JP2010270347A - TiAl ALLOY FOR AIR INTAKE/EXHAUST VALVE AND METHOD FOR MANUFACTURING THE SAME - Google Patents

TiAl ALLOY FOR AIR INTAKE/EXHAUST VALVE AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2010270347A
JP2010270347A JP2009120914A JP2009120914A JP2010270347A JP 2010270347 A JP2010270347 A JP 2010270347A JP 2009120914 A JP2009120914 A JP 2009120914A JP 2009120914 A JP2009120914 A JP 2009120914A JP 2010270347 A JP2010270347 A JP 2010270347A
Authority
JP
Japan
Prior art keywords
tial alloy
alloy
phase
tial
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009120914A
Other languages
Japanese (ja)
Inventor
Yasuhei Sanada
泰平 真田
Sadayoshi Minato
定美 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009120914A priority Critical patent/JP2010270347A/en
Publication of JP2010270347A publication Critical patent/JP2010270347A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TiAl alloy for an air intake/exhaust valve, which has a lower specific gravity and a higher rigidity than a conventional Ti alloy and furthermore has an improved toughness compared with the conventional TiAl alloy, to provide a method for manufacturing the same, and to increase a rotation speed of an engine and improve an output power by realizing valve parts with light weight and high rigidity. <P>SOLUTION: This manufacturing method includes subjecting the TiAl alloy having a composition including 8.0-9.5 wt.% Al and the balance Ti to aging heat treatment at 600-900°C for 40 hours or longer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、エンジンバルブ部品に用いられるチタン合金およびその製造方法に関する。   The present invention relates to a titanium alloy used for engine valve parts and a method for producing the same.

エンジンバルブ部品の材料として、TiAl合金が知られている。例えば、特許文献1に記載のTiAl合金からなるバルブは、一般的なTi合金からなるバルブに比べて非常に軽量であるという特徴がある。また、エンジンの高回転化や高効率化(燃焼効率向上、フリクション抵抗低減等)のためバルブには剛性が求められるが、従来のバルブ材であるTi合金に比して、TiAl合金は高い剛性を有するという利点がある。   A TiAl alloy is known as a material for engine valve parts. For example, a valve made of a TiAl alloy described in Patent Document 1 has a feature that it is very light compared to a valve made of a general Ti alloy. In addition, the valve is required to have rigidity for higher engine speed and higher efficiency (combustion efficiency improvement, friction resistance reduction, etc.), but TiAl alloy has higher rigidity than Ti alloy, which is a conventional valve material. There is an advantage of having.

しかしながら、従来のバルブ材と比べ、TiAl合金は靭性が非常に低いため、バルブの信頼性の観点から適用が困難となっている。このため、TiAl合金からなるバルブ部品の適用範囲は非常に限定されていた。   However, compared to conventional valve materials, TiAl alloys have very low toughness, making it difficult to apply from the viewpoint of valve reliability. For this reason, the applicable range of valve parts made of TiAl alloy has been very limited.

特開平6−229213号公報JP-A-6-229213

TiAl合金は主に金属間化合物からなるため靭性が低く、バルブ部品の安全率管理が極めて難しい。すなわち、TiAl合金を用いてバルブ部品を設計する際には、部品強度に十分な余裕を持たせるために、バルブ部品の寸法をより大きくする必要がある。このため、TiAl合金の低比重であるという利点を効率的に利用できない。   Since TiAl alloy mainly consists of intermetallic compounds, its toughness is low and it is very difficult to manage the safety factor of valve parts. That is, when designing a valve component using a TiAl alloy, it is necessary to increase the size of the valve component in order to provide a sufficient margin for the component strength. For this reason, the advantage that TiAl alloy is low specific gravity cannot be used efficiently.

したがって、本発明は、従来のTi合金よりも低比重、高剛性であり、さらに、従来のTiAl合金よりも靭性を向上させた吸排気バルブ用TiAl合金およびその製造方法を提供することを目的としている。また、本発明は、軽量かつ高剛性なバルブ部品を実現することにより、エンジンの高回転化や出力改善を図ることを目的としている。   Accordingly, it is an object of the present invention to provide a TiAl alloy for intake / exhaust valves, which has a lower specific gravity and higher rigidity than conventional Ti alloys, and has improved toughness compared to conventional TiAl alloys, and a method for producing the same. Yes. Another object of the present invention is to increase engine speed and improve output by realizing lightweight and highly rigid valve parts.

本発明の吸排気バルブ用TiAl合金の製造方法は、組成がAl:8.0〜9.5wt%および残部TiからなるTiAl合金を、600〜900℃において40時間以上時効熱処理することを特徴とする。   The method for producing a TiAl alloy for intake and exhaust valves according to the present invention is characterized in that a TiAl alloy having a composition of Al: 8.0 to 9.5 wt% and the balance Ti is subjected to an aging heat treatment at 600 to 900 ° C. for 40 hours or more. To do.

上記TiAl合金を600〜900℃の範囲で40時間以上時効処理することにより、α−Tiを生成させ、α−Ti中に30〜50vol%のTiAlを析出させることができる。このため、基地中のα−Tiにより材料の靭性が向上する。また、α相中にTiAlが析出しているため、TiAlによる析出硬化により基地の剛性を向上できると考えられる。したがって、本発明の製造方法により、従来のTiAl合金よりも靭性が改善され、従来のTi合金よりも低比重、高剛性であるTiAl合金が得られる。 By aging the TiAl alloy in the range of 600 to 900 ° C. for 40 hours or longer, α-Ti can be generated, and 30 to 50 vol% of Ti 3 Al can be precipitated in α-Ti. For this reason, the toughness of the material is improved by α-Ti in the base. Further, since Ti 3 Al is precipitated in the α phase, it is considered that the rigidity of the base can be improved by precipitation hardening with Ti 3 Al. Therefore, by the production method of the present invention, a toughness is improved as compared with a conventional TiAl alloy, and a TiAl alloy having a lower specific gravity and higher rigidity than a conventional Ti alloy can be obtained.

なお、本発明の吸排気バルブ用TiAl合金の製造方法において、上記組成に、更に、Fe,Cr,Mo,V,Nbのうち少なくとも1種を添加し、それらの添加量のwt%の値を以下の[数1]式に用いたときに、Mo当量が5.7以下となることが好ましい。
[数1]
Mo当量=Mo+2.5Fe+1.25Cr+0.67V+0.28Nb
In the method for producing a TiAl alloy for an intake / exhaust valve according to the present invention, at least one of Fe, Cr, Mo, V, and Nb is further added to the above composition, and the value of wt% of the added amount is set. When used in the following [Equation 1], the Mo equivalent is preferably 5.7 or less.
[Equation 1]
Mo equivalent = Mo + 2.5Fe + 1.25Cr + 0.67V + 0.28Nb

上記TiAl合金に、β−Ti安定化元素であるFe,Cr,Mo,V,Nbのうち少なくとも1種を添加すると、基地にβ相を析出させることができる。Fe,Cr,Mo,V,Nbは、β相の析出温度を低下させる効果があり、β相により材料の機械加工性が向上する。ただし、基地中のβ相が過剰であると、材料の硬度や強度等が低くなりすぎるので、β相の析出量を調節するため、Mo当量を5.7以下に設定する。なお、固溶強化を目的としてSnやZr、高温強度や耐クリープ性向上を目的としてSiやNbを添加してもよい。   If at least one of Fe, Cr, Mo, V, and Nb, which are β-Ti stabilizing elements, is added to the TiAl alloy, the β phase can be precipitated on the matrix. Fe, Cr, Mo, V, and Nb have the effect of lowering the precipitation temperature of the β phase, and the machinability of the material is improved by the β phase. However, if the β phase in the base is excessive, the hardness and strength of the material become too low, so the Mo equivalent is set to 5.7 or less in order to adjust the precipitation amount of the β phase. Note that Sn and Zr may be added for the purpose of solid solution strengthening, and Si and Nb may be added for the purpose of improving high temperature strength and creep resistance.

また、本発明の吸排気バルブ用TiAl合金は、組成がAl:8.0〜9.5wt%および残部TiからなるTiAl合金において、α−Ti中に30〜50vol%のTiAlが析出していることを特徴とする。 The TiAl alloy for intake and exhaust valves of the present invention is a TiAl alloy having a composition of Al: 8.0 to 9.5 wt% and the balance Ti, and 30 to 50 vol% of Ti 3 Al is precipitated in α-Ti. It is characterized by.

TiAl合金において、TiAlが30vol%に満たないと、基地の剛性を向上させる効果が小さく、50vol%を超えると、α−Tiが少なくなるため材料の靭性が低くなる。このため、本発明では、TiAl合金において、α−Ti中に30〜50vol%のTiAlを析出させる。 In the TiAl alloy, if Ti 3 Al is less than 30 vol%, the effect of improving the rigidity of the base is small, and if it exceeds 50 vol%, α-Ti is reduced and the toughness of the material is lowered. Therefore, in the present invention, the TiAl alloy to precipitate 30~50Vol% of Ti 3 Al in alpha-Ti.

なお、本発明の吸排気バルブ用TiAl合金において、上記組成に、更に、Fe,Cr,Mo,V,Nbのうち少なくとも1種を添加したTiAl合金が好ましく、それらの添加量のwt%の値を以下の[数2]式に用いたときに、Mo当量が5.7以下となることが好ましい。
[数2]
Mo当量=Mo+2.5Fe+1.25Cr+0.67V+0.28Nb
In addition, in the TiAl alloy for intake and exhaust valves of the present invention, a TiAl alloy in which at least one of Fe, Cr, Mo, V, and Nb is further added to the above composition is preferable, and the value of wt% of the added amount thereof. Is used in the following [Equation 2], the Mo equivalent is preferably 5.7 or less.
[Equation 2]
Mo equivalent = Mo + 2.5Fe + 1.25Cr + 0.67V + 0.28Nb

以下に、β−Ti安定化元素であるFe,Cr,Mo,V,Nbについて述べる。
Fe:
Feは安価であり、その添加量が少なくても、β相安定化の効果が非常に大きい。また、材料の強度向上効果がある。ただし、Feを過剰に添加すると、Tiと結合してTiFeを生成するため、延性が低下する。このため、本発明では、Feの添加量は、α−Tiに固溶し、過剰に析出しない範囲である2wt%以下とする。
Hereinafter, Fe, Cr, Mo, V, and Nb which are β-Ti stabilizing elements will be described.
Fe:
Fe is inexpensive, and the effect of stabilizing the β phase is very large even if the amount of Fe is small. In addition, there is an effect of improving the strength of the material. However, if Fe is added excessively, it combines with Ti to produce TiFe, so that ductility is lowered. For this reason, in this invention, the addition amount of Fe shall be 2 wt% or less which is the range which does not dissolve excessively, but dissolves in (alpha) -Ti.

Cr:
Crも安価であり、その添加量が少なくても、β相安定化の効果が得られる。また、材料の強度向上効果がある。ただし、過剰に添加すると、機械加工性が低下する場合があるため、Crの添加量は3.0wt%未満とする。なお、本発明においては、高靭性を確保する観点から、α−Tiに固溶し、過剰のTiCrを析出しない範囲である1wt%以下とすることが望ましい。
Cr:
Cr is also inexpensive, and the effect of stabilizing the β phase can be obtained even if the amount of Cr is small. In addition, there is an effect of improving the strength of the material. However, if added excessively, the machinability may deteriorate, so the amount of Cr added is less than 3.0 wt%. In the present invention, from the viewpoint of ensuring high toughness, it is desirable that the content be 1 wt% or less, which is a range in which the solid solution is dissolved in α-Ti and no excessive TiCr 2 is precipitated.

Mo,V:
MoおよびVは、全率固溶体型の元素であるため、Tiと結合して析出物を生成することがない。そこで、本発明においては、β相の析出量を調節するために用いる。
Mo, V:
Since Mo and V are all solid solution type elements, they do not combine with Ti to produce precipitates. Therefore, in the present invention, it is used to adjust the precipitation amount of β phase.

Nb:
Nbはβ相安定化の効果が低いが、耐クリープ性向上の効果も得られる。このため、本発明においては、Nbを微量添加する。
Nb:
Nb has a low effect of stabilizing the β phase, but an effect of improving creep resistance is also obtained. For this reason, in the present invention, a small amount of Nb is added.

本発明の吸排気バルブ用TiAl合金の製造方法によれば、Alを添加することによって材料の比重を低減し、TiAlを析出させることにより剛性を向上させたTiAl合金が得られる。また、本発明のTiAl合金の製造方法によれば、適量のα−Tiを基地に残すことによって、靭性が向上したTiAl合金が得られる。本発明のTiAl合金を所定のバルブ部品に用いた場合、従来材であるTi6246を用いた場合と比べ、バルブ部品を7%程度軽量化できる。また、本発明のTiAl合金は高剛性であるため、設計により、バルブ部品の更なる軽量化やエンジンの高回転化が実現可能となる。 According to the method for producing a TiAl alloy for an intake / exhaust valve of the present invention, a TiAl alloy having reduced rigidity by adding Al and precipitating Ti 3 Al can be obtained. Moreover, according to the TiAl alloy manufacturing method of the present invention, a TiAl alloy with improved toughness can be obtained by leaving an appropriate amount of α-Ti on the base. When the TiAl alloy of the present invention is used for a predetermined valve part, the valve part can be reduced by about 7% as compared with the case of using Ti6246 which is a conventional material. Further, since the TiAl alloy of the present invention is highly rigid, it is possible to realize further weight reduction of the valve parts and higher engine rotation by design.

実施形態で用いた各材料の試験片の圧縮加工性試験結果を示すグラフである。It is a graph which shows the compression workability test result of the test piece of each material used in embodiment.

以下に、本発明のTiAl合金の一例を述べる。TiAlを30〜50vol%分散させるため、Alの添加量は9.5wt%とし、それ以外の成分元素については、適宜添加を行った。表1に、各材料の成分を示す。表1に示すように、熱間押出し時の加工性や強度の観点から、Fe,Cr,Mo,V等のβ相安定化元素を添加した材料や、固溶強化促進のためZrをさらに添加した材料を用意した。なお、耐クリープ性を得るため、各材料にSiを0.2wt%添加し、特に材料AにはNbも添加した。また、各材料において、Mo当量が5.7以下となるように成分元素の添加量を設定した。 Below, an example of the TiAl alloy of this invention is described. In order to disperse 30 to 50 vol% of Ti3Al, the amount of Al added was 9.5 wt%, and other component elements were appropriately added. Table 1 shows the components of each material. As shown in Table 1, from the viewpoint of workability and strength during hot extrusion, materials added with β-phase stabilizing elements such as Fe, Cr, Mo, V, and Zr are further added to promote solid solution strengthening. Prepared materials. In order to obtain creep resistance, 0.2 wt% of Si was added to each material, and Nb was also added to the material A in particular. In each material, the addition amount of the component elements was set so that the Mo equivalent was 5.7 or less.

Figure 2010270347
Figure 2010270347

表1に示した5種類の材料について、直径38mm×高さ18mmの鋳塊を作製し、直径8mm×高さ12mmのボタン型試験片を6個ずつ切り出し、時効熱処理後、密度測定および圧縮加工性試験を実施した。時効熱処理は、600〜900℃において40時間以上行い、TiAlを十分に析出させた後、水冷により冷却を行った。そして、X線回折法によりα相、TiAl相、β相の相比の確認を行った。評価に用いたピーク角は、α相:35.3°、38.4°、40.4°、TiAl相:25.8°、β相:39.2°である。なお、α相の3つのピークにはTiAl相のピークも重なっているため、相比はその影響を考慮して算出した。これらの結果を、表2に示す。なお、相比に基づいて求めたヤング率の推定値も表2に示す。 For the five types of materials shown in Table 1, ingots with a diameter of 38 mm and a height of 18 mm were produced, and six button-type test pieces each having a diameter of 8 mm and a height of 12 mm were cut out. After aging heat treatment, density measurement and compression processing A sex test was performed. The aging heat treatment was performed at 600 to 900 ° C. for 40 hours or more, and Ti 3 Al was sufficiently precipitated, followed by cooling by water cooling. Then, alpha-phase by X-ray diffractometry, Ti 3 Al phase, a check of the phase ratio of the β phase was carried out. The peak angles used for the evaluation are α phase: 35.3 °, 38.4 °, 40.4 °, Ti 3 Al phase: 25.8 °, and β phase: 39.2 °. In addition, since the peak of the Ti 3 Al phase overlaps with the three peaks of the α phase, the phase ratio was calculated in consideration of the influence. These results are shown in Table 2. Table 2 also shows the estimated Young's modulus obtained based on the phase ratio.

Figure 2010270347
Figure 2010270347

表2に示す結果から、各材料において、α−Ti中に30〜50vol%程度のTiAlが析出したことを確認できた。表2に示すヤング率の推定値から、最も高い剛性を示す材料はJであると推測できる。また、β相の割合から、加工性に対して最も有利となる材料はMであることが推定される。 From the results shown in Table 2, it was confirmed that about 30 to 50 vol% of Ti 3 Al was precipitated in α-Ti in each material. From the estimated value of Young's modulus shown in Table 2, it can be inferred that the material showing the highest rigidity is J. From the β phase ratio, it is estimated that M is the most advantageous material for workability.

次に、材料の加工性を比較するため、表1に示した5種類の材料について、ボタン型試験片を用いて圧縮加工性試験を行った。圧縮試験では、加熱炉が設置された圧縮試験機に試験片を固定し、各試験温度において30分保持した後、0.1mm/secの一定速度で圧縮歪み量が60%前後に到達するまで圧縮を行い、その際の圧縮降伏強さを測定した。試験温度は、一次押出しを想定し、βトランザス(β変態点)以下の温度である、800℃、900℃、1000℃とした。圧縮加工性試験の結果を図1に示す。   Next, in order to compare the workability of the materials, a compression workability test was performed on the five types of materials shown in Table 1 using button-type test pieces. In the compression test, a test piece is fixed to a compression test machine in which a heating furnace is installed, held at each test temperature for 30 minutes, and then until the amount of compressive strain reaches around 60% at a constant speed of 0.1 mm / sec. Compression was performed and the compression yield strength at that time was measured. Assuming primary extrusion, the test temperatures were 800 ° C., 900 ° C., and 1000 ° C., which are temperatures below β transus (β transformation point). The result of the compression workability test is shown in FIG.

図1から、800〜1000℃の各温度域において、他の材料と比べ、材料Mの変形抵抗が明らかに小さいことがわかる。このことから、加工性に効果のあるβ相をかなり多く含有させることにより、圧縮降伏強さを低減し、材料の加工性を向上させることが可能であるとわかる。   From FIG. 1, it can be seen that the deformation resistance of the material M is clearly smaller than the other materials in each temperature range of 800 to 1000 ° C. From this, it can be understood that the compressive yield strength can be reduced and the workability of the material can be improved by containing a considerably large amount of β phase effective for workability.

以上の結果を基に、材料JおよびMについてさらに検討を行った。表3に示す条件において、材料JおよびMについて、それぞれ、スカル溶解により鋳造し、一次押出し、熱処理を行い、上記と同様にして相比を求めた後、引張試験を行った。それらの結果を表3に示す。また、比較のため、従来のTi系バルブ材(Ti6246、TiAl)の物性値の一例を表3に伴わせて示す。   Based on the above results, the materials J and M were further examined. Under the conditions shown in Table 3, materials J and M were each cast by skull melting, subjected to primary extrusion and heat treatment, and after obtaining the phase ratio in the same manner as described above, a tensile test was performed. The results are shown in Table 3. For comparison, an example of physical property values of a conventional Ti valve material (Ti6246, TiAl) is shown in Table 3.

Figure 2010270347
Figure 2010270347

表3からわかるように、本発明の材料JおよびMは、従来材であるTiAlに対し、伸びの値が著しく改善しており、また、Ti6246に対しては、伸びの値は同等以上であるため、靭性が実用レベルに改善されたといえる。また、Ti6246に比べ、材料JおよびMは密度が低く、高いヤング率を示しており、低比重、高剛性化を達成したと考えられる。したがって、本発明のTiAl合金は、従来のTi合金よりも低密度、高剛性であり、さらに、従来のTiAl合金よりも靭性が改善していることが確認できた。   As can be seen from Table 3, the materials J and M of the present invention have significantly improved elongation values compared to TiAl, which is a conventional material, and the elongation values are equal to or greater than those of Ti6246. Therefore, it can be said that the toughness has been improved to a practical level. Further, compared with Ti6246, the materials J and M have a low density and a high Young's modulus, and it is considered that low specific gravity and high rigidity have been achieved. Therefore, it was confirmed that the TiAl alloy of the present invention has lower density and higher rigidity than the conventional Ti alloy, and further improved toughness than the conventional TiAl alloy.

Claims (4)

組成がAl:8.0〜9.5wt%および残部TiからなるTiAl合金を、600〜900℃において40時間以上時効熱処理することを特徴とする吸排気バルブ用TiAl合金の製造方法。   A method for producing a TiAl alloy for intake and exhaust valves, characterized by subjecting a TiAl alloy having a composition of Al: 8.0 to 9.5 wt% and the balance Ti to an aging heat treatment at 600 to 900 ° C for 40 hours or more. 前記組成に、更に、Fe,Cr,Mo,V,Nbのうち少なくとも1種を添加し、それらの添加量のwt%の値を以下の[数1]式に用いたときに、Mo当量が5.7以下となることを特徴とする請求項1に記載の吸排気バルブ用TiAl合金の製造方法。
[数1]
Mo当量=Mo+2.5Fe+1.25Cr+0.67V+0.28Nb
When at least one of Fe, Cr, Mo, V, and Nb is added to the composition and the value of wt% of the added amount is used in the following [Equation 1], the Mo equivalent is The method for producing a TiAl alloy for an intake / exhaust valve according to claim 1, wherein the TiAl alloy is 5.7 or less.
[Equation 1]
Mo equivalent = Mo + 2.5Fe + 1.25Cr + 0.67V + 0.28Nb
組成がAl:8.0〜9.5wt%および残部TiからなるTiAl合金において、α−Ti中に30〜50vol%のTiAlが析出していることを特徴とする吸排気バルブ用TiAl合金。 Composition Al: 8.0~9.5wt% and in TiAl alloy and the balance Ti, intake and exhaust valves for TiAl alloy, wherein the 30~50Vol% of Ti 3 Al in alpha-Ti is precipitated . 前記組成に、更に、Fe,Cr,Mo,V,Nbのうち少なくとも1種を添加したTiAl合金であって、それらの添加量のwt%の値を以下の[数2]式に用いたときに、Mo当量が5.7以下となることを特徴とする請求項3に記載の吸排気バルブ用TiAl合金。
[数2]
Mo当量=Mo+2.5Fe+1.25Cr+0.67V+0.28Nb
A TiAl alloy in which at least one of Fe, Cr, Mo, V, and Nb is added to the composition, and when the value of wt% of the added amount is used in the following [Equation 2] The TiAl alloy for intake and exhaust valves according to claim 3, wherein the Mo equivalent is 5.7 or less.
[Equation 2]
Mo equivalent = Mo + 2.5Fe + 1.25Cr + 0.67V + 0.28Nb
JP2009120914A 2009-05-19 2009-05-19 TiAl ALLOY FOR AIR INTAKE/EXHAUST VALVE AND METHOD FOR MANUFACTURING THE SAME Pending JP2010270347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009120914A JP2010270347A (en) 2009-05-19 2009-05-19 TiAl ALLOY FOR AIR INTAKE/EXHAUST VALVE AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009120914A JP2010270347A (en) 2009-05-19 2009-05-19 TiAl ALLOY FOR AIR INTAKE/EXHAUST VALVE AND METHOD FOR MANUFACTURING THE SAME

Publications (1)

Publication Number Publication Date
JP2010270347A true JP2010270347A (en) 2010-12-02

Family

ID=43418607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009120914A Pending JP2010270347A (en) 2009-05-19 2009-05-19 TiAl ALLOY FOR AIR INTAKE/EXHAUST VALVE AND METHOD FOR MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP2010270347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047392A (en) * 2012-08-31 2014-03-17 Honda Motor Co Ltd Titanium valve for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047392A (en) * 2012-08-31 2014-03-17 Honda Motor Co Ltd Titanium valve for internal combustion engine

Similar Documents

Publication Publication Date Title
CN104745903B (en) A kind of 480MPa grades of aluminium alloy oil pipe aluminium alloy and its tubing manufacture method
JP4995570B2 (en) Nickel base alloy and heat treatment method of nickel base alloy
JP5582532B2 (en) Co-based alloy
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JPWO2011062231A1 (en) Heat resistant superalloy
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP3915324B2 (en) Titanium aluminide alloy material and castings thereof
WO2013169901A1 (en) 2xxx series aluminum lithium alloys
JP5284935B2 (en) Heat-resistant aluminum alloy extruded material with excellent high-temperature strength and fatigue properties
JP2022502568A (en) Titanium alloy with medium strength and high ductility
JP4459832B2 (en) Α-β type titanium alloy with excellent tool life and chip separation
CN114085966A (en) Under-aging heat treatment process for precipitation strengthening type high-temperature alloy
KR102318721B1 (en) Beta titanium alloys with excellent mechanical properties and ductility
JP7184257B2 (en) Aluminum alloy material, manufacturing method thereof, and impeller
JP2010270347A (en) TiAl ALLOY FOR AIR INTAKE/EXHAUST VALVE AND METHOD FOR MANUFACTURING THE SAME
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP2013053361A (en) Aluminum alloy for flying body excellent in heat-resistant strength
KR101346808B1 (en) The Titanium alloy improved mechanical properties and the manufacturing method thereof
JP2010053419A (en) Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength
KR102095463B1 (en) TiAl-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE FORMABILITY AND METHOD FOR MANUFACTURING TiAl-BASED ALLOY MEMBER USING THE SAME
JP2608689B2 (en) High strength and high ductility Ti alloy
JP2554049B2 (en) Ni-based alloy and method for producing the same
JP2021031717A (en) Titanium alloy, method for manufacturing the same, and engine part using the same
JP4892726B2 (en) Implant material for living body
JPH08157986A (en) High strength and high ductility titanium alloy