JP2010270382A - Method for producing magnet powder containing rare-earth element, transition metal and nitrogen - Google Patents

Method for producing magnet powder containing rare-earth element, transition metal and nitrogen Download PDF

Info

Publication number
JP2010270382A
JP2010270382A JP2009125386A JP2009125386A JP2010270382A JP 2010270382 A JP2010270382 A JP 2010270382A JP 2009125386 A JP2009125386 A JP 2009125386A JP 2009125386 A JP2009125386 A JP 2009125386A JP 2010270382 A JP2010270382 A JP 2010270382A
Authority
JP
Japan
Prior art keywords
powder
rare earth
transition metal
nitrogen
magnet powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009125386A
Other languages
Japanese (ja)
Inventor
Satoru Matsumoto
哲 松本
Takashi Ishikawa
尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009125386A priority Critical patent/JP2010270382A/en
Publication of JP2010270382A publication Critical patent/JP2010270382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can inexpensively and stably produce a magnet powder containing a rare-earth element, a transition metal and nitrogen, and having high characteristics, by a reduction and diffusion reaction. <P>SOLUTION: This production method includes: a first step of slurrying an iron oxide powder with a water medium, charging a predetermined amount of an oxide of a rare-earth element into the slurry to dissolve the oxide while adding a dilute acid of 1 mol/L or less into the slurry so that the pH value of the slurry is maintained in a range of 2-5, adding a salt of an alkali metal or an alkaline-earth metal to the slurry to adjust the pH so as to be higher than 7.0, and consequently producing a raw mixed powder which has a hydroxide of the rare-earth element precipitated on the surface of the iron oxide; a second step of subjecting the obtained raw mixed powder to hydrogen heat-treatment; a third step of adding a predetermined amount of an alkaline-earth metal which is a component of a reducing agent, to the mixed powder which has been subjected to the hydrogen heat-treatment, mixing them, heat-treating the mixture in an inert gas atmosphere, and then cooling the mixture in the same atmosphere to obtain a rare-earth-iron based mother alloy; a forth step of subsequently nitriding the mother alloy; and a fifth step of wet-treating the nitrided material to separate and remove a byproduct of the component of the reducing agent, and then pulverizing the obtained crude powder. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、希土類−遷移金属−窒素磁石粉末の製造方法に関し、より詳しくは、湿式混合した原料粉を還元拡散反応し、逆軸の核の発生を抑制すると共に、発熱による粒成長を抑制して、安価で高特性の磁石粉末を安定的に生産できる希土類−遷移金属−窒素磁石粉末の製造方法に関する。   The present invention relates to a method for producing a rare earth-transition metal-nitrogen magnet powder, and more specifically, a reduction-diffusion reaction of wet-mixed raw material powder to suppress the generation of nuclei on the reverse axis and suppress grain growth due to heat generation. The present invention also relates to a method for producing a rare earth-transition metal-nitrogen magnet powder that can stably produce inexpensive and high-performance magnet powder.

Sm−Fe−N磁石で代表される希土類−遷移金属−窒素系磁石は、高性能かつ安価な磁石として知られており、このSm−Fe−N系磁石粉末は、SmFe17であればx=3の組成で構成されることによって最大の飽和磁化を示すとされている(非特許文献1参照)。
この希土類−遷移金属−窒素系磁石は、従来、FeとSm金属を用いて高周波炉、アーク炉などにより希土類―鉄合金を作製する溶解法や、FeあるいはFe、Sm等とCaを混合加熱処理により希土類―鉄合金を作製する還元拡散法によって得られた希土類―鉄母合金を窒化することで製造されている。このようにして得られた希土類−遷移金属−窒素系磁石粉末は、保磁力の発生機構がニュークリエーション型であることから、次の工程において平均粒子径が数μmから5μm程度になるまで微粉砕処理される。
Rare earth-transition metal-nitrogen-based magnets represented by Sm-Fe-N magnets are known as high-performance and inexpensive magnets, and this Sm-Fe-N-based magnet powder is Sm 2 Fe 17 N x . If so, it is said that the maximum saturation magnetization is exhibited by being composed of a composition of x = 3 (see Non-Patent Document 1).
This rare earth-transition metal-nitrogen based magnet has been conventionally used in a melting method in which a rare earth-iron alloy is produced using a high frequency furnace, an arc furnace, etc. using Fe and Sm metal, Fe, Fe 2 O 3 , Sm 2 O 3, etc. It is manufactured by nitriding a rare earth-iron master alloy obtained by a reduction diffusion method in which a rare earth-iron alloy is produced by mixing heat treatment with Ca and Ca. The rare earth-transition metal-nitrogen based magnet powder obtained in this way is pulverized until the average particle size becomes several μm to about 5 μm in the next step because the coercive force generation mechanism is a nucleation type. It is processed.

ここで、溶解法では原料粉末の1500℃以上での溶解、粉砕、組成均一化のための熱処理が必要である(特許文献3参照)。ところが、溶解法は、工程が極めて煩雑であるとともに、各工程間において一旦大気中に曝されるために酸化により不純物が生成し、湿式処理後に窒化を行うが、湿式処理時に表面が酸化しているため窒化が均一に進行できなくなり、磁気特性のうち飽和磁化、保磁力、角形性が低下し、結果として最大エネルギー積が低くなってしまうという問題がある。また、原料として必要とされる希土類金属が非常に高価であるという理由から、安価な希土類酸化物粉末を原料として利用できる還元拡散法に比べてコスト的に不利であると考えられている。   Here, in the melting method, heat treatment for melting, pulverizing, and homogenizing the composition of the raw material powder at 1500 ° C. or higher is required (see Patent Document 3). However, in the dissolution method, the process is extremely complicated, and impurities are generated by oxidation because the process is once exposed to the atmosphere between the processes, and nitriding is performed after the wet process, but the surface is oxidized during the wet process. Therefore, nitriding cannot proceed uniformly, and there is a problem that the saturation magnetization, coercive force, and squareness of the magnetic characteristics are lowered, and as a result, the maximum energy product is lowered. In addition, because the rare earth metal required as a raw material is very expensive, it is considered to be disadvantageous in cost as compared with the reduction diffusion method in which an inexpensive rare earth oxide powder can be used as a raw material.

一方、還元拡散法では、通常出発原料に数十μmの鉄粉末を用い、希土類金属もしくは希土類酸化物とアルカリ土類金属を混合した後、還元熱処理を行うことで母合金を作製するが、最終的な窒化処理の後で数μmに機械粉砕するため、逆軸の核となり得る破断面の突起や結晶歪みが発生し、磁気特性を低下させるという問題がある。
この問題の解決法として、出発原料となる粉末の粒子径を小さくすることにより、母合金を粉砕せずに磁石粉末を得る方法が提案されているが、例えば特許文献1のように原料粉の混合を乾式で行う場合、粒子径や比重による影響が大きく、混合が不均一になりやすいという問題点がある。
On the other hand, in the reduction diffusion method, an iron powder of several tens of μm is usually used as a starting material, and after mixing a rare earth metal or rare earth oxide and an alkaline earth metal, a reduction heat treatment is performed to produce a master alloy. Since mechanical pulverization to several μm after a typical nitriding treatment occurs, there is a problem in that protrusions on the fracture surface that can be the nucleus of the reverse axis and crystal distortion occur, and magnetic properties are degraded.
As a solution to this problem, there has been proposed a method for obtaining a magnet powder without pulverizing the master alloy by reducing the particle size of the powder as a starting material. When mixing is carried out dry, there is a problem that the influence of the particle size and specific gravity is large and the mixing tends to be non-uniform.

また、特許文献2のように湿式による混合方法も提案されているが、均一な混合ができる代わりに希土類酸化物の一部が水中に溶解・再析出し、微細なサブミクロンの希土類水酸化物となり、その後の水素還元熱処理時に希土類鉄複合酸化物が生成して、アルカリ土類金属による還元熱処理を行う際に大きなテルミット発熱を生じて局部的な粒成長を引き起こすことがある。これは、工業用に利用される微細な酸化鉄は、一般に、塩酸によるFeの溶解および苛性ソーダ等での中和による析出・焙焼によって製造されるため、粉末が酸性を示し、水中に酸化鉄と希土類酸化物を分散させると、希土類酸化物は水にもわずかに溶けるがそれ以上に酸に溶けることに起因する。   In addition, a wet mixing method has been proposed as in Patent Document 2, but instead of being able to perform uniform mixing, a part of the rare earth oxide is dissolved and re-precipitated in water, so that a fine submicron rare earth hydroxide is obtained. In the subsequent hydrogen reduction heat treatment, rare earth iron composite oxides are generated, and a large thermite heat generation may occur during the reduction heat treatment with an alkaline earth metal to cause local grain growth. This is because fine iron oxides used for industrial use are generally produced by dissolution and precipitation of Fe with hydrochloric acid and neutralization with caustic soda, etc. When the rare earth oxide is dispersed, the rare earth oxide is slightly soluble in water but is more soluble in acid than that.

さらに、特許文献3のようにSmとFeの共沈水酸化物を製造する方法も提案されているが、使用する希土類塩が高価であるほか、析出物が水酸化物のため水素還元熱処理時に多くの希土類鉄複合酸化物が生成するため、上述と同じ現象が起こる。   Furthermore, a method for producing a co-precipitated hydroxide of Sm and Fe has been proposed as in Patent Document 3, but the rare earth salt used is expensive, and since the precipitate is a hydroxide, it is often used during hydrogen reduction heat treatment. Since the rare earth iron complex oxide is produced, the same phenomenon as described above occurs.

上記したように、磁気特性を低下させる逆軸の核の発生や粒成長を引き起こさずに、低コストで優れた磁気特性を有する希土類−遷移金属−窒素系磁石粉末が製造できる方法の確立が強く望まれていた。   As described above, the establishment of a method capable of producing rare earth-transition metal-nitrogen based magnet powders having excellent magnetic properties at low cost without causing the generation of reverse-axis nuclei and grain growth that degrade the magnetic properties is strong. It was desired.

特開平11−310807号公報Japanese Patent Laid-Open No. 11-310807 特開2003−297660号公報JP 2003-297660 A 特許3698538号公報Japanese Patent No. 3698538

T.Iriyama IEEE TRANSAACTIONS ON MAGNETICS,VOL.28,No.5(1992)T.A. Iriyama IEEE TRANSATIONS ON MAGNETICS, VOL. 28, no. 5 (1992)

本発明の目的は、上記従来技術の問題点に鑑み、湿式混合した原料粉を還元拡散反応し、逆軸の核の発生を抑制すると共に、局部的な発熱による粒成長を抑制して、安価で高特性の磁石粉末を安定的に生産できる希土類−遷移金属−窒素磁石粉末の製造方法を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to carry out a reduction diffusion reaction on the wet-mixed raw material powder to suppress the generation of nuclei on the reverse axis and to suppress the grain growth due to local heat generation, thereby reducing Another object of the present invention is to provide a method for producing a rare earth-transition metal-nitrogen magnet powder capable of stably producing high-performance magnet powder.

本発明者らは、上記目的を達成するために鋭意研究を重ね、かかる従来の課題を解決するために鋭意研究を重ねた結果、希土類−遷移金属−窒素磁石粉末を高性能化するためには、特定な条件で原料粉末を水溶媒および希酸と湿式混合し、この湿式混合時に希土類水酸化物を酸化鉄表面に析出させることにより、還元拡散処理時に希土類鉄複合酸化物が特定量だけ生成することで、局部的な発熱が抑制され、粒成長による粗大粒子が非常に少ない希土類−鉄系母合金を得ることができ、これにより極めて優れた磁気特性が実現できることを見出し、本発明を完成するに至った。   In order to achieve high performance of rare earth-transition metal-nitrogen magnet powders, the present inventors have conducted extensive research to achieve the above-mentioned object, and have conducted extensive research to solve such conventional problems. The raw material powder is wet-mixed with an aqueous solvent and dilute acid under specific conditions, and the rare earth hydroxide is precipitated on the iron oxide surface during this wet mixing, so that a specific amount of rare earth iron composite oxide is produced during the reduction diffusion treatment. As a result, it was found that local heat generation was suppressed, and a rare earth-iron-based master alloy with very few coarse particles due to grain growth could be obtained, thereby achieving extremely excellent magnetic properties, and the present invention was completed. It came to do.

すなわち、本発明の第1の発明によれば、磁石原料となる平均粒子径が2μm以下の酸化鉄粉末を水溶媒でスラリー化し、次に、このスラリーのpH値が2〜5の範囲に維持されるように1mol/L以下の希酸を添加しつつ希土類酸化物を所定量投入して溶解させ、その後、アルカリ金属塩もしくはアルカリ土類金属塩を添加してpHが7.0を超えるようにすることで希土類水酸化物を酸化鉄表面に析出させた原料混合粉末を製造する第一の工程、得られた原料混合粉末を水素熱処理する第二の工程、水素熱処理された混合粉末に還元剤成分としてアルカリ土類金属を所定量添加し、混合して、不活性ガス雰囲気中で、900〜1300℃の温度で熱処理した後、同雰囲気中で冷却することにより希土類−鉄系母合金を得る第三の工程、引き続き、得られた希土類−鉄系母合金に少なくともアンモニアと水素とを含有する混合ガスを導入し、この気流中で所定の温度で熱処理することにより窒化処理する第四の工程、次に得られた窒化処理物を湿式処理し、還元剤成分の副生成物を分離除去し、その後得られた粗粉末を解砕する第五の工程からなる希土類−遷移金属−窒素磁石粉末の製造方法が提供される。   That is, according to the first invention of the present invention, iron oxide powder having an average particle diameter of 2 μm or less, which is a magnet raw material, is slurried with an aqueous solvent, and then the pH value of this slurry is maintained in the range of 2 to 5. As described above, a predetermined amount of rare earth oxide is added and dissolved while adding 1 mol / L or less of dilute acid, and then an alkali metal salt or an alkaline earth metal salt is added so that the pH exceeds 7.0. The first step of producing the raw material mixed powder in which the rare earth hydroxide is precipitated on the iron oxide surface, the second step of subjecting the obtained raw material mixed powder to the hydrogen heat treatment, and the reduction to the hydrogen-heat treated mixed powder A predetermined amount of an alkaline earth metal is added as an agent component, mixed, heat-treated at a temperature of 900 to 1300 ° C. in an inert gas atmosphere, and then cooled in the same atmosphere to form a rare earth-iron-based master alloy. A third step to obtain, Subsequently, a fourth step of nitriding by introducing a mixed gas containing at least ammonia and hydrogen into the obtained rare earth-iron based master alloy and performing a heat treatment at a predetermined temperature in this air stream, then obtained. A process for producing a rare earth-transition metal-nitrogen magnet powder comprising a fifth step of wet-treating the resulting nitrided product, separating and removing the by-products of the reducing agent component, and then crushing the resulting coarse powder. Provided.

また、本発明の第2の発明によれば、第1の発明において、第一の工程において、希酸が塩酸、硝酸のいずれかであることを特徴とする希土類−遷移金属−窒素磁石粉末の製造方法が提供される。
また、本発明の第3の発明によれば、第1の発明において、第一の工程において、第1工程におけるアルカリ金属塩もしくはアルカリ土類金属塩が、水中でアルカリ性を示す水酸化物、酸化物、窒化物もしくはこれらの複合化合物であることを特徴とする希土類−遷移金属−窒素磁石粉末の製造方法が提供される。
また、本発明の第4の発明によれば、第1の発明において、第一の工程において、混合粉末の乾燥温度が300℃以下であることを特徴とする希土類−遷移金属−窒素磁石粉末の製造方法が提供される。
また、本発明の第5の発明によれば、第1の発明において、第二の工程において、混合粉末が500〜800℃で、1〜8時間かけて水素熱処理されることを特徴とする希土類−遷移金属−窒素磁石粉末の製造方法が提供される。
また、本発明の第6の発明によれば、第1の発明において、第三の工程において、アルカリ土類金属の添加量が、第2工程までで還元されていない原料粉末中の酸素量を還元するのに必要な量を1当量としたとき、1.1〜3.0当量であることを特徴とする希土類−遷移金属−窒素磁石粉末の製造方法が提供される。
また、本発明の第7の発明によれば、第1の発明において、第三の工程において、さらに、還元拡散反応後の反応生成物に対して、雰囲気ガスを不活性ガスとしたまま、引き続き300℃以下に冷却することを特徴とする希土類−遷移金属−窒素磁石粉末の製造方法が提供される。
また、本発明の第8の発明によれば、第1の発明において、第五の工程において、湿式処理及び解砕して得られる粉末は、長軸粒子径が4μmを越える1次粒子が累積個数百分率で5%未満であることを特徴とする希土類−遷移金属−窒素磁石粉末の製造方法が提供される。
さらに、本発明の第9の発明によれば、第1の発明において、希土類−遷移金属−窒素系磁石粉末は、希土類としてSmを含み、その含有量が磁石粉末全体に対して23.2〜23.6重量%であることを特徴とする希土類−遷移金属−窒素磁石粉末の製造方法が提供される。
According to a second aspect of the present invention, there is provided a rare earth-transition metal-nitrogen magnet powder characterized in that, in the first step, the diluted acid is either hydrochloric acid or nitric acid in the first step. A manufacturing method is provided.
According to the third invention of the present invention, in the first invention, in the first step, the alkali metal salt or alkaline earth metal salt in the first step is a hydroxide or an oxide that exhibits alkalinity in water. There is provided a method for producing rare earth-transition metal-nitrogen magnet powders, characterized in that the rare earth-transition metal-nitrogen magnet powder is characterized in that it is an oxide, a nitride or a composite compound thereof.
According to a fourth aspect of the present invention, there is provided a rare earth-transition metal-nitrogen magnet powder characterized in that, in the first step, the drying temperature of the mixed powder is 300 ° C. or lower in the first step. A manufacturing method is provided.
According to a fifth aspect of the present invention, in the first aspect, the rare earth characterized in that, in the second step, the mixed powder is subjected to a hydrogen heat treatment at 500 to 800 ° C. for 1 to 8 hours. A method for producing a transition metal-nitrogen magnet powder is provided.
According to the sixth invention of the present invention, in the first invention, in the third step, the amount of the alkaline earth metal added is the amount of oxygen in the raw material powder that has not been reduced up to the second step. Provided is a method for producing a rare earth-transition metal-nitrogen magnet powder, characterized in that when the amount necessary for reduction is 1 equivalent, it is 1.1-3.0 equivalents.
Further, according to the seventh invention of the present invention, in the first invention, in the third step, the reaction gas after the reduction-diffusion reaction is continued with the atmosphere gas being an inert gas. There is provided a method for producing a rare earth-transition metal-nitrogen magnet powder characterized by cooling to 300 ° C. or lower.
According to the eighth invention of the present invention, in the first invention, in the fifth process, the powder obtained by wet treatment and pulverization accumulates primary particles having a major axis particle diameter exceeding 4 μm. Provided is a method for producing rare earth-transition metal-nitrogen magnet powder, characterized in that the percentage is less than 5%.
Furthermore, according to the ninth invention of the present invention, in the first invention, the rare earth-transition metal-nitrogen based magnet powder contains Sm as a rare earth, and the content thereof is 23.2 to the whole magnet powder. A method for producing a rare earth-transition metal-nitrogen magnet powder characterized by being 23.6% by weight is provided.

本発明の希土類−遷移金属−窒素磁石粉末の製造方法によれば、原料粉の混合工程において、水溶媒を用い、磁石原料となる酸化鉄粉末を水中に分散させ、このスラリーのpHが2〜5の範囲に維持されるように特定濃度の希酸を添加しつつ希土類酸化物粉末を所定量投入溶解させ、その後、アルカリ金属塩もしくはアルカリ土類金属塩を添加してスラリーをアルカリ性とすることで希土類水酸化物を酸化鉄表面に析出させた原料混合粉末を製造するため、この原料混合粉末を元に水素還元によって生成されるSmFeOの存在率を大幅に増やし30重量%以上40重量%以下にすることにより、次工程での還元拡散処理後の発熱の均一化および局所的な粒成長を抑制し、さらに次工程での粉砕強度の低減に依る逆軸の核の発生および結晶歪み防止が可能となる。
さらに次の還元拡散処理工程で、局部的な発熱が抑制され、希土類−鉄系母合金の粗大粒子の発生が抑制され、その結果、粉砕強度の低減に依る逆軸の核の発生および結晶歪み防止が可能となる。
また、次の工程で希土類−鉄母合金を窒化処理・湿式処理するに当たり、還元拡散処理を終了してから窒化処理に入るまでの雰囲気及び温度を制御すれば、粒子表面が酸化されるのを抑制し、窒化効率を低下させないで窒化処理することができるから、高性能な希土類−遷移金属−窒素磁石粉末を製造できる。
また、希土類−鉄系母合金を湿式処理後に窒化するのではなく、窒化処理後に湿式処理するので、非磁性相が低減でき、湿式処理時にオキシ水酸化鉄が主相の周りに付着して窒化時に該オキシ水酸化鉄がα−Feとなって析出することはないので、飽和磁化、保磁力が高まり減磁曲線の角形性が良好な、α−Fe比率が小さい希土類−遷移金属−窒素磁石粉末を得ることができる。これにより製造コストも安価になることから、その工業的価値は極めて大きい。
According to the method for producing a rare earth-transition metal-nitrogen magnet powder of the present invention, in the raw material powder mixing step, an aqueous solvent is used to disperse iron oxide powder as a magnetic raw material in water, and the pH of this slurry is 2 to 2. A predetermined amount of rare earth oxide powder is added and dissolved while adding a specific concentration of dilute acid so as to be maintained in the range of 5, and then the alkali metal salt or alkaline earth metal salt is added to make the slurry alkaline. In order to produce a raw material mixed powder in which a rare earth hydroxide is precipitated on the iron oxide surface, the abundance of SmFeO 3 produced by hydrogen reduction based on this raw material mixed powder is greatly increased to 30 wt% to 40 wt% By making the following, uniform generation of heat after reduction diffusion treatment in the next step and local grain growth are suppressed, and generation of nuclei and crystals on the reverse axis due to reduction of crushing strength in the next step Distortion can be prevented.
Furthermore, in the next reduction diffusion treatment process, local heat generation is suppressed, and the generation of coarse particles of rare earth-iron master alloy is suppressed. As a result, the generation of reverse axis nuclei and crystal distortion due to the reduction of crushing strength. Prevention becomes possible.
In addition, when the rare earth-iron mother alloy is subjected to nitriding / wet treatment in the next step, the particle surface is oxidized by controlling the atmosphere and temperature from the end of the reduction diffusion treatment to the start of the nitriding treatment. Therefore, high-performance rare earth-transition metal-nitrogen magnet powder can be produced because the nitriding treatment can be performed without reducing the nitriding efficiency.
In addition, since the rare earth-iron-based master alloy is not nitrided after the wet treatment, but is wet-treated after the nitridation treatment, the nonmagnetic phase can be reduced, and the iron oxyhydroxide adheres around the main phase during the wet treatment and is nitrided. Occasionally, the iron oxyhydroxide does not precipitate as α-Fe, so a rare earth-transition metal-nitrogen magnet with a low α-Fe ratio and a high saturation magnetization, coercive force and good demagnetization curve squareness A powder can be obtained. As a result, the manufacturing cost is also low, and its industrial value is extremely high.

以下、本発明の希土類−遷移金属−窒素磁石粉末の製造方法について、詳しく説明する。   Hereinafter, the method for producing the rare earth-transition metal-nitrogen magnet powder of the present invention will be described in detail.

本発明の製造方法は、磁石原料となる平均粒子径が2μm以下の酸化鉄粉末を水溶媒でスラリー化し、次に、このスラリーのpH値が2〜5の範囲に維持されるように1mol/L以下の希酸を添加しつつ希土類酸化物を所定量投入して溶解させ、その後、アルカリ金属塩もしくはアルカリ土類金属塩を添加してpHが7.0を超えるようにすることで希土類水酸化物を酸化鉄表面に析出させた原料混合粉末を製造する第一の工程、得られた原料混合粉末を水素熱処理する第二の工程、水素熱処理された混合粉末に還元剤成分としてアルカリ土類金属を所定量添加し、混合して、不活性ガス雰囲気中で、900〜1300℃の温度で熱処理した後、同雰囲気中で冷却することにより希土類−鉄系母合金を得る第三の工程、引き続き、得られた希土類−鉄系母合金に少なくともアンモニアと水素とを含有する混合ガスを導入し、この気流中で所定の温度で熱処理することにより窒化処理する第四の工程、次に得られた窒化処理物を湿式処理し、還元剤成分の副生成物を分離除去し、その後得られた粗粉末を解砕する第五の工程からなる希土類−遷移金属−窒素磁石粉末の製造方法からなる。
以下に各工程順に、詳細に説明する。
In the production method of the present invention, an iron oxide powder having an average particle size of 2 μm or less, which is a magnet raw material, is slurried with an aqueous solvent, and then 1 mol / mol so that the pH value of the slurry is maintained in the range of 2 to 5. Rare earth water is added by adding a predetermined amount of rare earth oxide while adding dilute acid of L or less, and then adding an alkali metal salt or alkaline earth metal salt so that the pH exceeds 7.0. The first step of producing a raw material mixed powder in which oxides are deposited on the iron oxide surface, the second step of subjecting the obtained raw material mixed powder to a hydrogen heat treatment, and the alkaline earth as a reducing agent component in the hydrogen heat treated mixed powder A third step of adding a predetermined amount of metal, mixing, heat-treating at a temperature of 900 to 1300 ° C. in an inert gas atmosphere, and then cooling in that atmosphere to obtain a rare earth-iron-based master alloy; Continuously obtained A fourth step of nitriding by introducing a mixed gas containing at least ammonia and hydrogen into the earth-iron-based master alloy and heat-treating it at a predetermined temperature in this air stream; Is produced by a wet process, and a by-product of the reducing agent component is separated and removed. Thereafter, the obtained coarse powder is crushed, and then a rare earth-transition metal-nitrogen magnet powder production method comprising a fifth step.
Below, it demonstrates in detail in order of each process.

1.第一の工程:原料粉末の調製
まず、磁石原料となる酸化鉄と希土類酸化物の粉末を混合する。
1. First Step: Preparation of Raw Material Powder First, iron oxide and rare earth oxide powder to be used as a magnet raw material are mixed.

磁石原料となる酸化鉄粉末としては、Feのほか、FeOやFeも使用できる。粒子径は、レーザー回折型粒径分布測定による平均粒子径(D50値)で2μm以下であることが必要で、1μm以下がより好ましい。これは、平均粒子径が2μmを超えると後に生成される希土類―鉄母合金がその粒子径以上となるため、大きな粒子ができやすく保磁力が低下するほか、窒化処理の際に粒子内の窒化不足が起きる要因となるためである。
希土類酸化物粉末としては、特に制限されないが、Sm、Gd、Tb、Ceから選ばれる少なくとも1種類の元素が好ましい。Smが含まれるものは、本発明の効果を顕著に発揮させることが可能になるので特に好ましい。Smが含まれる場合、高い保磁力を得るためにはSmを希土類元素全体の60重量%以上、好ましくは90重量%以上にすることが高い保磁力を得るために望ましい。希土類酸化物粉末の粒子径は、固相内拡散がしやすく、不均一な拡散が起こらないように、前記酸化鉄粉末の粒子径より小さいことが好ましい。
In addition to Fe 2 O 3 , FeO or Fe 3 O 4 can also be used as the iron oxide powder as a magnet raw material. The particle diameter is required to be 2 μm or less as an average particle diameter (D50 value) by laser diffraction particle size distribution measurement, and more preferably 1 μm or less. This is because when the average particle diameter exceeds 2 μm, the rare earth-iron mother alloy produced later becomes larger than the particle diameter, so that large particles are easily formed and the coercive force is reduced. This is because a shortage occurs.
The rare earth oxide powder is not particularly limited, but at least one element selected from Sm, Gd, Tb and Ce is preferable. Those containing Sm are particularly preferable because the effects of the present invention can be remarkably exhibited. When Sm is contained, in order to obtain a high coercive force, it is desirable that Sm be 60% by weight or more, preferably 90% by weight or more of the entire rare earth element in order to obtain a high coercive force. The particle diameter of the rare earth oxide powder is preferably smaller than the particle diameter of the iron oxide powder so as to facilitate diffusion in the solid phase and prevent non-uniform diffusion.

原料粉末の混合方法としては、以下の手順で行うことができる。まず、ステンレス容器に酸化鉄粉末と純水を投入しスラリー化した後、1mol/L以下の希酸を使用してpHを2〜5の範囲に保持する。ここに希土類酸化物を投入しつつ、pHを2〜5の範囲に保持するように希酸を添加し、投入した希土類酸化物を全てスラリー中に溶解させる。
このとき用いる希酸は、塩酸もしくは硝酸が好ましい。また酸の濃度が1mol/Lを超えたものを使用すると、分散するまでに局所的に高濃度の酸性浴となるため酸化鉄の一部も溶解を起こし、組成比のズレが生じるほか、粒子径や形状を決める酸化鉄が溶けることで粉体性状を大きく変えてしまい形状制御が出来なくなる。
また、pHを2〜5に保持することが好ましいが、これはpHを低くしすぎると中和に多量のアルカリ塩を必要とし、酸化鉄表面に析出し難くなるためであり、pHが高すぎると希土類酸化物が溶解しにくいほか変曲点近くのためpH制御が困難となるためである。次に希土類塩が溶解したスラリー中に再び希土類塩を析出させるため、アルカリ金属塩もしくはアルカリ土類金属塩を使用し、pHをアルカリ性に移行させ、その後洗浄、掛水、ろ過、乾燥する。
この時使用するアルカリ金属塩は、Li、Na、Kの少なくとも1種以上からなる水酸化物や酸化物、窒化物、またはこれらの複合化合物が安価で好ましい。またアルカリ土類金属についても、Mg、Caの少なくとも1種以上からなる水酸化物や酸化物、窒化物、またはこれらの複合化合物が安価で好ましい。以上の手順で得られた粉末は、酸化鉄粉末の表面に希土類水酸化物が析出した粒子である。
The raw material powder can be mixed by the following procedure. First, iron oxide powder and pure water are put into a stainless steel container to make a slurry, and the pH is maintained in the range of 2 to 5 using 1 mol / L or less of dilute acid. A dilute acid is added so that the pH is maintained in a range of 2 to 5 while the rare earth oxide is added thereto, and all of the charged rare earth oxide is dissolved in the slurry.
The diluted acid used at this time is preferably hydrochloric acid or nitric acid. Also, if the acid concentration exceeds 1 mol / L, it becomes an acidic bath with a high concentration locally before being dispersed, so that part of the iron oxide also dissolves, resulting in a deviation in the composition ratio. The iron oxide that determines the diameter and shape melts, so that the powder properties change greatly and the shape cannot be controlled.
Further, it is preferable to maintain the pH at 2 to 5, but this is because if the pH is too low, a large amount of alkali salt is required for neutralization and it is difficult to precipitate on the iron oxide surface, and the pH is too high. This is because the rare earth oxide is difficult to dissolve and the pH is difficult to control because it is close to the inflection point. Next, in order to precipitate the rare earth salt again in the slurry in which the rare earth salt is dissolved, an alkali metal salt or an alkaline earth metal salt is used, the pH is shifted to alkaline, and then washing, splashing, filtering, and drying are performed.
The alkali metal salt used at this time is preferably a hydroxide, oxide, nitride, or composite compound of at least one of Li, Na, and K at low cost. As for alkaline earth metals, hydroxides, oxides, nitrides, or composite compounds of at least one of Mg and Ca are preferable because they are inexpensive. The powder obtained by the above procedure is a particle in which rare earth hydroxide is precipitated on the surface of the iron oxide powder.

その後、湿式混合したスラリーは、真空ろ過やフィルタープレス、遠心分離などのろ過方法でろ過し、乾燥して、第一の工程に係る処理物を得る。
また、乾燥も通常の乾燥方法でよく、例えば定置乾燥、流動乾燥、気流乾燥、攪拌乾燥、真空乾燥、振動乾燥などの方法を用いて乾燥することができる。乾燥温度は、複合酸化物の生成を防止するために、300℃以下が好ましい。
Thereafter, the wet-mixed slurry is filtered by a filtration method such as vacuum filtration, filter press, or centrifugal separation, and dried to obtain a processed product according to the first step.
Also, the drying may be performed by a normal drying method. For example, the drying can be performed using a method such as stationary drying, fluidized drying, airflow drying, stirring drying, vacuum drying, and vibration drying. The drying temperature is preferably 300 ° C. or lower in order to prevent formation of complex oxide.

2.第二の工程:得られた原料混合粉末の水素熱処理
本発明における第二の工程は、第一の工程で得られた原料混合粉末を水素気流中にて熱処理し、酸化鉄のみを還元する工程である。
2. Second step: Hydrogen heat treatment of the obtained raw material mixed powder The second step in the present invention is a step of heat-treating the raw material mixed powder obtained in the first step in a hydrogen stream to reduce only iron oxide. It is.

この熱処理は、酸化鉄のみを還元するものであるから、500〜800℃の温度範囲であり、500〜700℃が好ましい。500℃を下回ると、還元が不十分となり酸化鉄が残りやすくなるほか、還元後の結晶が不安定なため、大気に触れるとすぐに酸化して再び酸化鉄に戻ることがあり、また、800℃を超えると、還元はされるが高温のため出発原料の粒子径から粒成長によって大きくなってしまい、次工程の希土類―鉄系母合金を得る時点で、最終製品の保磁力を低下させるほどまで粒子径が粗大化することがある。熱処理は、1〜8時間、好ましくは2〜6時間行うようにする。   Since this heat treatment is to reduce only iron oxide, the temperature range is 500 to 800 ° C, preferably 500 to 700 ° C. Below 500 ° C, the reduction is insufficient and iron oxide tends to remain, and the crystal after reduction is unstable, so that it may be oxidized immediately upon contact with the atmosphere and return to iron oxide again. If the temperature exceeds ℃, the reduction will occur, but the particle size of the starting material will increase due to grain growth due to the high temperature, and the coercive force of the final product will decrease when the rare earth-iron master alloy is obtained in the next step. The particle diameter may become coarse up to. The heat treatment is performed for 1 to 8 hours, preferably 2 to 6 hours.

また、このとき得られる粉末は、鉄粉末、希土類酸化物のほかに鉄希土類複合酸化物が含まれるが、この鉄希土類複合酸化物の存在比率は30重量%以上40%重量以下であることが好ましい。この範囲であれば、次の還元拡散において起こるテルミット発熱が全体に均一となり、局部的な発熱が発生せず、粒度分布のブロードな角形性に不利な粉末が出来ることがない。これまで前記特許文献2のように、希土類酸化物の一部が水中に溶解・再析出し、微細なサブミクロンの希土類水酸化物となり、その後の水素還元熱処理時に希土類鉄複合酸化物が生成して、アルカリ土類金属による還元熱処理を行う際に大きなテルミット発熱を生じて局部的な粒成長を引き起こすとされていた。本発明では、第二の工程で、30〜40%重量もの多量の鉄希土類複合酸化物が生成するにも係らず、最終的に磁気特性に優れる磁石粉末が得られており、この理由は、生成した多量の鉄希土類複合酸化物が、偏在せず均一に分散しているために、還元拡散において全体に均一なテルミット発熱を起こさせるのではないかと考えられる。   Further, the powder obtained at this time contains iron rare earth composite oxide in addition to iron powder and rare earth oxide, and the abundance ratio of this iron rare earth composite oxide is 30% by weight or more and 40% by weight or less. preferable. Within this range, thermite heat generation that occurs in the subsequent reduction diffusion is uniform throughout, local heat generation does not occur, and a powder unfavorable for the broad squareness of the particle size distribution cannot be formed. Until now, as in Patent Document 2, a part of the rare earth oxide is dissolved and reprecipitated in water to become a fine submicron rare earth hydroxide, and a rare earth iron composite oxide is formed during the subsequent hydrogen reduction heat treatment. Therefore, it is said that a large thermite heat generation occurs during the reduction heat treatment with an alkaline earth metal to cause local grain growth. In the present invention, in spite of the fact that a large amount of 30-40% by weight iron rare earth composite oxide is produced in the second step, a magnet powder having excellent magnetic properties is finally obtained. The large amount of the generated iron rare earth composite oxide is uniformly distributed without being unevenly distributed. Therefore, it is considered that uniform thermite heat generation may occur in the reduction diffusion.

3.第三の工程:還元拡散処理
次に、第二の工程で得られた粉末にアルカリ土類金属を所定量添加し混合して、不活性ガス雰囲気中で、所定の温度で熱処理し、その雰囲気のまま冷却する還元拡散法で、ThZn17型結晶構造を有する希土類―鉄系母合金を製造する。
本発明の還元拡散法においては、前記したように希土類酸化物粉末と他の金属粉末、Caなどの還元剤との混合物を不活性ガス雰囲気中、例えば900〜1300℃で加熱した後、反応生成物を湿式処理して副生したCaOおよび残留Caなどの還元剤成分を除去して、直接合金粉末を得るようにする。
3. Third step: Reduction diffusion treatment Next, a predetermined amount of alkaline earth metal is added to and mixed with the powder obtained in the second step, and heat treatment is performed at a predetermined temperature in an inert gas atmosphere. A rare earth-iron master alloy having a Th 2 Zn 17 type crystal structure is produced by a reduction diffusion method that is cooled as it is.
In the reduction diffusion method of the present invention, as described above, a mixture of a rare earth oxide powder, another metal powder, and a reducing agent such as Ca is heated in an inert gas atmosphere at, for example, 900 to 1300 ° C., and then a reaction product is generated. The product is wet-treated to remove reducing agent components such as CaO and residual Ca, which are by-produced, to directly obtain an alloy powder.

本発明では、第二の工程で得られた鉄粉末と希土類酸化物、あるいはこれに希土類鉄複合酸化物が存在する混合粉末と、アルカリ土類金属の還元剤とを反応容器に投入し、熱処理する。これによって、希土類酸化物と他の酸化物原料とを還元するとともに、還元された希土類元素などの金属元素を鉄粉末中に拡散させて、ThZn17型結晶構造を有する希土類―鉄系母合金を生成させる。
ここで、反応容器に投入する粉末は、それぞれの粉体特性によって分離しないように均一に混合する必要がある。混合方法としては、例えばリボンブレンダー、タンブラー、S字ブレンダー、V字ブレンダー、ナウターミキサー、ヘンシェルミキサー、ハイスピードミキサー、ボールミル、振動ミル、アトライターなどが使用できる。
還元剤であるアルカリ土類金属としては、取り扱いの安全性とコストの点で、目開き4.00mm以下に分級した粒状金属カルシウムもしくは金属マグネシウムが好ましい。アルカリ土類金属の添加量は、第2工程までで還元されていない原料粉末中の酸素量を還元するのに必要な量を1当量としたとき、1.1〜3.0当量であり、1.3〜2.0当量であることが好ましい。この範囲であれば、原料粉末を十分に還元することができる。
原料粉末や還元剤とともに、後に第五の工程の湿式処理工程において、反応生成物の崩壊を促進させる添加物を混合することも効果的である。崩壊促進剤としては、塩化カルシウムなどのアルカリ土類金属の塩や酸化物を用いることができ、原料粉末などと同時に均一に混合する。ここで不活性ガスとしては、アルゴン、ヘリウムから選ばれた1種類以上が用いられる。
In the present invention, the iron powder obtained in the second step and the rare earth oxide, or the mixed powder containing the rare earth iron composite oxide and the alkaline earth metal reducing agent are put into a reaction vessel, and heat treatment is performed. To do. As a result, the rare earth oxide and other oxide raw materials are reduced, and the reduced rare earth element and other metal elements are diffused into the iron powder, so that the rare earth-iron base having a Th 2 Zn 17 type crystal structure is obtained. An alloy is formed.
Here, it is necessary to uniformly mix the powder charged into the reaction vessel so as not to be separated depending on the powder characteristics. As a mixing method, for example, a ribbon blender, a tumbler, an S-shaped blender, a V-shaped blender, a Nauter mixer, a Henschel mixer, a high speed mixer, a ball mill, a vibration mill, an attritor and the like can be used.
The alkaline earth metal as the reducing agent is preferably granular metallic calcium or metallic magnesium classified into an opening of 4.00 mm or less in terms of handling safety and cost. The addition amount of the alkaline earth metal is 1.1 to 3.0 equivalents when the amount necessary for reducing the amount of oxygen in the raw material powder not reduced until the second step is 1 equivalent, It is preferable that it is 1.3-2.0 equivalent. If it is this range, raw material powder can fully be reduced.
In addition to the raw material powder and the reducing agent, it is also effective to mix an additive that promotes the decay of the reaction product later in the wet processing step of the fifth step. As the disintegration accelerator, salts or oxides of alkaline earth metals such as calcium chloride can be used, and they are uniformly mixed simultaneously with the raw material powder. Here, as the inert gas, one or more selected from argon and helium are used.

本発明においては、第三の工程の還元拡散では、熱処理温度を900〜1180℃の範囲とすることが重要である。900℃未満では、鉄粉末に対して希土類元素の拡散が不均一となり、最終的に得られる希土類−遷移金属−窒素系磁石粉末の保磁力や角形性が低下するほか、拡散に要する時間が非常に長くなり、生産性が低下する。また、1180℃を超えると、生成する希土類―鉄系母合金が粒成長を起こすため、均一に窒化することが困難になり、最終的に得られる磁石粉末の飽和磁化と角形性、保磁力が低下する場合がある。また、高価な希土類金属であるSmの蒸発量も非常に多くなり、過剰な量が必要となり高コストにもなる。900〜1180℃ではこのような現象が起きないほか、1次粒子が小さくブドウ状に焼結した状態で得られる2次粒子体の粒子同士の焼結が弱く、窒化処理後の解砕のときに結晶歪みを起こしにくい利点もある。   In the present invention, in the reduction diffusion in the third step, it is important that the heat treatment temperature is in the range of 900 to 1180 ° C. If the temperature is lower than 900 ° C., the rare earth element does not diffuse uniformly with respect to the iron powder, the coercive force and the squareness of the finally obtained rare earth-transition metal-nitrogen magnet powder are reduced, and the time required for the diffusion is very large. And the productivity decreases. If the temperature exceeds 1180 ° C, the rare earth-iron-based master alloy produced undergoes grain growth, making uniform nitriding difficult, and the finally obtained magnet powder has saturation magnetization, squareness and coercive force. May decrease. Further, the amount of evaporation of Sm, which is an expensive rare earth metal, is very large, and an excessive amount is required, resulting in high costs. At 900-1180 ° C., such a phenomenon does not occur, and secondary particles obtained in a state where the primary particles are small and sintered in a grape shape are weakly sintered. There is also an advantage that crystal distortion is less likely to occur.

ここで、還元拡散反応で得られる生成物は、例えば、還元剤として金属カルシウムを用いた場合には、ThZn17型結晶構造を有する希土類−鉄系母合金と酸化カルシウム、未反応の余剰の金属カルシウムなどからなる塊状の混合物である。さらに粒状金属カルシウムを原料粉末に混合して還元拡散反応させた場合には、次工程での処理が容易な多孔質の塊状混合物となる。
なお、本発明では、還元拡散反応後の反応生成物に対して、雰囲気ガスを不活性ガスとしたまま変えずに、引き続き、300℃以下、好ましくは50〜280℃、より好ましくは100〜250℃に冷却する。
冷却後の温度が300°Cを越えていると、窒化の際に反応生成物との窒化反応が急激に進んでしまい、α−Fe相を増加させてしまうことがあるので、300°Cよりも低い温度まで冷却するのが望ましい。すなわち、300°Cを越える温度では、反応生成物が活性であるために合金が急激に窒化されて、ThZn17型結晶構造を有する金属間化合物がFeリッチ相とSmNとに分解するものと推測される。
Here, the product obtained by the reduction diffusion reaction, for example, when metallic calcium is used as the reducing agent, rare earth-iron master alloy having a Th 2 Zn 17 type crystal structure and calcium oxide, unreacted surplus It is a massive mixture of metallic calcium. Furthermore, when granular metal calcium is mixed with the raw material powder and subjected to a reduction diffusion reaction, a porous massive mixture that can be easily processed in the next step is obtained.
In the present invention, the reaction product after the reduction-diffusion reaction is continuously changed to 300 ° C. or less, preferably 50 to 280 ° C., more preferably 100 to 250 without changing the atmospheric gas as an inert gas. Cool to ° C.
If the temperature after cooling exceeds 300 ° C, the nitridation reaction with the reaction product proceeds rapidly during nitriding, which may increase the α-Fe phase. It is desirable to cool to a lower temperature. That is, at temperatures exceeding 300 ° C., the reaction product is active, so that the alloy is rapidly nitrided, and the intermetallic compound having a Th 2 Zn 17 type crystal structure is decomposed into an Fe-rich phase and SmN. It is guessed.

冷却後に、多孔質の塊状混合物である反応生成物を湿式処理しないで、雰囲気ガスを不活性ガスから、少なくともアンモニアと水素とを含有する混合ガスに変えて、次の窒化工程に移る。
このとき反応生成物が大気中に曝されると、反応生成物中の活性な希土類−鉄系母合金粉末が酸化されて反応性が失われ、結果として窒化の度合いをばらつかせるので、大気(酸素)に曝されることのないように窒化工程に持ち込むことが重要である。
After cooling, the reaction product, which is a porous massive mixture, is not wet-treated, and the atmosphere gas is changed from an inert gas to a mixed gas containing at least ammonia and hydrogen, and the process proceeds to the next nitriding step.
If the reaction product is exposed to the atmosphere at this time, the active rare earth-iron master alloy powder in the reaction product is oxidized and the reactivity is lost. It is important to bring it into the nitriding process so that it is not exposed to (oxygen).

4.第四の工程:窒化処理
窒化工程では、まず第三の工程の最終段階で冷却後、雰囲気ガスの不活性ガスを排出してから、少なくともアンモニアと水素とを含有する混合ガスを導入し、雰囲気ガスを完全に置換した後に昇温し、反応生成物を所定温度で熱処理する。
4). Fourth step: nitriding treatment In the nitriding step, first, after cooling in the final stage of the third step, the inert gas of the atmospheric gas is discharged, and then a mixed gas containing at least ammonia and hydrogen is introduced into the atmosphere. After the gas is completely replaced, the temperature is raised and the reaction product is heat-treated at a predetermined temperature.

窒化ガスとしては、少なくともアンモニアと水素とを含有していることが必要であり、反応をコントロールするためにアルゴン、窒素、ヘリウムなどを混合することができる。
全気流圧力に対するアンモニアの比(アンモニア分圧)は、0.2〜0.6、好ましくは0.3〜0.5となるようにする。この範囲であれば、長時間かけずに希土類−鉄系母合金の窒化が十分に進み、良好な磁石粉末の飽和磁化と保磁力を得るために必要な、希土類−鉄系母合金中の窒素量を3.3〜3.7重量%とすることができる。
The nitriding gas needs to contain at least ammonia and hydrogen, and argon, nitrogen, helium, etc. can be mixed to control the reaction.
The ratio of ammonia to the total airflow pressure (ammonia partial pressure) is 0.2 to 0.6, preferably 0.3 to 0.5. Within this range, the nitridation of the rare earth-iron master alloy is sufficiently advanced without taking a long time, and the nitrogen in the rare earth-iron master alloy necessary for obtaining the satisfactory saturation magnetization and coercive force of the magnet powder. The amount can be 3.3 to 3.7% by weight.

アンモニアと水素とを含有する混合気流を窒化温度である350〜500°C、好ましくは400〜480°Cで供給して、希土類−鉄系母合金を窒化熱処理することが重要である。熱処理温度が350°C未満であると、反応生成物中の希土類−鉄系母合金に3.3〜3.7重量%の窒素を導入するのに長時間を要するので工業的優位性がなくなる。一方、500°Cを超えると、例えば希土類がサマリウムの場合、主相であるSmFe17相が分解してα−Feが生成するので、最終的に得られる希土類−遷移金属−窒素系磁石粉末の減磁曲線の角形性が低下するので好ましくない。なお、冷却温度から窒化温度までは、毎分4〜10℃の速度で比較的急速に昇温することが生産効率を高める上で望ましい。
窒化処理の保持時間は、窒化温度にもよるが、100〜300分、好ましくは、140〜250分とする。100分未満では、窒化が不十分になり、一方、300分を超えると窒化が進みすぎるので好ましくない。
It is important to supply a mixed gas stream containing ammonia and hydrogen at a nitriding temperature of 350 to 500 ° C., preferably 400 to 480 ° C., and to subject the rare earth-iron base alloy to a nitriding heat treatment. When the heat treatment temperature is lower than 350 ° C., it takes a long time to introduce 3.3 to 3.7% by weight of nitrogen into the rare earth-iron master alloy in the reaction product. . On the other hand, when the temperature exceeds 500 ° C., for example, when the rare earth is samarium, the Sm 2 Fe 17 phase, which is the main phase, is decomposed to produce α-Fe, so that the finally obtained rare earth-transition metal-nitrogen based magnet This is not preferable because the squareness of the demagnetization curve of the powder is lowered. From the cooling temperature to the nitriding temperature, it is desirable to raise the temperature relatively rapidly at a rate of 4 to 10 ° C. per minute in order to increase production efficiency.
The retention time for the nitriding treatment is 100 to 300 minutes, preferably 140 to 250 minutes, although it depends on the nitriding temperature. If it is less than 100 minutes, nitriding becomes insufficient, while if it exceeds 300 minutes, nitriding proceeds excessively, which is not preferable.

本発明においては、窒化処理に引き続いて、さらに水素ガス、または窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガス中で合金粉末を熱処理することができる。2段階以上で合金粉末を熱処理してもよい。特に好ましいのは、水素ガスで熱処理した後に、窒素ガスおよび/またはアルゴンガスで熱処理をすることである。
これにより、磁石粉末を構成する個々の結晶セル内の窒素分布をさらに均一化することができ、角形性を向上させることができる。熱処理の保持時間は、30〜200分、好ましくは60〜250分が良い。
In the present invention, following the nitriding treatment, the alloy powder can be further heat-treated in an inert gas such as hydrogen gas, nitrogen gas, argon gas, helium gas or the like. The alloy powder may be heat treated in two or more stages. It is particularly preferable to perform heat treatment with nitrogen gas and / or argon gas after heat treatment with hydrogen gas.
Thereby, the nitrogen distribution in the individual crystal cells constituting the magnet powder can be made more uniform, and the squareness can be improved. The holding time of the heat treatment is 30 to 200 minutes, preferably 60 to 250 minutes.

5.第五の工程:湿式処理・解砕
この工程では、窒化後の処理生成物を湿式処理して、そこに含まれている還元剤成分の副生成物(カルシウムを還元剤とする場合、酸化カルシウムや窒化カルシウムなど)を希土類−遷移金属−窒素系磁石粗粉末から分離除去し、その後解砕する。
5). Fifth Step: Wet Treatment / Crushing In this step, the treated product after nitriding is wet treated, and a by-product of a reducing agent component contained therein (when calcium is used as a reducing agent, calcium oxide) And calcium nitride) are separated and removed from the rare earth-transition metal-nitrogen magnet coarse powder, and then pulverized.

本発明で、窒化終了後の磁石粉末に対して湿式処理を行うのは、前述したとおり、窒化する前に、反応生成物を湿式処理すると、この湿式処理過程で希土類−鉄系母合金表面が酸化されて窒化の度合いをばらつかせるからである。
また、窒化後に処理生成物を長期間大気中に放置すると、カルシウムなどの還元剤成分の酸化物が生成し除去しにくくなるか、磁石粉末の表面の酸化によって、窒化が不均一になり主相の比率の低下とニュークリエーションの核の生成によって角形性が低下するため、できる限り早く処理を進めるのが好ましい。
In the present invention, as described above, the wet treatment is performed on the magnet powder after completion of nitridation. When the reaction product is wet-treated before nitriding, the surface of the rare earth-iron-based master alloy is treated in this wet treatment process. This is because the degree of nitridation is varied by being oxidized.
In addition, if the treatment product is left in the atmosphere for a long time after nitriding, oxides of reducing agent components such as calcium are generated and difficult to remove, or the surface of the magnet powder is oxidized, resulting in non-uniform nitriding and the main phase. Since the squareness decreases due to the decrease in the ratio and the generation of nucleation of nucleation, it is preferable to proceed the process as soon as possible.

湿式処理は、まず第四の工程で得られた生成物を水中に投入し、デカンテーション−注水−デカンテーションを繰り返し行い、還元剤の副生成物から生成した水酸化物(Ca(OH)など)の多くを除去する。さらに必要に応じて、残留する水酸化物(Ca(OH)など)を除去するために、酢酸および/または塩酸を用いて酸洗浄する。このときの水溶液の水素イオン濃度は、pH4〜7の範囲で実施するとよい。還元拡散時に過剰に投入した希土類金属(Sm)の影響で、主相の周りに磁気特性の飽和磁化を低下させる非磁性相が存在している場合があるから、希土類−遷移金属−窒素系磁石粗粉末として良好な磁石特性を得るために、希土類がサマリウムの場合にはSm量が磁石粉末全量に対し23.2〜23.6重量%になるように酸洗を行うことが好ましい。
上記酸洗浄処理の終了後には、例えば水洗し、アルコールあるいはアセトン等の有機溶媒で脱水し、不活性ガス雰囲気中または真空中で乾燥することで希土類−遷移金属−窒素系磁石粗粉末を得ることができる。
In the wet treatment, first, the product obtained in the fourth step is put into water, decantation-water injection-decantation is repeated, and the hydroxide (Ca (OH) 2 generated from the byproduct of the reducing agent. Etc.) a lot. Further, if necessary, acid cleaning is performed using acetic acid and / or hydrochloric acid in order to remove residual hydroxide (Ca (OH) 2 and the like). The hydrogen ion concentration of the aqueous solution at this time is preferably in the range of pH 4-7. A rare-earth-transition metal-nitrogen-based magnet may be present around the main phase due to the influence of rare earth metal (Sm) added excessively during reduction diffusion. In order to obtain good magnet characteristics as a coarse powder, when the rare earth is samarium, pickling is preferably performed so that the amount of Sm is 23.2 to 23.6% by weight with respect to the total amount of the magnet powder.
After completion of the acid cleaning treatment, for example, washing with water, dehydrating with an organic solvent such as alcohol or acetone, and drying in an inert gas atmosphere or vacuum to obtain a rare earth-transition metal-nitrogen magnet coarse powder. Can do.

得られた希土類−遷移金属−窒素系磁石粗粉末は、粒子径が小さい多数の粒子が集って、ブドウ状に焼結した2次粒子と、単独の1次粒子の2種類から構成されている。このような磁石粗粉末を溶媒とともにビーズミル、媒体撹拌ミル等の粉砕機に入れ、2次粒子からなる希土類−遷移金属−窒素系磁石粗粉末の焼結部が外れる程度に解砕し、その後ろ過、乾燥する。   The obtained rare earth-transition metal-nitrogen based magnet coarse powder is composed of two kinds of secondary particles obtained by collecting a large number of particles having a small particle diameter and sintered in a grape shape, and single primary particles. Yes. Such a magnetic coarse powder is put together with a solvent into a pulverizer such as a bead mill or a medium stirring mill, and then pulverized to such an extent that the sintered portion of the rare earth-transition metal-nitrogen based magnetic coarse powder composed of secondary particles is removed, and then filtered. ,dry.

本発明で希土類−遷移金属−窒素系磁石粗粉末を解砕するには、粉砕装置が使用される。粉砕装置としては、固体を取り扱う各種の化学工業において広く使用され、種々の材料を所望の程度に粉砕できる粉砕装置であれば、特に限定されない。その中でも、粉末の組成や粒子径を均一にしやすい点で優れた、媒体撹拌ミルまたはビーズミルが好ましい。これらを用いた湿式粉砕方式によることが好適であるが、一次粒子が壊れるほどの強い粉砕は避けることが重要である。
解砕に用いる溶媒としては、イソプロピルアルコール、エタノール、トルエン、メタノール、ヘキサン等が使用できるが、特にイソプロピルアルコールが好ましい。解砕後、最後に所定の目開きのフィルターを用いて、ろ過、乾燥して、本発明の希土類−遷移金属−窒素系磁石粉末を得ることができる。
In order to crush the rare earth-transition metal-nitrogen based magnet coarse powder in the present invention, a pulverizer is used. The pulverizer is not particularly limited as long as it is widely used in various chemical industries that handle solids and can pulverize various materials to a desired degree. Among these, a medium stirring mill or a bead mill, which is excellent in that it is easy to make the composition and particle size of the powder uniform, is preferable. It is preferable to use a wet pulverization method using these, but it is important to avoid pulverization that is strong enough to break the primary particles.
As a solvent used for crushing, isopropyl alcohol, ethanol, toluene, methanol, hexane, or the like can be used, and isopropyl alcohol is particularly preferable. After pulverization, the rare earth-transition metal-nitrogen based magnet powder of the present invention can be obtained by finally filtering and drying using a filter having a predetermined opening.

6.得られる磁石粉末
上記の本発明の製造方法により得られる希土類−遷移金属−窒素系磁石粉末は、特有な粒子形状と粒度分布を有しており、優れた磁気特性を発揮するものである。
本発明の希土類−遷移金属−窒素系磁石粉末は、粒子表面形状、断面を走査型電子顕微鏡(SEM:カールツァイス社、ULTRA55)で観察し、平均粒子径をSympatec社製レーザー回折型粒径分布測定装置で測定すると、長軸粒子径が4μmを越える一次粒子の存在割合は累積個数百分率で5%以下になっている。長軸粒子径が4μmを越える一次粒子の存在割合は、累積個数百分率で3%以下であるとより好ましい。長軸粒子径が4μmを超えるような一次粒子が増えると、断面を確認した際に窒化不足を起こしている粒子が存在している様子が観察される。本発明では、飽和磁化、角形性、保磁力を低下させる要因にもなる大きい粒子が少ないという特徴がある。
磁石粉末の磁気特性は、日本ボンド磁石工業協会、ボンド磁石試験方法ガイドブック、BM−2002、BM−2005に準じて測定される。具体的には、1600A/mの配向磁界をかけてステアリン酸中で希土類−遷移金属−窒素系磁石粉末を配向させ試料を作製し、4000kA/mの磁界で着磁して測定する。磁石合金粉末の比重を7.67g/cmとし、反磁場補正をせずに最大磁界1200kA/mの振動試料型磁力計を用いて測定すると、飽和磁化:4πIm(T)は、1.40以上、保磁力:iHc(kA/m)は、870以上、角形性:Hk(kA/m)は、410以上となる。そして、上記製造条件を最適化することで、飽和磁化:4πIm(T)は、1.45以上、保磁力:iHc(kA/m)は、890以上、角形性:Hk(kA/m)は、420以上とすることもできる。なお、Hkは、減磁曲線の角形性を表し、第二象限において、磁化4πIが残留磁化4πIrの90%の値を取るときの減磁界の大きさである。
なお、希土類−遷移金属−窒素系磁石粉末として良好な磁石特性を得るために、第五の工程における湿式処理後の希土類の含有量が、解砕後もそのまま維持されることが好ましく、希土類がサマリウムの場合にはSm量が磁石粉末全量に対し23.2〜23.6重量%であることが好ましい。
6). Obtained Magnet Powder The rare earth-transition metal-nitrogen based magnet powder obtained by the production method of the present invention has a specific particle shape and particle size distribution, and exhibits excellent magnetic properties.
The rare earth-transition metal-nitrogen based magnet powder of the present invention has a particle surface shape and a cross section observed with a scanning electron microscope (SEM: Carl Zeiss, ULTRA55), and an average particle diameter is a laser diffraction particle size distribution manufactured by Sympatec. When measured with a measuring apparatus, the proportion of primary particles having a major axis particle diameter exceeding 4 μm is 5% or less in terms of the cumulative number percentage. The proportion of primary particles having a major axis particle diameter exceeding 4 μm is more preferably 3% or less in terms of cumulative number percentage. When primary particles whose major axis particle diameter exceeds 4 μm are increased, it is observed that particles causing nitriding deficiency exist when the cross section is confirmed. The present invention is characterized in that there are few large particles that also cause a decrease in saturation magnetization, squareness, and coercive force.
The magnetic properties of the magnet powder are measured according to Japan Bond Magnet Industry Association, Bond Magnet Test Method Guidebook, BM-2002, BM-2005. Specifically, a rare earth-transition metal-nitrogen magnet powder is oriented in stearic acid by applying an orientation magnetic field of 1600 A / m, and the sample is magnetized with a magnetic field of 4000 kA / m and measured. When the specific gravity of the magnet alloy powder is 7.67 g / cm 3 and measurement is performed using a vibrating sample magnetometer having a maximum magnetic field of 1200 kA / m without demagnetizing correction, the saturation magnetization: 4πIm (T) is 1.40. As described above, the coercive force: iHc (kA / m) is 870 or more, and the squareness: Hk (kA / m) is 410 or more. By optimizing the manufacturing conditions, the saturation magnetization: 4πIm (T) is 1.45 or more, the coercive force: iHc (kA / m) is 890 or more, and the squareness: Hk (kA / m) is , 420 or more. Hk represents the squareness of the demagnetization curve, and is the magnitude of the demagnetizing field when the magnetization 4πI takes 90% of the residual magnetization 4πIr in the second quadrant.
In order to obtain good magnet characteristics as the rare earth-transition metal-nitrogen based magnet powder, the rare earth content after the wet treatment in the fifth step is preferably maintained as it is after pulverization. In the case of samarium, the amount of Sm is preferably 23.2 to 23.6% by weight based on the total amount of the magnet powder.

次に実施例、比較例を用いて本発明をさらに説明するが、本発明はこれらの実施例によって何ら限定されるものではない。本発明により得られる水素熱処理物中の成分割合、還元拡散の際の発熱挙動、および得られた希土類−遷移金属−窒素系磁石粉末の粒子形状と粒度分布、磁気特性は次の方法で測定し評価した。   EXAMPLES Next, although this invention is further demonstrated using an Example and a comparative example, this invention is not limited at all by these Examples. The ratio of components in the heat treated hydrogen product obtained by the present invention, the exothermic behavior during reduction diffusion, and the particle shape and particle size distribution and magnetic properties of the obtained rare earth-transition metal-nitrogen based magnet powder were measured by the following methods. evaluated.

(1)水素熱処理物の成分比率
XRDによる粉末X線回折装置を用いて、測定したデータをもとに化合物の同定を行い、それら化合物の存在比率についてリートベルト解析を使用し、半定量値を算出することで、各化合物成分の存在比率を求めた。
(2)発熱挙動
Ca金属による還元拡散の際、R熱電対を反応容器内にセットし、発熱反応の大きさ(発熱量)や最大発熱温度を計測し求めた。
(3)粒子形状
湿式処理及び解砕処理して得られた希土類−遷移金属−窒素系磁石粉末の粒子表面形状、断面を走査型電子顕微鏡(SEM:カールツァイス社、ULTRA55)で観察した。
(4)粒度分布
平均粒子径は、Sympatec社製レーザー回折型粒径分布測定装置:ヘロス・ロードスにて測定した。一次粒子の長軸径は、SEM像から1次粒子の粒径を1000倍で撮影した写真を2倍に拡大して、最小メモリ1mmの定規で長さを測定し、粒子の累積個数百分率を求めた。
(1) Component ratio of hydrogen heat-treated product Using a powder X-ray diffractometer by XRD, the compounds are identified based on the measured data, and Rietveld analysis is used to determine the semi-quantitative values for the abundance ratio of these compounds. By calculating, the existence ratio of each compound component was determined.
(2) Exothermic behavior During reduction diffusion with Ca metal, an R thermocouple was set in the reaction vessel, and the magnitude of the exothermic reaction (heat generation amount) and the maximum exothermic temperature were measured and determined.
(3) Particle shape The particle surface shape and cross section of the rare earth-transition metal-nitrogen magnet powder obtained by wet treatment and pulverization treatment were observed with a scanning electron microscope (SEM: Carl Zeiss, ULTRA55).
(4) Particle size distribution The average particle size was measured by a laser diffraction particle size distribution measuring device manufactured by Sympatec: Heros Rhodes. The major axis diameter of the primary particles can be obtained by enlarging the photograph taken at 1000 times the primary particle size from the SEM image, measuring the length with a ruler with a minimum memory of 1 mm, and calculating the cumulative number percentage of particles. Asked.

(5)磁気特性
磁石粉末の磁気特性は、日本ボンド磁石工業協会、ボンド磁石試験方法ガイドブック、BM−2002、BM−2005に準じて、1600A/mの配向磁界をかけてステアリン酸中で希土類−遷移金属−窒素系磁石粉末を配向させ試料を作製し、4000kA/mの磁界で着磁して測定した。
磁石粉末の比重を7.67g/cmとし、反磁場補正をせずに最大磁界1200kA/mの振動試料型磁力計を用いて、飽和磁化:4πIm(T)、保磁力:iHc(kA/m)、角形性:Hk(kA/m)を測定した。Hkは、減磁曲線の角形性を表し、第二象限において、磁化4πIが残留磁化4πIrの90%の値を取るときの減磁界の大きさである。
(6)粉末組成
磁石粉末の粉末組成について、Sm,N,Oについて下記の分析法により、分析した。
Sm: ICP発光分光分析法
N : 不活性ガス−インパルス加熱融解−熱伝導度法(LECO法)
O : 不活性ガス−インパルス加熱融解−赤外吸収法(LECO法)
(5) Magnetic properties The magnetic properties of the magnet powder are rare earths in stearic acid by applying an orientation magnetic field of 1600 A / m according to Japan Bond Magnet Industry Association, Bond Magnet Test Method Guidebook, BM-2002, BM-2005. -A sample was prepared by orienting transition metal-nitrogen based magnet powder, and measurement was performed by magnetizing with a magnetic field of 4000 kA / m.
The specific gravity of the magnet powder was 7.67 g / cm 3, and a vibration sample type magnetometer with a maximum magnetic field of 1200 kA / m without demagnetizing correction was used. Saturation magnetization: 4πIm (T), coercivity: iHc (kA / m), squareness: Hk (kA / m) was measured. Hk represents the squareness of the demagnetization curve, and is the magnitude of the demagnetizing field when the magnetization 4πI takes 90% of the residual magnetization 4πIr in the second quadrant.
(6) Powder composition About the powder composition of the magnet powder, Sm, N, and O were analyzed by the following analysis method.
Sm: ICP emission spectroscopic analysis N: inert gas-impulse heating-melting-thermal conductivity method (LECO method)
O: Inert gas-impulse heating-melting-infrared absorption method (LECO method)

(実施例1)
磁石原料粉末として、平均粒子径が1.2μmに調整した酸化鉄Fe粉末(高純度化学社製)100.0gと、粒径が0.1〜10μmの粉末が全体の96%を占める酸化サマリウムSm粉末(関東化学)31.8gを秤量し、次に、1Lのポリ容器中にて秤量した酸化鉄を純水200gに分散させスラリー化した。このときpHは7.2を示すことから攪拌中のスラリーに0.5mol/L希塩酸を滴下し、pH=2となるように制御を行いながら、酸化サマリウムを徐々に全量投入した。投入後酸化サマリウムが全て溶けるまで約1時間攪拌した後、pH=8になるまで酸化カルシウムを添加した。
その後、ポリ容器からスラリーを排出し、水洗、掛水、濾過した後定置式真空乾燥器にて100℃設定で24時間乾燥した。
乾燥した混合粉末100.0gを箱型雰囲気炉にて水素を25ml/(min・g)流し、昇温速度5℃/minで600℃まで加熱して4時間保持した後、室温まで冷却し、内部を空気に置換して水素還元物を回収した。
このときの水素還元物の一部をXRDにて同定を行い、リートベルト解析でその存在比率を半定量値として算出した。このときの存在比率は、α―Fe:Sm:SmFeO=57.8:3.8:38.4(重量%)であった。
この水素還元物16gに粒度4メッシュ(タイラーメッシュ)以下の金属カルシウム粒(和光純薬製)3.6gを、コンデショニングミキサー(MX−201:シンキー製)で30秒間混合した。
これをステンレススチール反応容器に挿入し、容器内をロータリーポンプで真空引きしてArガス置換した後、Arガスを流しながら950℃まで昇温し、8時間保持後250℃まで炉内でArガスを流通しながら冷却した。次に、Arガスをアンモニア分圧が0.33のアンモニア−水素混合ガスに切り替えて昇温し、450℃で200分保持し、その後、同温度で水素ガスに切り替えて30分保持し、さらに窒素ガスに切り替えて30分保持し冷却した。
取り出した多孔質塊状の反応生成物を直ちに純水中に投入したところ、崩壊してスラリーが得られた。このスラリーから、Ca(OH)懸濁物をデカンテーションによって分離し、純水を注水後に1分間攪拌し、次いでデカンテーションを行う操作を5回繰り返し、合金粉末スラリーを得た。
得られた合金粉末スラリーを攪拌しながら希酢酸を滴下し、pH5.0に7分間保持した。合金粉末をろ過後、エタノールで数回掛水洗浄し、35℃で真空乾燥することによって、1次粒子および1次粒子同士が焼結したブドウ状の2次粒子からなるSm−Fe−N磁石粉末を得た。
この粉末組成は、Sm:23.4重量%、N:3.35重量%、O:0.12重量%、残部Feだった。
この合金粉末をエタノール中で振動式ミル(マルチミル:ナルミ技研製)を用い、SUJ2ボール5/32インチ、振動数 30Hz、30分間エタノール中で解砕し、常温真空乾燥した。
得られた磁石粉末の磁気特性を、合金粉末の磁気特性は、日本ボンド磁石工業協会、ボンド磁石試験方法ガイドブック、BM−2002、BM−2005に準じて、1600A/mの配向磁界をかけてステアリン酸中で希土類−鉄−窒素系磁石粉末を配向させ試料を作製し、4000kA/mの磁界で着磁して測定した。磁石合金粉末の比重を7.67g/cmとし、反磁場補正をせずに最大磁界1200kA/mの振動試料型磁力計を用いて、飽和磁化:4πIm(T)、保磁力:iHc(kA/m)、角形性:Hk(kA/m)を測定した。
分析組成とThZn17型結晶構造の格子定数から算出された粉末のX線密度は7.67g/cmで、この値で飽和磁化(4πIm)を換算した。iHcは保磁力である。またHkは、減磁曲線の角形性を表し、第二象限において、磁化4πIが4πIrの90%の値を取るときの減磁界の大きさである。結果を表1に示すが、高特性の磁気特性が得られた。
さらに、解砕した磁石粉末から長軸径4μmを超える一次粒子の存在割合を累積個数百分率によって算出した結果、2.0%であった。
Example 1
As the magnet raw material powder, 100.0 g of iron oxide Fe 2 O 3 powder (manufactured by High-Purity Chemical Co., Ltd.) with an average particle size adjusted to 1.2 μm and 96% of the powder having a particle size of 0.1-10 μm 31.8 g of occupied samarium oxide Sm 2 O 3 powder (Kanto Chemical) was weighed, and then iron oxide weighed in a 1 L plastic container was dispersed in 200 g of pure water to form a slurry. At this time, since the pH was 7.2, 0.5 mol / L dilute hydrochloric acid was dropped into the stirring slurry, and the whole amount of samarium oxide was gradually added while controlling the pH to be 2. After the addition, the mixture was stirred for about 1 hour until all the samarium oxide was dissolved, and then calcium oxide was added until pH = 8.
Thereafter, the slurry was discharged from the plastic container, washed with water, sprayed, filtered, and then dried at a setting of 100 ° C. for 24 hours in a stationary vacuum dryer.
100.0 g of the dried mixed powder was flowed in a box-type atmosphere furnace with 25 ml / (min · g) of hydrogen, heated to 600 ° C. at a heating rate of 5 ° C./min and held for 4 hours, then cooled to room temperature, The inside was replaced with air, and the hydrogen reduction product was recovered.
A part of the hydrogen reduction product at this time was identified by XRD, and the abundance ratio was calculated as a semi-quantitative value by Rietveld analysis. The abundance ratio at this time was α-Fe: Sm 2 O 3 : SmFeO 3 = 57.8: 3.8: 38.4 (% by weight).
3.6 g of metal calcium particles (made by Wako Pure Chemical Industries) having a particle size of 4 mesh (Tyler mesh) or less were mixed with 16 g of this hydrogen reduction product with a conditioning mixer (MX-201: made by Sinky) for 30 seconds.
This was inserted into a stainless steel reaction vessel, and the inside of the vessel was evacuated with a rotary pump and replaced with Ar gas. Then, the temperature was raised to 950 ° C. while flowing Ar gas, held for 8 hours, and then Ar gas in the furnace to 250 ° C. Cooled while circulating. Next, the Ar gas is switched to an ammonia-hydrogen mixed gas with an ammonia partial pressure of 0.33, the temperature is raised, held at 450 ° C. for 200 minutes, then switched to hydrogen gas at the same temperature and held for 30 minutes, It switched to nitrogen gas, hold | maintained for 30 minutes, and cooled.
The taken porous mass reaction product was immediately poured into pure water, and collapsed to obtain a slurry. From this slurry, the Ca (OH) 2 suspension was separated by decantation, and the operation of stirring pure water for 1 minute after water injection and then decanting was repeated 5 times to obtain an alloy powder slurry.
While stirring the obtained alloy powder slurry, dilute acetic acid was added dropwise, and the pH was maintained at pH 5.0 for 7 minutes. The alloy powder is filtered, washed with water several times with ethanol, and vacuum-dried at 35 ° C., thereby forming Sm—Fe—N magnets composed of primary particles and grape-like secondary particles sintered together. A powder was obtained.
The powder composition was Sm: 23.4% by weight, N: 3.35% by weight, O: 0.12% by weight, and the balance Fe.
This alloy powder was crushed in ethanol using a vibration mill (multi-mill: manufactured by Narumi Giken) in ethanol at SUJ2 balls 5/32 inches, vibration frequency 30 Hz, for 30 minutes, and vacuum dried at room temperature.
The magnetic properties of the obtained magnet powder and the magnetic properties of the alloy powder were applied with an orientation magnetic field of 1600 A / m in accordance with Japan Bond Magnet Industry Association, Bond Magnet Test Method Guidebook, BM-2002, BM-2005. A sample was prepared by orienting rare earth-iron-nitrogen magnet powder in stearic acid, and magnetized with a magnetic field of 4000 kA / m. The specific gravity of the magnet alloy powder was 7.67 g / cm 3, and a saturation sample: 4πIm (T) and coercive force: iHc (kA) using a vibrating sample magnetometer with a maximum magnetic field of 1200 kA / m without correcting the demagnetizing field. / M), squareness: Hk (kA / m) was measured.
The X-ray density of the powder calculated from the analytical composition and the lattice constant of the Th 2 Zn 17 type crystal structure was 7.67 g / cm 3 , and the saturation magnetization (4πIm) was converted with this value. iHc is the coercive force. Hk represents the squareness of the demagnetization curve, and is the magnitude of the demagnetizing field when the magnetization 4πI takes 90% of 4πIr in the second quadrant. The results are shown in Table 1, and high magnetic properties were obtained.
Furthermore, as a result of calculating the abundance ratio of primary particles exceeding the major axis diameter of 4 μm from the pulverized magnet powder by the cumulative number percentage, it was 2.0%.

(実施例2)
実施例1の条件において、pH=2から5に変えて、酸化サマリウムが溶けるまで待つ時間を約5時間と変えた以外は実施例1と同様にして行い、水素熱処理を行ったところ、このときの存在比率は、α―Fe:Sm:SmFeO=60.0:9.3:30.7(重量%)であった。その後還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結した、ブドウ状の2次粒子が観察された。
この粉末組成は、Sm:23.3重量%、N:3.31重量%、O:0.15重量%、残部Feだった。実施例1と同様に解砕後サンプリングして磁気特性を求めた。結果を表1に示すが、高特性の磁気特性が得られた。さらに、解砕した磁石粉末から長軸径4μmを超える一次粒子の存在割合を累積個数百分率によって算出した結果、4.2%であった。
(Example 2)
Under the conditions of Example 1, when the hydrogen heat treatment was performed in the same manner as in Example 1 except that the time to wait until samarium oxide was dissolved was changed to about 5 hours by changing from pH = 2 to 5, The abundance ratio of α-Fe: Sm 2 O 3 : SmFeO 3 = 60.0: 9.3: 30.7 (% by weight). Thereafter, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain Sm—Fe—N crude powder. Grape-like secondary particles in which the primary particles and the primary particles were sintered were observed in the obtained powder.
The powder composition was Sm: 23.3 wt%, N: 3.31 wt%, O: 0.15 wt%, and the balance Fe. In the same manner as in Example 1, after crushing and sampling, magnetic characteristics were obtained. The results are shown in Table 1, and high magnetic properties were obtained. Further, the proportion of primary particles having a major axis diameter exceeding 4 μm was calculated from the pulverized magnet powder by the cumulative number percentage, which was 4.2%.

(実施例3)
実施例1の条件において、希塩酸を希硝酸に変えた以外は実施例1と同様にして行い水素熱処理を行ったところ、このときの存在比率は、α―Fe:Sm:SmFeO=57.8:3.9:38.3(重量%)であった。その後還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結した、ブドウ状の2次粒子が観察された。
この粉末組成は、Sm:23.5重量%、N:3.36重量%、O:0.14重量%、残部Feだった。実施例1と同様に解砕後サンプリングして磁気特性を求めた。結果を表1に示すが、高特性の磁気特性が得られた。
さらに、解砕した磁石粉末から長軸径4μmを超える一次粒子の存在割合を累積個数百分率によって算出した結果、2.3%であった。
(Example 3)
Under the conditions of Example 1, hydrogen heat treatment was performed in the same manner as in Example 1 except that dilute hydrochloric acid was changed to dilute nitric acid. The abundance ratio at this time was α-Fe: Sm 2 O 3 : SmFeO 3 = It was 57.8: 3.9: 38.3 (% by weight). Thereafter, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain Sm—Fe—N crude powder. Grape-like secondary particles in which the primary particles and the primary particles were sintered were observed in the obtained powder.
The powder composition was Sm: 23.5 wt%, N: 3.36 wt%, O: 0.14 wt%, and the balance Fe. In the same manner as in Example 1, after crushing and sampling, magnetic characteristics were obtained. The results are shown in Table 1, and high magnetic properties were obtained.
Furthermore, as a result of calculating the abundance ratio of primary particles having a major axis diameter exceeding 4 μm from the pulverized magnet powder by the cumulative number percentage, it was 2.3%.

(実施例4)
実施例1の条件において、スラリー液を中和するための酸化カルシウムを水酸化ナトリウム(関東化学)に変えた以外は同様にして行い、水素還元を行ったところ、このときの存在比率は、α―Fe:Sm:SmFeO=57.8:3.9:38.3(重量%)であった。その後還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結した、ブドウ状の2次粒子が観察された。
この粉末組成は、Sm:23.2重量%、N:3.33重量%、O:0.14重量%、残部Feだった。実施例1と同様に解砕後サンプリングして磁気特性を求めた。結果を表1に示すが、高特性の磁気特性が得られた。
さらに、解砕した磁石粉末から長軸径4μmを超える一次粒子の存在割合を累積個数百分率によって算出した結果、2.6%であった。
Example 4
Under the same conditions as in Example 1, except that the calcium oxide for neutralizing the slurry was changed to sodium hydroxide (Kanto Chemical) and hydrogen reduction was performed, the abundance ratio at this time was α —Fe: Sm 2 O 3 : SmFeO 3 = 57.8: 3.9: 38.3 (% by weight). Thereafter, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain Sm—Fe—N crude powder. Grape-like secondary particles in which the primary particles and the primary particles were sintered were observed in the obtained powder.
The powder composition was Sm: 23.2% by weight, N: 3.33% by weight, O: 0.14% by weight, and the balance Fe. In the same manner as in Example 1, after crushing and sampling, magnetic characteristics were obtained. The results are shown in Table 1, and high magnetic properties were obtained.
Furthermore, as a result of calculating the abundance ratio of primary particles having a major axis diameter exceeding 4 μm from the pulverized magnet powder by the cumulative number percentage, it was 2.6%.

(比較例1)
実施例1の条件の磁石原料粉末として、平均粒子径が0.7μmに調整した酸化鉄Fe粉末(和光純薬)100.0gと、粒径が0.1〜10μmの粉末が全体の96%を占める酸化サマリウムSm粉末(関東化学)31.8gを秤量し、次に1Lのポリ容器中にて秤量した酸化鉄を純水200gに分散させスラリー化した。このときpHは2.3であるがここにさらに酸化サマリウムを投入し、攪拌を行い(投入終了時のpH=8.2)、ろ過、乾燥を行った。以降は実施例1と同様にして水素還元を行ったところ、このときの存在比率は、α―Fe:Sm:SmFeO=64.3:20.1:15.6(重量%)であった。その後還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結した、ブドウ状の2次粒子、さらには大きい一次粒子体が観察された。この粉末組成は、Sm:23.3重量%、N:3.31重量%、O:0.16重量%、残部Feだった。実施例1と同様に解砕後サンプリングして磁気特性を求めた。結果を表1に示す。
さらに、解砕した磁石粉末から長軸径4μmを超える一次粒子の存在割合を累積個数百分率によって算出した結果、9.3%であった。
(Comparative Example 1)
As the magnet raw material powder under the conditions of Example 1, 100.0 g of iron oxide Fe 2 O 3 powder (Wako Pure Chemical Industries) with an average particle diameter adjusted to 0.7 μm and a powder having a particle diameter of 0.1 to 10 μm as a whole 31.8 g of samarium oxide Sm 2 O 3 powder (Kanto Chemical) accounting for 96% of the total was then weighed, and then iron oxide weighed in a 1 L plastic container was dispersed in 200 g of pure water to make a slurry. At this time, although the pH was 2.3, samarium oxide was further added thereto, followed by stirring (pH at the end of the charging = 8.2), filtration, and drying. Thereafter, when hydrogen reduction was performed in the same manner as in Example 1, the abundance ratio at this time was as follows: α-Fe: Sm 2 O 3 : SmFeO 3 = 64.3: 20.1: 15.6 (% by weight) Met. Thereafter, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain Sm—Fe—N crude powder. The resulting powder was observed to have primary particles and grape-like secondary particles, and large primary particles, which were sintered together. The powder composition was Sm: 23.3 wt%, N: 3.31 wt%, O: 0.16 wt%, and the balance Fe. In the same manner as in Example 1, after crushing and sampling, magnetic characteristics were obtained. The results are shown in Table 1.
Furthermore, as a result of calculating the abundance ratio of primary particles having a major axis diameter exceeding 4 μm from the pulverized magnet powder by the cumulative number percentage, it was 9.3%.

(比較例2)
実施例1の条件の初期粉末混合時に湿式混合をせず、徳寿工作所製ジュリアミキサーによる乾式混合に変えた以外は同様にして水素還元を行ったところ、このときの存在比率は、α―Fe:Sm:SmFeO=67.4:28.1:4.5(重量%)であった。その後還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結した、ブドウ状の2次粒子が観察された。
この粉末組成は、Sm23.4重量%、N3.36重量%、O0.14重量%、残部Feだった。実施例1と同様に解砕後サンプリングして磁気特性を求めた。結果を表1に示す。
さらに、解砕した磁石粉末から長軸径4μmを超える一次粒子の存在割合を累積個数百分率によって算出した結果、3.4%であった。
(Comparative Example 2)
When hydrogen reduction was performed in the same manner except that wet mixing was not performed during initial powder mixing under the conditions of Example 1 and the dry mixing was performed using a Julia mixer manufactured by Deoksugaku Kosakusho, the abundance ratio at this time was α-Fe : Sm 2 O 3 : SmFeO 3 = 67.4: 28.1: 4.5 (% by weight). Thereafter, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain Sm—Fe—N crude powder. Grape-like secondary particles in which the primary particles and the primary particles were sintered were observed in the obtained powder.
The powder composition was Sm 23.4% by weight, N 3.36% by weight, O 0.14% by weight and the balance Fe. In the same manner as in Example 1, after crushing and sampling, magnetic characteristics were obtained. The results are shown in Table 1.
Furthermore, the proportion of primary particles having a major axis diameter exceeding 4 μm was calculated from the pulverized magnet powder by the cumulative number percentage, and the result was 3.4%.

(比較例3)
実施例1の条件において、希塩酸を多量に加えるようにして、pHを2から1に変えた以外は同様にして行い、水素還元を行ったところ、このときの存在比率は、α―Fe:Sm:SmFeO=62.7:16.3:21.0(重量%)であった。その後還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結した、ブドウ状の2次粒子が観察された。
この粉末組成は、Sm:23.3重量%、N:3.31重量%、O:0.16重量%、残部Feだった。実施例1と同様に解砕後サンプリングして磁気特性を求めた。結果を表1に示す。
さらに、解砕した磁石粉末から長軸径4μmを超える一次粒子の存在割合を累積個数百分率によって算出した結果、6.7%であった。
(Comparative Example 3)
When hydrogen reduction was performed in the same manner as in Example 1 except that a large amount of dilute hydrochloric acid was added and the pH was changed from 2 to 1, hydrogen reduction was performed. The abundance ratio at this time was α-Fe: Sm. 2 O 3 : SmFeO 3 = 62.7: 16.3: 21.0 (% by weight). Thereafter, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain Sm—Fe—N crude powder. Grape-like secondary particles in which the primary particles and the primary particles were sintered were observed in the obtained powder.
The powder composition was Sm: 23.3 wt%, N: 3.31 wt%, O: 0.16 wt%, and the balance Fe. In the same manner as in Example 1, after crushing and sampling, magnetic characteristics were obtained. The results are shown in Table 1.
Furthermore, as a result of calculating the abundance ratio of primary particles having a major axis diameter exceeding 4 μm from the pulverized magnet powder by the cumulative number percentage, it was 6.7%.

(比較例4)
実施例2の条件において、希塩酸を少量にして、pHを5から6に変えた以外は同様にして行い、水素還元を行ったところ、このときの存在比率は、α―Fe:Sm:SmFeO=65.8:23.9:10.3(重量%)であった。その後還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結した、ブドウ状の2次粒子が観察された。
この粉末組成は、Sm:23.2重量%、N:3.32重量%、O:0.13重量%、残部Feだった。実施例1と同様に解砕後サンプリングして磁気特性を求めた。結果を表1に示す。
さらに、解砕した磁石粉末から長軸径4μmを超える一次粒子の存在割合を累積個数百分率によって算出した結果、10.3%であった。
(Comparative Example 4)
Under the same conditions as in Example 2, except that dilute hydrochloric acid was used in a small amount and the pH was changed from 5 to 6, hydrogen reduction was performed. The abundance ratio at this time was α-Fe: Sm 2 O 3. : SmFeO 3 = 65.8: 23.9: 10.3 (% by weight). Thereafter, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain Sm—Fe—N crude powder. Grape-like secondary particles in which the primary particles and the primary particles were sintered were observed in the obtained powder.
The powder composition was Sm: 23.2% by weight, N: 3.32% by weight, O: 0.13% by weight, and the balance Fe. In the same manner as in Example 1, after crushing and sampling, magnetic characteristics were obtained. The results are shown in Table 1.
Further, the proportion of primary particles having a major axis diameter exceeding 4 μm was calculated from the pulverized magnet powder by the cumulative number percentage, which was 10.3%.

Figure 2010270382
Figure 2010270382

「評価」
表1に示した結果より、実施例1〜3では、水中に酸化鉄を分散させたスラリーのpH値が2〜5の範囲であるので、SmFeO生成量は、通常より大量の30重量%以上40重量%となり、その結果粗大粒子の存在比率の低い、磁気特性の優れた粉を得ることが可能となっている。
また、比較例1は、水中に酸化鉄粉末を分散させた酸性スラリーに直接希土類酸化物を投入するように変更しているが、SmFeOは生成するものの粗大粒子量の増加および磁気特性全般の低下が確認された。これは純水に対し酸化鉄を分散させたところpH=2.3を示す酸性のスラリーであり、ここにSmを投入・分散させると、pHは中性を超えアルカリ性(pH=8.2)に達するがSmは全量溶解せず微結晶の水酸化サマリウムと溶解しなかった酸化サマリウムの混合物としてスラリー中に存在することとなる。これを水素還元するとSmFeOが生成されるがその大半は微結晶の水酸化サマリウムからであり、結果としてSmFeO生成量は15.6%と低く、テルミット発熱の均一性が失われ、局部的な粒成長から粒度分布がブロードとなり磁気特性の低下を引き起こしたといえる。
比較例2は、乾式混合による処理をしているが、このとき大気雰囲気で行ったためやや水分の影響からSmFeOが存在しているが、実施例と粗大粒子の割合は近い値にある。これはSmFeOが実施例と異なりほとんど存在していないためテルミット発熱が非常に小さく、局部的な粒成長が起こりにくかったためである。しかしながら、乾式混合による混合効果は不十分なためSmとFeとの距離が離れているため、未反応のSm微粉の存在や、均一な拡散が行われずミクロな視野では生成物の組成がばらついてしまうことから、磁気特性全般に悪影響を与えたものと考えられる。
比較例3、4では本発明のpHの範囲外を実施したが、pH=1に制御した場合は、最後にアルカリ性にする際に酸化カルシウムを多量添加するため酸化鉄の粒子表面への水酸化サマリウムの析出を阻害する傾向を示し、水酸化サマリウムの独立した粒子の部分が多く見られるようになる。このためSmFeOはpH=2の制御よりも減少し、粗大粒子も多く、磁気特性も低下する傾向を示す。またpH=6に制御した場合は、Smの溶解がほとんど進行しないほか、変曲点付近のためpHの制御が非常に難しく、pH=5の時と同じ時間保持攪拌したが、溶解はあまり進行しておらず、むしろ比較例1の方がSmFeOの生成量は多くなる傾向を示した。そのため比較例1ほどSmFeOが多くないことから均一性はより失われる方向へ進み、逆に粗大粒子は多く、磁気特性も低い結果となったものと考えられる。
"Evaluation"
From the results shown in Table 1, in Examples 1 to 3, since the pH value of the slurry in which iron oxide is dispersed in water is in the range of 2 to 5, the amount of SmFeO 3 produced is 30% by weight, which is larger than usual. As a result, it is possible to obtain a powder having a low presence ratio of coarse particles and excellent magnetic properties.
In Comparative Example 1, the rare earth oxide is changed directly into an acidic slurry in which iron oxide powder is dispersed in water. However, although SmFeO 3 is produced, the increase in the amount of coarse particles and the overall magnetic properties are improved. Decline was confirmed. This is an acidic slurry having a pH of 2.3 when iron oxide is dispersed in pure water. When Sm 2 O 3 is added and dispersed therein, the pH exceeds neutral and is alkaline (pH = 8). However, Sm 2 O 3 does not dissolve in the whole amount but is present in the slurry as a mixture of microcrystalline samarium hydroxide and undissolved samarium oxide. When this is reduced with hydrogen, SmFeO 3 is produced, but most of it is from microcrystalline samarium hydroxide. As a result, the amount of SmFeO 3 produced is as low as 15.6%, and the uniformity of thermite heat generation is lost. It can be said that the grain size distribution was broadened due to rapid grain growth, causing a decrease in magnetic properties.
In Comparative Example 2, treatment by dry mixing was performed, but SmFeO 3 was present due to the influence of moisture slightly because it was performed in an air atmosphere at this time, but the proportion of coarse particles was close to that of the Example. This is because SmFeO 3 is hardly present unlike the example, so that thermite heat generation is very small and local grain growth is difficult to occur. However, since the mixing effect by dry mixing is insufficient and the distance between Sm and Fe is far, the presence of unreacted Sm fine powder or uniform diffusion is not performed and the composition of the product varies in a microscopic view. Therefore, it is considered that the magnetic characteristics were adversely affected.
In Comparative Examples 3 and 4, the pH outside the range of the present invention was carried out. However, when the pH was controlled to 1, hydroxylation of the iron oxide to the particle surface was carried out because a large amount of calcium oxide was added when finally making it alkaline. It shows a tendency to inhibit the precipitation of samarium, and many independent particles of samarium hydroxide are observed. For this reason, SmFeO 3 tends to decrease as compared with the control of pH = 2, there are many coarse particles, and the magnetic properties tend to deteriorate. In addition, when the pH is controlled to 6, the dissolution of Sm 2 O 3 hardly progresses, and it is very difficult to control the pH because it is near the inflection point. However, the amount of SmFeO 3 produced tends to increase in Comparative Example 1. For this reason, since the amount of SmFeO 3 is not so much as in Comparative Example 1, the uniformity is further lost, and conversely, the number of coarse particles is large and the magnetic characteristics are also low.

Claims (9)

磁石原料となる平均粒子径が2μm以下の酸化鉄粉末を水溶媒でスラリー化し、次に、このスラリーのpH値が2〜5の範囲に維持されるように1mol/L以下の希酸を添加しつつ希土類酸化物を所定量投入して溶解させ、その後、アルカリ金属塩もしくはアルカリ土類金属塩を添加してpHが7.0を超えるようにすることで希土類水酸化物を酸化鉄表面に析出させた原料混合粉末を製造する第一の工程、得られた原料混合粉末を水素熱処理する第二の工程、水素熱処理された混合粉末に還元剤成分としてアルカリ土類金属を所定量添加し、混合して、不活性ガス雰囲気中で、900〜1300℃の温度で熱処理した後、同雰囲気中で冷却することにより希土類−鉄系母合金を得る第三の工程、引き続き、得られた希土類−鉄系母合金に少なくともアンモニアと水素とを含有する混合ガスを導入し、この気流中で所定の温度で熱処理することにより窒化処理する第四の工程、次に得られた窒化処理物を湿式処理し、還元剤成分の副生成物を分離除去し、その後、得られた粗粉末を解砕する第五の工程からなる希土類−遷移金属−窒素磁石粉末の製造方法。   Slurry iron oxide powder with an average particle size of 2 μm or less as a magnet raw material with an aqueous solvent, and then add 1 mol / L or less of dilute acid so that the pH value of this slurry is maintained in the range of 2 to 5 Then, a predetermined amount of the rare earth oxide is added and dissolved, and then the alkali metal salt or alkaline earth metal salt is added so that the pH exceeds 7.0, whereby the rare earth hydroxide is applied to the iron oxide surface. A first step of producing the precipitated raw material mixed powder, a second step of subjecting the obtained raw material mixed powder to a hydrogen heat treatment, a predetermined amount of alkaline earth metal as a reducing agent component is added to the hydrogen-heat treated mixed powder, A third step of mixing and heat-treating in an inert gas atmosphere at a temperature of 900 to 1300 ° C. and then cooling in the same atmosphere to obtain a rare earth-iron based master alloy, followed by the obtained rare earth- For ferrous mother alloys A fourth step of introducing a mixed gas containing at least ammonia and hydrogen and performing a nitriding treatment by heat-treating at a predetermined temperature in the air stream, then wet-treating the obtained nitriding product, and reducing agent A method for producing a rare earth-transition metal-nitrogen magnet powder comprising a fifth step of separating and removing component by-products and then crushing the obtained coarse powder. 第一の工程において、希酸が塩酸、硝酸のいずれかであることを特徴とする請求項1に記載の希土類−遷移金属−窒素磁石粉末の製造方法。   2. The method for producing a rare earth-transition metal-nitrogen magnet powder according to claim 1, wherein in the first step, the dilute acid is either hydrochloric acid or nitric acid. 第一の工程において、アルカリ金属塩もしくはアルカリ土類金属塩が、水中でアルカリ性を示す水酸化物、酸化物、窒化物もしくはこれらの複合化合物であることを特徴とする請求項1に記載の希土類−遷移金属−窒素系磁石粉末の製造方法。   2. The rare earth according to claim 1, wherein in the first step, the alkali metal salt or alkaline earth metal salt is a hydroxide, oxide, nitride or a composite compound thereof exhibiting alkalinity in water. -Method for producing transition metal-nitrogen based magnet powder. 第一の工程において、混合粉末の乾燥温度が300℃以下であることを特徴とする請求項1に記載の希土類−遷移金属−窒素系磁石粉末の製造方法。   The method for producing a rare earth-transition metal-nitrogen based magnet powder according to claim 1, wherein the drying temperature of the mixed powder is 300 ° C. or lower in the first step. 第二の工程において、混合粉末が500〜800℃で、1〜8時間かけて水素熱処理されることを特徴とする請求項1に記載の希土類−遷移金属−窒素系磁石粉末の製造方法。   2. The method for producing a rare earth-transition metal-nitrogen based magnet powder according to claim 1, wherein the mixed powder is subjected to hydrogen heat treatment at 500 to 800 ° C. for 1 to 8 hours in the second step. 第三の工程において、アルカリ土類金属の添加量が、第二の工程までで還元されていない原料粉末中の酸素量を還元するのに必要な量を1当量としたとき、1.1〜3.0当量であることを特徴とする請求項1に記載の希土類−遷移金属−窒素系磁石粉末の製造方法。   In the third step, when the amount of alkaline earth metal added is 1 equivalent to the amount required to reduce the amount of oxygen in the raw material powder not reduced until the second step, 1.1 to The method for producing a rare earth-transition metal-nitrogen based magnet powder according to claim 1, wherein the equivalent is 3.0 equivalents. 第三の工程において、さらに、還元拡散反応後の反応生成物に対して、雰囲気ガスを不活性ガスとしたまま、引き続き300℃以下に冷却することを特徴とする請求項1に記載の希土類−遷移金属−窒素系磁石粉末の製造方法。   3. The rare earth element according to claim 1, wherein in the third step, the reaction product after the reduction-diffusion reaction is further cooled to 300 ° C. or lower with the atmosphere gas kept as an inert gas. A method for producing a transition metal-nitrogen magnet powder. 第五の工程において、湿式処理及び解砕して得られる粉末は、長軸粒子径が4μmを越える1次粒子が累積個数百分率で5%未満であることを特徴とする請求項1に記載の希土類−遷移金属−窒素系磁石粉末の製造方法。   The powder obtained by the wet treatment and pulverization in the fifth step is characterized in that primary particles having a major axis particle diameter exceeding 4 μm are less than 5% in cumulative number percentage. A method for producing a rare earth-transition metal-nitrogen based magnet powder. 希土類−遷移金属−窒素系磁石粉末は、希土類としてSmを含み、その含有量が磁石粉末全体に対して23.2〜23.6重量%であることを特徴とする請求項1に記載の希土類−遷移金属−窒素系磁石粉末の製造方法。   The rare earth-transition metal-nitrogen based magnet powder contains Sm as a rare earth, and its content is 23.2 to 23.6 wt% with respect to the whole magnet powder. -Method for producing transition metal-nitrogen based magnet powder.
JP2009125386A 2009-05-25 2009-05-25 Method for producing magnet powder containing rare-earth element, transition metal and nitrogen Pending JP2010270382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125386A JP2010270382A (en) 2009-05-25 2009-05-25 Method for producing magnet powder containing rare-earth element, transition metal and nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125386A JP2010270382A (en) 2009-05-25 2009-05-25 Method for producing magnet powder containing rare-earth element, transition metal and nitrogen

Publications (1)

Publication Number Publication Date
JP2010270382A true JP2010270382A (en) 2010-12-02

Family

ID=43418639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125386A Pending JP2010270382A (en) 2009-05-25 2009-05-25 Method for producing magnet powder containing rare-earth element, transition metal and nitrogen

Country Status (1)

Country Link
JP (1) JP2010270382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760591A (en) * 2020-12-22 2021-05-07 李江巡 High-corrosion-resistance stainless steel and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760591A (en) * 2020-12-22 2021-05-07 李江巡 High-corrosion-resistance stainless steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6489073B2 (en) Method for producing rare earth-iron-nitrogen based magnet powder
JP6845491B2 (en) Samarium-iron-nitrogen magnet powder and its manufacturing method
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
Gabay et al. Mechanochemical synthesis of fine R2Fe14BHx and R2Fe14B powders with R= Nd or Nd–Dy
JP7332856B2 (en) Method for producing anisotropic magnetic powder and anisotropic magnetic powder
JP2014080653A (en) Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder
JP2017218623A (en) Production method of rare earth-iron-nitrogen system alloy powder
JP6555197B2 (en) Method for producing rare earth-iron-nitrogen alloy powder
JP2010270379A (en) Method for producing rare-earth-iron-nitrogen-based magnet powder
US20230162913A1 (en) Rare earth magnet and production method thereof
JP2010270382A (en) Method for producing magnet powder containing rare-earth element, transition metal and nitrogen
JP4814856B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP7006156B2 (en) Rare earth-iron-nitrogen magnet powder manufacturing method
JP6759855B2 (en) Method for manufacturing rare earth-iron-nitrogen alloy powder
JP2007327101A (en) Method for producing rare earth-iron-nitrogen based magnet fine powder
JP4166478B2 (en) Method for producing rare earth iron nitrogen-based magnetic powder
JP2008171868A (en) Manufacturing method of rare earth-iron-nitrogen-based magnetic powder
JP7393773B2 (en) Samarium-iron-nitrogen magnet and samarium-iron-nitrogen magnet powder
JP2007084918A (en) Rare earth-iron-nitrogen based magnet powder, and its production method
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JP2007073842A (en) Rare earth-iron-manganese-nitrogen magnetic powder
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
JP2019206742A (en) Method of producing rare-earth transition metal alloy powder
US12027306B2 (en) Method of producing SmFeN-based rare earth magnet
US20220199321A1 (en) Rare-earth magnet and method of manufacturing the same