JP2010270077A - Ionic liquid and method for producing the same - Google Patents

Ionic liquid and method for producing the same Download PDF

Info

Publication number
JP2010270077A
JP2010270077A JP2009124714A JP2009124714A JP2010270077A JP 2010270077 A JP2010270077 A JP 2010270077A JP 2009124714 A JP2009124714 A JP 2009124714A JP 2009124714 A JP2009124714 A JP 2009124714A JP 2010270077 A JP2010270077 A JP 2010270077A
Authority
JP
Japan
Prior art keywords
ionic liquid
formula
general formula
ionic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009124714A
Other languages
Japanese (ja)
Other versions
JP5639344B2 (en
Inventor
Masashi Otsuki
正珠 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009124714A priority Critical patent/JP5639344B2/en
Publication of JP2010270077A publication Critical patent/JP2010270077A/en
Application granted granted Critical
Publication of JP5639344B2 publication Critical patent/JP5639344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new ionic liquid that is noncombustible and has low viscosity, and a method for producing the same. <P>SOLUTION: The ionic liquid is represented by formula (I) [wherein a plurality of Rs are each independently alkyl]. The method for producing the ionic liquid represented by formula (I) comprises reacting an ionic compound of a cyclic phosphazene having a specific structure with a salt represented by formula (III): A<SP>+</SP>PF<SB>6</SB><SP>-</SP>[wherein A<SP>+</SP>is monovalent cation] in an organic solvent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規イオン液体とその製造方法に関し、特には、不燃性で低粘度の新規イオン液体と、該イオン液体を高い収率で製造する方法に関するものである。   The present invention relates to a novel ionic liquid and a method for producing the same, and more particularly to a novel non-flammable and low-viscosity ionic liquid and a method for producing the ionic liquid in a high yield.

1992年のWilkesらの報告以来、常温で液体であり、イオン伝導性に優れた物質として、イオン液体が注目を集めている。該イオン液体は、陽イオンと陰イオンが静電気的引力で結合しており、イオンキャリア数が非常に多く、更には粘度も比較的低いため、イオンの移動度が常温でも高く、従って、イオン伝導性が非常に高いという特性を有する。また、イオン液体は、陽イオンと陰イオンのみで構成されているため、沸点が高く(300℃超)、液体状態を保持できる温度範囲が非常に広い。更に、該イオン液体は、蒸気圧が殆どないため、引火性が低く、熱的安定性も非常に優れている。   Since the report by Wilkes et al. In 1992, an ionic liquid has attracted attention as a substance that is liquid at room temperature and has excellent ionic conductivity. In the ionic liquid, the cation and the anion are combined by electrostatic attraction, the number of ion carriers is very large, and the viscosity is relatively low, so that the ion mobility is high even at room temperature. It has the characteristic that the property is very high. In addition, since the ionic liquid is composed only of cations and anions, the boiling point is high (above 300 ° C.) and the temperature range in which the liquid state can be maintained is very wide. Furthermore, since the ionic liquid has almost no vapor pressure, its flammability is low and its thermal stability is very excellent.

これら様々な利点を有するため、イオン液体は、昨今、非水電解液2次電池や電気二重層キャパシタの電解液への適用が検討されており(特許文献1及び2参照)、特に、電気二重層キャパシタの電解液にイオン液体を用いた場合には、イオン液体が電気二重層を形成するためのイオン源としても機能するため、別途支持電解質を添加する必要がないという利点もある。しかしながら、上記イオン液体は、常温で液体であるために通常有機基を含んでおり、燃焼の危険性がある。   Because of these various advantages, application of ionic liquids to electrolytes of non-aqueous electrolyte secondary batteries and electric double layer capacitors has recently been studied (see Patent Documents 1 and 2). When an ionic liquid is used as the electrolytic solution of the multilayer capacitor, the ionic liquid also functions as an ion source for forming an electric double layer, and thus there is an advantage that it is not necessary to add a supporting electrolyte separately. However, since the ionic liquid is a liquid at room temperature, it usually contains an organic group and has a risk of combustion.

これに対して、特開2007−153868号(特許文献3)には、燃焼の危険性が非常に低いイオン液体として、環状ホスファゼン化合物にアミンを結合させた構造の新規物質が報告されている。しかしながら、環状ホスファゼン化合物とアミンを単に混合して得られる反応混合物は、空気中で不安定であり、電気的にも不安定であった。   In contrast, JP 2007-153868 (Patent Document 3) reports a novel substance having a structure in which an amine is bonded to a cyclic phosphazene compound as an ionic liquid with a very low risk of combustion. However, a reaction mixture obtained by simply mixing a cyclic phosphazene compound and an amine is unstable in air and electrically unstable.

特開2004−111294号公報JP 2004-111294 A 特開2004−146346号公報JP 2004-146346 A 特開2007−153868号公報JP 2007-153868 A

上述のように、イオン液体は、引火性が低く、非水電解液2次電池や電気二重層キャパシタの電解液への適用が検討されているが、イオン液体自体は、難燃性であるものの、不燃性を示すまでには至っていない。また、イオン液体を電解液に適用する場合、イオン伝導度の観点から、低粘度であることが望まれる。   As described above, the ionic liquid has low flammability, and its application to the electrolyte of non-aqueous electrolyte secondary batteries and electric double layer capacitors has been studied, but the ionic liquid itself is flame retardant. It has not yet been shown to be nonflammable. Moreover, when applying an ionic liquid to electrolyte solution, it is desired that it is low viscosity from a viewpoint of ionic conductivity.

そこで、本発明の目的は、上記従来技術の問題を解決し、不燃性で、低粘度の新規イオン液体及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art and provide a novel non-flammable, low-viscosity ionic liquid and a method for producing the same.

本発明者は、上記目的を達成するために鋭意検討した結果、環状ホスファゼン化合物に3級アミンを結合させ、更にヘキサフルオロホスフェートイオンでイオン交換した構造の新規物質が、イオン性を有すると共に、不燃性で且つ粘度が低く、また、イオン交換の後、更に、濾過し、遠心分離した後、活性炭で精製することで、発光性の高いイオン液体を高い収率で製造できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that a novel substance having a structure in which a tertiary amine is bonded to a cyclic phosphazene compound and ion-exchanged with a hexafluorophosphate ion has an ionic property and is incombustible. And the viscosity is low, and after ion exchange, further filtering, centrifuging, and purifying with activated carbon, it has been found that a highly luminescent ionic liquid can be produced in high yield. It came to complete.

即ち、本発明のイオン液体は、下記一般式(I):

Figure 2010270077
[式中、Rはそれぞれ独立してアルキル基である]で表されることを特徴とする。 That is, the ionic liquid of the present invention has the following general formula (I):
Figure 2010270077
[Wherein, each R is independently an alkyl group].

本発明のイオン液体において、前記一般式(I)中のRは、炭素数が1〜8のアルキル基であることが好ましい。   In the ionic liquid of the present invention, R in the general formula (I) is preferably an alkyl group having 1 to 8 carbon atoms.

また、本発明のイオン液体の製造方法は、
有機溶媒中で、下記一般式(II):

Figure 2010270077
[式中、Rはそれぞれ独立してアルキル基である]で表されるイオン性化合物と下記一般式(III):
+PF6 - ・・・ (III)
[式中、A+は一価の陽イオンを表す]で表される塩とを反応させて、下記一般式(I):
Figure 2010270077
[式中、Rはそれぞれ独立してアルキル基である]で表されるイオン液体を生成させる工程(A)と、
前記工程(A)で得られる反応混合物を濾過して、A+Cl-(式中、A+は上記と同義である)を除去する工程(B)と、
前記工程(B)で得られる濾液を遠心分離して上澄み液を採取する工程(C)と、
前記工程(C)で得られる上澄み液に活性炭を加えて反応副生物を除去する工程(D)と
を含むことを特徴とする。この方法によれば、発光性の高いイオン液体を高い収率で製造できる。 The method for producing an ionic liquid of the present invention includes
In an organic solvent, the following general formula (II):
Figure 2010270077
[Wherein R is independently an alkyl group] and the following general formula (III):
A + PF 6 - ··· (III )
[Wherein A + represents a monovalent cation] is reacted with a salt represented by the following general formula (I):
Figure 2010270077
A step (A) of producing an ionic liquid represented by the formula: wherein each R is independently an alkyl group;
Filtering the reaction mixture obtained in the step (A) to remove A + Cl (wherein A + is as defined above) (B),
(C) collecting the supernatant by centrifuging the filtrate obtained in the step (B);
A step (D) of adding activated carbon to the supernatant obtained in the step (C) to remove reaction by-products. According to this method, an ionic liquid having high luminescence can be produced with a high yield.

本発明のイオン液体の製造方法において、前記有機溶媒としては、ハロゲン化炭化水素が好ましく、クロロホルムが特に好ましい。   In the method for producing an ionic liquid of the present invention, the organic solvent is preferably a halogenated hydrocarbon, particularly preferably chloroform.

本発明のイオン液体の製造方法の好適例においては、前記一般式(II)で表されるイオン性化合物の有機溶媒中での濃度が1〜5 mol/Lの範囲であり、前記一般式(III)で表される塩の有機溶媒中での濃度が1.5〜7.5mol/Lの範囲である。   In a preferred example of the method for producing an ionic liquid of the present invention, the concentration of the ionic compound represented by the general formula (II) in the organic solvent is in the range of 1 to 5 mol / L, and the general formula ( The concentration of the salt represented by III) in the organic solvent is in the range of 1.5 to 7.5 mol / L.

本発明によれば、不燃性で、低粘度の新規イオン液体を提供することができる。また、本発明によれば、不燃性で、低粘度である上、発光性の高いイオン液体を高い収率で製造できる。   According to the present invention, it is possible to provide a novel ionic liquid which is nonflammable and has a low viscosity. In addition, according to the present invention, an ionic liquid that is nonflammable, has a low viscosity, and has a high light emitting property can be produced in a high yield.

以下に、本発明を詳細に説明する。本発明のイオン液体は、上記一般式(I)で表されることを特徴とする。式(I)のイオン液体は、リン−窒素間二重結合を複数有する環状ホスファゼン化合物の一種であると共に、イオン性置換基を有するため、イオン性を有する。そして、ホスファゼン骨格を有するため、燃焼時に分解して、窒素ガスやリン酸エステル等を発生し、該窒素ガスやリン酸エステル等が燃焼の進行を抑制するため、燃焼の危険性が低い。また、上記イオン液体は、万が一の燃焼時にはフッ素が活性ラジカルの捕捉剤として機能し、燃焼の危険性を更に低減する。更に、上記イオン液体は、アルキル基を含み、燃焼時に炭化物(チャー)を生成するため酸素の遮断効果もある。また更に、上記イオン液体中のPF6 -が、燃焼の危険性をより一層低減する。そして、これらの作用が組み合わさった結果として、式(I)のイオン液体は、不燃性を示す。また、式(I)のイオン液体は、粘度が低く、25℃における粘度が通常50〜70 mPa・sであり、好ましくは50〜60mPa・sである。また、驚くべきことに、本発明のイオン液体は、発光性を示す。 The present invention is described in detail below. The ionic liquid of the present invention is represented by the above general formula (I). The ionic liquid of the formula (I) is a kind of cyclic phosphazene compound having a plurality of phosphorus-nitrogen double bonds and has an ionic substituent, and thus has ionicity. And since it has a phosphazene skeleton, it decomposes | disassembles at the time of combustion, generate | occur | produces nitrogen gas, phosphate ester, etc., and since this nitrogen gas, phosphate ester, etc. suppress the progress of combustion, the danger of combustion is low. In the ionic liquid, fluorine functions as a scavenger for active radicals in the unlikely event of combustion, further reducing the risk of combustion. Further, the ionic liquid contains an alkyl group and produces a carbide (char) during combustion, and has an oxygen blocking effect. Furthermore, PF 6 in the ionic liquid further reduces the risk of combustion. As a result of combining these actions, the ionic liquid of formula (I) exhibits nonflammability. Further, the ionic liquid of formula (I) has a low viscosity, and the viscosity at 25 ° C. is usually 50 to 70 mPa · s, preferably 50 to 60 mPa · s. Surprisingly, the ionic liquid of the present invention exhibits luminescence.

上記一般式(I)中のRは、それぞれ独立してアルキル基であり、好ましくは炭素数1〜8のアルキル基である。アルキル基の炭素数が8を超えると、粘度が高くなる。ここで、Rにおけるアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基等が挙げられる。なお、式(I)において、各Rは、同一でも異なってもよい。   R in the general formula (I) is each independently an alkyl group, preferably an alkyl group having 1 to 8 carbon atoms. When the number of carbon atoms in the alkyl group exceeds 8, the viscosity increases. Here, as the alkyl group in R, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, various pentyl groups, various hexyl groups, various heptyls Group, various octyl groups and the like. In the formula (I), each R may be the same or different.

式(I)のイオン液体のイオン性置換基は、−N+3とPF6 -とが主として静電気的引力によって結合してなる。そのため、式(I)の化合物は、イオン性を有する。 The ionic substituent of the ionic liquid of formula (I) is formed by bonding —N + R 3 and PF 6 mainly by electrostatic attraction. Therefore, the compound of formula (I) has ionicity.

式(I)のイオン液体は、例えば、有機溶媒中で、上記一般式(II)で表されるイオン性化合物と上記一般式(III)で表される塩とを反応させる工程(A)を経て生成させることができる。この方法によれば、式(I)のイオン液体を高い収率で得ることができる。   The ionic liquid of formula (I) comprises, for example, a step (A) of reacting an ionic compound represented by the general formula (II) with a salt represented by the general formula (III) in an organic solvent. It can be generated via. According to this method, the ionic liquid of formula (I) can be obtained in high yield.

上記一般式(II)のイオン性化合物と上記一般式(III)で表される塩との反応に用いる有機溶媒としては、ハロゲン化炭化水素が好ましく、ハロゲン化炭化水素の中でもクロロホルムが好ましい。なお、使用する有機溶媒は、一種のみでもよいし、二種以上の混合物であってもよい。   As the organic solvent used in the reaction of the ionic compound of the general formula (II) and the salt represented by the general formula (III), a halogenated hydrocarbon is preferable, and among the halogenated hydrocarbons, chloroform is preferable. In addition, the organic solvent to be used may be only 1 type, and 2 or more types of mixtures may be sufficient as it.

上記一般式(II)において、Rはそれぞれ独立してアルキル基であり、式(II)のRにおけるアルキル基としては、式(I)のRにおけるアルキル基の項で例示したものを同様に挙げることができる。   In the general formula (II), each R is independently an alkyl group, and examples of the alkyl group in R of the formula (II) include those exemplified in the section of the alkyl group in R of the formula (I). be able to.

上記一般式(III)において、A+は一価の陽イオンであり、式(III)のA+における一価の陽イオンとしては、K+、Ag+、Li+等が挙げられる。なお、式(III)の塩として、具体的には、KPF6、AgPF6、LiPF6等が挙げられる。 In the general formula (III), A + is a monovalent cation, and examples of the monovalent cation in A + in the formula (III) include K + , Ag + , and Li + . Specific examples of the salt of the formula (III) include KPF 6 , AgPF 6 , LiPF 6 and the like.

式(II)のイオン性化合物と式(III)の塩との反応にあたって、式(III)の塩の使用量は、式(II)のイオン性化合物1 molあたり1〜1.5 molの範囲が好ましい。また、有機溶媒中での式(II)のイオン性化合物の濃度は1〜5mol/Lの範囲が好ましく、有機溶媒中での式(III)の塩の濃度は1.5〜7.5 mol/Lの範囲が好ましい。有機溶媒中での式(II)のイオン性化合物の濃度が1〜5 mol/Lの範囲であれば、有機溶媒に不溶な固体物質が溶媒中の容積を占領し、反応を阻害することが少ない。一方、有機溶媒中での式(III)の塩の濃度を式(II)のイオン性化合物の濃度に対して1.5倍程度過剰に、即ち、1.5〜7.5mol/Lの範囲にしておけば、塩素イオンとの配位子置換反応が円滑に行なわれる。   In the reaction of the ionic compound of the formula (II) and the salt of the formula (III), the amount of the salt of the formula (III) used is preferably in the range of 1 to 1.5 mol per 1 mol of the ionic compound of the formula (II). . The concentration of the ionic compound of formula (II) in the organic solvent is preferably in the range of 1 to 5 mol / L, and the concentration of the salt of formula (III) in the organic solvent is in the range of 1.5 to 7.5 mol / L. Is preferred. If the concentration of the ionic compound of formula (II) in the organic solvent is in the range of 1 to 5 mol / L, the solid substance insoluble in the organic solvent may occupy the volume in the solvent and inhibit the reaction. Few. On the other hand, if the concentration of the salt of the formula (III) in the organic solvent is excessively about 1.5 times the concentration of the ionic compound of the formula (II), that is, in the range of 1.5 to 7.5 mol / L, Ligand substitution reaction with chloride ions is carried out smoothly.

式(II)のイオン性化合物と式(III)の塩との反応における反応温度は、特に制限されるものではないが、室温〜50℃の範囲が好ましく、室温でも十分に反応が進行する。また、反応圧力も特に限定されず、大気圧下で実施することができる。   The reaction temperature in the reaction between the ionic compound of formula (II) and the salt of formula (III) is not particularly limited, but is preferably in the range of room temperature to 50 ° C., and the reaction proceeds sufficiently even at room temperature. Further, the reaction pressure is not particularly limited, and the reaction can be performed under atmospheric pressure.

上記工程(A)の後には、上記工程(A)で得られる反応混合物を濾過して、A+Cl-(式中、A+は上記と同義である)で表わされる塩を除去する工程(B)を行うことが好ましい。ここで、工程(B)において、濾過方法は、特に限定されず、公知の濾材を用いて、常圧下で濾過してもよいし、減圧下で濾過してもよい。なお、工程(B)で除去される塩は、使用する式(III)の塩に依存し、カリウム塩を使用した場合はKClが除去され、銀塩を使用した場合はAgClが除去され、リチウム塩を使用した場合はLiClが除去される。 After the step (A), the reaction mixture obtained in the step (A) is filtered to remove a salt represented by A + Cl (wherein A + is as defined above) ( It is preferable to carry out B). Here, in the step (B), the filtration method is not particularly limited, and may be filtered under a normal pressure or a reduced pressure using a known filter medium. The salt to be removed in the step (B) depends on the salt of the formula (III) to be used, KCl is removed when the potassium salt is used, AgCl is removed when the silver salt is used, and lithium When the salt is used, LiCl is removed.

ここで、本発明者が検討したところ、上記工程(B)で得られる濾液から有機溶媒を留去して得られる反応生成物は、副生物を含み、発光量子収率が低いことが分かった。そのため、以下に詳述する工程(C)及び工程(D)を経て、反応生成物の精製を行うことが好ましい。   Here, as a result of examination by the present inventors, it was found that the reaction product obtained by distilling off the organic solvent from the filtrate obtained in the step (B) contains by-products and has a low emission quantum yield. . Therefore, it is preferable to purify the reaction product through the step (C) and the step (D) described in detail below.

即ち、上記工程(B)の後には、上記工程(B)で得られる濾液を遠心分離して上澄み液を採取する工程(C)を行うことが好ましい。工程(C)において、遠心分離方法は特に限定されず、公知の遠心分離機を用いて通常の方法で実施できる。なお、遠心分離における回転速度は、特に限定されるものではないが、9000〜12000 rpmの範囲が好ましい。   That is, after the step (B), it is preferable to perform a step (C) of collecting the supernatant by centrifuging the filtrate obtained in the step (B). In the step (C), the centrifugation method is not particularly limited, and can be carried out by a usual method using a known centrifuge. In addition, the rotational speed in centrifugation is not specifically limited, However, The range of 9000-12000 rpm is preferable.

また、上記工程(C)の後には、上記工程(C)で得られる上澄み液に活性炭を加えて反応副生物を除去する工程(D)を行うことが好ましい。工程(D)において使用する活性炭は、特に限定されず、公知の活性炭を使用できる。活性炭の使用量は、特に限定されるものではないが、式(I)のイオン液体1 g当り1 g〜5 gの範囲が好ましい。   Moreover, after the said process (C), it is preferable to perform the process (D) which adds activated carbon to the supernatant liquid obtained at the said process (C), and removes a reaction byproduct. The activated carbon used in the step (D) is not particularly limited, and known activated carbon can be used. The amount of the activated carbon used is not particularly limited, but is preferably in the range of 1 g to 5 g per 1 g of the ionic liquid of the formula (I).

上記(D)工程の後は、例えば、活性炭を濾過で取り除き、使用した有機溶媒を留去することで式(I)のイオン液体を単離することができる。なお、上記工程(B)で得られる濾液から有機溶媒を留去して得られる反応生成物は、副生物を含むため、発光性が低いが、工程(C)及び工程(D)を経て精製された式(I)のイオン液体は、発光性が高いという特徴を有する。   After the step (D), for example, the activated carbon is removed by filtration, and the organic solvent used is distilled off to isolate the ionic liquid of formula (I). In addition, since the reaction product obtained by distilling off the organic solvent from the filtrate obtained in the above step (B) contains by-products, it has low luminescence but is purified through the steps (C) and (D). The ionic liquid of the formula (I) thus obtained has a feature of high luminescence.

なお、出発原料として用いる上記一般式(II)で表されるイオン性化合物の製造方法は、特に限定されず、例えば、有機溶媒中で、下記化学式(IV):

Figure 2010270077
で表される環状ホスファゼン化合物と、下記一般式(V):
NR3 ・・・ (V)
[式中、Rはそれぞれ独立してアルキル基である]で表される3級のアミンとを反応させることで、上記一般式(II)で表されるイオン性化合物を製造することができる。 The method for producing the ionic compound represented by the general formula (II) used as a starting material is not particularly limited, and for example, in an organic solvent, the following chemical formula (IV):
Figure 2010270077
A cyclic phosphazene compound represented by the following general formula (V):
NR 3 ... (V)
An ionic compound represented by the above general formula (II) can be produced by reacting with a tertiary amine represented by the formula [wherein each R is independently an alkyl group].

式(IV)の環状ホスファゼン化合物と式(V)の3級のアミンとの反応に使用する有機溶媒としては、芳香族炭化水素、エステル化合物及びエーテル化合物が好ましい。ここで、芳香族炭化水素の中でもトルエンが好ましく、エステル化合物の中でも酢酸エチルが好ましく、エーテル化合物の中でも、ジエチルエーテルが好ましい。これら有機溶媒は、一種単独で用いてもよいし、二種以上を混合して用いてもよい。   As the organic solvent used in the reaction of the cyclic phosphazene compound of the formula (IV) and the tertiary amine of the formula (V), aromatic hydrocarbons, ester compounds and ether compounds are preferred. Here, toluene is preferable among aromatic hydrocarbons, ethyl acetate is preferable among ester compounds, and diethyl ether is preferable among ether compounds. These organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.

上記一般式(IV)で表される環状ホスファゼン化合物は、例えば、(NPCl2)3で表される市販の環状ホスファゼン化合物を出発物質として、総ての塩素をフッ素化剤によりフッ素化した後、目的とする塩素置換部位にアルコキシ基やアミン基等を導入した後、HClやホスゲン等の塩素化剤により再び塩素化を行う方法や、使用する(NPCl2)3で表される市販のホスファゼン化合物に対して導入するフッ素の当量を計算した上で、必要量のフッ素化剤を添加する方法等で合成することができる。 The cyclic phosphazene compound represented by the above general formula (IV) is, for example, a commercially available cyclic phosphazene compound represented by (NPCl 2 ) 3 as a starting material, fluorinated all chlorine with a fluorinating agent, After introducing an alkoxy group, an amine group or the like into the target chlorine substitution site, chlorination with a chlorinating agent such as HCl or phosgene, or a commercially available phosphazene compound represented by (NPCl 2 ) 3 It is possible to synthesize by a method of adding a necessary amount of a fluorinating agent after calculating the equivalent amount of fluorine to be introduced.

上記一般式(V)において、Rはそれぞれ独立してアルキル基であり、式(V)のRにおけるアルキル基としては、式(I)のRにおけるアルキル基の項で例示したものを同様に挙げることができる。   In the general formula (V), each R is independently an alkyl group, and examples of the alkyl group in R of the formula (V) include those exemplified in the section of the alkyl group in R of the formula (I). be able to.

上記一般式(V)で表される3級アミンとして、具体的には、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリヘキシルアミン、トリオクチルアミン、ブチルジメチルアミン、ヘキシルジメチルアミン等の脂肪族3級アミンが挙げられる。   Specific examples of the tertiary amine represented by the general formula (V) include aliphatics such as trimethylamine, triethylamine, tripropylamine, tributylamine, trihexylamine, trioctylamine, butyldimethylamine, and hexyldimethylamine. A tertiary amine is mentioned.

式(IV)の環状ホスファゼン化合物と式(V)の3級のアミンとの反応において、式(V)のアミンの使用量は、式(IV)の環状ホスファゼン化合物1molあたり1〜1.5 molの範囲が好ましい。また、有機溶媒中での式(IV)の環状ホスファゼン化合物の濃度は1〜5 mol/Lの範囲が好ましく、有機溶媒中での式(V)のアミンの濃度は1〜5 mol/Lの範囲が好ましい。有機溶媒中での式(IV)の環状ホスファゼン化合物の濃度が1〜5 mol/Lの範囲であれば、有機溶媒に易溶であり、有機溶媒中での式(V)のアミンの濃度が1〜5 mol/Lの範囲であれば、生成したイオン性化合物(固体)が速やかに溶媒中で沈殿し、反応を阻害することがない。   In the reaction of the cyclic phosphazene compound of formula (IV) with the tertiary amine of formula (V), the amount of amine of formula (V) used is in the range of 1 to 1.5 mol per mole of cyclic phosphazene compound of formula (IV). Is preferred. The concentration of the cyclic phosphazene compound of formula (IV) in the organic solvent is preferably in the range of 1 to 5 mol / L, and the concentration of the amine of formula (V) in the organic solvent is 1 to 5 mol / L. A range is preferred. If the concentration of the cyclic phosphazene compound of the formula (IV) in the organic solvent is in the range of 1 to 5 mol / L, it is easily soluble in the organic solvent, and the concentration of the amine of the formula (V) in the organic solvent is If it is the range of 1-5 mol / L, the produced | generated ionic compound (solid) will precipitate rapidly in a solvent, and reaction will not be inhibited.

また、式(IV)の環状ホスファゼン化合物と式(V)のアミンとの反応における反応温度は、特に制限されるものではなく、室温でも十分に反応が進行するが、15℃〜50℃の範囲で制御することができる。なお、反応が速い場合には、適時温度を下げることが有効であり、反応が遅い場合には、昇温して反応速度を上げることができる。但し、50℃を超えると、原材料であるホスファゼン化合物が揮発し易くなるため、50℃以下で反応を行うことが好ましい。また、反応圧力も特に限定されず、大気圧下で実施することができる。なお、式(IV)の環状ホスファゼン化合物と式(V)のアミンとの反応は、外部から反応系に水分が混入しないように、窒素等の不活性ガス雰囲気下で行うことが好ましい。不活性ガス雰囲気下で反応を行うことで、アミン塩酸塩の副生を抑制することができる。   In addition, the reaction temperature in the reaction of the cyclic phosphazene compound of the formula (IV) and the amine of the formula (V) is not particularly limited, and the reaction proceeds sufficiently even at room temperature, but the range of 15 ° C to 50 ° C Can be controlled. If the reaction is fast, it is effective to lower the temperature in a timely manner. If the reaction is slow, the reaction rate can be increased by raising the temperature. However, when the temperature exceeds 50 ° C., the phosphazene compound that is a raw material is likely to volatilize, so that the reaction is preferably performed at 50 ° C. or less. Further, the reaction pressure is not particularly limited, and the reaction can be performed under atmospheric pressure. The reaction between the cyclic phosphazene compound of the formula (IV) and the amine of the formula (V) is preferably performed in an inert gas atmosphere such as nitrogen so that moisture does not enter the reaction system from the outside. By performing the reaction under an inert gas atmosphere, by-production of amine hydrochloride can be suppressed.

上述した本発明のイオン液体は、少なくとも融点が50℃以下であり、好ましくは融点が25℃以下であり、不燃性で、低粘度である。そのため、本発明のイオン液体は、電気二重層キャパシタ用電解液、リチウムイオン電池用電解液、色素増感型太陽電池用電解液等として利用することができる。また、本発明のイオン液体は、驚くべきことに、高い発光性を有し、高温下でも発光するため、例えば、高温条件下での発光材料や、高温プロセスを必要とする高分子や樹脂材料への発光性付与剤等としても有用である。   The above-described ionic liquid of the present invention has a melting point of 50 ° C. or lower, preferably a melting point of 25 ° C. or lower, is nonflammable and has a low viscosity. Therefore, the ionic liquid of the present invention can be used as an electrolytic solution for electric double layer capacitors, an electrolytic solution for lithium ion batteries, an electrolytic solution for dye-sensitized solar cells, and the like. In addition, the ionic liquid of the present invention surprisingly has a high light emitting property and emits light even at a high temperature. For example, a light emitting material under a high temperature condition, a polymer or a resin material that requires a high temperature process, and the like. It is also useful as an agent for imparting light-emitting properties.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(製造例1)
還流冷却器を備えた三口フラスコ中で、上記化学式(IV)で表される環状ホスファゼン化合物 1.5 mL(0.01 mol)と、トリ-n-プロピルアミン[即ち、上記一般式(V)で表され、3つのRの総てがn-プロピル基であるアミン]1.1 mL(0.01 mol)とを、脱水ジエチルエーテル 30 mLに溶解させ、20℃で1時間撹拌した後、エバポレーターにてジエチルエーテルを留去し、上記一般式(II)で表され、3つのRの総てがn-プロピル基であるイオン性化合物を得た。該イオン性化合物 1.0 g(0.0024 mol)をクロロホルム 30 mLに溶解させた後、KPF6 0.3g(0.0016 mol)を添加し、室温にて2時間撹拌したところ、KClが沈殿した。沈殿したKClを濾過で分離し、更に、遠心分離機を用い、12000rpmで30分間濾液を遠心分離して、上澄み液を採取した。次に、得られた上澄み液をクロロホルム 30 mLに溶解させ、更に活性炭 1.0 gを加え、1時間撹拌して、着色成分を除去した。次に、活性炭を濾過で取り除き、エバポレーターにてクロロホルムを除去し、更に、真空ポンプにて減圧下、150℃で24時間乾燥を行って、液体0.85 g(収率 60%)を得た。得られた液体を重クロロホルムに溶解させて、1H-NMR及び13C-NMRで分析したところ、該液体は、下記化学式(a):

Figure 2010270077
で表わされる化合物[即ち、上記一般式(I)で表され、3つのRの総てがn-プロピル基である化合物]であることを確認した。 (Production Example 1)
In a three-necked flask equipped with a reflux condenser, 1.5 mL (0.01 mol) of a cyclic phosphazene compound represented by the above chemical formula (IV) and tri-n-propylamine [that is, represented by the above general formula (V), Amine in which all three R's are n-propyl groups] 1.1 mL (0.01 mol) was dissolved in 30 mL of dehydrated diethyl ether, stirred at 20 ° C. for 1 hour, and then the diethyl ether was distilled off with an evaporator. Thus, an ionic compound represented by the above general formula (II), in which all three Rs are n-propyl groups, was obtained. After dissolving 1.0 g (0.0024 mol) of the ionic compound in 30 mL of chloroform, 0.3 g (0.0016 mol) of KPF 6 was added and stirred at room temperature for 2 hours, whereby KCl precipitated. The precipitated KCl was separated by filtration, and the filtrate was further centrifuged at 12000 rpm for 30 minutes using a centrifuge, and the supernatant was collected. Next, the obtained supernatant was dissolved in 30 mL of chloroform, 1.0 g of activated carbon was further added, and the mixture was stirred for 1 hour to remove coloring components. Next, the activated carbon was removed by filtration, chloroform was removed by an evaporator, and further, drying was performed at 150 ° C. for 24 hours under reduced pressure using a vacuum pump to obtain 0.85 g of liquid (yield 60%). When the obtained liquid was dissolved in deuterated chloroform and analyzed by 1 H-NMR and 13 C-NMR, the liquid was represented by the following chemical formula (a):
Figure 2010270077
It was confirmed that the compound represented by the above formula [that is, a compound represented by the above general formula (I), in which all three R's are n-propyl groups].

[スペクトルデーダ(400 MHz, CDCl3, δ/ppm)]
1H-NMR: δ=1.0065 ・・・ HA
δ=1.8032 ・・・ HB
δ=2.9441 ・・・ HC
13C-NMR: δ=11.0417 ・・・ CD
δ=16.8205 ・・・ CE
δ=54.0364 ・・・ CF
[Spectral data (400 MHz, CDCl 3 , δ / ppm)]
1 H-NMR: δ = 1.0065 ・ ・ ・ H A ,
δ = 1.8032 ... H B ,
δ = 2.9441 ・ ・ ・ H C
· 13 C-NMR: δ = 11.0417 ··· C D,
δ = 16.8205... C E ,
δ = 54.0364 ・ ・ ・ C F

(製造例2)
製造例1と同様にしてKClを濾過で除いて得た濾液を、遠心分離及び活性炭処理を経ることなく、真空ポンプにて減圧下、150℃で24時間乾燥して、液体 0.92 g(収率 72%)を得た。得られた液体を1H-NMR及び13C-NMRで分析したところ、該液体は、上記化学式(a)で表わされる化合物であることを確認した。
(Production Example 2)
The filtrate obtained by removing KCl by filtration in the same manner as in Production Example 1 was dried for 24 hours at 150 ° C. under reduced pressure with a vacuum pump without being subjected to centrifugation and activated carbon treatment, and 0.92 g (yield) 72%). When the obtained liquid was analyzed by 1 H-NMR and 13 C-NMR, it was confirmed that the liquid was a compound represented by the above chemical formula (a).

(製造例3)
還流冷却器を備えた三口フラスコ中で、上記化学式(IV)で表される環状ホスファゼン化合物 1.5 mL(0.01 mol)と、トリ-n-ブチルアミン[即ち、上記一般式(V)で表され、3つのRの総てがn-ブチル基であるアミン]1.72 mL(0.01 mol)とを、脱水ジメチルエーテル 30 mLに溶解させ、20℃で3時間撹拌した後、エバポレーターにてジメチルエーテルを留去し、上記一般式(II)で表され、3つのRの総てがn-ブチル基であるイオン性化合物を得た。該イオン性化合物 1.0 g(0.0021 mol)をクロロホルム 30 mLに溶解させた後、KPF6 0.3g(0.0016 mol)を添加し、室温にて2時間撹拌したところ、KClが沈殿した。沈殿したKClを濾過で分離し、更に、遠心分離機を用い、12000rpmで30分間濾液を遠心分離して、上澄み液を採取した。次に、得られた上澄み液をクロロホルム 30 mLに溶解させ、更に活性炭 1.0 gを加え、1時間撹拌して、着色成分を除去した。次に、活性炭を濾過で取り除き、エバポレーターにてクロロホルムを除去し、更に、真空ポンプにて減圧下、150℃で24時間乾燥を行って、液体0.85 g(収率 70%)を得た。得られた液体を重クロロホルムに溶解させて、1H-NMR及び13C-NMRで分析したところ、該液体は、下記化学式(b):

Figure 2010270077
で表わされる化合物[即ち、上記一般式(I)で表され、3つのRの総てがn-ブチル基である化合物]であることを確認した。 (Production Example 3)
In a three-necked flask equipped with a reflux condenser, 1.5 mL (0.01 mol) of the cyclic phosphazene compound represented by the above chemical formula (IV) and tri-n-butylamine [that is, represented by the above general formula (V), 3 Amine in which all Rs are n-butyl groups] 1.72 mL (0.01 mol) was dissolved in 30 mL of dehydrated dimethyl ether, stirred at 20 ° C. for 3 hours, and then dimethyl ether was distilled off with an evaporator. An ionic compound represented by the general formula (II), in which all three R's are n-butyl groups, was obtained. After dissolving 1.0 g (0.0021 mol) of the ionic compound in 30 mL of chloroform, 0.3 g (0.0016 mol) of KPF 6 was added and stirred at room temperature for 2 hours, whereby KCl precipitated. The precipitated KCl was separated by filtration, and the filtrate was further centrifuged at 12000 rpm for 30 minutes using a centrifuge, and the supernatant was collected. Next, the obtained supernatant was dissolved in 30 mL of chloroform, 1.0 g of activated carbon was further added, and the mixture was stirred for 1 hour to remove coloring components. Next, the activated carbon was removed by filtration, chloroform was removed by an evaporator, and further drying was performed at 150 ° C. for 24 hours under reduced pressure using a vacuum pump to obtain 0.85 g of liquid (yield 70%). When the obtained liquid was dissolved in deuterated chloroform and analyzed by 1 H-NMR and 13 C-NMR, the liquid was represented by the following chemical formula (b):
Figure 2010270077
[That is, a compound represented by the above general formula (I), in which all three R's are n-butyl groups].

[スペクトルデーダ(400 MHz, CDCl3, δ/ppm)]
1H-NMR: δ=0.9716 ・・・ HA
δ=1.3773 ・・・ HB
δ=1.7063 ・・・ HC
δ=2.9103 ・・・ HD
13C-NMR: δ=13.4639 ・・・ CE
δ=20.0661 ・・・ CF
δ=25.5267 ・・・ CG
δ=52.3325 ・・・ CH
[Spectral data (400 MHz, CDCl 3 , δ / ppm)]
1 H-NMR: δ = 0.9716 ... H A ,
δ = 1.3773 ・ ・ ・ H B ,
δ = 1.7063 ・ ・ ・ H C ,
δ = 2.9103 ・ ・ ・ H D
13 C-NMR: δ = 13.44639... C E ,
δ = 20.0661 ... C F ,
δ = 25.5267 ... C G ,
δ = 52.3325 ・ ・ ・ C H

(製造例4)
製造例3と同様にしてKClを濾過で除いて得た濾液を、遠心分離及び活性炭処理を経ることなく、真空ポンプにて減圧下、150℃で24時間乾燥して、液体 0.97 g(収率 80%)を得た。得られた液体を1H-NMR及び13C-NMRで分析したところ、該液体は、上記化学式(b)で表わされる化合物であることを確認した。
(Production Example 4)
The filtrate obtained by removing KCl by filtration in the same manner as in Production Example 3 was dried at 150 ° C. for 24 hours under reduced pressure with a vacuum pump without being subjected to centrifugation and activated carbon treatment, and 0.97 g of liquid (yield) 80%). When the obtained liquid was analyzed by 1 H-NMR and 13 C-NMR, it was confirmed that the liquid was a compound represented by the above chemical formula (b).

(製造例5)
還流冷却器を備えた三口フラスコ中で、上記化学式(IV)で表される環状ホスファゼン化合物1.5 mL(0.01 mol)と、トリ-n-オクチルアミン[即ち、上記一般式(V)で表され、3つのRの総てがn-オクチル基であるアミン]4.38 mL(0.01 mol)とを、脱水ジメチルエーテル 30 mLに溶解させ、20℃で3時間撹拌した後、エバポレーターにてジメチルエーテルを留去し、上記一般式(II)で表され、3つのRの総てがn-オクチル基であるイオン性化合物を得た。該イオン性化合物 1.0 g(0.0016 mol)をクロロホルム 30 mLに溶解させた後、KPF6 0.3g(0.0016 mol)を添加し、室温にて2時間撹拌したところ、KClが沈殿した。沈殿したKClを濾過で分離し、更に、遠心分離機を用い、12000rpmで30分間濾液を遠心分離して、上澄み液を採取した。次に、得られた上澄み液をクロロホルム 30 mLに溶解させ、更に活性炭 1.0 gを加え、1時間撹拌して、着色成分を除去した。次に、活性炭を濾過で取り除き、エバポレーターにてクロロホルムを除去し、更に、真空ポンプにて減圧下、150℃で24時間乾燥を行って、液体0.65 g(収率 55%)を得た。得られた液体を重クロロホルムに溶解させて、1H-NMR及び13C-NMRで分析したところ、該液体は、下記化学式(c):

Figure 2010270077
で表わされる化合物[即ち、上記一般式(I)で表され、3つのRの総てがn-オクチル基である化合物]であることを確認した。 (Production Example 5)
In a three-necked flask equipped with a reflux condenser, 1.5 mL (0.01 mol) of the cyclic phosphazene compound represented by the above chemical formula (IV) and tri-n-octylamine [that is, represented by the above general formula (V), Amine in which all three Rs are n-octyl groups] 4.38 mL (0.01 mol) was dissolved in 30 mL of dehydrated dimethyl ether, stirred at 20 ° C. for 3 hours, and then dimethyl ether was distilled off with an evaporator. An ionic compound represented by the above general formula (II), in which all three Rs are n-octyl groups, was obtained. After dissolving 1.0 g (0.0016 mol) of the ionic compound in 30 mL of chloroform, 0.3 g (0.0016 mol) of KPF 6 was added and stirred at room temperature for 2 hours, whereby KCl precipitated. The precipitated KCl was separated by filtration, and the filtrate was further centrifuged at 12000 rpm for 30 minutes using a centrifuge, and the supernatant was collected. Next, the obtained supernatant was dissolved in 30 mL of chloroform, 1.0 g of activated carbon was further added, and the mixture was stirred for 1 hour to remove coloring components. Next, the activated carbon was removed by filtration, chloroform was removed by an evaporator, and further, drying was performed at 150 ° C. for 24 hours under reduced pressure using a vacuum pump to obtain 0.65 g of liquid (yield 55%). When the obtained liquid was dissolved in deuterated chloroform and analyzed by 1 H-NMR and 13 C-NMR, the liquid was represented by the following chemical formula (c):
Figure 2010270077
[That is, a compound represented by the above general formula (I), in which all three R's are n-octyl groups].

[スペクトルデーダ(400 MHz, CDCl3, δ/ppm)]
1H-NMR: δ=0.8810 ・・・ HA
δ=1.2888 ・・・ HB
δ=1.6464 ・・・ HC
δ=2.7867 ・・・ HD
13C-NMR: δ=14.0130 ・・・ CF
δ=22.5538 ・・・ CG
δ=24.2536 ・・・ CH
δ=27.0082 ・・・ CI
δ=29.0753 ・・・ CJ
δ=31.6761 ・・・ CK
δ=52.8870 ・・・ CL
[Spectral data (400 MHz, CDCl 3 , δ / ppm)]
1 H-NMR: δ = 0.8810... H A ,
δ = 1.2888 ... H B ,
δ = 1.6464 ・ ・ ・ H C ,
δ = 2.7867 ・ ・ ・ H D
· 13 C-NMR: δ = 14.0130 ··· C F,
δ = 22.5538 ・ ・ ・ C G ,
δ = 24.2536 ・ ・ ・ C H ,
δ = 27.0082 C I ,
δ = 29.0753 ... C J ,
δ = 31.6761 ・ ・ ・ C K ,
δ = 52.8870 ・ ・ ・ C L

(製造例6)
製造例5と同様にしてKClを濾過で除いて得た濾液を、遠心分離及び活性炭処理を経ることなく、真空ポンプにて減圧下、150℃で24時間乾燥して、液体 0.77 g(収率 65%)を得た。得られた液体を1H-NMR及び13C-NMRで分析したところ、該液体は、上記化学式(c)で表わされる化合物であることを確認した。
(Production Example 6)
The filtrate obtained by removing KCl by filtration in the same manner as in Production Example 5 was dried for 24 hours at 150 ° C. under reduced pressure with a vacuum pump without being subjected to centrifugation and activated carbon treatment, and 0.77 g of liquid (yield) 65%). When the obtained liquid was analyzed by 1 H-NMR and 13 C-NMR, it was confirmed that the liquid was a compound represented by the above chemical formula (c).

<イオン液体の評価>
上記製造例1〜6で得られたイオン液体の安全性を下記の方法で評価し、更に、粘度及び発光量子収率を下記の方法で測定した。結果を表1に示す。また、比較として、1-メチル-3-ブチルイミダゾリウムヘキサフルオロホスフェート([bmim]PF6、A. Paul, P. K.Mandel and A. Samanta, Chem. Phys. Lett., 402, 375-379 (2005) 参照)についても評価・測定を行った。結果を表1に示す。
<Evaluation of ionic liquid>
The safety of the ionic liquids obtained in the above Production Examples 1 to 6 was evaluated by the following methods, and the viscosity and luminescence quantum yield were further measured by the following methods. The results are shown in Table 1. For comparison, see 1-methyl-3-butylimidazolium hexafluorophosphate ([bmim] PF 6 , A. Paul, PKMandel and A. Samanta, Chem. Phys. Lett., 402, 375-379 (2005). ) Was also evaluated and measured. The results are shown in Table 1.

<安全性の評価>
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼挙動からイオン液体の安全性を評価した。その際、着火性、燃焼性、炭化物の生成、二次着火時の現象についても観察した。具体的には、UL試験基準に基づき、不燃性石英ファイバーにイオン液体1.0 mLを染み込ませて、127 mm×12.7 mmの試験片を作製して行った。ここで、試験炎が試験片に着火しない場合(燃焼長:0 mm)を「不燃性」、着火した炎が25 mmラインまで到達せず且つ落下物にも着火が認められない場合を「難燃性」、着火した炎が25〜100 mmラインで消火し且つ落下物にも着火が認められない場合を「自己消火性」、着火した炎が100 mmラインを超えた場合を「燃焼性」と評価した。
<Evaluation of safety>
The safety of ionic liquids was evaluated from the combustion behavior of flames ignited in an atmospheric environment by the method of arranging UL94HB method of UL (Underwriting Laboratory) standard. At that time, ignitability, combustibility, formation of carbides, and secondary ignition phenomena were also observed. Specifically, based on the UL test standard, an incombustible quartz fiber was impregnated with 1.0 mL of an ionic liquid, and a 127 mm × 12.7 mm test piece was produced. Here, when the test flame does not ignite the test piece (burning length: 0 mm), it is “non-flammable”, and when the ignited flame does not reach the 25 mm line and the fallen object is not ignited, “difficult” “Flammability”, “Self-extinguishing” when the ignited flame is extinguished in the 25-100 mm line and no fallen objects are ignited, “Flammability” when the ignited flame exceeds the 100 mm line It was evaluated.

<粘度の測定>
粘度測定計[R型粘度計Model RE500−SL、東機産業(株)製]を用い、室温(25℃)で、1 rpm、2 rpm、3 rpm、5 rpm、7 rpm、10 rpm、20 rpm及び50 rpmの各回転速度で120秒間づつ測定し、指示値が50〜60%となった時の回転速度を分析条件とし、その際の粘度を測定することによって、上記イオン液体の粘度を求めた。
<Measurement of viscosity>
Using a viscometer [R-type viscometer Model RE500-SL, manufactured by Toki Sangyo Co., Ltd.] at room temperature (25 ° C.), 1 rpm, 2 rpm, 3 rpm, 5 rpm, 7 rpm, 10 rpm, 20 Measure the viscosity at 120 rpm for each rotation speed of rpm and 50 rpm, use the rotation speed when the indicated value is 50-60% as the analysis condition, and measure the viscosity at that time to determine the viscosity of the ionic liquid. Asked.

<発光量子収率の測定>
上記イオン液体の発光量子収率を、4-アミノフタルイミドの蛍光量子収率の相対値として測定した。なお、励起波長は360 nmとし、メタノールに各イオン液体を0.1 mol/Lの濃度で溶解させて、室温(25℃)で測定した。結果を表1に示す。
<Measurement of luminescence quantum yield>
The luminescence quantum yield of the ionic liquid was measured as a relative value of the fluorescence quantum yield of 4-aminophthalimide. The excitation wavelength was 360 nm, each ionic liquid was dissolved in methanol at a concentration of 0.1 mol / L, and the measurement was performed at room temperature (25 ° C.). The results are shown in Table 1.

Figure 2010270077
Figure 2010270077

表1から、本発明のイオン液体は、不燃性で、粘度が低かったのに対し、比較例1のイオン液体は、自己消火性を示すにとどまり、また、粘度も高いことが分かる。   From Table 1, it can be seen that the ionic liquid of the present invention is nonflammable and has a low viscosity, whereas the ionic liquid of Comparative Example 1 shows only self-extinguishing properties and has a high viscosity.

また、製造例1、3及び5で合成したイオン液体は、製造例2、4及び6で合成したイオン液体に比べて、発光量子収率が向上していることが分かる。これは、活性炭処理しなければ、不純物による光の散乱等により量子収率が見かけ低下することによるものと考えられる。   It can also be seen that the ionic liquids synthesized in Production Examples 1, 3 and 5 have improved emission quantum yields compared to the ionic liquids synthesized in Production Examples 2, 4 and 6. This is considered to be due to the apparent decrease in quantum yield due to light scattering by impurities, etc., unless activated carbon treatment is performed.

Claims (7)

下記一般式(I):
Figure 2010270077
[式中、Rはそれぞれ独立してアルキル基である]で表されるイオン液体。
The following general formula (I):
Figure 2010270077
An ionic liquid represented by the formula: wherein each R is independently an alkyl group.
前記Rは炭素数が1〜8のアルキル基であることを特徴とする請求項1に記載のイオン液体。   2. The ionic liquid according to claim 1, wherein R is an alkyl group having 1 to 8 carbon atoms. 有機溶媒中で、下記一般式(II):
Figure 2010270077
[式中、Rはそれぞれ独立してアルキル基である]で表されるイオン性化合物と下記一般式(III):
+PF6 - ・・・ (III)
[式中、A+は一価の陽イオンを表す]で表される塩とを反応させて、下記一般式(I):
Figure 2010270077
[式中、Rはそれぞれ独立してアルキル基である]で表されるイオン液体を生成させる工程(A)と、
前記工程(A)で得られる反応混合物を濾過して、A+Cl-(式中、A+は上記と同義である)を除去する工程(B)と、
前記工程(B)で得られる濾液を遠心分離して上澄み液を採取する工程(C)と、
前記工程(C)で得られる上澄み液に活性炭を加えて反応副生物を除去する工程(D)と
を含むことを特徴とする上記一般式(I)で表されるイオン液体の製造方法。
In an organic solvent, the following general formula (II):
Figure 2010270077
[Wherein R is independently an alkyl group] and the following general formula (III):
A + PF 6 - ··· (III )
[Wherein A + represents a monovalent cation] is reacted with a salt represented by the following general formula (I):
Figure 2010270077
A step (A) of producing an ionic liquid represented by the formula: wherein each R is independently an alkyl group;
Filtering the reaction mixture obtained in the step (A) to remove A + Cl (wherein A + is as defined above) (B),
(C) collecting the supernatant by centrifuging the filtrate obtained in the step (B);
And a step (D) of adding activated carbon to the supernatant obtained in the step (C) to remove reaction byproducts, and a method for producing the ionic liquid represented by the general formula (I).
前記有機溶媒が、ハロゲン化炭化水素であることを特徴とする請求項3に記載のイオン液体の製造方法。   The method for producing an ionic liquid according to claim 3, wherein the organic solvent is a halogenated hydrocarbon. 前記有機溶媒が、クロロホルムであることを特徴とする請求項4に記載のイオン液体の製造方法。   The method for producing an ionic liquid according to claim 4, wherein the organic solvent is chloroform. 前記一般式(II)で表されるイオン性化合物の有機溶媒中での濃度が1〜5 mol/Lの範囲であることを特徴とする請求項3に記載のイオン液体の製造方法。   The method for producing an ionic liquid according to claim 3, wherein the concentration of the ionic compound represented by the general formula (II) in the organic solvent is in the range of 1 to 5 mol / L. 前記一般式(III)で表される塩の有機溶媒中での濃度が1.5〜7.5 mol/Lの範囲であることを特徴とする請求項3に記載のイオン液体の製造方法。   The method for producing an ionic liquid according to claim 3, wherein the concentration of the salt represented by the general formula (III) in the organic solvent is in the range of 1.5 to 7.5 mol / L.
JP2009124714A 2009-05-22 2009-05-22 Ionic liquid and method for producing the same Expired - Fee Related JP5639344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124714A JP5639344B2 (en) 2009-05-22 2009-05-22 Ionic liquid and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124714A JP5639344B2 (en) 2009-05-22 2009-05-22 Ionic liquid and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010270077A true JP2010270077A (en) 2010-12-02
JP5639344B2 JP5639344B2 (en) 2014-12-10

Family

ID=43418419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124714A Expired - Fee Related JP5639344B2 (en) 2009-05-22 2009-05-22 Ionic liquid and method for producing the same

Country Status (1)

Country Link
JP (1) JP5639344B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047342A1 (en) * 2011-09-26 2013-04-04 富士フイルム株式会社 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
WO2013052294A1 (en) * 2011-10-05 2013-04-11 Battelle Energy Alliance, Llc Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids
JP2015132813A (en) * 2013-12-13 2015-07-23 日本化薬株式会社 Light wavelength conversion element including ionic liquid and article including light wavelength conversion element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136106A (en) * 1979-04-09 1980-10-23 Otsuka Chem Co Ltd Production of cyclic phosphazene oligomer
JP2006036709A (en) * 2004-07-28 2006-02-09 Mitsui Chemicals Inc Ionic liquid
JP2007153868A (en) * 2005-11-08 2007-06-21 Bridgestone Corp Ionic compound
JP2007335394A (en) * 2006-05-17 2007-12-27 Bridgestone Corp Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2008162977A (en) * 2006-12-28 2008-07-17 Bridgestone Corp Method for producing ionic compound
JP2010006765A (en) * 2008-06-27 2010-01-14 Bridgestone Corp Method for producing ionic compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136106A (en) * 1979-04-09 1980-10-23 Otsuka Chem Co Ltd Production of cyclic phosphazene oligomer
JP2006036709A (en) * 2004-07-28 2006-02-09 Mitsui Chemicals Inc Ionic liquid
JP2007153868A (en) * 2005-11-08 2007-06-21 Bridgestone Corp Ionic compound
JP2007335394A (en) * 2006-05-17 2007-12-27 Bridgestone Corp Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2008162977A (en) * 2006-12-28 2008-07-17 Bridgestone Corp Method for producing ionic compound
JP2010006765A (en) * 2008-06-27 2010-01-14 Bridgestone Corp Method for producing ionic compound

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047342A1 (en) * 2011-09-26 2013-04-04 富士フイルム株式会社 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
JP2014063704A (en) * 2011-09-26 2014-04-10 Fujifilm Corp Electrolyte for nonaqueous secondary battery, and secondary battery
CN103765662A (en) * 2011-09-26 2014-04-30 富士胶片株式会社 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
WO2013052294A1 (en) * 2011-10-05 2013-04-11 Battelle Energy Alliance, Llc Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids
CN103842367A (en) * 2011-10-05 2014-06-04 巴特勒能源同盟有限公司 Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids
US9206210B2 (en) 2011-10-05 2015-12-08 Battelle Energy Alliance, Llc Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids
JP2015132813A (en) * 2013-12-13 2015-07-23 日本化薬株式会社 Light wavelength conversion element including ionic liquid and article including light wavelength conversion element

Also Published As

Publication number Publication date
JP5639344B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP6847915B2 (en) Non-fluoridation salts, solutions, and their use
JP5959171B2 (en) PI-conjugated organoboron compound and method for producing the same
FR2928925A1 (en) BORON OR ALUMINUM COMPLEXES AND THEIR USES.
JP4939836B2 (en) Ionic compounds
JP6978361B2 (en) Method for manufacturing lithium salt complex compound
JP5639344B2 (en) Ionic liquid and method for producing the same
US20020090547A1 (en) Tetrakisfluoroalkylborate salts and their use as conducting salts
JP2006225372A (en) Method for synthesizing ionic complex
Allefeld et al. Synthesis and reactivity of new functionalized perfluoroalkylfluorophosphates
JP5318479B2 (en) Luminescent ionic liquid
JP2003034692A (en) Fluoroalkyl phosphate and preparation method for the same
CN105801845B (en) A kind of biradical polyamide synergistic carbon forming agent of ferrocene-triazine ring and its preparation method and application
CN87104911A (en) Fluorine-containing organotin compounds useful for forming fluorine-doped tin oxide coatings
JP5364307B2 (en) Process for producing ionic compounds
JP6054716B2 (en) Method for producing cyclic ether and method for recycling ionic liquid used therefor
CN102482209B (en) Disubstituted-aminodifluorosulfinium salts, process for preparing same and method of use as deoxofluorination reagents
CN101445511A (en) Perfluor cyclobutyl arylene oligopolymer, preparation method thereof by using iterative coupled reaction and usage
JP4422256B2 (en) Phosphazene derivative having sulfonyl group and process for producing the same
TWI328010B (en) Process for the preparation of monohydroperfluoroalkanes, bis(perfluoroalkyl) phosphinates and perfluoroalkylphosphonates
JP2006206515A (en) Methylenedisulfonyl chloride and method for producing derivative of the same
JP5054932B2 (en) Process for producing ionic compounds
WO2016002773A1 (en) Method for producing purified ionic complex
JP5060783B2 (en) Process for producing ionic compounds
JP2007200833A (en) Electrolyte for dye-sensitized solar cell, oxide semiconductor electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP4217460B2 (en) New Lewis acid catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141024

R150 Certificate of patent or registration of utility model

Ref document number: 5639344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees