JP2010272602A - Method of manufacturing solid-state electrolytic capacitor - Google Patents

Method of manufacturing solid-state electrolytic capacitor Download PDF

Info

Publication number
JP2010272602A
JP2010272602A JP2009121487A JP2009121487A JP2010272602A JP 2010272602 A JP2010272602 A JP 2010272602A JP 2009121487 A JP2009121487 A JP 2009121487A JP 2009121487 A JP2009121487 A JP 2009121487A JP 2010272602 A JP2010272602 A JP 2010272602A
Authority
JP
Japan
Prior art keywords
oxide film
organic polymer
dielectric oxide
conductive organic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009121487A
Other languages
Japanese (ja)
Other versions
JP5473111B2 (en
Inventor
Hideyuki Yoshikawa
秀之 吉川
Kazuyo Omura
和世 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009121487A priority Critical patent/JP5473111B2/en
Publication of JP2010272602A publication Critical patent/JP2010272602A/en
Application granted granted Critical
Publication of JP5473111B2 publication Critical patent/JP5473111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid-state electrolytic capacitor with remarkably improved characteristics without increasing ESR and substantially reducing a leakage current. <P>SOLUTION: After forming a dielectric oxide film 2 on the surface of a tantalum sintered body 1 where the dielectric oxide film 2 is formed and forming a first conductivity organic polymer 4 by an electrolytic polymerization method at a dielectric oxide film defective part 3 generated at the time, heat treatment is executed at or above 85&deg;C and at or below 300&deg;C to turn the first conductivity organic polymer 4 to an insulating part 5, and a second conductivity organic polymer 6 is formed on the insulating part 5 and the dielectric oxide film 2 further. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、固体電解コンデンサの製造方法に関するものである。   The present invention relates to a method for manufacturing a solid electrolytic capacitor.

従来、固体電解コンデンサには、硝酸マンガンを熱分解することで得られる二酸化マンガンが一般的に使用されてきたが、コンデンサの等価直列抵抗(ESR)や漏洩電流には改善の余地があった。   Conventionally, manganese dioxide obtained by thermally decomposing manganese nitrate has been generally used for solid electrolytic capacitors, but there is room for improvement in the equivalent series resistance (ESR) and leakage current of the capacitors.

そこでコンデンサ特性上の問題点の改善向上を目的として導電性有機高分子を固体電解質とする新しい固体電解コンデンサが提案されている。   Therefore, a new solid electrolytic capacitor using a conductive organic polymer as a solid electrolyte has been proposed for the purpose of improving and improving the problems in the capacitor characteristics.

導電性有機高分子を固体電解質とした固体電解コンデンサは、タンタル等の誘電体酸化皮膜を形成できる金属の表面に、酸化タンタル(Ta)等の誘電体酸化皮膜を形成し、ピロール、チオフェン等の導電性有機高分子の単量体を溶解した電解重合液中で電解重合法により前記誘電体酸化皮膜上に導電性有機高分子を形成して固体電解質となし、導電性有機高分子上に電極取り出しのための導電体層を形成し、前記金属と導電体層のそれぞれに端子を取り付けてコンデンサ素子としたものがある。 A solid electrolytic capacitor using a conductive organic polymer as a solid electrolyte is formed by forming a dielectric oxide film such as tantalum oxide (Ta 2 O 5 ) on the surface of a metal capable of forming a dielectric oxide film such as tantalum, pyrrole, A conductive organic polymer is formed on the dielectric oxide film by an electropolymerization method in an electrolytic polymerization solution in which a monomer of a conductive organic polymer such as thiophene is dissolved to form a solid electrolyte. There is a capacitor element in which a conductor layer for taking out an electrode is formed thereon, and a terminal is attached to each of the metal and the conductor layer.

近年、このような固体電解コンデンサにおいて、誘電体酸化皮膜に少なからず誘電体酸化皮膜欠陥部が生じていることが確認されている。誘電体酸化皮膜に欠陥が生じたまま導電性有機高分子を形成することで当該箇所より漏洩電流が生じると、漏洩電流の規格を満たさないコンデンサとなる。   In recent years, it has been confirmed that in such a solid electrolytic capacitor, a dielectric oxide film defect is generated in the dielectric oxide film. If a leakage current is generated from the portion by forming the conductive organic polymer with defects in the dielectric oxide film, the capacitor does not satisfy the leakage current standard.

この問題に対して、従来は誘電体酸化皮膜、誘電体酸化皮膜層上の導電性有機高分子、導電体層を順次形成した後、誘電体酸化皮膜及び導電性有機高分子に水または少なくとも水を含有する液体を浸透吸着させ、しかる後、金属と導電体層との間に電圧を印加してエージングし、誘電体酸化皮膜の欠陥部界面近傍の導電性有機高分子を絶縁化してコンデンサ素子を製造してきた。   Conventionally, a dielectric oxide film, a conductive organic polymer on the dielectric oxide film layer, and a conductor layer are sequentially formed, and then water or at least water is added to the dielectric oxide film and the conductive organic polymer. Then, a liquid containing benzene is absorbed and adsorbed, and then a voltage is applied between the metal and the conductor layer to age, thereby insulating the conductive organic polymer in the vicinity of the interface of the defective portion of the dielectric oxide film to thereby obtain a capacitor element. Have been manufacturing.

例えば特許文献1には、誘電体酸化皮膜の欠陥部界面近傍の複素環式化合物のポリマー層が絶縁化し、等価直列抵抗(ESR)を増大させることなく、漏洩電流を著しく減少させ、特性が飛躍的に向上した固体電解コンデンサを製造できることが記載されている。   For example, Patent Document 1 discloses that a polymer layer of a heterocyclic compound in the vicinity of a defect interface of a dielectric oxide film is insulated, significantly reducing leakage current and increasing characteristics without increasing equivalent series resistance (ESR). It is described that an improved solid electrolytic capacitor can be manufactured.

特許第2617734号公報Japanese Patent No. 2617734

しかしながら、従来技術ではすべての導電性有機高分子において、誘電体酸化皮膜欠陥部界面近傍の導電性有機高分子を絶縁化処理し、固体電解コンデンサの漏洩電流を著しく減少させることは困難な恐れがある。特に近年ポリ(3,4−エチレンジオキシチオフェン)(以下PEDOTと略す)を用いた固体電解コンデンサが非常に増えており、このPEDOTは酸化劣化の開始点と言われる五員環構造内のβ、β’位置に水素原子を持たないため、ピロール等の導電性有機高分子とは異なり、空気中での耐熱性及び耐湿性に非常に優れている。   However, it is difficult to reduce the leakage current of the solid electrolytic capacitor significantly by insulating the conductive organic polymer near the interface of the defective part of the dielectric oxide film in all the conductive organic polymers in the prior art. is there. In particular, in recent years, the number of solid electrolytic capacitors using poly (3,4-ethylenedioxythiophene) (hereinafter abbreviated as PEDOT) has increased greatly, and this PEDOT has a β Since it does not have a hydrogen atom at the β ′ position, unlike a conductive organic polymer such as pyrrole, it has excellent heat resistance and moisture resistance in air.

そのため、電圧印加を行っても漏洩電流が著しく減少する程の局所的な絶縁化処理を行うことは非常に困難である。仮に絶縁化処理の促進のために印加電圧を増加させた場合、誘電体酸化皮膜欠陥部近傍以外の箇所においても導電性有機高分子の絶縁化が進み、結果としてESRの上昇を伴ってしまい、製品としての特性を満足しないといった問題が生じる恐れがある。   For this reason, it is very difficult to perform a local insulation process so that the leakage current is remarkably reduced even when a voltage is applied. If the applied voltage is increased to promote the insulation process, the insulation of the conductive organic polymer proceeds at a place other than the vicinity of the dielectric oxide film defect, resulting in an increase in ESR, There is a possibility that problems such as not satisfying the characteristics as a product may occur.

すなわち、本発明の技術的課題は、ESRを増大させること無く、かつ漏洩電流を著しく減少させた固体電解コンデンサの製造方法を提供することにある。   That is, the technical problem of the present invention is to provide a method for manufacturing a solid electrolytic capacitor in which the leakage current is remarkably reduced without increasing the ESR.

本発明の固体電解コンデンサの製造方法は、誘電体酸化皮膜を形成できる金属の表面に前記誘電体酸化皮膜を形成し、その際生じた誘電体酸化皮膜欠陥部に電解重合法により第一導電性有機高分子を形成した後、85℃以上、300℃以下で熱処理を施して前記第一導電性有機高分子を絶縁化部とし、さらに第二導電性有機高分子を前記絶縁化部及び前記誘電体酸化皮膜上に形成したことを特徴とする。   In the method for producing a solid electrolytic capacitor of the present invention, the dielectric oxide film is formed on the surface of a metal on which a dielectric oxide film can be formed. After forming the organic polymer, heat treatment is performed at 85 ° C. or more and 300 ° C. or less to make the first conductive organic polymer an insulating part, and further, the second conductive organic polymer is made the insulating part and the dielectric. It is formed on a body oxide film.

本発明の固体電解コンデンサの製造方法は、前記第一導電性有機高分子がピロール系の導電性有機高分子であり、かつ前記第二導電性有機高分子がチオフェン系導電性有機高分子であることを特徴とする。   In the method for producing a solid electrolytic capacitor of the present invention, the first conductive organic polymer is a pyrrole-based conductive organic polymer, and the second conductive organic polymer is a thiophene-based conductive organic polymer. It is characterized by that.

本発明の固体電解コンデンサの製造方法は、前記熱処理は、相対湿度60%以上、90%以下の環境下で行うことを特徴とする。   In the method for producing a solid electrolytic capacitor of the present invention, the heat treatment is performed in an environment having a relative humidity of 60% or more and 90% or less.

本発明により、誘電体酸化皮膜欠陥上の第一導電性高分子は熱処理によりすべて効率よく絶縁化処理することが可能であり、固体電解コンデンサの等価直列抵抗(ESR)のほとんどを決定する第二導電性有機高分子は一切絶縁化処理を行う必要がないので、ESRを増大させること無く、かつ漏洩電流を著しく減少させた固体電解コンデンサの製造方法の提供が可能となった。   According to the present invention, all of the first conductive polymer on the dielectric oxide film defect can be efficiently insulated by heat treatment, and the second determines most of the equivalent series resistance (ESR) of the solid electrolytic capacitor. Since the conductive organic polymer does not need to be insulated at all, it has become possible to provide a method for manufacturing a solid electrolytic capacitor that does not increase the ESR and significantly reduces the leakage current.

本発明による誘電体酸化皮膜欠陥部を絶縁化部にする構成を示す模式断面図、図1(a)は、誘電体酸化皮膜欠陥部を示す図、図1(b)は、誘電体酸化皮膜欠陥部に第一導電性有機高分子を形成する図、図1(c)は、第一導電性有機高分子形成部を絶縁化部にする図、図1(d)は、第二導電性有機高分子を形成する図。1 is a schematic cross-sectional view showing a configuration in which a dielectric oxide film defect portion according to the present invention is an insulating portion, FIG. 1A is a diagram showing a dielectric oxide film defect portion, and FIG. 1B is a dielectric oxide film. FIG. 1C is a diagram of forming the first conductive organic polymer in the defective portion, FIG. 1C is a diagram in which the first conductive organic polymer forming portion is an insulating portion, and FIG. 1D is the second conductive property. The figure which forms organic polymer. 電解重合法による第一導電性有機高分子の形成方法の説明図。Explanatory drawing of the formation method of the 1st electroconductive organic polymer by the electropolymerization method. 固体電解コンデンサの構成を示す断面図。Sectional drawing which shows the structure of a solid electrolytic capacitor. 図3のA部詳細図。FIG. 4 is a detailed view of part A in FIG. 3. 従来方法による誘電体酸化皮膜欠陥部を絶縁化部にする構成を示す模式断面図、図5(a)は、誘電体酸化皮膜欠陥部を示す図、図5(b)は、誘電体酸化皮膜欠陥部に導電性有機高分子を形成する図、図5(c)は、エージング処理後の絶縁化部を示す図。FIG. 5A is a schematic cross-sectional view showing a configuration in which a dielectric oxide film defect portion according to a conventional method is used as an insulating portion, FIG. 5A is a diagram showing a dielectric oxide film defect portion, and FIG. 5B is a dielectric oxide film. The figure which forms a conductive organic polymer in a defect part, FIG.5 (c) is a figure which shows the insulation part after an aging process. 本発明と従来方法による固体電解コンデンサの漏洩電流の分布を示す図。The figure which shows distribution of the leakage current of the solid electrolytic capacitor by this invention and the conventional method.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図3は、固体電解コンデンサの構成を示す断面図である。   FIG. 3 is a cross-sectional view showing the configuration of the solid electrolytic capacitor.

タンタル焼結体1に誘電体酸化皮膜2、第二導電性有機高分子6を形成した上にグラファイト層13、銀ペースト層14を形成する。その後、接着銀15により陰極リードフレーム16を取り付ける。一方、陽極は、コンデンサペレットより引き出されている陽極棒8に陽極リードフレーム17を取り付ける。これらにモールド樹脂18を成形して固体電解コンデンサを作製する。   On the tantalum sintered body 1, the dielectric oxide film 2 and the second conductive organic polymer 6 are formed, and then the graphite layer 13 and the silver paste layer 14 are formed. Thereafter, the cathode lead frame 16 is attached with the adhesive silver 15. On the other hand, the anode is attached with the anode lead frame 17 to the anode rod 8 drawn from the capacitor pellet. A mold resin 18 is molded into these to produce a solid electrolytic capacitor.

図4は、図3のA部詳細図である。   FIG. 4 is a detailed view of part A in FIG.

タンタル焼結体1を陽極酸化して誘電体酸化皮膜2を形成し、誘電体酸化皮膜2上に導電性有機高分子6を形成する。次いで、グラファイト層13、銀ペースト層14を順次形成している。   The tantalum sintered body 1 is anodized to form a dielectric oxide film 2, and a conductive organic polymer 6 is formed on the dielectric oxide film 2. Next, a graphite layer 13 and a silver paste layer 14 are sequentially formed.

図5は、従来方法による誘電体酸化皮膜欠陥部を絶縁化部にする構成を示す模式断面図で、図5(a)は、誘電体酸化皮膜欠陥部を示す図、図5(b)は、誘電体酸化皮膜欠陥部に導電性有機高分子を形成する図、図5(c)は、エージング処理後の絶縁化部を示す図である。   FIG. 5 is a schematic cross-sectional view showing a configuration in which a dielectric oxide film defect portion according to a conventional method is used as an insulating portion, FIG. 5 (a) is a diagram showing a dielectric oxide film defect portion, and FIG. The figure which forms a conductive organic polymer in a dielectric oxide film defect part, FIG.5 (c) is a figure which shows the insulation part after an aging process.

タンタル粉末を使用し、高真空中において焼結することによりタンタル焼結体1を製造する。タンタル焼結体1をリン酸水溶液中で陽極酸化して誘電体酸化皮膜2を形成する。この誘電体酸化皮膜2には、誘電体酸化皮膜欠陥部3が存在する。誘電体酸化皮膜欠陥部3を含む誘電体酸化皮膜2上に導電性有機高分子19を形成する。さらにグラファイト層及び銀ペースト層を順次形成した後、銀ペースト層上に接着銀により陰極リードフレームを取り付ける一方、陽極としては陽極棒に陽極リードフレームを取り付け、モールド樹脂成形にてタンタルコンデンサを作製する。   The tantalum sintered body 1 is manufactured by using tantalum powder and sintering in a high vacuum. The tantalum sintered body 1 is anodized in a phosphoric acid aqueous solution to form a dielectric oxide film 2. This dielectric oxide film 2 has a dielectric oxide film defect 3. A conductive organic polymer 19 is formed on the dielectric oxide film 2 including the dielectric oxide film defect portion 3. Further, after forming a graphite layer and a silver paste layer in sequence, a cathode lead frame is attached to the silver paste layer with adhesive silver, while an anode is attached to the anode rod as an anode, and a tantalum capacitor is manufactured by molding resin molding. .

その後、陰極リードフレームと陽極リードフレームに定格電圧の1.2倍以上、2.0倍以下の電圧を印加しエージング処理を行って、誘電体酸化皮膜欠陥部3を覆っている導電性有機高分子19を絶縁化部20にする。   Thereafter, the cathode lead frame and the anode lead frame are subjected to an aging treatment by applying a voltage not less than 1.2 times and not more than 2.0 times the rated voltage, and the conductive organic high layer covering the dielectric oxide film defect portion 3 is applied. The molecule 19 is used as the insulating unit 20.

従来例は、電圧印加により酸化皮膜欠陥部にのみ電流が流れることで絶縁化処理を行う方法であるが、導電性有機高分子にPEDOTの様な耐熱性・耐湿度性に優れた導電性有機高分子を用いている場合には、漏洩電流を減少させる程の絶縁化を行うことは困難であり、このようなエージング処理による絶縁化によっても、誘電体酸化皮膜欠陥部から漏洩電流が生じるため、製品のバラツキや絶縁劣化による歩留まりの低下が発生している。   The conventional example is a method of performing insulation treatment by applying current to only the defective part of the oxide film by applying voltage, but it is a conductive organic polymer with excellent heat resistance and humidity resistance like PEDOT. In the case of using a polymer, it is difficult to insulate so as to reduce the leakage current, and even with such an aging treatment, leakage current is generated from the defective portion of the dielectric oxide film. There has been a decrease in yield due to product variations and insulation degradation.

図1は、本発明による誘電体酸化皮膜欠陥部を絶縁化部にする構成を示す模式断面図で、図1(a)は、誘電体酸化皮膜欠陥部を示す図、図1(b)は、誘電体酸化皮膜欠陥部に第一導電性有機高分子を形成する図、図1(c)は、第一導電性有機高分子形成部を絶縁化部にする図、図1(d)は、第二導電性有機高分子を形成する図である。   FIG. 1 is a schematic cross-sectional view showing a configuration in which a dielectric oxide film defect portion according to the present invention is used as an insulating portion. FIG. 1 (a) is a diagram showing a dielectric oxide film defect portion, and FIG. FIG. 1C is a diagram of forming the first conductive organic polymer in the defective portion of the dielectric oxide film, FIG. 1C is a diagram in which the first conductive organic polymer forming portion is an insulating portion, and FIG. FIG. 3 is a diagram for forming a second conductive organic polymer.

コンデンサ素子の基体となる金属としてタンタル粉末を使用し、焼結することによりタンタル焼結体1を製造する。タンタル焼結体1をリン酸水溶液中で陽極酸化して、誘電体酸化皮膜2を形成する。   The tantalum sintered body 1 is manufactured by using tantalum powder as a metal to be the base of the capacitor element and sintering. The tantalum sintered body 1 is anodized in a phosphoric acid aqueous solution to form a dielectric oxide film 2.

コンデンサ素子の基体となる金属には、誘電体酸化皮膜を形成できるのであれば、例えばアルミニウム又はニオブ或いはチタンを用いてもよい。   For example, aluminum, niobium, or titanium may be used as the metal serving as the base of the capacitor element as long as a dielectric oxide film can be formed.

この誘電体酸化皮膜2には、誘電体酸化皮膜欠陥部3が存在しており、電解重合法により第一導電性有機高分子4を誘電体酸化皮膜欠陥部3上に形成する。これを85℃以上、300℃以下の高温雰囲気中で熱処理を行うことによって、第一導電性有機高分子4を絶縁化部5にする。次いで、絶縁化部5及び誘電体酸化皮膜2上に第二導電性有機高分子6を形成する。   The dielectric oxide film 2 has a dielectric oxide film defect 3, and the first conductive organic polymer 4 is formed on the dielectric oxide film defect 3 by electrolytic polymerization. This is heat-treated in a high-temperature atmosphere at 85 ° C. or higher and 300 ° C. or lower, so that the first conductive organic polymer 4 becomes the insulating portion 5. Next, the second conductive organic polymer 6 is formed on the insulating portion 5 and the dielectric oxide film 2.

図2は、電解重合法による第一導電性有機高分子の形成方法の説明図である。   FIG. 2 is an explanatory diagram of a method for forming a first conductive organic polymer by electrolytic polymerization.

電解重合液9を容器21に入れ、表面に誘電体酸化皮膜2が形成されたタンタル焼結体1を電解重合液9中に浸漬する。タンタル焼結体1に接続した陽極棒8をワニ口クリップ11で挟み陽極とし、ポリピロールを含む電解重合液9中に陰極板10を配置し直流電源12により所定の電流を供給することで、電解重合法により第一導電性有機高分子を誘電体酸化皮膜欠陥部上に形成する。   The electrolytic polymerization solution 9 is put in a container 21, and the tantalum sintered body 1 on which the dielectric oxide film 2 is formed is immersed in the electrolytic polymerization solution 9. An anode rod 8 connected to the tantalum sintered body 1 is sandwiched by an alligator clip 11 to serve as an anode, a cathode plate 10 is placed in an electropolymerization solution 9 containing polypyrrole, and a predetermined current is supplied from a DC power source 12, thereby allowing electrolysis. A first conductive organic polymer is formed on the dielectric oxide film defect by a polymerization method.

連続してこの素子の熱処理を実施して第一導電性有機高分子を絶縁化部にするが、漏洩電流を減少させるためには第一導電性有機高分子の抵抗が数MΩ以上である必要があり、実験により熱処理条件を確認すると良い。絶縁化のための熱処理は85℃以上、300℃以下で行うのが好ましく、150℃以上、230℃以下の範囲で行うのが特に好ましい。85℃より低い温度で熱処理を行うと、数MΩ以上の抵抗値を得られない恐れがあり、300℃より高いと電解重合液中のポリピロールの熱分解反応が生じる恐れがあるからである。熱処理により第一導電性有機高分子は絶縁化部となる。   This element is continuously heat-treated to make the first conductive organic polymer an insulating part, but the resistance of the first conductive organic polymer needs to be several MΩ or more in order to reduce the leakage current. It is better to confirm the heat treatment conditions by experiment. The heat treatment for insulation is preferably performed at 85 ° C. or higher and 300 ° C. or lower, and particularly preferably performed at 150 ° C. or higher and 230 ° C. or lower. If the heat treatment is performed at a temperature lower than 85 ° C., a resistance value of several MΩ or more may not be obtained, and if it is higher than 300 ° C., a thermal decomposition reaction of polypyrrole in the electrolytic polymerization solution may occur. The first conductive organic polymer becomes an insulating portion by the heat treatment.

第一導電性有機高分子を絶縁化部にするに当たっては、相対湿度60%以上、90%以下の環境中に設置することにより熱処理を行うのが好ましい。相対湿度60%未満では酸化、劣化を早めることができない恐れがあり、90%より高いと第一導電性有機高分子の抵抗が数MΩ以上とならない恐れがあるからである。   When the first conductive organic polymer is used as the insulating portion, it is preferable to perform heat treatment by installing in an environment having a relative humidity of 60% or more and 90% or less. If the relative humidity is less than 60%, oxidation and deterioration may not be accelerated. If the relative humidity is higher than 90%, the resistance of the first conductive organic polymer may not be several MΩ or more.

第一及び第二導電性有機高分子は、それぞれポリピロールと、PEDOTなどのチオフェンを用いることができるがこれに限定されるものではなく、第一導電性有機高分子では熱処理により酸化反応による絶縁化を起こす導電性有機高分子であれば良く、第二導電性有機高分子は、耐熱・耐湿性に優れた導電性有機高分子であれば良い。   As the first and second conductive organic polymers, polypyrrole and thiophene such as PEDOT can be used, respectively. However, the first conductive organic polymer is not limited to this, and the first conductive organic polymer is insulated by an oxidation reaction by heat treatment. The second conductive organic polymer may be a conductive organic polymer having excellent heat resistance and moisture resistance.

誘電体酸化皮膜欠陥部より生じる漏洩電流は、この絶縁化処理により著しく減少させることができる。この絶縁化処理は大気中に含まれる水分子とポリピロールが酸化反応することにより、絶縁体に変化するものと考えられる。また絶縁化部は第二導電性有機高分子全体からみれば極めて微小であることから、この部分を絶縁化しても、コンデンサの等価直列抵抗(ESR)を増加させることは無い。   The leakage current generated from the defective portion of the dielectric oxide film can be remarkably reduced by this insulation treatment. This insulation treatment is considered to change into an insulator due to an oxidation reaction between water molecules and polypyrrole contained in the atmosphere. Further, since the insulating portion is extremely small as viewed from the whole of the second conductive organic polymer, even if this portion is insulated, the equivalent series resistance (ESR) of the capacitor is not increased.

誘電体酸化皮膜を形成できる金属の表面に誘電体酸化皮膜を形成し、誘電体酸化皮膜の上に電界重合法により誘電体酸化皮膜欠陥部に選択的に第一導電性有機高分子を形成した後、85℃以上300℃以下の熱処理を施し、誘電体酸化皮膜欠陥部上の第一導電性有機高分子を絶縁化し、さらに前記第一導電性有機高分子とは異なる第二導電性有機高分子を第一導電性有機高分子及び誘電体酸化皮膜上に形成することにより、ESRを増大させること無く、かつ漏洩電流を著しく減少させる固体電解コンデンサの製造方法が提供できる。   A dielectric oxide film was formed on the surface of a metal that can form a dielectric oxide film, and a first conductive organic polymer was selectively formed on the dielectric oxide film defects on the dielectric oxide film by electric field polymerization. Thereafter, a heat treatment of 85 ° C. or more and 300 ° C. or less is performed to insulate the first conductive organic polymer on the defective portion of the dielectric oxide film, and further, a second conductive organic polymer different from the first conductive organic polymer. By forming molecules on the first conductive organic polymer and the dielectric oxide film, it is possible to provide a method for manufacturing a solid electrolytic capacitor that does not increase ESR and significantly reduces leakage current.

第一導電性有機高分子は、ピロール等の様に熱処理により絶縁化処理が容易な導電性有機高分子を用い、第二導電性有機高分子にはPEDOTの様な耐熱性、耐湿性に優れた導電性有機高分子を用いることで誘電体酸化皮膜に欠陥が生じていても、絶縁化された第一導電性有機高分子が誘電体酸化皮膜欠陥部を覆い、漏洩電流が生じないため結果として漏洩電流が著しく少ない固体電解コンデンサを製造することが可能になる。   The first conductive organic polymer is a conductive organic polymer that can be easily insulated by heat treatment, such as pyrrole. The second conductive organic polymer has excellent heat resistance and moisture resistance, such as PEDOT. Even if there is a defect in the dielectric oxide film by using the conductive organic polymer, the result is that the insulated first conductive organic polymer covers the defective part of the dielectric oxide film and no leakage current is generated. As a result, it is possible to manufacture a solid electrolytic capacitor with extremely low leakage current.

以下に本発明の実施例を詳述する。   Examples of the present invention are described in detail below.

本実施例の固体電解コンデンサでは、コンデンサ素子の基体となる誘電体酸化皮膜を形成する金属としてタンタル粉末を使用し、タンタル粉末の成形性を高めるためバインダを混合した造粒粉を圧縮形成した成形体を約1400℃のシンター温度で高真空中において焼結することによりタンタル焼結体を製造した。タンタル焼結体をリン酸水溶液中で陽極酸化して、誘電体酸化皮膜を形成した。   In the solid electrolytic capacitor of this example, a tantalum powder is used as a metal for forming a dielectric oxide film as a base of a capacitor element, and a granulated powder mixed with a binder is formed by compression to improve the moldability of the tantalum powder. A tantalum sintered body was produced by sintering the body in a high vacuum at a sintering temperature of about 1400 ° C. The tantalum sintered body was anodized in an aqueous phosphoric acid solution to form a dielectric oxide film.

アセトニトリルを溶媒とし、さらにアニオンドーパントとして、ドデシルベンゼンスルホン酸とパラトルエンスルホン酸、及びピロールの混合液を含む電解重合液をビーカーに入れ、電解液中に表面に誘電体酸化皮膜が形成されたタンタル粉末焼結体を浸漬して、電解重合法により第一導電性有機高分子を誘電体酸化皮膜欠陥部上に形成した。   A tantalum having a dielectric oxide film formed on the surface thereof in a beaker containing an electrolytic polymerization solution containing a mixture of dodecylbenzenesulfonic acid, paratoluenesulfonic acid, and pyrrole as an anion dopant using acetonitrile as a solvent. The powder sintered body was immersed, and the first conductive organic polymer was formed on the defective portion of the dielectric oxide film by electrolytic polymerization.

次に連続してこの素子を相対湿度60%の大気雰囲気中の恒温乾燥機にて200℃、10分の熱処理を実施した。尚、ポリピロール単体での熱処理条件による抵抗率を表1に示す。   Next, the device was continuously heat-treated at 200 ° C. for 10 minutes in a constant temperature dryer in an air atmosphere having a relative humidity of 60%. Table 1 shows the resistivity of polypyrrole alone depending on the heat treatment conditions.

Figure 2010272602
Figure 2010272602

熱処理により第一導電性有機高分子は絶縁化部となった。次に第二導電性有機高分子としてPEDOTを化学重合により形成した。さらに連続して、電極取り出し用の導電体層としてグラファイト層及び銀ペースト層を順次形成した。そして銀ペースト層上に接着銀により陰極リードフレームを取り付けた。一方、陽極としてはコンデンサペレットより引き出している陽極棒に陽極リードフレームを取り付け、モールド樹脂成形をして6.3V、4.7μFのタンタルコンデンサを作製した。   The first conductive organic polymer became an insulating part by the heat treatment. Next, PEDOT was formed by chemical polymerization as the second conductive organic polymer. Further, a graphite layer and a silver paste layer were successively formed as a conductor layer for taking out the electrode. Then, a cathode lead frame was attached to the silver paste layer with adhesive silver. On the other hand, as an anode, an anode lead frame was attached to an anode rod drawn from a capacitor pellet, and molded resin molding was performed to produce a 6.3 V, 4.7 μF tantalum capacitor.

(比較例)
実施例と同様にタンタル焼結体に誘電体酸化皮膜を形成した後、誘電体酸化皮膜欠陥部を含む誘電体酸化皮膜上に、導電性有機高分子にはPEDOTを用いて導電性有機高分子を形成し、さらに電極取り出し用の導電体層としてグラファイト層及び銀ペースト層を順次形成した後、銀ペースト上に接着銀により陰極リードフレームを取り付けた。一方、陽極としてはコンデンサペレットより引き出している陽極棒に陽極リードフレームを取り付け、モールド樹脂成形をしてタンタルコンデンサを作製した。その後陰極リードフレームと陽極リードフレームに電圧を印加し、エージング処理を行って、誘電体酸化皮膜欠陥部に絶縁化部を形成した。
(Comparative example)
After forming a dielectric oxide film on the tantalum sintered body in the same manner as in the example, the conductive organic polymer is formed on the dielectric oxide film including the defective portion of the dielectric oxide film using PEDOT as the conductive organic polymer. Further, a graphite layer and a silver paste layer were sequentially formed as a conductor layer for taking out the electrode, and then a cathode lead frame was attached to the silver paste with adhesive silver. On the other hand, as an anode, an anode lead frame was attached to an anode rod drawn from a capacitor pellet, and a tantalum capacitor was manufactured by molding resin molding. Thereafter, a voltage was applied to the cathode lead frame and the anode lead frame, and an aging treatment was performed to form an insulating portion at the defective portion of the dielectric oxide film.

実施例による本発明の固体電解コンデンサと比較例による従来方法の固体電解コンデンサについて、それぞれ30個の試料の漏洩電流を測定して分布状態を調査した。その結果を図6に示す。図6は、本発明と従来方法による固体電解コンデンサの漏洩電流の分布を示す図である。   With respect to the solid electrolytic capacitor of the present invention according to the example and the solid electrolytic capacitor of the conventional method according to the comparative example, the leakage current of 30 samples was measured and the distribution state was investigated. The result is shown in FIG. FIG. 6 is a diagram showing the distribution of leakage current of the solid electrolytic capacitor according to the present invention and the conventional method.

図6より、従来方法の固体電解コンデンサの漏洩電流は0.01μA以上、100μA以下のものが平均的に存在し、従来のエージング処理では充分に漏洩電流を減少させることができないことがわかった。一方、本発明の固体電解コンデンサは、等価直列抵抗を増大することなく、漏洩電流は0.01μA前後に集中し、比較例によるものよりも漏洩電流が大幅に減少していることが実験的に確認された。   From FIG. 6, it is found that the leakage current of the solid electrolytic capacitor of the conventional method is 0.01 μA or more and 100 μA or less on average, and the leakage current cannot be sufficiently reduced by the conventional aging treatment. On the other hand, the solid electrolytic capacitor of the present invention experimentally shows that the leakage current is concentrated around 0.01 μA without increasing the equivalent series resistance, and the leakage current is greatly reduced as compared with the comparative example. confirmed.

図6に示す本発明の固体電解コンデンサに関して、誘電体酸化皮膜欠陥部に形成した第一導電性有機高分子を絶縁化部にする際の熱処理は、相対湿度60%の環境下で行った。また、相対湿度90%で熱処理を行っても、固体電解コンデンサの漏洩電流は60%の場合と同様に、大幅に減少されていることが実験的に確認された。このことから、熱処理を相対湿度60%以上、90%以下の環境下で行うと、固体電解コンデンサの漏洩電流は大幅に減少することが確認された。   With respect to the solid electrolytic capacitor of the present invention shown in FIG. 6, the heat treatment when the first conductive organic polymer formed in the dielectric oxide film defect part was used as the insulating part was performed in an environment with a relative humidity of 60%. Further, it was experimentally confirmed that even when heat treatment was performed at a relative humidity of 90%, the leakage current of the solid electrolytic capacitor was significantly reduced as in the case of 60%. From this, it was confirmed that the leakage current of the solid electrolytic capacitor is greatly reduced when the heat treatment is performed in an environment where the relative humidity is 60% or more and 90% or less.

本発明によれば誘電体酸化皮膜欠陥部の導電性ポリマーである第一導電性有機高分子を充分に絶縁化することができるため、等価直列抵抗を増大させることなく、漏洩電流を著しく減少させた固体電解コンデンサの製造方法を提供できた。   According to the present invention, the first conductive organic polymer that is the conductive polymer of the defective portion of the dielectric oxide film can be sufficiently insulated, so that the leakage current can be significantly reduced without increasing the equivalent series resistance. We were able to provide a method for manufacturing a solid electrolytic capacitor.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

1 タンタル焼結体
2 誘電体酸化皮膜
3 誘電体酸化皮膜欠陥部
4 第一導電性有機高分子
5 絶縁化部
6 第二導電性有機高分子
8 陽極棒
9 電解重合液
10 陰極板
11 ワニ口クリップ
12 直流電源
13 グラファイト層
14 銀ペースト層
15 接着銀
16 陰極リードフレーム
17 陽極リードフレーム
18 モールド樹脂
19 導電性有機高分子
20 絶縁化部
21 容器
DESCRIPTION OF SYMBOLS 1 Tantalum sintered body 2 Dielectric oxide film 3 Dielectric oxide film defect part 4 1st electroconductive organic polymer 5 Insulating part 6 2nd electroconductive organic polymer 8 Anode rod 9 Electrolytic polymerization liquid 10 Cathode plate 11 Alligator Clip 12 DC power supply 13 Graphite layer 14 Silver paste layer 15 Adhesive silver 16 Cathode lead frame
17 Anode lead frame 18 Mold resin 19 Conductive organic polymer 20 Insulating part 21 Container

Claims (3)

誘電体酸化皮膜を形成できる金属の表面に前記誘電体酸化皮膜を形成し、その際生じた誘電体酸化皮膜欠陥部に電解重合法により第一導電性有機高分子を形成した後、85℃以上、300℃以下で熱処理を施して前記第一導電性有機高分子を絶縁化部とし、さらに第二導電性有機高分子を前記絶縁化部及び前記誘電体酸化皮膜上に形成したことを特徴とする固体電解コンデンサの製造方法。   The dielectric oxide film is formed on the surface of the metal on which the dielectric oxide film can be formed, and the first conductive organic polymer is formed on the defective part of the dielectric oxide film generated by the electrolytic polymerization method. The first conductive organic polymer is used as an insulating part by heat treatment at 300 ° C. or lower, and the second conductive organic polymer is further formed on the insulating part and the dielectric oxide film. A method for manufacturing a solid electrolytic capacitor. 前記第一導電性有機高分子がピロール系の導電性有機高分子であり、かつ前記第二導電性有機高分子がチオフェン系導電性有機高分子であることを特徴とする請求項1に記載の固体電解コンデンサの製造方法。   The first conductive organic polymer is a pyrrole-based conductive organic polymer, and the second conductive organic polymer is a thiophene-based conductive organic polymer. A method for producing a solid electrolytic capacitor. 前記熱処理は、相対湿度60%以上、90%以下の環境下で行うことを特徴とする請求項1または2に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the heat treatment is performed in an environment with a relative humidity of 60% or more and 90% or less.
JP2009121487A 2009-05-20 2009-05-20 Manufacturing method of solid electrolytic capacitor Active JP5473111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121487A JP5473111B2 (en) 2009-05-20 2009-05-20 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121487A JP5473111B2 (en) 2009-05-20 2009-05-20 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2010272602A true JP2010272602A (en) 2010-12-02
JP5473111B2 JP5473111B2 (en) 2014-04-16

Family

ID=43420414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121487A Active JP5473111B2 (en) 2009-05-20 2009-05-20 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5473111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088954A1 (en) * 2011-12-14 2013-06-20 株式会社村田製作所 Solid electrolytic capacitor and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448613A (en) * 1990-06-13 1992-02-18 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH05304056A (en) * 1992-04-27 1993-11-16 Marcon Electron Co Ltd Manufacture of solid electrolytic capacitor
JPH07118371A (en) * 1993-09-17 1995-05-09 Nec Corp Production of copolymer and of solid electrolytic capacitor
JP2002151359A (en) * 2000-11-13 2002-05-24 Fujitsu Media Device Kk Manufacturing method of solid electrolytic capacitor
JP2005129910A (en) * 2003-10-01 2005-05-19 Matsushita Electric Ind Co Ltd Module incorporating capacitor, manufacturing method therefor, and capacitor used therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448613A (en) * 1990-06-13 1992-02-18 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH05304056A (en) * 1992-04-27 1993-11-16 Marcon Electron Co Ltd Manufacture of solid electrolytic capacitor
JPH07118371A (en) * 1993-09-17 1995-05-09 Nec Corp Production of copolymer and of solid electrolytic capacitor
JP2002151359A (en) * 2000-11-13 2002-05-24 Fujitsu Media Device Kk Manufacturing method of solid electrolytic capacitor
JP2005129910A (en) * 2003-10-01 2005-05-19 Matsushita Electric Ind Co Ltd Module incorporating capacitor, manufacturing method therefor, and capacitor used therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088954A1 (en) * 2011-12-14 2013-06-20 株式会社村田製作所 Solid electrolytic capacitor and method for manufacturing same
CN103959413A (en) * 2011-12-14 2014-07-30 株式会社村田制作所 Solid electrolytic capacitor and method for manufacturing same
JPWO2013088954A1 (en) * 2011-12-14 2015-04-27 株式会社村田製作所 Solid electrolytic capacitor and manufacturing method thereof
US9490076B2 (en) 2011-12-14 2016-11-08 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor and manufacturing method therefor

Also Published As

Publication number Publication date
JP5473111B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5551529B2 (en) Solid electrolytic capacitor and manufacturing method thereof
TWI415150B (en) Solid electrolytic capacitor element, manufacturing method thereof and solid electrolytic capacitor, electronic circuit and electronic machine
CN103035412A (en) Solid electrolytic capacitor and method for producing the same
JP3228323B2 (en) Solid electrolytic capacitor and method of manufacturing the same
EP2461337B1 (en) Manufacturing method for solid electrolytic capacitor
JP5473111B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009094155A (en) Method for manufacturing solid electrolytic capacitor
JP6223703B2 (en) Conductive polymer solution and method for producing the same, conductive polymer material, and solid electrolytic capacitor
JPH11150041A (en) Manufacture of solid electrolytic capacitor
US8257449B2 (en) Method for manufacturing niobium solid electrolytic capacitor
JP2008227399A (en) Method for manufacturing solid-state electrolytic capacitor
JP3284993B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2009224568A (en) Manufacturing method of solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
KR100654998B1 (en) Method for manufacturing a capacitor using conducting polymer
JP2007048936A (en) Method of manufacturing solid electrolytic capacitor
JP4632134B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009252913A (en) Method of manufacturing solid electrolytic capacitor
JP2008270552A (en) Manufacturing method of solid-state electrolytic capacitor
JP2005150705A (en) Method of manufacturing capacitor
JP2000340466A (en) Manufacture of solid electrolytic capacitor
JP2010219468A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2000340462A (en) Solid electrolytic capacitor
JP4637700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010143996A (en) Electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5473111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250