member 113 ′ and the operation member 114 ′ driven by the drive member 113 ′ and the operation member 114 ′ driven by the mount block 105 are mounted in a posture facing from the rear (from the back of the surface). Is attached to the conveyance body 101 in the same manner as the lens unit 112 of the first embodiment in a posture facing from above (toward the conveyance surface). Here, the component reversing portion 103 of the operating member 114 ′. The surface facing ′ is a light reflecting surface 114a ′ similar to the light reflecting surface 114 of the first embodiment.

本実施形態では、搬送トラック102に開口する開口部105bに対してレンズユニット112′と動作部材114′の位置関係が逆に構成されている点が異なるが、光反射面114a′の検出光軸Xdに沿った移動により背景による反射光に基づく受光素子の検出光量が増減する点では同じであり、上記第1実施形態と基本的には同様の作用効果が得られる。   The present embodiment is different in that the positional relationship between the lens unit 112 'and the operating member 114' is reversed with respect to the opening 105b opened in the transport track 102, but the detection optical axis of the light reflecting surface 114a 'is different. This is the same in that the amount of light detected by the light receiving element based on the reflected light from the background is increased or decreased by movement along Xd, and basically the same function and effect as in the first embodiment can be obtained.

次に、図11を参照して、本発明に係る第4実施形態について説明する。この実施形態では、動作部材の移動態様が上記各実施形態とは異なるが、基本的に検出方法や他の部分の構成は同様であるので、第1実施形態と同一部分には同一符号を付し、それらの説明は省略する。なお、本実施形態は第1実施形態の構成を部分的に変更したものとして説明するが、第2及び第3実施形態の構成を部分的に変更したものとすることも可能である。   Next, a fourth embodiment according to the present invention will be described with reference to FIG. In this embodiment, the movement mode of the operating member is different from that in each of the above embodiments, but the detection method and the configuration of other parts are basically the same, so the same reference numerals are assigned to the same parts as in the first embodiment. These descriptions are omitted. In addition, although this embodiment demonstrates as what changed the structure of 1st Embodiment partially, it is also possible to change the structure of 2nd and 3rd Embodiment partially.

本実施形態の動作部材214は、図示しない駆動機構により、図11に示すように、検出光軸Xdに対する姿勢が変更可能に構成され、光反射面214aは動作部材214の姿勢変更により向きを変えるようになっている。図示例では、検出光軸Xd上の点Oxを中心に動作部材214の軸線と検出光軸Xdの交差角度θが変更可能とされている。このため、動作部材214が図示実線で示す第2の姿勢(図示例ではθ=0)にあるときに、照明光Liが光反射面214aで反射されてなる反射光Lr2が検出光軸Xdに沿って受光素子117に向かうように設定されているとすると、動作部材214の姿勢が変更され、動作部材214が図示二点鎖線で示す第1の姿勢(図示例ではθが所定の値)になったときには、反射光Lr1は検出光軸Xdから外れる。したがって、動作部材214の姿勢変更によって光反射面214aからの反射光による受光素子117の検出光量は増減することがわかる。   As shown in FIG. 11, the operation member 214 of the present embodiment is configured such that the posture with respect to the detection optical axis Xd can be changed by a drive mechanism (not shown), and the light reflecting surface 214 a changes its direction by changing the posture of the operation member 214. It is like that. In the illustrated example, the intersection angle θ between the axis of the operating member 214 and the detection optical axis Xd can be changed around a point Ox on the detection optical axis Xd. For this reason, when the operation member 214 is in the second posture shown by the solid line in the drawing (θ = 0 in the drawing), the reflected light Lr2 formed by reflecting the illumination light Li on the light reflecting surface 214a is on the detection optical axis Xd. As a result, the posture of the operating member 214 is changed, and the operating member 214 is changed to the first posture indicated by a two-dot chain line in the drawing (θ is a predetermined value). When this happens, the reflected light Lr1 deviates from the detection optical axis Xd. Therefore, it can be seen that the amount of light detected by the light receiving element 117 due to the reflected light from the light reflecting surface 214a increases or decreases as the posture of the operating member 214 changes.

上記のように、本実施形態では動作部材214の姿勢を変えることによって背景の反射光の受光素子による検出光量を増減させることができるため、先に説明した実施形態と同様の作用効果を得ることができる。   As described above, in this embodiment, the amount of light detected by the light receiving element of the reflected light in the background can be increased or decreased by changing the posture of the operation member 214, so that the same effect as that of the above-described embodiment can be obtained. Can do.

次に、図12を参照して、本発明に係る第5実施形態について説明する。この実施形態では、動作部材の移動態様が上記各実施形態とは異なるが、基本的に検出方法や他の部分の構成は同様であるので、第1実施形態と同一部分には同一符号を付し、それらの説明は省略する。なお、本実施形態は第1実施形態の構成を部分的に変更したものとして説明するが、第2及び第3実施形態の構成を部分的に変更したものとすることも可能である。   Next, a fifth embodiment according to the invention will be described with reference to FIG. In this embodiment, the movement mode of the operating member is different from that in each of the above embodiments, but the detection method and the configuration of other parts are basically the same, so the same reference numerals are assigned to the same parts as in the first embodiment. These descriptions are omitted. In addition, although this embodiment demonstrates as what changed the structure of 1st Embodiment partially, it is also possible to change the structure of 2nd and 3rd Embodiment partially.

本実施形態では、光反射面314aを備えた動作部材314が検出光軸Xdと直交する面に沿って移動可能に構成されている点で、上記の各実施形態とは異なる。本実施形態の場合、図12に実線で示すように動作部材314が第2の位置にあるときは、光反射面314aが検出光軸Xd上に配置され、その反射光Lr2が開口部105bを通して受光素子117に向かうように設定されている。一方、図示二点鎖線で示すように、動作部材314が第1の位置にあるときは、光反射面314aが検出光軸Xdから外れるように設定される。そして、この第1の位置では、光反射面314aによる反射光が減少若しくは消失することで、部品Pが存在しない場合の受光素子117の検出光量が低下するようになっている。したがって、本実施形態でも動作部材314を移動させることによって背景による検出光量を増減させることができる。   This embodiment is different from each of the above embodiments in that the operating member 314 including the light reflecting surface 314a is configured to be movable along a surface orthogonal to the detection optical axis Xd. In the case of this embodiment, when the operation member 314 is in the second position as shown by a solid line in FIG. 12, the light reflecting surface 314a is disposed on the detection optical axis Xd, and the reflected light Lr2 passes through the opening 105b. It is set to face the light receiving element 117. On the other hand, as shown by a two-dot chain line in the figure, when the operation member 314 is in the first position, the light reflecting surface 314a is set so as to deviate from the detection optical axis Xd. At the first position, the amount of light detected by the light receiving element 117 when the component P is not present is reduced by reducing or eliminating the reflected light from the light reflecting surface 314a. Therefore, in the present embodiment as well, the amount of light detected by the background can be increased or decreased by moving the operation member 314.

上記のように、本実施形態では動作部材314の位置変更、すなわち、光反射面314aの検出光軸Xdからの外れ量、或いは、開口部105bを通過して受光素子117に向かう光量を変えることによって、背景の反射光の受光素子による検出光量を増減させることができるため、先に説明した実施形態と同様の作用効果を得ることができる。なお、動作部材314の移動方向は、検出光軸Xdと交差する面に沿った移動であればよく、必ずしも上記のように検出光軸Xdと直交する面に沿った移動でなくても構わない。   As described above, in this embodiment, the position of the operating member 314 is changed, that is, the amount of the light reflecting surface 314a deviated from the detection optical axis Xd or the amount of light that passes through the opening 105b and travels toward the light receiving element 117 is changed. Thus, the amount of light detected by the light receiving element of the reflected light in the background can be increased or decreased, so that the same effect as that of the above-described embodiment can be obtained. Note that the moving direction of the operating member 314 may be a movement along a plane that intersects the detection optical axis Xd, and may not necessarily be a movement along a plane orthogonal to the detection optical axis Xd as described above. .

上記各実施形態の効果を確認するために、実際に図示の光反射型部品検出システム110を部品搬送装置100に搭載し、上記の部品Pをライトオン制御とダークオン制御のそれぞれにおいて部品を選別若しくは反転する実験を行った。実験装置の構成は上記第1実施形態及び第2実施形態に示したとおりである。そのときの検出光量の実測値と設定した閾値の値を以下の表1に示す。ここで、主制御部120に相当する部分には、受光素子117の検出信号の感度を調整する機能があり、そのために各条件において最適な検出モードを設定しているため、検出光量の実測値は当該検出モードの検出感度によって増減している。ただし、検出モードについては表示を省略してある。   In order to confirm the effects of the above-described embodiments, the illustrated light-reflective component detection system 110 is actually mounted on the component transport apparatus 100, and the component P is selected in each of light-on control and dark-on control. An inversion experiment was conducted. The configuration of the experimental apparatus is as shown in the first embodiment and the second embodiment. The measured value of the detected light quantity and the set threshold value are shown in Table 1 below. Here, the portion corresponding to the main control unit 120 has a function of adjusting the sensitivity of the detection signal of the light receiving element 117. For this reason, an optimum detection mode is set in each condition, and thus the measured value of the detected light amount Increases or decreases depending on the detection sensitivity of the detection mode. However, the display of the detection mode is omitted.

Figure 2010275076
Figure 2010275076

本実施形態では上記実施例(選別1、選別2、反転1、反転2)のいずれにおいても、ライトオン制御とダークオン制御を容易に切り替えることができるとともに、いずれの制御態様でも閾値を容易に設定でき、判別の確実性も得られている。ここで、ライトオン制御では背景の検出光量が低くなるように動作部材の位置(第1の位置)を設定し、ダークオン制御では背景の検出光量が高くなるように動作部材の位置(第2の位置)を設定している。   In this embodiment, light-on control and dark-on control can be easily switched in any of the above-described examples (selection 1, selection 2, inversion 1, inversion 2), and a threshold value can be easily set in any control mode. And certainty of discrimination is also obtained. Here, in the light-on control, the position of the operating member (first position) is set so that the detected light amount of the background is low, and in the dark-on control, the position of the operating member (second position) is set so that the detected light amount of the background is high. Position) is set.

一般的に、ライトオン制御では、閾値の設定容易性や判別の確実性を確保するために背景値は低い方がよく、ダークオン制御では、同様の理由で背景値は高い方がよいが、搬送トラック102の構成、部品Pの外観などによって光学的条件は様々であるので、本発明のように背景の検出光量を調整することができることは、単に、ライトオン制御とダークオン制御のいずれをも選択可能で、しかも相互に切り替え可能というだけではなく、様々な光学的条件に対応することが可能になるという点で極めて有効である。   In general, in light-on control, the background value should be low in order to ensure the ease of setting the threshold and the certainty of discrimination. In dark-on control, the background value should be high for the same reason. Since the optical conditions vary depending on the configuration of the track 102, the appearance of the component P, etc., the fact that the amount of light detected in the background can be adjusted as in the present invention simply selects either light-on control or dark-on control. This is extremely effective in that it is possible not only to switch between each other but also to cope with various optical conditions.

尚、本発明の光反射型部品検出システムは、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記各実施形態の個々の特徴点は相互に矛盾しない限り、任意の組み合わせにて組み合わせて用いることができる。また、上記各実施形態では、発光素子から放出される照明光を照射し、その反射光を受光素子で検出するようにしているが、システムそのものが照明光の照射機能を有していなくても、汎用照明などの照明光に基づく反射光を検出することも可能である。また、上記実施形態では上記システムを部品選別部又は部品反転部に用いる例のみを示しているが、当該システムを構成する検出部若しくは判別部は部品が搬送される搬送経路中(搬送トラック上)に設定されていればよく、当該システムによる検出、判別に基づいて行われる処理内容としては、部品の選別や反転に限らず、例えば、部品の仕分先を選択する処理、部品の光学特性を記録する処理など、部品処理部において行われうる種々の処理態様とすることができる。さらに、本システムは上記の各種の処理を伴うもの(部品処理部を有するもの)に限らず、搬送部品の検出、判別のみを行って特定の処理を実施しない場合に用いても構わない。   The light reflection type component detection system of the present invention is not limited to the above-described illustrated examples, and it is needless to say that various modifications can be made without departing from the gist of the present invention. For example, the individual feature points of the above embodiments can be used in any combination as long as they do not contradict each other. In each of the above embodiments, the illumination light emitted from the light emitting element is irradiated and the reflected light is detected by the light receiving element. However, even if the system itself does not have the illumination light irradiation function. It is also possible to detect reflected light based on illumination light such as general-purpose illumination. Moreover, although only the example which uses the said system for a component selection part or a component inversion part is shown in the said embodiment, the detection part or discrimination | determination part which comprises the said system is in the conveyance path | route (on a conveyance track) in which components are conveyed. The content of processing performed based on detection and discrimination by the system is not limited to component selection and inversion, for example, processing for selecting a component sorting destination, and recording of the optical characteristics of the component Various processing modes that can be performed in the component processing unit, such as processing to be performed, can be used. Further, the present system is not limited to the above-described various types of processing (having a component processing unit), and may be used when only the detection and determination of the conveyance component is performed and no specific processing is performed.

100…部品搬送装置(部品供給装置)、101…搬送体、102…搬送トラック、103…部品選別部、103′…部品反転部、110…光反射型部品検出システム、112…レンズユニット、113…駆動部材、114…動作部材、114a…光反射面、117…受光素子、118…発光素子、120…主制御部、121、122…制御駆動部 DESCRIPTION OF SYMBOLS 100 ... Component conveyance apparatus (component supply apparatus) 101 ... Conveyance body, 102 ... Conveyance truck, 103 ... Component selection part, 103 '... Component inversion part, 110 ... Light reflection type component detection system, 112 ... Lens unit, 113 ... Driving member 114... Operating member 114 a Light reflecting surface 117 Light receiving element 118 Light emitting element 120 Main control unit 121 122 Control driving unit

Claims (7)

搬送される部品が通過する通過経路中に設定された既定の検出範囲からの反射光の量を検出する受光素子と、該受光素子で検出された前記反射光の量を所定の判別条件に基づいて判別する判別手段とを具備する光反射型搬送部品検出システムにおいて、
前記検出範囲の背後に光反射面を備えた動作部材を配置し、該動作部材を動作させて前記光反射面の位置又は姿勢を変化させることで前記検出範囲に前記部品が配置されていないときの背景からの反射光量が変化するように構成されていることを特徴とする光反射型部品検出システム。
A light receiving element for detecting the amount of reflected light from a predetermined detection range set in a passing path through which the parts to be conveyed pass, and the amount of the reflected light detected by the light receiving element based on a predetermined determination condition In the light reflection type conveying parts detection system comprising the determining means for determining
When an operation member having a light reflection surface is arranged behind the detection range, and the component is not arranged in the detection range by operating the operation member to change the position or posture of the light reflection surface A light-reflective component detection system, characterized in that the amount of reflected light from the background is changed.
前記検出範囲において前記部品の通過領域の背後若しくは手前に配置された壁面に開口する光学開口部を設け、前記光反射面の位置又は姿勢の変化可能な範囲内における少なくとも一つの位置又は姿勢において前記光学開口部を通して前記光学面による反射光が前記受光素子により検出可能となるように構成されることを特徴とする請求項1に記載の光反射型部品検出システム。   In the detection range, an optical opening is provided that opens in a wall surface disposed behind or in front of the passage region of the component, and at least at one position or posture within a range in which the position or posture of the light reflecting surface can be changed. The light reflection type component detection system according to claim 1, wherein the light reflected by the optical surface can be detected by the light receiving element through an optical opening. 前記動作部材は、前記検出範囲と前記光反射面の前記検出光軸に沿った距離が変更可能となるように構成されることを特徴とする請求項1又は2に記載の光反射型部品検出システム。   The light reflection type component detection according to claim 1, wherein the operation member is configured such that a distance along the detection optical axis of the detection range and the light reflection surface can be changed. system. 前記検出範囲と前記受光素子との間には前記反射光を前記受光素子に導く集光レンズが配置され、前記動作部材は前記光反射面の姿勢を維持したまま前記受光素子の検出光軸に沿って移動可能とされることを特徴とする請求項3に記載の光反射型部品検出システム。   A condensing lens that guides the reflected light to the light receiving element is disposed between the detection range and the light receiving element, and the operating member is placed on the detection optical axis of the light receiving element while maintaining the posture of the light reflecting surface. The light reflection type component detection system according to claim 3, wherein the light reflection type component detection system is movable along the same. 前記動作部材は、前記光反射面の前記検出光軸に対する角度が変更可能となるように構成されることを特徴とする請求項1又は2に記載の光反射型部品検出システム。   The light reflection type component detection system according to claim 1, wherein the operation member is configured so that an angle of the light reflection surface with respect to the detection optical axis can be changed. 前記動作部材は、前記光反射面が前記検出光軸と交差する面に沿って移動可能となるように構成されることを特徴とする請求項1又は2に記載の光反射型部品検出システム。   The light reflection type component detection system according to claim 1, wherein the operation member is configured such that the light reflection surface is movable along a surface intersecting the detection optical axis. 前記搬送経路を備えた搬送体と、該搬送経路上の前記部品を移動させる搬送手段と、前記搬送経路上に前記検出範囲を備えた請求項1乃至6のいずれか一項に記載の光反射型部品検出システムと、を具備することを特徴とする部品搬送装置。   The light reflection according to claim 1, further comprising: a transport body provided with the transport path; transport means for moving the parts on the transport path; and the detection range on the transport path. And a mold parts detection system.
JP2009130074A 2009-05-29 2009-05-29 Light reflection type component detection system and component conveying apparatus using the same Expired - Fee Related JP4504455B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130074A JP4504455B1 (en) 2009-05-29 2009-05-29 Light reflection type component detection system and component conveying apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130074A JP4504455B1 (en) 2009-05-29 2009-05-29 Light reflection type component detection system and component conveying apparatus using the same

Publications (2)

Publication Number Publication Date
JP4504455B1 JP4504455B1 (en) 2010-07-14
JP2010275076A true JP2010275076A (en) 2010-12-09

Family

ID=42575713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130074A Expired - Fee Related JP4504455B1 (en) 2009-05-29 2009-05-29 Light reflection type component detection system and component conveying apparatus using the same

Country Status (1)

Country Link
JP (1) JP4504455B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51102866A (en) * 1973-10-09 1976-09-10 Yokohama Rubber Co Ltd Taiyano jidosenbetsusochi
JPH07285651A (en) * 1994-04-15 1995-10-31 Shinko Electric Co Ltd Part arrangement feed device
JPH0858956A (en) * 1994-08-24 1996-03-05 Tokin Corp Workpiece attitude control device
JPH09167953A (en) * 1995-12-15 1997-06-24 Keyence Corp Photoelectric switch
JP2005010111A (en) * 2003-06-20 2005-01-13 Daishin:Kk Component placed state discrimination device
JP2005114707A (en) * 2003-09-16 2005-04-28 Daishin:Kk Part attitude discriminating method and part-conveying device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51102866A (en) * 1973-10-09 1976-09-10 Yokohama Rubber Co Ltd Taiyano jidosenbetsusochi
JPH07285651A (en) * 1994-04-15 1995-10-31 Shinko Electric Co Ltd Part arrangement feed device
JPH0858956A (en) * 1994-08-24 1996-03-05 Tokin Corp Workpiece attitude control device
JPH09167953A (en) * 1995-12-15 1997-06-24 Keyence Corp Photoelectric switch
JP2005010111A (en) * 2003-06-20 2005-01-13 Daishin:Kk Component placed state discrimination device
JP2005114707A (en) * 2003-09-16 2005-04-28 Daishin:Kk Part attitude discriminating method and part-conveying device

Also Published As

Publication number Publication date
JP4504455B1 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP5870752B2 (en) Work supply device
KR101989625B1 (en) Apparatus for aligning and conveying work
EP0907311A1 (en) Sucked material detector, sucked material detecting method using the same detector, shift detecting method using the same detector, and cleaning method using the same detector
JP4814833B2 (en) Bowl type parts feeder
JP2010278323A (en) Electronic component mounting device
KR20030069781A (en) Device For Inspecting Appearance of Parts
JP2016094300A (en) Device for identifying remaining yarn on spinning cop tube in standing arrangement
JP2014106192A (en) Exterior appearance inspection device
JP4504455B1 (en) Light reflection type component detection system and component conveying apparatus using the same
KR102124678B1 (en) Imaging device
JP2016173288A (en) Screw inspection device
JP2006335487A (en) Vibratory parts feeder
US8803026B2 (en) Laser machining device and bellows device
JP2007043076A (en) Mounting device for electronic component
JP2020112959A (en) Article conveyance device
JPH1144634A (en) Air purge mechanism of detector
JP2001133409A (en) Coating-surface inspection apparatus for vehicle
JP2008294072A (en) Component recognizing device, surface mounting machine, and component testing apparatus
ITMI20060114A1 (en) DEVICE FOR RECOGNIZING THE SPOLE ORIENTATION
JP2007040866A (en) Inspection device and inspection method
JP4272299B2 (en) Lead frame flutter prevention mechanism and lead frame inspection device
KR200469221Y1 (en) linear chute
JP5618209B2 (en) Glass plate end face imaging device and imaging method thereof
JP5904029B2 (en) Work aligning and conveying device
JP2009278014A (en) Component mounting apparatus and substrate conveying method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100422

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130430

LAPS Cancellation because of no payment of annual fees