JP4892726B2 - Implant material for living body - Google Patents

Implant material for living body Download PDF

Info

Publication number
JP4892726B2
JP4892726B2 JP2006248177A JP2006248177A JP4892726B2 JP 4892726 B2 JP4892726 B2 JP 4892726B2 JP 2006248177 A JP2006248177 A JP 2006248177A JP 2006248177 A JP2006248177 A JP 2006248177A JP 4892726 B2 JP4892726 B2 JP 4892726B2
Authority
JP
Japan
Prior art keywords
mass
alloy
phase
strength
implant material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006248177A
Other languages
Japanese (ja)
Other versions
JP2008069394A (en
Inventor
直之 野村
晶彦 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2006248177A priority Critical patent/JP4892726B2/en
Publication of JP2008069394A publication Critical patent/JP2008069394A/en
Application granted granted Critical
Publication of JP4892726B2 publication Critical patent/JP4892726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Description

本発明は、人工股関節など生体内に埋め込んで使用される用途に供して好適なCo−Cr−Mo系合金からなる生体用インプラント材料に関し、特にその強度の有利な向上を図ろうとするものである。   The present invention relates to a biomedical implant material made of a Co-Cr-Mo-based alloy suitable for use in a living body such as an artificial hip joint, and in particular, intends to advantageously improve its strength. .

生体用インプラント材料は、生体内に埋め込んで使用されることから、耐食性および細胞適合性に優れることが要求される。さらに、人工股関節等のように付加荷重が大きく、かつ摺動性が必要とされる用途では、強度および耐摩耗性に優れることも要求される。
このような要件を満足するものとして、ASTM F-75に規定されるCo−Cr−Mo系鋳造合金や特許文献1に記載されているようなCo−Cr−Mo系合金が知られている。
特開2004−269994号公報
Since the implant material for living body is used by being embedded in a living body, it is required to be excellent in corrosion resistance and cytocompatibility. Furthermore, it is required to have excellent strength and wear resistance in an application such as an artificial hip joint that requires a large applied load and requires slidability.
Co-Cr-Mo type casting alloys defined in ASTM F-75 and Co-Cr-Mo type alloys as described in Patent Document 1 are known as satisfying such requirements.
JP 2004-269994 A

ところで、近年、かようなインプラント材料では、長寿命化に対する要求が厳しく、これに伴い、Co−Cr−Mo系合金についても一層の高強度化が求められている。
Co−Cr−Mo系合金の高強度化技術としては、鋳造材に対して温間または熱間で加工を施したり、熱処理を加えることによって組織を制御する方法が知られている。
By the way, in recent years, such implant materials have strict demands for longer life, and accordingly, higher strength is required for Co-Cr-Mo alloys.
As a technique for increasing the strength of a Co—Cr—Mo alloy, there is known a method of controlling a structure by subjecting a cast material to warm or hot processing or applying heat treatment.

しかしながら、温間や熱間での加工、さらには熱処理などの加工熱処理を施すことは、工程の煩雑化を招くだけでなく、製造コストの面での不利が大きい。
そこで、かような加工熱処理を軽減し、好ましくは鋳造ままで高強度を有するインプラント材料の開発が望まれていた。
However, performing warm and hot processing, and further heat treatment such as heat treatment not only complicates the process, but also has a disadvantage in terms of manufacturing cost.
Therefore, it has been desired to develop an implant material that reduces such heat treatment and preferably has high strength as cast.

また、上記したASTM F-75規格では、その鋳造性を向上させるためにNiが若干含有されているが、最近では、Niアレルギーが懸念されていることから、生体材料に対してNiフリー化が要求されている。
しかしながら、ASTM F-75規格に相当する合金組成において、Niフリー化を行うと、積層欠陥エネルギーが減少するために強度が著しく減少し、さらに室温で多量のマルテンサイト相が導入されることから、延性の著しい低下も引き起こしていた。
In addition, the above-mentioned ASTM F-75 standard contains a little Ni to improve its castability, but recently there has been concern about Ni allergies, so there has been a Ni-free biomaterial. It is requested.
However, in the alloy composition corresponding to the ASTM F-75 standard, when Ni-free is performed, the stacking fault energy decreases, the strength decreases significantly, and a large amount of martensite phase is introduced at room temperature. It also caused a significant decrease in ductility.

本発明は、上記の現状に鑑み開発されたもので、Niフリーで、煩雑な加工熱処理プロセスを必要とせず、しかも強度を従来材よりも大幅に向上させたCo−Cr−Mo系合金からなる生体用インプラント材料を提案することを目的とする。   The present invention has been developed in view of the above situation, and is made of a Co-Cr-Mo alloy that is Ni-free, does not require a complicated work heat treatment process, and has greatly improved strength over conventional materials. The object is to propose a biomedical implant material.

さて、発明者らは、上記の目的を達成すべく、従来から生体用インプラント材料として認知されているASTM F-75に規定されるCo−Cr−Mo鋳造合金に相当するCo−Cr−Mo系合金について、新たな合金設計を試みた。
その結果、Co−Cr−Mo系合金に、適量のBを含有させることにより、鋳造組織が微細化されると共に、マルテンサイト量を適正な範囲に抑制することができ、その結果、所期した目的が有利に達成されることの知見を得た。
本発明は、上記の知見に立脚するものである。
Now, in order to achieve the above object, the inventors have made a Co-Cr-Mo system corresponding to a Co-Cr-Mo casting alloy defined in ASTM F-75, which has been conventionally recognized as a biomedical implant material. A new alloy design was attempted for the alloy.
As a result, by adding an appropriate amount of B to the Co—Cr—Mo alloy, the cast structure can be refined, and the martensite amount can be suppressed to an appropriate range. We have found that the objective is achieved advantageously.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.Cr:20〜34質量%、Mo:1〜10質量%および0.05〜0.5質量%を含有し、残部はCoの組成からなるCo−Cr−Mo−B合金であって、該合金の組織が、γ相を50〜90体積%およびε相を10〜50体積%の割合で含み、かつσ相の割合を面積率で0.6%以下に抑制したことを特徴とする生体用インプラント材料。
That is, the gist configuration of the present invention is as follows.
1. Co—Cr—Mo—B alloy containing Cr: 20 to 34% by mass, Mo: 1 to 10% by mass and B : 0.05 to 0.5% by mass with the balance being Co, and the structure of the alloy The bioimplant material is characterized in that it contains 50 to 90% by volume of the γ phase and 10 to 50% by volume of the ε phase, and the ratio of the σ phase is suppressed to 0.6% or less in terms of area ratio .

本発明によれば、耐食性や細胞適合性に優れるのはいうまでもなく、高い強度および良好な耐摩耗性を有するCo−Cr−Mo系合金を得ることができる。
その結果、生体に対して安全で使用寿命の長い生体用インプラント材料を提供することができ、特に人工股関節や人工膝関節などの医療用デバイスに適用して偉効を奏する。
According to the present invention, it is needless to say that the corrosion resistance and cell compatibility are excellent, and a Co—Cr—Mo alloy having high strength and good wear resistance can be obtained.
As a result, it is possible to provide a biomedical implant material that is safe for the living body and has a long service life, and is particularly effective when applied to medical devices such as an artificial hip joint and an artificial knee joint.

以下、本発明を具体的に説明する。
本発明では、Co−Cr−Mo3元合金を基本組成とする。
ここに、この3元合金における各元素の適正含有量は次のとおりである。
Cr:20〜34質量%
Crは、耐食性を確保する上で必須の元素であるが、含有量が20質量%に満たないと十分な耐食性が得られず、一方34質量%を超えると脆化するので、Cr量は20〜34質量%の範囲に限定した。なお、磁化率を低減してMRI画像診断の際におけるひずみ(アーチファクト)の発生を抑制するためには、Cr量は30質量%以上とすることが好ましい。
Hereinafter, the present invention will be specifically described.
In the present invention, a basic composition is a Co—Cr—Mo ternary alloy.
Here, the proper content of each element in this ternary alloy is as follows.
Cr: 20 to 34% by mass
Cr is an essential element for ensuring corrosion resistance. However, if the content is less than 20% by mass, sufficient corrosion resistance cannot be obtained. On the other hand, if it exceeds 34% by mass, it becomes brittle. It was limited to a range of ˜34% by mass. In order to reduce the magnetic susceptibility and suppress the occurrence of distortion (artifact) during MRI image diagnosis, the Cr content is preferably 30% by mass or more.

Mo:1〜10質量%
Moは、耐食性および耐摩耗性の向上に有効に寄与するが、含有量が1質量%に満たないとその添加効果に乏しく、一方10質量%を超えると加工性の劣化を招くので、Mo量は1〜10質量%の範囲に限定した。
Mo: 1 to 10% by mass
Mo contributes effectively to the improvement of corrosion resistance and wear resistance. However, if the content is less than 1% by mass, the effect of addition is poor. On the other hand, if it exceeds 10% by mass, the workability is deteriorated. Was limited to the range of 1 to 10% by mass.

さて、本発明では、上記の組成になるCo−Cr−Mo3元合金に対して、0.05〜0.5質量%の範囲でBを含有させて、強度および延性の向上を図る。
ここに、B量が0.05質量%未満では、十分な強度および延性の改善効果が得られず、一方0.5質量%を超えるとむしろ延性の劣化を招き、生体用インプラント材料として支障をきたすので、Bは0.05〜0.5質量%の範囲で含有させるものとした。
Now, in this invention, with respect to the Co—Cr—Mo ternary alloy having the above composition, B is contained in the range of 0.05 to 0.5 mass% to improve strength and ductility.
Here, if the amount of B is less than 0.05% by mass, sufficient strength and ductility improvement effects cannot be obtained. On the other hand, if it exceeds 0.5% by mass, the ductility is rather deteriorated and the implant material for living body is hindered. Is contained in the range of 0.05 to 0.5% by mass.

図1に、Co−29Cr−6Mo(Cr:29質量%、Mo:6質量%、Co:bal)合金に、種々の割合でBを添加し、溶解鋳造して得た各種合金の応力−歪線図について調べた結果を、縦軸に降伏応力(MPa)、横軸に歪率(%)をもって示す。
同図に示したとおり、Bを0.05質量%以上含有させることによって、引張強度が大幅に向上することが分かる。
FIG. 1 shows the stress-strain of various alloys obtained by adding B in various proportions to a Co-29Cr-6Mo (Cr: 29 mass%, Mo: 6 mass%, Co: bal) alloy and melting and casting it. The results of examining the diagram are shown with the yield stress (MPa) on the vertical axis and the strain rate (%) on the horizontal axis.
As shown in the figure, it can be seen that the tensile strength is significantly improved by containing B by 0.05 mass% or more.

本発明に従い、Co−Cr−Mo3元合金に適量のBを含有させることによって、強度および延性が向上する理由は、次のとおりと考えられる。
Bを含有しないCo−29Cr−6Mo合金とBを0.5質量%含有させたCo−29Cr−6Mo−0.5B合金の鋳造組織について調査したところ、Co−29Cr−6Mo合金では粗大なデンドライトが形成されていたのに対し、Co−29Cr−6Mo−0.5B合金ではデンドライト界面に析出物が形成されることによって、デンドライトが微細化していた。
また、合金組織について調査したところ、Co−29Cr−6Mo合金では、ε相が優勢な(γ +ε)組織であり、かつσ相が分散していたのに対し、Co−29Cr−6Mo−0.1B合金のそれはγ相の割合が増加していた。
従って、B添加による強度および延性の改善効果は、組織の微細化およびσ相の低減を介して達成されたものと考えられる。
The reason why the strength and ductility are improved by adding an appropriate amount of B to the Co—Cr—Mo ternary alloy according to the present invention is considered as follows.
When a cast structure of a Co-29Cr-6Mo alloy containing no B and a Co-29Cr-6Mo-0.5B alloy containing 0.5% by mass of B was investigated, coarse dendrite was formed in the Co-29Cr-6Mo alloy. On the other hand, in the Co-29Cr-6Mo-0.5B alloy, the dendrite was refined by the formation of precipitates at the dendrite interface.
Further, when the alloy structure was investigated, in the Co-29Cr-6Mo alloy, the ε phase had a dominant (γ + ε) structure and the σ phase was dispersed, whereas the Co-29Cr-6Mo-0.1B The alloy has an increased proportion of γ phase.
Therefore, it is considered that the effect of improving the strength and ductility by the addition of B is achieved through the refinement of the structure and the reduction of the σ phase.

また、上記の処理により、σ相を面積率で0.6%以下に低減することによって本発明の効果が奏することができる。
なお、本合金において、上記したσ相以外は、γ相とε相であり、これらの相比率については、γ相:50〜90体積%、ε相:10〜50体積%とする
Moreover, the effect of this invention can be show | played by reducing (sigma) phase to 0.6% or less by area ratio by said process.
In this alloy, the γ phase and the ε phase other than the above-mentioned σ phase are γ phase and ε phase, and the phase ratio is γ phase: 50 to 90% by volume and ε phase: 10 to 50 % by volume .

以上、本発明における必須成分について説明したが、本発明では、上記した元素の他に、必要に応じて以下に示す元素を適宜含有させることができる。
C:0.2質量%以下
Cは、降伏強度と伸びを向上させる上で有用な元素であるが、含有量が0.2質量%を超えると伸びの低下が生じるので、Cは0.2質量%以下で含有させることが好ましい。
As described above, the essential components in the present invention have been described, but in the present invention, in addition to the above-described elements, the following elements can be appropriately contained as necessary.
C: 0.2% by mass or less C is an element useful for improving the yield strength and elongation. However, if the content exceeds 0.2% by mass, the elongation decreases, so C is contained at 0.2% by mass or less. It is preferable.

Fe:10質量%以下
Feは、降伏強度と伸びを向上させる上で有用な元素であるが、含有量が10質量%を超えるとσ相が増加して延性が低下する等の不利が生じるので、Feは10質量%以下で含有させることが好ましい。
Fe: 10% by mass or less
Fe is an element useful for improving the yield strength and elongation, but if the content exceeds 10% by mass, disadvantages such as an increase in the σ phase and a decrease in ductility occur, so Fe is 10% by mass. It is preferable to make it contain below.

Ni:0.05質量%以下
本発明は、生体用インプラントに用いるCo−Cr−Mo系合金であることから、Niについては、不可避的に混入する場合があるが、0.05質量%以下であれば問題はない。
Ni: 0.05% by mass or less Since the present invention is a Co—Cr—Mo alloy used for biomedical implants, Ni may be inevitably mixed, but if it is 0.05% by mass or less, there is a problem. Absent.

次に、本発明合金の好適製造条件について説明する。
本発明の合金を製造するには、1500〜1600℃に加熱した後、急冷することが重要である。ここに、加熱温度が1500℃(下限値)に満たないと均一に溶解されない。一方、1600℃(上限値)を超えると合金元素が蒸発するなどして組成が変化するという問題が生じる。
Next, preferred production conditions for the alloy of the present invention will be described.
In order to produce the alloy of the present invention, it is important to rapidly cool after heating to 1500-1600 ° C. If the heating temperature is less than 1500 ° C. (lower limit value), it cannot be dissolved uniformly. On the other hand, when the temperature exceeds 1600 ° C. (upper limit), there is a problem that the composition changes due to evaporation of the alloy elements.

実施例1
Co−29Cr−6Moを基本組成とするCo−Cr−Mo合金中に、表1に示す種々の割合でBを添加したCo−Cr−Mo−B合金を、1500℃に加熱後、急冷して、生体用インプラント材料を製造した。
かくして得られたインプラント材料の機械的性質(0.2%耐力、最大引張応力、塑性伸び)について調べた結果を表1に併記する。
Example 1
A Co-Cr-Mo-B alloy in which B is added in various proportions shown in Table 1 in a Co-Cr-Mo alloy having a basic composition of Co-29Cr-6Mo is heated to 1500 ° C and then rapidly cooled. A biomedical implant material was produced.
The results of examining the mechanical properties (0.2% yield strength, maximum tensile stress, plastic elongation) of the implant material thus obtained are also shown in Table 1.

なお、機械的性質は次のようにして調査した。
すなわち、各合金材料から板状の引張試験片(厚さ:1.0 mm,ゲージ長さ:14 mm)を切り出し、ひずみ速度:6.0×10-4 s-1にて引張試験を行い、機械的性質(0.2%耐力、最大引張応力、塑性伸び)を求めた。
The mechanical properties were investigated as follows.
That is, a plate-shaped tensile test piece (thickness: 1.0 mm, gauge length: 14 mm) was cut out from each alloy material, a tensile test was performed at a strain rate of 6.0 × 10 −4 s −1 , and mechanical properties were obtained. (0.2% yield strength, maximum tensile stress, plastic elongation) was determined.

Figure 0004892726
Figure 0004892726

同表に示したとおり、Bを0.05質量%以上含有させることによって、0.2%耐力および最大引張応力は格段に向上する。また、塑性伸びも、Bを0.05質量%以上含有させることによって大幅に向上するが、B含有量が0.5質量%を超えると、伸びは劣化する傾向が見られた。   As shown in the table, by containing B by 0.05% by mass or more, the 0.2% proof stress and the maximum tensile stress are remarkably improved. Also, the plastic elongation is greatly improved by containing B by 0.05% by mass or more. However, when the B content exceeds 0.5% by mass, the elongation tends to deteriorate.

Co−Cr−Mo系合金の引張特性に及ぼすBの添加効果を示す応力−歪線図である。It is a stress-strain diagram which shows the addition effect of B on the tensile property of a Co-Cr-Mo type alloy.

Claims (1)

Cr:20〜34質量%、Mo:1〜10質量%および0.05〜0.5質量%を含有し、残部はCoの組成からなるCo−Cr−Mo−B合金であって、該合金の組織が、γ相を50〜90体積%およびε相を10〜50体積%の割合で含み、かつσ相の割合を面積率で0.6%以下に抑制したことを特徴とする生体用インプラント材料。 Co—Cr—Mo—B alloy containing Cr: 20 to 34% by mass, Mo: 1 to 10% by mass and B : 0.05 to 0.5% by mass with the balance being Co, and the structure of the alloy The bioimplant material is characterized in that it contains 50 to 90% by volume of the γ phase and 10 to 50% by volume of the ε phase, and the ratio of the σ phase is suppressed to 0.6% or less in terms of area ratio .
JP2006248177A 2006-09-13 2006-09-13 Implant material for living body Active JP4892726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248177A JP4892726B2 (en) 2006-09-13 2006-09-13 Implant material for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248177A JP4892726B2 (en) 2006-09-13 2006-09-13 Implant material for living body

Publications (2)

Publication Number Publication Date
JP2008069394A JP2008069394A (en) 2008-03-27
JP4892726B2 true JP4892726B2 (en) 2012-03-07

Family

ID=39291238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248177A Active JP4892726B2 (en) 2006-09-13 2006-09-13 Implant material for living body

Country Status (1)

Country Link
JP (1) JP4892726B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561690B2 (en) * 2010-02-09 2014-07-30 国立大学法人大阪大学 Co-Cr alloy single crystal for implant member, method for producing the same, and implant member
CN103952596B (en) * 2014-05-12 2016-03-23 四川省有色冶金研究院有限公司 A kind of vitallium powder preparation method increasing material manufacture for metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146233A (en) * 1985-12-20 1987-06-30 Mitsubishi Metal Corp Dental cast co alloy
JPS62146232A (en) * 1985-12-20 1987-06-30 Mitsubishi Metal Corp Dental cast co alloy

Also Published As

Publication number Publication date
JP2008069394A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
US7722805B2 (en) Titanium alloy with extra-low modulus and superelasticity and its producing method and processing thereof
JP5283136B2 (en) Grain refinement method of nitrogen-added Co-Cr-Mo alloy and nitrogen-added Co-Cr-Mo alloy
JP5156943B2 (en) Method for producing bio-based Co-based alloy having excellent plastic workability
JP5272532B2 (en) β-type titanium alloy
Hsu et al. The structure and mechanical properties of as-cast Ti–25Nb–xSn alloys for biomedical applications
Dai et al. Influence of Zr content on microstructure and mechanical properties of implant Ti–35Nb–4Sn–6Mo–xZr alloys
JP2010275606A (en) Titanium alloy
US10087506B2 (en) Ultrahigh strength and ultralow elastic modulus titanium alloy showing linear elastic deformation behavior
JP5180638B2 (en) Bio-based Co-based alloy and method for producing the same
JP2010150624A (en) alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME
JP4892726B2 (en) Implant material for living body
JP5272533B2 (en) β-type titanium alloy
CN105714149A (en) Super-elasticity low-elastic-modulus titanium alloy material and preparation method and application thereof
JP6497689B2 (en) Co-Cr-W base alloy hot-worked material, annealed material, cast material, homogenized heat treatment material, Co-Cr-W-based alloy hot-worked material manufacturing method, and annealed material manufacturing method
JP5164144B2 (en) Co-Cr-Mo casting alloy for living body
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP2009270163A (en) Titanium alloy
Yu et al. Development of biomedical Near β Titanium alloys
JP6536916B2 (en) Artifact-free superelastic alloy
US20080193323A1 (en) Ti-Nb-Zr Alloy
WO2015064343A1 (en) Titanium alloy and artificial bone
JP2016141838A (en) β TYPE TITANIUM ALLOY
CN106319289B (en) Co-Cr-W alloys and its processing method and application
CN113164659A (en) Biodegradable metal alloy
CN104745878A (en) Moderate strength flexible narrow lag NiTiWCu quaternary alloy and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150