JP2010272395A - Motor control device for electric vehicle - Google Patents

Motor control device for electric vehicle Download PDF

Info

Publication number
JP2010272395A
JP2010272395A JP2009123935A JP2009123935A JP2010272395A JP 2010272395 A JP2010272395 A JP 2010272395A JP 2009123935 A JP2009123935 A JP 2009123935A JP 2009123935 A JP2009123935 A JP 2009123935A JP 2010272395 A JP2010272395 A JP 2010272395A
Authority
JP
Japan
Prior art keywords
battery
temperature
motor
harmonic
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009123935A
Other languages
Japanese (ja)
Inventor
Rei Masuda
麗 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009123935A priority Critical patent/JP2010272395A/en
Publication of JP2010272395A publication Critical patent/JP2010272395A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor control device for electric vehicle achieving rapid temperature rising of a battery under a low temperature environment. <P>SOLUTION: A harmonic generation control unit 25 inputs a battery temperature detected by a battery temperature sensor 23, and when the detected battery temperature is decided to be lower than a set temperature threshold, superposes a harmonic wave generated by a harmonic generation unit 24 on a torque command value Tr corresponding to a driving force required for a three-phase AC motor 2 input into a current command input unit 11 of a motor control unit 10 to control to superpose the harmonic wave on a battery current flowing from a battery 8 to an inverter 9. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気自動車やハイブリット自動車などの電動車両のモータ制御装置に関する。   The present invention relates to a motor control device for an electric vehicle such as an electric vehicle or a hybrid vehicle.

電気自動車やハイブリット自動車などの電動車両は、走行駆動源としてモータと、このモータを駆動するインバータと、このインバータに直流電力を供給するバッテリ(2次電池)を備えている。ところで、電動車両に搭載されたバッテリ(2次電池)は、様々な使用環境下に置かれることになる。前記バッテリ(2次電池)は、寒冷地などの低温環境下ではバッテリ自身のバッテリ特性によって入出力電力が著しく低下することにより、電動車両の動力性能が低下する。   An electric vehicle such as an electric vehicle or a hybrid vehicle includes a motor as a driving source, an inverter that drives the motor, and a battery (secondary battery) that supplies DC power to the inverter. By the way, the battery (secondary battery) mounted on the electric vehicle is placed under various usage environments. In the battery (secondary battery), in a low temperature environment such as a cold region, the input / output power is remarkably reduced due to the battery characteristics of the battery itself, so that the power performance of the electric vehicle is lowered.

このため、寒冷地などの低温環境下でも電動車両に搭載されるバッテリの入出力電力の低下を抑制するために、例えば、特許文献1の発明では、所定温度よりも低い低温領域においては直流電源に入出力するリップル電流を大きくすることで、直流電源の内部抵抗での消費電力を増加させて、バッテリを昇温させるようにしている。   For this reason, in order to suppress a decrease in input / output power of a battery mounted on an electric vehicle even in a low temperature environment such as a cold region, for example, in the invention of Patent Document 1, a DC power supply is used in a low temperature region lower than a predetermined temperature. By increasing the ripple current that is input to and output from, the power consumption at the internal resistance of the DC power supply is increased, and the battery is heated.

前記特許文献1の発明では、−20℃よりも低い低温領域においては直流電源の内部抵抗よりも大きい等価直列抵抗を有するコンデンサを、昇圧コンバータの入力側に設けられた平滑コンデンサとして用いる。この平滑コンデンサは、直流電源からの直流電流を平滑化して昇圧コンバータへ供給する。そして、モータ回転数、トルク指令値および直流電源から出力される電圧に基づいて、昇圧コンバータのトランジスタをスイッチング制御するための信号を生成して昇圧コンバータへ出力する。   In the invention of Patent Document 1, a capacitor having an equivalent series resistance larger than the internal resistance of the DC power supply in a low temperature region lower than −20 ° C. is used as a smoothing capacitor provided on the input side of the boost converter. This smoothing capacitor smoothes the direct current from the direct current power source and supplies it to the boost converter. Based on the motor rotation speed, torque command value, and voltage output from the DC power supply, a signal for switching control of the transistor of the boost converter is generated and output to the boost converter.

特開2006−6073号公報JP 2006-6073 A

ところで、前記特許文献1の発明では、上記したように低温領域においては昇圧コンバータによってリップル電流を発生させ、直流電源の内部抵抗での消費電力を増加させることで、直流電源を昇温させているが、昇圧コンバータにより発生させたリップル電流によるバッテリの内部抵抗での消費電力は微々たるものである(昇圧コンバータで消費できる電力のみのため)。このため、前記特許文献1の発明では、低温環境下においてバッテリを迅速に昇温させることができない。   By the way, in the invention of Patent Document 1, as described above, a ripple current is generated by a boost converter in a low temperature region, and the power consumption at the internal resistance of the DC power supply is increased to raise the temperature of the DC power supply. However, the power consumed by the internal resistance of the battery due to the ripple current generated by the boost converter is negligible (because only the power that can be consumed by the boost converter). For this reason, in the invention of Patent Document 1, it is not possible to quickly raise the temperature of the battery in a low temperature environment.

そこで、本発明は、低温環境下においてバッテリを迅速に昇温させることができる電動車両のモータ制御装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a motor control device for an electric vehicle that can quickly raise the temperature of a battery in a low temperature environment.

前記目的を達成するために本発明に係る電動車両のモータ制御装置は、バッテリと電気的に接続され、スイッチング素子のスイッチング動作により前記バッテリから供給される直流電力を交流電力に変換して、該交流電力を走行駆動源としてのモータに供給する電力変換器と、前記モータの要求駆動力に対応するトルク指令値が入力され、前記トルク指令値に基づいた回転数で前記モータを回転させるように、前記スイッチング素子をスイッチング制御するための電圧指令値信号を前記電力変換器に出力する制御手段と、を備えている。そして、高調波を発生する高調波発生手段と、前記バッテリの温度を検出する温度検出手段と、前記温度検出手段で検出したバッテリ温度を入力し、検出したバッテリ温度が設定した温度閾値よりも低いと判定した場合に、前記高調波発生手段で発生させた高調波を、前記制御手段の入力段に入力される前記トルク指令値と出力段から前記電力変換器に出力される前記電圧指令値信号の間の任意の信号経路に重畳させて、前記高調波を、前記バッテリから前記電力変換器に流れるバッテリ電流又はバッテリ電圧に重畳させるよう制御する高調波発生制御手段とを有することを特徴としている。   In order to achieve the above object, a motor control device for an electric vehicle according to the present invention is electrically connected to a battery, converts DC power supplied from the battery into AC power by switching operation of a switching element, and A power converter that supplies AC power to a motor as a travel drive source, and a torque command value corresponding to the required driving force of the motor are input, and the motor is rotated at a rotational speed based on the torque command value. And a control means for outputting to the power converter a voltage command value signal for controlling the switching of the switching element. Then, the harmonic generation means for generating harmonics, the temperature detection means for detecting the temperature of the battery, the battery temperature detected by the temperature detection means are input, and the detected battery temperature is lower than the set temperature threshold The harmonic command generated by the harmonic generation means, the torque command value input to the input stage of the control means and the voltage command value signal output from the output stage to the power converter. And harmonic generation control means for controlling to superimpose the harmonic on the battery current or battery voltage flowing from the battery to the power converter. .

本発明に係る電動車両のモータ制御装置によれば、バッテリ温度が温度閾値よりも低いときに、高調波発生手段で発生させた高調波を、制御手段の入力段に入力されるトルク指令値と出力段から電力変換器に出力される電圧指令値信号の間の任意の信号経路に重畳させて、高調波を、バッテリから前記電力変換器に流れるバッテリ電流又はバッテリ電圧に重畳させることにより、バッテリに流れるバッテリ電流又はバッテリ電圧にこの高調波が重畳され、リップルを発生させる。そして、発生させたリップルによってバッテリ電流又はバッテリ電圧を振動させて、バッテリの内部抵抗による消費電力を増加させることで、バッテリを迅速にかつ容易に昇温させることができる。   According to the motor control device for an electric vehicle according to the present invention, when the battery temperature is lower than the temperature threshold, the harmonic generated by the harmonic generation means is input to the torque command value input to the input stage of the control means. By superimposing on the signal path between the voltage command value signals output from the output stage to the power converter, the harmonics are superimposed on the battery current or battery voltage flowing from the battery to the power converter, so that the battery This harmonic is superimposed on the battery current or the battery voltage flowing through the capacitor to generate a ripple. Then, the battery current or battery voltage is vibrated by the generated ripple, and the power consumption due to the internal resistance of the battery is increased, so that the battery can be quickly and easily heated.

本発明の実施形態1に係るモータ制御装置を備えた電動車両の一例としての電気自動車を示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic block diagram which shows the electric vehicle as an example of the electric vehicle provided with the motor control apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るモータ制御装置の構成を示すブロック図。The block diagram which shows the structure of the motor control apparatus which concerns on Embodiment 1 of this invention. インバータの電気回路構成を示す概略図。Schematic which shows the electric circuit structure of an inverter. 本発明の実施形態1における、バッテリ温度と高調波の発生の有無の関係を示した図。The figure which showed the relationship between the presence or absence of generation | occurrence | production of a harmonic and a battery temperature in Embodiment 1 of this invention. 高調波をd軸電流指令値Id、q軸電流指令値Iqに重畳させるようにした実施形態1の変形例におけるモータ制御装置の構成を示すブロック図。The block diagram which shows the structure of the motor control apparatus in the modification of Embodiment 1 which superposed the harmonic on d-axis current command value Id * and q-axis current command value Iq * . 高調波をd軸電流指令値Id、q軸電流指令値Iqに重畳させるようにした実施形態1の変形例におけるモータ制御装置の構成を示すブロック図。The block diagram which shows the structure of the motor control apparatus in the modification of Embodiment 1 which superposed the harmonic on d-axis current command value Id * and q-axis current command value Iq * . 高調波をPWM波形信号Pu、Pv、Pwに重畳させるようにした実施形態1の変形例におけるモータ制御装置の構成を示すブロック図。The block diagram which shows the structure of the motor control apparatus in the modification of Embodiment 1 which made it superimpose on a PWM waveform signal Pu, Pv, Pw. 本発明の実施形態2における、バッテリ温度と高調波の発生の有無の関係を示した図。The figure which showed the relationship between the presence or absence of generation | occurrence | production of a harmonic and battery temperature in Embodiment 2 of this invention. 本発明の実施形態3における、バッテリ温度と高調波の発生の有無の関係を示した図。The figure which showed the relationship between the presence or absence of generation | occurrence | production of a harmonic in battery temperature and Embodiment 3 of this invention. 本発明の実施形態4に係るモータ制御装置の構成を示すブロック図。The block diagram which shows the structure of the motor control apparatus which concerns on Embodiment 4 of this invention.

以下、本発明を図示の実施形態に基づいて説明する。
〈実施形態1〉
図1は、本発明の実施形態1に係るモータ制御装置を備えた電動車両の一例としての電気自動車を示す概略構成図、図2は、本発明の実施形態1に係るモータ制御装置の構成を示すブロック図である。
Hereinafter, the present invention will be described based on the illustrated embodiments.
<Embodiment 1>
FIG. 1 is a schematic configuration diagram illustrating an electric vehicle as an example of an electric vehicle including the motor control device according to the first embodiment of the present invention, and FIG. 2 illustrates the configuration of the motor control device according to the first embodiment of the present invention. FIG.

図1に示すように、本実施形態における電気自動車1は、走行駆動源としての3相交流モータ2を有しており、3相交流モータ2の駆動力が、クラッチ3、自動変速機(AT)4、デファレンシャルギア5等を介して駆動輪(例えば、後輪)6a、6bに伝達されることによって、この駆動輪6a、6bが駆動される。   As shown in FIG. 1, the electric vehicle 1 in this embodiment has a three-phase AC motor 2 as a travel drive source, and the driving force of the three-phase AC motor 2 is the clutch 3, the automatic transmission (AT). 4) The drive wheels 6a and 6b are driven by being transmitted to the drive wheels (for example, rear wheels) 6a and 6b via the differential gear 5 and the like.

3相交流モータ2の駆動は、モータ制御装置7によって制御される。モータ制御装置7は、高圧系のリチウムイオン電池(2次電池)等のバッテリ8と、このバッテリ8から供給される直流電力を3相交流電力に変換し、変換した3相交流電力を3相交流モータ2に供給するインバータ9と、3相交流モータ2を所望の回転数で回転させるためにインバータ9のスイッチング素子22(図3参照)をスイッチング制御するモータ制御部10を備えている。   The driving of the three-phase AC motor 2 is controlled by the motor control device 7. The motor control device 7 converts a battery 8 such as a high-voltage lithium ion battery (secondary battery) and the DC power supplied from the battery 8 into three-phase AC power, and converts the converted three-phase AC power into three-phase. An inverter 9 to be supplied to the AC motor 2 and a motor control unit 10 that performs switching control of the switching element 22 (see FIG. 3) of the inverter 9 are provided in order to rotate the three-phase AC motor 2 at a desired rotational speed.

図2に示すように、モータ制御部10は、電流指令入力部11、比較器12,13、電流制御部14、2相3相変換部15、PWM波生成部16、3相2相変換部17を備えている。   As shown in FIG. 2, the motor control unit 10 includes a current command input unit 11, comparators 12 and 13, a current control unit 14, a two-phase three-phase conversion unit 15, a PWM wave generation unit 16, a three-phase two-phase conversion unit. 17 is provided.

このモータ制御部10によるモータ制御動作について説明する。   The motor control operation by the motor control unit 10 will be described.

図1に示した電気自動車1の走行時(発進時も含む)において、運転者のアクセルペダル(不図示)の踏込み量および車速に応じたトルク値を3相交流モータ2に発生させるためのトルク指令値Trが、電流指令入力部11に入力される。電流指令入力部11は、入力されたトルク指令値Trに応じたd軸電流指令値Idとq軸電流指令値Iqを設定する。なお、この回転直交座標をなすdq軸は、例えば、3相交流モータ2のロータ(不図示)の永久磁石による界磁極の磁束方向をd軸(界磁軸)とし、このd軸と直交する方向をq軸(トルク軸)としている。 Torque for causing the three-phase AC motor 2 to generate a torque value corresponding to the amount of depression of the accelerator pedal (not shown) and the vehicle speed when the electric vehicle 1 shown in FIG. The command value Tr is input to the current command input unit 11. The current command input unit 11 sets a d-axis current command value Id * and a q-axis current command value Iq * according to the input torque command value Tr. Note that the dq axis forming the rotation orthogonal coordinates is perpendicular to the d axis, for example, with the magnetic flux direction of the field pole by the permanent magnet of the rotor (not shown) of the three-phase AC motor 2 being the d axis (field axis). The direction is the q axis (torque axis).

そして、比較器12で、d軸電流指令値Id、q軸電流指令値Iqと後述する検出された実際のd軸電流値Id、q軸電流値Iqとをそれぞれ比較し、その偏差(差分)に対して電流制御部14で、d軸電流値Id、q軸電流値Iqをd軸電流指令値Id、q軸電流指令値Iqにそれぞれ一致させるためのd軸電圧指令値Vdとq軸電圧指令値Vqを、例えば比例積分(PI)演算する。 Then, the comparator 12 compares the d-axis current command value Id * and the q-axis current command value Iq * with the detected actual d-axis current value Id and the q-axis current value Iq, which will be described later, and the deviation ( Difference), the d-axis voltage command value Vd for causing the d-axis current value Id and the q-axis current value Iq to coincide with the d-axis current command value Id * and the q-axis current command value Iq * in the current control unit 14, respectively. * And q-axis voltage command value Vq * are calculated by, for example, proportional integration (PI).

3相2相変換部17は、3相交流モータ2のロータの回転角度を検出する回転センサ21から入力される回転角度θに基づいて、各電流センサ18、19、20でそれぞれ検出した3相交流モータ2の3相交流電流Iu、Iv、Iwを変換処理することで、前記d軸電流値Idとq軸電流値Iqを生成する。   The three-phase to two-phase conversion unit 17 detects the three phases detected by the current sensors 18, 19, and 20 based on the rotation angle θ input from the rotation sensor 21 that detects the rotation angle of the rotor of the three-phase AC motor 2. The d-axis current value Id and the q-axis current value Iq are generated by converting the three-phase AC currents Iu, Iv, and Iw of the AC motor 2.

そして、2相3相変換部15は、回転センサ21から入力される回転角度θに基づいて、d軸電圧指令値Vdとq軸電圧指令値Vqを、3相交流座標上でのU相交流電圧指令値Vu、V相交流電圧指令値Vv、W相交流電圧指令値Vwに変換する。 Then, the two-phase / three-phase converter 15 converts the d-axis voltage command value Vd * and the q-axis voltage command value Vq * to U on the three-phase AC coordinates based on the rotation angle θ input from the rotation sensor 21. The phase AC voltage command value Vu, the V phase AC voltage command value Vv, and the W phase AC voltage command value Vw are converted.

そして、PWM波生成部16は、変換された前記U相交流電圧指令値Vu、V相交流電圧指令値Vv、W相交流電圧指令値Vwに基づいて、インバータ9のスイッチング素子22(図3参照)をスイッチング制御するためのPWM波形信号(電圧指令値信号)Pu、Pv、Pwを生成する。   The PWM wave generation unit 16 then switches the switching element 22 of the inverter 9 (see FIG. 3) based on the converted U-phase AC voltage command value Vu, V-phase AC voltage command value Vv, and W-phase AC voltage command value Vw. PWM waveform signals (voltage command value signals) Pu, Pv, and Pw for switching control are generated.

図3に示すように、インバータ9は、モータ制御部10のPWM波生成部16から入力されるPWM波形信号Pu、Pv、Pwに基づいてスイッチング制御される複数のMOS−FETなどのスイッチング素子22を有している。インバータ9は、PWM波生成部16から入力されるPWM波形信号Pu、Pv、Pwによりスイッチング素子22をスイッチング制御し、バッテリ8から供給される直流電力を3相交流電力に変換して、3相交流モータ2の各相に供給する。   As shown in FIG. 3, the inverter 9 includes switching elements 22 such as a plurality of MOS-FETs that are switching-controlled based on PWM waveform signals Pu, Pv, and Pw input from the PWM wave generation unit 16 of the motor control unit 10. have. The inverter 9 performs switching control of the switching element 22 by the PWM waveform signals Pu, Pv, and Pw input from the PWM wave generation unit 16, converts the DC power supplied from the battery 8 into three-phase AC power, and outputs the three-phase AC power. Supply to each phase of AC motor 2.

このように、モータ制御部10の通常時の制御動作により、3相交流モータ2は、前記トルク指令値Tr(運転者のアクセルペダル(不図示)の踏込み量および車速に応じたトルク値)に対応するように駆動される。   As described above, the normal control operation of the motor control unit 10 causes the three-phase AC motor 2 to adjust the torque command value Tr (torque value according to the amount of depression of the driver's accelerator pedal (not shown) and the vehicle speed). Driven to respond.

なお、前記電気自動車1の回生制動モード時には、3相交流モータ2が発電した交流電力はインバータ9で直流電力に変換されてバッテリ8に供給され、直流電力が充電される。   When the electric vehicle 1 is in the regenerative braking mode, the AC power generated by the three-phase AC motor 2 is converted into DC power by the inverter 9 and supplied to the battery 8, and the DC power is charged.

ところで、バッテリ8は、寒冷地などの低温環境下ではバッテリ自身のバッテリ特性によって入出力電力が著しく低下することにより、このバッテリ8を搭載している電気自動車(電動車両)1の動力性能が低下する。このため、寒冷地などの低温環境下で電気自動車(電動車両)1を使用する場合において、搭載しているバッテリ8の温度が所定温度よりも低いときは、バッテリ8を迅速に昇温させて、バッテリ8の入出力電力の低下を抑制する必要がある。   By the way, in the battery 8, in a low temperature environment such as a cold region, the input / output power is remarkably lowered due to the battery characteristics of the battery itself, so that the power performance of the electric vehicle (electric vehicle) 1 in which the battery 8 is mounted is lowered. To do. For this reason, when the electric vehicle (electric vehicle) 1 is used in a low temperature environment such as a cold region, when the temperature of the battery 8 installed is lower than a predetermined temperature, the battery 8 is quickly heated. Therefore, it is necessary to suppress a decrease in input / output power of the battery 8.

そのため、本実施形態のモータ制御装置7は、バッテリ8の温度(以下、「バッテリ温度」という)を検出するバッテリ温度センサ23と、高調波を発生する高調波発生部24と、高調波発生部24の高調波発生を制御する高調波発生制御部25を更に備えている。高調波発生制御部25は、バッテリ温度センサ23で検出したバッテリ温度が予め設定した温度閾値よりも低いと判定した場合に、前記トルク指令値Trに高調波を重畳するように高調波発生部24を制御する。   Therefore, the motor control device 7 of the present embodiment includes a battery temperature sensor 23 that detects the temperature of the battery 8 (hereinafter referred to as “battery temperature”), a harmonic generation unit 24 that generates harmonics, and a harmonic generation unit. A harmonic generation control unit 25 for controlling the generation of 24 harmonics is further provided. When the harmonic generation control unit 25 determines that the battery temperature detected by the battery temperature sensor 23 is lower than a preset temperature threshold, the harmonic generation unit 24 superimposes the harmonic on the torque command value Tr. To control.

次に、低温時におけるバッテリ8の昇温制御動作について説明する。   Next, the temperature increase control operation of the battery 8 at a low temperature will be described.

上記したモータ制御部10によるモータ制御動作時において、バッテリ温度センサ23で検出したバッテリ温度情報は高調波発生制御部25に入力されている。そして、高調波発生制御部25は、入力されるバッテリ温度情報から前記電気自動車1に搭載されているバッテリ8のバッテリ温度が、温度閾値(例えば、−20℃)よりも低い温度であると判定した場合、高調波発生部24に制御信号を出力して高調波を発生させる。   During the motor control operation by the motor control unit 10 described above, the battery temperature information detected by the battery temperature sensor 23 is input to the harmonic generation control unit 25. And the harmonic generation control part 25 determines with the battery temperature of the battery 8 mounted in the said electric vehicle 1 being a temperature lower than a temperature threshold value (for example, -20 degreeC) from the input battery temperature information. In this case, a harmonic signal is generated by outputting a control signal to the harmonic generator 24.

図4に示すように、バッテリ温度が温度閾値(例えば、−20℃)aよりも低い低温環境下にあるときは、高調波発生部24で高調波を発生させ、バッテリ温度が温度閾値aよりも高くなると高調波の発生を停止する。   As shown in FIG. 4, when the battery temperature is in a low temperature environment lower than a temperature threshold (for example, −20 ° C.) a, harmonics are generated by the harmonic generator 24, and the battery temperature is higher than the temperature threshold a. When the value becomes higher, the generation of harmonics is stopped.

そして、高調波発生部24で発生させた高調波を前記トルク指令値Trに重畳させる。トルク指令値Trに重畳された高調波は、モータ制御部(電流指令入力部11、比較器12、13、電流制御部14、2相3相変換部15、PWM波生成部16)10を介してインバータ9に入力される。   Then, the harmonic generated by the harmonic generator 24 is superimposed on the torque command value Tr. The harmonics superimposed on the torque command value Tr are passed through a motor control unit (current command input unit 11, comparators 12 and 13, current control unit 14, two-phase three-phase conversion unit 15, and PWM wave generation unit 16). To the inverter 9.

インバータ9には、バッテリ8及び3相交流モータ2が電気的に接続されている。これにより、インバータ9に入力された高調波は、バッテリ8に流れる電流(以下、「バッテリ電流」という)に重畳され、リップルが発生する。バッテリ電流にリップルを発生させるにより、バッテリ8の内部抵抗による消費電力の増加によって発熱が生じ、バッテリ8が昇温する。   A battery 8 and a three-phase AC motor 2 are electrically connected to the inverter 9. Thereby, the harmonics input to the inverter 9 are superimposed on the current flowing through the battery 8 (hereinafter referred to as “battery current”), and a ripple is generated. By generating ripples in the battery current, heat is generated due to an increase in power consumption due to the internal resistance of the battery 8, and the battery 8 is heated.

このように、バッテリ温度が温度閾値(例えば、−20℃)aよりも低いときに、モータ制御部10の電流指令入力部11に入力されるトルク指令値Trに高調波を重畳することにより、バッテリ8に流れるバッテリ電流にこの高調波が重畳され、リップルを発生させる。発生させたリップルによってバッテリ電流を振動させて、バッテリ8の内部抵抗による消費電力を増加させることで、バッテリ8を迅速にかつ容易に昇温させることができる。   As described above, when the battery temperature is lower than a temperature threshold (for example, −20 ° C.) a, by superposing harmonics on the torque command value Tr input to the current command input unit 11 of the motor control unit 10, This harmonic is superimposed on the battery current flowing in the battery 8 to generate a ripple. By causing the battery current to vibrate by the generated ripple and increasing the power consumption due to the internal resistance of the battery 8, the temperature of the battery 8 can be raised quickly and easily.

なお、この低温時におけるバッテリ8の昇温制御は、このバッテリ8を搭載している電気自動車(電動車両)1が走行時(発進時も含む)以外にも、回生制動モード時及び一時停止状態の場合においても行われる。   Note that the temperature rise control of the battery 8 at this low temperature is not limited to when the electric vehicle (electric vehicle) 1 on which the battery 8 is mounted travels (including when the vehicle is started). This is also the case.

また、前記した低温時におけるバッテリ8の昇温制御では、高調波をトルク指令値Trに重畳させる構成であったが、この構成以外にも、図5に示すように、高調波を電流指令入力部11から出力されるd軸電流指令値Id、q軸電流指令値Iqに重畳させるようしてもよく、また、図6に示すように、高調波を電流制御部14から出力されるd軸電流指令値Id、q軸電流指令値Iqに重畳させるようにしてもよく、更に、図7に示すように、高調波をPWM波生成部16からインバータ9に出力されるPWM波形信号Pu、Pv、Pwに重畳させるようにしてもよい。 Further, in the temperature increase control of the battery 8 at the low temperature described above, the harmonics are superimposed on the torque command value Tr. However, in addition to this configuration, as shown in FIG. The d-axis current command value Id * output from the unit 11 may be superimposed on the q-axis current command value Iq * , and harmonics are output from the current control unit 14 as shown in FIG. The d-axis current command value Id * and the q-axis current command value Iq * may be superimposed on each other. Furthermore, as shown in FIG. 7, the PWM waveform output from the PWM wave generator 16 to the inverter 9 You may make it superimpose on signal Pu, Pv, Pw.

〈実施形態2〉
本実施形態では、図8に示すように、バッテリ温度が温度閾値(例えば、−20℃)aよりも低いほど振幅の大きな高調波をバッテリ電流に重畳させ、この状況からバッテリ温度が温度閾値aに近づくにつれて高調波の振幅を段階的に小さくするようにした。バッテリ温度が温度閾値aよりも高くなると高調波の発生を停止する。なお、高調波の周期は一定である。他の構成は前記実施形態1と同様である。
<Embodiment 2>
In the present embodiment, as shown in FIG. 8, as the battery temperature is lower than a temperature threshold (for example, −20 ° C.) a, a harmonic having a larger amplitude is superimposed on the battery current. The harmonic amplitude was reduced step by step as approached. When the battery temperature becomes higher than the temperature threshold a, the generation of harmonics is stopped. The period of harmonics is constant. Other configurations are the same as those of the first embodiment.

このように、本実施形態の低温時におけるバッテリ8の昇温制御では、バッテリ温度が温度閾値aよりも低いほど高調波の振幅を大きくしてバッテリ8の内部抵抗による消費電力を増加させることで、バッテリ温度が温度閾値aよりも低い場合でもバッテリ8を迅速にかつ容易に昇温させることが可能となる。   As described above, in the temperature increase control of the battery 8 at the low temperature of the present embodiment, the harmonic amplitude is increased as the battery temperature is lower than the temperature threshold value a to increase the power consumption due to the internal resistance of the battery 8. Even when the battery temperature is lower than the temperature threshold a, the battery 8 can be quickly and easily heated.

〈実施形態3〉
本実施形態では、図9に示すように、バッテリ温度が温度閾値(例えば、−20℃)aよりも低いほど周期の短い高調波をバッテリ電流に重畳させ、この状況からバッテリ温度が温度閾値aに近づくにつれて高調波の周期を段階的に長くするようにした。バッテリ温度が温度閾値aよりも高くなると高調波の発生を停止する。なお、高調波の振幅は一定である。他の構成は前記実施形態1と同様である。
<Embodiment 3>
In the present embodiment, as shown in FIG. 9, as the battery temperature is lower than a temperature threshold (for example, −20 ° C.) a, a harmonic having a shorter cycle is superimposed on the battery current. The harmonic period was increased stepwise as it approaches. When the battery temperature becomes higher than the temperature threshold a, the generation of harmonics is stopped. Note that the amplitude of the harmonic is constant. Other configurations are the same as those of the first embodiment.

このように、本実施形態の低温時におけるバッテリ8の昇温制御では、バッテリ温度が温度閾値aよりも低いほど高調波の周期を短くしてバッテリ8の内部抵抗による消費電力を増加させることで、バッテリ温度が温度閾値aよりも低い場合でもバッテリ8を迅速にかつ容易に昇温させることが可能となる。   As described above, in the temperature increase control of the battery 8 at the low temperature of the present embodiment, the harmonic period is shortened and the power consumption due to the internal resistance of the battery 8 is increased as the battery temperature is lower than the temperature threshold value a. Even when the battery temperature is lower than the temperature threshold a, the battery 8 can be quickly and easily heated.

〈実施形態4〉
実施形態1で述べたように、バッテリ温度が温度閾値よりも低いときに、高調波をバッテリ電流に重畳してバッテリを昇温させるように制御するが、本実施形態では、バッテリ8を搭載している前記電気自動車(電動車両)1の走行状況に応じて、一時的に高調波をバッテリ電流に重畳するのを停止するか、或いは重畳させる高調波の振幅を小さく(又は周期を短く)するようにした。
<Embodiment 4>
As described in the first embodiment, when the battery temperature is lower than the temperature threshold, control is performed so that the harmonic is superimposed on the battery current to raise the battery temperature. In this embodiment, the battery 8 is mounted. Depending on the driving situation of the electric vehicle (electric vehicle) 1 being stopped, the harmonics are temporarily stopped from being superimposed on the battery current, or the amplitude of the harmonics to be superimposed is reduced (or the cycle is shortened). I did it.

例えば、坂道を低速で上がるときなどでは、3相交流モータ2の回転数が低速で、かつ3相交流モータ2に対する要求トルク指令値が大きいので、インバータ9のスイッチング制御によって3相交流モータ2に流れる電流(以下、「モータ電流」という)が大きくなる。このような走行状況で、モータ電流に前記高調波が重畳されると過電流が流れる不具合が生じることがある。   For example, when going up a hill at a low speed, the rotational speed of the three-phase AC motor 2 is low, and the required torque command value for the three-phase AC motor 2 is large. The flowing current (hereinafter referred to as “motor current”) increases. Under such traveling conditions, there may be a problem that overcurrent flows when the harmonics are superimposed on the motor current.

このため、3相交流モータ2の回転数が低速で、かつ3相交流モータ2に対する要求トルク指令値が大きい走行状況時には、バッテリ温度が温度閾値よりも低いときでも、この走行状況が解消されるまで、一時的に高調波の発生を停止して高調波をバッテリ電流に重畳するのを停止する。或いは、重畳させる高調波の振幅を小さく(又は周期を短く)する。   For this reason, when the rotational speed of the three-phase AC motor 2 is low and the required torque command value for the three-phase AC motor 2 is large, this traveling condition is eliminated even when the battery temperature is lower than the temperature threshold. Until the generation of harmonics is temporarily stopped, the superposition of the harmonics on the battery current is stopped. Alternatively, the amplitude of the harmonics to be superimposed is reduced (or the cycle is shortened).

また、例えば、低μ路を走行時に車輪にスリップが発生した場合、走行時に急減速(急停止も含む)した場合、走行時に急加速した場合、悪路走行時に車輪速の加速度の絶対値が閾値を越えた場合などのような過度的変化が生じた走行状況時には、3相交流モータ2に対する要求トルク指令値が急激に変化する。このような走行状況で、モータ電流に前記高調波が重畳されると過電流が流れる不具合が生じることがある。   Also, for example, if the wheel slips on a low μ road, suddenly decelerates (including sudden stop) when traveling, suddenly accelerates when traveling, the absolute value of the wheel speed acceleration when traveling on a rough road During a traveling situation in which an excessive change occurs, such as when the threshold value is exceeded, the required torque command value for the three-phase AC motor 2 changes abruptly. Under such traveling conditions, there may be a problem that overcurrent flows when the harmonics are superimposed on the motor current.

このため、このような過度的変化が生じた走行状況時には、バッテリ温度が温度閾値よりも低いときでも、このような過度的変化が生じた走行状況が解消されるまで、一時的に高調波の発生を停止して高調波をバッテリ電流に重畳するのを停止する。或いは、重畳させる高調波の振幅を小さく(又は周期を短く)する。   For this reason, during a driving situation in which such an excessive change has occurred, even if the battery temperature is lower than the temperature threshold, the harmonics are temporarily output until the driving situation in which such an excessive change has been resolved. Stop generating and superimposing harmonics on battery current. Alternatively, the amplitude of the superimposed harmonic is reduced (or the period is shortened).

このように、バッテリ温度が温度閾値よりも低いときでも、モータ電流に前記高調波が重畳されると過電流が流れる不具合が生じるような走行状況時には、一時的に高調波をバッテリ電流に重畳するのを停止するか、或いは重畳させる高調波の振幅を小さく(又は周期を短く)することにより、モータ電流に過電流が流れることを防止することができる。   In this way, even when the battery temperature is lower than the temperature threshold, the harmonics are temporarily superimposed on the battery current in a driving situation where an overcurrent flows when the harmonics are superimposed on the motor current. It is possible to prevent an overcurrent from flowing in the motor current by stopping the rotation or reducing the amplitude of the harmonics to be superimposed (or shortening the period).

〈実施形態5〉
本実施形態のモータ制御装置7aは、図10に示すように、バッテリ8とインバータ9の間にバッテリ電圧を昇圧する昇圧コンバータ26を備えている。他の構成は、図2に示した実施形態1のモータ制御装置と同様であり、重複する説明は省略する。
<Embodiment 5>
As shown in FIG. 10, the motor control device 7 a of this embodiment includes a boost converter 26 that boosts the battery voltage between the battery 8 and the inverter 9. Other configurations are the same as those of the motor control apparatus of the first embodiment shown in FIG.

本実施形態のように、バッテリ電圧を所定の昇圧電圧目標値まで昇圧する昇圧コンバータ26を備えている場合では、実施形態1のようにバッテリ温度が温度閾値よりも低いときに、高調波を前記トルク指令値Trに重畳させることで、バッテリ電流にこの高調波を重畳させると、昇圧コンバータ26で前記昇圧電圧目標値まで昇圧されるバッテリ電圧にも電圧リップルが重畳され、過電圧になる可能性がある。   In the case of including the boost converter 26 that boosts the battery voltage to a predetermined boost voltage target value as in the present embodiment, when the battery temperature is lower than the temperature threshold as in the first embodiment, the harmonic is If this harmonic is superimposed on the battery current by superimposing it on the torque command value Tr, the voltage ripple is also superimposed on the battery voltage boosted to the boost voltage target value by the boost converter 26, which may result in overvoltage. is there.

このため、実施形態1のようにバッテリ温度が温度閾値よりも低いときに、高調波を前記トルク指令値Trに重畳させる場合には、制御部(不図示)から昇圧コンバータ26に制御信号を出力して、前記昇圧電圧目標値を下げるように制御する。   For this reason, when the harmonic is superimposed on the torque command value Tr when the battery temperature is lower than the temperature threshold as in the first embodiment, a control signal is output from the control unit (not shown) to the boost converter 26. Then, the boosted voltage target value is controlled to be lowered.

このように、昇圧コンバータ26でバッテリ電圧を昇圧する際の昇圧電圧目標値を下げることで、バッテリ電流に高調波が重畳された場合でも、昇圧されたバッテリ電圧が過電圧になることを防止することができる。   In this way, by lowering the boost voltage target value when boosting the battery voltage by the boost converter 26, the boosted battery voltage is prevented from being overvoltage even when harmonics are superimposed on the battery current. Can do.

また、本実施形態のように、バッテリ電圧を所定の昇圧電圧目標値まで昇圧する昇圧コンバータ26を備えている構成のモータ制御装置7aでは、実施形態1のようにバッテリ温度が温度閾値よりも低いときに、高調波を前記トルク指令値Trに重畳させる場合に、昇圧コンバータ26による昇圧動作を停止して、昇圧されていないバッテリ電圧をインバータ9に出力するようにしてもよい。   In the motor control device 7a having the boost converter 26 that boosts the battery voltage to a predetermined boost voltage target value as in the present embodiment, the battery temperature is lower than the temperature threshold as in the first embodiment. Sometimes, when harmonics are superimposed on the torque command value Tr, the boosting operation by the boosting converter 26 may be stopped and the battery voltage not boosted may be output to the inverter 9.

これにより、バッテリ電流に高調波が重畳された場合でも、バッテリ電圧が昇圧されていないので、バッテリ電圧が過電圧になることを防止することができる。   Thereby, even when a harmonic is superimposed on the battery current, the battery voltage is not boosted, so that the battery voltage can be prevented from becoming an overvoltage.

なお、前記した各実施形態では、電動車両として電気自動車の例を示したが、走行駆動源としてモータとエンジンを備えているハイブリット車両においても、同様に本発明を適用することができる。   In each of the above-described embodiments, an example of an electric vehicle is shown as an electric vehicle. However, the present invention can be similarly applied to a hybrid vehicle including a motor and an engine as a driving source.

1 電気自動車(電動車両)
2 3相交流モータ(モータ)
7、7a モータ制御装置
8 バッテリ
9 インバータ(電力変換器)
10 モータ制御部(制御手段)
11 電流指令入力部
12、13 比較器
14 電流制御部
15 2相3相変換部
16 PWM波生成部
17 3相2相変換部
22 スイッチング素子
23 バッテリ温度センサ(温度検出手段)
24 高調波発生部(高調波発生手段)
25 高調波発生制御部(高調波発生制御手段)
26 昇圧コンバータ
1 Electric vehicle (electric vehicle)
2 3-phase AC motor (motor)
7, 7a Motor control device 8 Battery 9 Inverter (power converter)
10 Motor controller (control means)
DESCRIPTION OF SYMBOLS 11 Current command input part 12, 13 Comparator 14 Current control part 15 2 phase 3 phase conversion part 16 PWM wave generation part 17 3 phase 2 phase conversion part 22 Switching element 23 Battery temperature sensor (temperature detection means)
24 Harmonic generator (harmonic generator)
25 Harmonic generation control unit (harmonic generation control means)
26 Boost Converter

Claims (5)

バッテリと電気的に接続され、スイッチング素子のスイッチング動作により前記バッテリから供給される直流電力を交流電力に変換して、該交流電力を走行駆動源としてのモータに供給する電力変換器と、
前記モータの要求駆動力に対応するトルク指令値が入力され、前記トルク指令値に基づいた回転数で前記モータを回転させるように、前記スイッチング素子をスイッチング制御するための電圧指令値信号を前記電力変換器に出力する制御手段と、を備えた電動車両のモータ制御装置において、
高調波を発生する高調波発生手段と、
前記バッテリの温度を検出する温度検出手段と、
前記温度検出手段で検出したバッテリ温度を入力し、検出したバッテリ温度が設定した温度閾値よりも低いと判定した場合に、前記高調波発生手段で発生させた高調波を、前記制御手段の入力段に入力される前記トルク指令値と出力段から前記電力変換器に出力される前記電圧指令値信号の間の任意の信号経路に重畳させて、前記高調波を、前記バッテリから前記電力変換器に流れるバッテリ電流又はバッテリ電圧に重畳させるよう制御する高調波発生制御手段とを有することを特徴とする電動車両のモータ制御装置。
A power converter that is electrically connected to the battery, converts the DC power supplied from the battery into AC power by the switching operation of the switching element, and supplies the AC power to a motor as a travel drive source;
A torque command value corresponding to the required driving force of the motor is input, and a voltage command value signal for switching control of the switching element so as to rotate the motor at a rotation speed based on the torque command value In a motor control device for an electric vehicle provided with a control means for outputting to a converter,
Harmonic generation means for generating harmonics;
Temperature detecting means for detecting the temperature of the battery;
When the battery temperature detected by the temperature detection means is input and it is determined that the detected battery temperature is lower than a set temperature threshold, the harmonic generated by the harmonic generation means is input to the control means. Is superimposed on an arbitrary signal path between the torque command value input to the power converter and the voltage command value signal output from the output stage to the power converter, and the harmonics are transmitted from the battery to the power converter. A motor control device for an electric vehicle, comprising: harmonic generation control means for controlling to superimpose on a flowing battery current or battery voltage.
前記高調波発生制御手段は、前記バッテリ温度が温度閾値よりも低いほど振幅の大きな高調波をバッテリ電流に重畳させ、この状況からバッテリ温度が温度閾値に近づくにつれて高調波の振幅を小さくするように制御することを特徴とする請求項1に記載の電動車両のモータ制御装置。   The harmonic generation control means superimposes a harmonic having a larger amplitude on the battery current as the battery temperature is lower than the temperature threshold, and decreases the amplitude of the harmonic as the battery temperature approaches the temperature threshold from this situation. The motor control device for an electric vehicle according to claim 1, wherein the motor control device is controlled. 前記高調波発生制御手段は、前記バッテリ温度が温度閾値よりも低いほど周期の短い高調波をバッテリ電流に重畳させ、この状況からバッテリ温度が温度閾値に近づくにつれて高調波の周期を長くするように制御することを特徴とする請求項1に記載の電動車両のモータ制御装置。   The harmonic generation control means superimposes a harmonic having a shorter period on the battery current as the battery temperature is lower than the temperature threshold, and from this situation, the harmonic period is lengthened as the battery temperature approaches the temperature threshold. The motor control device for an electric vehicle according to claim 1, wherein the motor control device is controlled. 前記高調波発生制御手段は、前記モータの回転数が低速でかつ前記モータに対する前記トルク指令値が大きいとき、及び過度的変化が生じた電動車両の走行状況時には、前記バッテリ温度が温度閾値よりも低いときでも、前記高調波の発生を停止させる、或いは前記高調波の振幅を小さく又は周期を短くするように制御することを特徴とする請求項1に記載の電動車両のモータ制御装置。   The harmonic generation control means is configured such that the battery temperature is lower than a temperature threshold when the rotational speed of the motor is low and the torque command value for the motor is large, and when the electric vehicle travels excessively. 2. The motor control device for an electric vehicle according to claim 1, wherein even when the frequency is low, the generation of the harmonics is stopped, or the amplitude of the harmonics is controlled to be small or the cycle is shortened. 前記バッテリと電力変換器の間にバッテリ電圧を昇圧する昇圧コンバータを備え、
前記バッテリ温度が温度閾値よりも低いときは、前記昇圧コンバータでバッテリ電圧を昇圧する際の昇圧電圧目標値を下げる、又は前記昇圧コンバータによる昇圧動作を停止させることを特徴とする請求項1に記載の電動車両のモータ制御装置。
A boost converter for boosting the battery voltage between the battery and the power converter;
2. The boost voltage target value when boosting the battery voltage by the boost converter is lowered or the boost operation by the boost converter is stopped when the battery temperature is lower than a temperature threshold. Motor control apparatus for electric vehicles.
JP2009123935A 2009-05-22 2009-05-22 Motor control device for electric vehicle Pending JP2010272395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123935A JP2010272395A (en) 2009-05-22 2009-05-22 Motor control device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123935A JP2010272395A (en) 2009-05-22 2009-05-22 Motor control device for electric vehicle

Publications (1)

Publication Number Publication Date
JP2010272395A true JP2010272395A (en) 2010-12-02

Family

ID=43420254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123935A Pending JP2010272395A (en) 2009-05-22 2009-05-22 Motor control device for electric vehicle

Country Status (1)

Country Link
JP (1) JP2010272395A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115823A1 (en) 2011-10-13 2012-05-16 Daimler Ag Method for operating electrical component i.e. semiconductor switch, of motor vehicle, involves operating electrical components, such that components produce higher power dissipation in operating mode than in another operating mode
WO2012093493A1 (en) * 2011-01-07 2012-07-12 三菱電機株式会社 Charging and discharging apparatus
JP2012152057A (en) * 2011-01-20 2012-08-09 Toshiba Mitsubishi-Electric Industrial System Corp Power supply apparatus
JP2012165526A (en) * 2011-02-04 2012-08-30 Hitachi Ltd Vehicle driving motor controller and vehicle with the same
JP2013030351A (en) * 2011-07-28 2013-02-07 Toyota Motor Corp Charger and vehicle, and control method of charger
JP2013077452A (en) * 2011-09-30 2013-04-25 Toyota Central R&D Labs Inc Power supply system
JP2013143799A (en) * 2012-01-10 2013-07-22 Nissan Motor Co Ltd Charging apparatus
JP2015074356A (en) * 2013-10-09 2015-04-20 トヨタ自動車株式会社 Control method of mobile body, and two-wheeled inverted pendulum mobile body
JP2015122874A (en) * 2013-12-24 2015-07-02 トヨタ自動車株式会社 Vehicle power supply device
JP2015518629A (en) * 2012-03-29 2015-07-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for heating energy storage cell of energy storage device and heatable energy storage device
EP2939863A1 (en) * 2014-05-01 2015-11-04 Toyota Jidosha Kabushiki Kaisha Electrically-driven vehicle
CN105515371A (en) * 2014-10-10 2016-04-20 丰田自动车株式会社 Power supply system
CN111355000A (en) * 2018-12-21 2020-06-30 比亚迪股份有限公司 Vehicle and power battery heating device and method thereof
JP2020188555A (en) * 2019-05-13 2020-11-19 日立オートモティブシステムズ株式会社 Motor control device, electrically-driven power steering system, electrically-driven break system, electrically-driven vehicle system
JP2021093845A (en) * 2019-12-10 2021-06-17 株式会社Soken Power conversion device
CN113691193A (en) * 2021-07-13 2021-11-23 华为数字能源技术有限公司 Battery pack heating method, motor controller, electric automobile and system
CN113839124A (en) * 2020-06-24 2021-12-24 比亚迪股份有限公司 Self-heating method and system for automobile power battery, automobile and storage medium
CN114337422A (en) * 2021-06-01 2022-04-12 华为数字能源技术有限公司 Method for controlling heating of motor and method for controlling multi-motor driving system
WO2022209794A1 (en) * 2021-03-30 2022-10-06 株式会社デンソー Control device for power conversion device
JP7370223B2 (en) 2019-01-24 2023-10-27 株式会社Soken power converter
US11876197B2 (en) 2018-12-21 2024-01-16 Byd Company Limited Vehicle and power battery heating apparatus and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224381A (en) * 1996-02-16 1997-08-26 Meidensha Corp Uninterruptible power supply device
JPH11341698A (en) * 1998-05-27 1999-12-10 Mitsubishi Motors Corp Charger for electric car
JP2003017136A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Charging method of lead storage battery
JP2005332777A (en) * 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd Warm-up control unit of battery
JP2006006073A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224381A (en) * 1996-02-16 1997-08-26 Meidensha Corp Uninterruptible power supply device
JPH11341698A (en) * 1998-05-27 1999-12-10 Mitsubishi Motors Corp Charger for electric car
JP2003017136A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Charging method of lead storage battery
JP2005332777A (en) * 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd Warm-up control unit of battery
JP2006006073A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Power supply

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520733B2 (en) 2011-01-07 2016-12-13 Mitsubishi Electric Corporation Charging and discharging device to increase battery temperature by controlling ripple current
KR101512258B1 (en) * 2011-01-07 2015-04-14 미쓰비시덴키 가부시키가이샤 Charging and discharging apparatus
WO2012093493A1 (en) * 2011-01-07 2012-07-12 三菱電機株式会社 Charging and discharging apparatus
JP5000025B1 (en) * 2011-01-07 2012-08-15 三菱電機株式会社 Charge / discharge device
JP2012152057A (en) * 2011-01-20 2012-08-09 Toshiba Mitsubishi-Electric Industrial System Corp Power supply apparatus
JP2012165526A (en) * 2011-02-04 2012-08-30 Hitachi Ltd Vehicle driving motor controller and vehicle with the same
JP2013030351A (en) * 2011-07-28 2013-02-07 Toyota Motor Corp Charger and vehicle, and control method of charger
JP2013077452A (en) * 2011-09-30 2013-04-25 Toyota Central R&D Labs Inc Power supply system
DE102011115823A1 (en) 2011-10-13 2012-05-16 Daimler Ag Method for operating electrical component i.e. semiconductor switch, of motor vehicle, involves operating electrical components, such that components produce higher power dissipation in operating mode than in another operating mode
JP2013143799A (en) * 2012-01-10 2013-07-22 Nissan Motor Co Ltd Charging apparatus
JP2015518629A (en) * 2012-03-29 2015-07-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for heating energy storage cell of energy storage device and heatable energy storage device
JP2015074356A (en) * 2013-10-09 2015-04-20 トヨタ自動車株式会社 Control method of mobile body, and two-wheeled inverted pendulum mobile body
JP2015122874A (en) * 2013-12-24 2015-07-02 トヨタ自動車株式会社 Vehicle power supply device
EP2939863A1 (en) * 2014-05-01 2015-11-04 Toyota Jidosha Kabushiki Kaisha Electrically-driven vehicle
JP2015213390A (en) * 2014-05-01 2015-11-26 トヨタ自動車株式会社 Electric vehicle
CN105034837A (en) * 2014-05-01 2015-11-11 丰田自动车株式会社 Electrically-driven vehicle
CN105515371A (en) * 2014-10-10 2016-04-20 丰田自动车株式会社 Power supply system
CN105515371B (en) * 2014-10-10 2018-05-15 丰田自动车株式会社 Electric power system
US11876197B2 (en) 2018-12-21 2024-01-16 Byd Company Limited Vehicle and power battery heating apparatus and method thereof
CN111355000A (en) * 2018-12-21 2020-06-30 比亚迪股份有限公司 Vehicle and power battery heating device and method thereof
JP7370223B2 (en) 2019-01-24 2023-10-27 株式会社Soken power converter
JP2020188555A (en) * 2019-05-13 2020-11-19 日立オートモティブシステムズ株式会社 Motor control device, electrically-driven power steering system, electrically-driven break system, electrically-driven vehicle system
JP7323329B2 (en) 2019-05-13 2023-08-08 日立Astemo株式会社 Motor control device, electric power steering system, electric brake system, electric vehicle system
JP7232747B2 (en) 2019-12-10 2023-03-03 株式会社Soken power converter
JP2021093845A (en) * 2019-12-10 2021-06-17 株式会社Soken Power conversion device
CN113839124A (en) * 2020-06-24 2021-12-24 比亚迪股份有限公司 Self-heating method and system for automobile power battery, automobile and storage medium
CN113839124B (en) * 2020-06-24 2023-06-13 比亚迪股份有限公司 Self-heating method and system for automobile power battery, automobile and storage medium
WO2022209794A1 (en) * 2021-03-30 2022-10-06 株式会社デンソー Control device for power conversion device
JP7468435B2 (en) 2021-03-30 2024-04-16 株式会社デンソー Power conversion device control device
EP4099561A3 (en) * 2021-06-01 2023-03-22 Huawei Digital Power Technologies Co., Ltd. Method for controlling heating of motor and control method for multi-motor drive system
CN114337422A (en) * 2021-06-01 2022-04-12 华为数字能源技术有限公司 Method for controlling heating of motor and method for controlling multi-motor driving system
WO2023284785A1 (en) * 2021-07-13 2023-01-19 华为数字能源技术有限公司 Battery pack heating method, motor controller, electric vehicle, and system
CN113691193A (en) * 2021-07-13 2021-11-23 华为数字能源技术有限公司 Battery pack heating method, motor controller, electric automobile and system

Similar Documents

Publication Publication Date Title
JP2010272395A (en) Motor control device for electric vehicle
JP5454685B2 (en) Motor drive device and vehicle equipped with the same
JP5246508B2 (en) Control device for motor drive device
JP4329880B1 (en) AC motor control device and electric vehicle
JP5413505B2 (en) Control device for motor drive system and vehicle equipped with the same
JP6062327B2 (en) Inverter device and electric vehicle
JP5633639B2 (en) Electric motor control device, electric vehicle including the same, and electric motor control method
US20120249024A1 (en) Electric motor control device
CN110291709B (en) Inverter device and electric vehicle
JP2010088205A (en) Controller of ac motor
JP2009291019A (en) Controller for inverter for ac motor
WO2021053974A1 (en) Inverter control device
JP2010252488A (en) Motor drive control device
JP2011067010A (en) Motor drive of vehicle
JP6489110B2 (en) Drive device
WO2018116668A1 (en) Motor control device and electric vehicle
JP2012060840A (en) Driving control apparatus of rotary electric machine for vehicle
JP7424058B2 (en) motor control device
JP5115202B2 (en) Motor drive device
JP2009027870A (en) Electrical-machine system controller for hybrid vehicle
JP2017204943A (en) Motor car
JP5290048B2 (en) Vehicle motor control system
JP5686110B2 (en) Control device for AC electric machine drive system
JP2013017324A (en) Power-supply system and method of controlling the same
JP5942809B2 (en) AC motor control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212