JP2010269712A - Control device for vehicle - Google Patents

Control device for vehicle Download PDF

Info

Publication number
JP2010269712A
JP2010269712A JP2009123899A JP2009123899A JP2010269712A JP 2010269712 A JP2010269712 A JP 2010269712A JP 2009123899 A JP2009123899 A JP 2009123899A JP 2009123899 A JP2009123899 A JP 2009123899A JP 2010269712 A JP2010269712 A JP 2010269712A
Authority
JP
Japan
Prior art keywords
traffic jam
power generation
predicted
vehicle
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009123899A
Other languages
Japanese (ja)
Other versions
JP5412954B2 (en
Inventor
Takashi Watanabe
剛史 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009123899A priority Critical patent/JP5412954B2/en
Publication of JP2010269712A publication Critical patent/JP2010269712A/en
Application granted granted Critical
Publication of JP5412954B2 publication Critical patent/JP5412954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device enhancing fuel economy performance by securing an idling-stoppable time even if a vehicle abruptly encounters a traffic congestion road. <P>SOLUTION: The control device for the vehicle includes a power generation control means 4 for controlling a power generation amount of a generator 1 and a charging amount of a battery 2; and a traffic congestion prediction means 6 for predicting the existence of traffic congestion on an advancement route. The power generation control means 4 sets the charging amount of the battery higher as compared with the case that the traffic congestion is not predicted when the traffic congestion is predicted by the traffic congestion prediction means 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両の電力制御装置に関し、特に、いわゆるアイドルストップを行う車両の電力制御装置に関する。   The present invention relates to a power control apparatus for a vehicle, and more particularly to a power control apparatus for a vehicle that performs so-called idle stop.

制動時にモータジェネレータによる回生制動をかけることで走行エネルギの回収を行う車両において、通常走行時の目標充電量(以下、SOC(State Of Charge)という)をエンジン始動用の目標SOCより低く設定する構成が特許文献1に開示されている。この構成では、目的地到達前の所定期間だけエンジン始動用の目標SOCに切り換えて走行することで、回生制動によるバッテリの過充電を防止しつつ、エンジン始動要の電力を確保している。   In a vehicle that recovers travel energy by applying regenerative braking by a motor generator during braking, a target charge amount during normal travel (hereinafter referred to as SOC (State Of Charge)) is set lower than a target SOC for engine start. Is disclosed in Patent Document 1. In this configuration, the electric power required for starting the engine is ensured while preventing overcharge of the battery due to regenerative braking by switching to the target SOC for starting the engine for a predetermined period before reaching the destination.

特開2004−245190号公報JP 2004-245190 A

しかしながら、特許文献1に記載された構成では、通常走行時用の目標SOCで走行中に予期せぬ渋滞に遭遇すると、アイドルストップを実施できなくなる場合がある。つまり、アイドルストップを実施すると、アイドルストップ中の放電によってエンジン再始動に必要な電力が確保できなくなるために、アイドルストップの実施が制限されてしまうおそれがある。   However, in the configuration described in Patent Document 1, if an unexpected traffic jam is encountered during traveling with the target SOC for normal traveling, idle stop may not be performed. In other words, when the idle stop is performed, the electric power necessary for the engine restart cannot be secured due to the discharge during the idle stop, and there is a possibility that the implementation of the idle stop may be limited.

そこで本発明では、不意に渋滞路に遭遇した場合等でも、アイドルストップ可能な時間を確保して、燃費性能を向上させる制御装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a control device that secures a time during which idle stop is possible and improves fuel efficiency even when a congested road is unexpectedly encountered.

本発明の車両の制御装置は、発電機と、当該発電機で発電した電力を充電するバッテリと、発電機の発電量及びバッテリの充電量を制御する発電制御手段と、進行ルート上の渋滞の有無を予測する渋滞予測手段と、を備える。さらに、発電制御手段は、渋滞予測手段により渋滞が予測された場合に、渋滞が予測されない場合に比べてバッテリ充電量を高く設定する。   The vehicle control device of the present invention includes a generator, a battery for charging the power generated by the generator, a power generation control means for controlling the power generation amount of the generator and the charge amount of the battery, and congestion on the travel route. And a traffic jam prediction means for predicting presence or absence. Furthermore, the power generation control unit sets the battery charge amount higher when the traffic jam is predicted by the traffic jam prediction unit than when the traffic jam is not predicted.

本発明によれば、渋滞があると予測した場合にはバッテリ充電量を高めるので、渋滞によって停車した際の、アイドルストップ可能な時間を確保することができる。その結果として、燃費性能の向上を図ることができる。   According to the present invention, when it is predicted that there is a traffic jam, the battery charge amount is increased. Therefore, it is possible to secure a time during which the vehicle can be idle stopped when the vehicle stops due to the traffic jam. As a result, fuel efficiency can be improved.

本実施形態のシステム構成図である。It is a system configuration figure of this embodiment. 発電コントローラが実行する目標SOC決定のための制御ルーチンを説明するフローチャートである。It is a flowchart explaining the control routine for target SOC determination which a power generation controller performs. 発電コントローラに格納された、渋滞中の停車時間を予測するために用いるマップの一例である。It is an example of the map used in order to estimate the stop time in traffic jam stored in the electric power generation controller. 本実施形態の制御を実行した場合のタイムチャートの一例である。It is an example of the time chart at the time of performing control of this embodiment.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態のシステムの構成図である。   FIG. 1 is a configuration diagram of a system according to this embodiment.

発電装置1には、例えばオルタネータのようにエンジンにより駆動されて発電する発電機と、発電機の交流発電電力を直流電力に変換するインバータとを含む。また、発電装置1は、減速時等にはインバータが回生制動力を発生させ、走行エネルギを電力として回収する。   The power generator 1 includes, for example, a generator that is driven by an engine and generates power, such as an alternator, and an inverter that converts AC generated power of the generator into DC power. In addition, in the power generation device 1, when the vehicle is decelerated, the inverter generates a regenerative braking force, and recovers traveling energy as electric power.

この発電装置1の発電量は発電制御手段としての発電コントローラ4により決定される。そして、発電装置1で発電した電力は、バッテリ2に充電されたり、スタータモータ等の電装部品5の駆動に用いられたりする。   The power generation amount of the power generation device 1 is determined by a power generation controller 4 as power generation control means. The electric power generated by the power generation device 1 is charged in the battery 2 or used to drive an electrical component 5 such as a starter motor.

発電コントローラ4には、バッテリ温度を検出する温度センサ3a及びバッテリ2の充放電電流を検出する電流センサ3bの検出信号が入力される。   The power generation controller 4 receives detection signals from a temperature sensor 3 a that detects battery temperature and a current sensor 3 b that detects charge / discharge current of the battery 2.

バッテリ温度が低い状態では放電可能な電力が小さくなるので、後述する目標SOC算出制御のために、バッテリ温度を検出する。   Since the electric power that can be discharged becomes small when the battery temperature is low, the battery temperature is detected for target SOC calculation control described later.

実際のバッテリSOCは、バッテリ2の充放電電流を積算することで算出できる。この他にも、例えばバッテリ2の端子電圧を検出して、端子電圧と充放電電流からバッテリSOCを推定する方法、端子電圧のみからバッテリSOCを推定する方法を用いてもよい。   The actual battery SOC can be calculated by integrating the charge / discharge current of the battery 2. In addition to this, for example, a method of estimating the battery SOC from the terminal voltage and the charge / discharge current by detecting the terminal voltage of the battery 2 or a method of estimating the battery SOC from only the terminal voltage may be used.

また、例えばカーナビゲーションシステム等の渋滞予測手段としてのIT装置6から、渋滞情報や停車予測時間等の情報(以下、ナビ情報という)が逐次入力される。そして、これらの入力信号等に基づいて、バッテリ2の目標SOCを決定し、発電装置1の発電量を決定する。また、現在のバッテリSOCでアイドルストップが可能か否かの判断も行う。   In addition, information such as traffic jam information and predicted stop time (hereinafter referred to as navigation information) is sequentially input from the IT device 6 as a traffic jam prediction unit such as a car navigation system. And based on these input signals etc., the target SOC of the battery 2 is determined, and the electric power generation amount of the electric power generating apparatus 1 is determined. It is also determined whether or not idle stop is possible with the current battery SOC.

なお、IT装置6には、携帯電話機、入力装置、GPS受信機、車速センサ、記憶装置等が接続されている。GPS受信機によりGPS衛星からの信号電波を受信して車両の現在位置を検出するとともに、携帯電話機を介して情報センタとの通信または車車間通信により天気予報や渋滞情報を入手する。また、記憶装置に記憶している道路地図を用いて、入力装置により設定された目的地までの経路を探索し、経路誘導を行う。   The IT device 6 is connected to a mobile phone, an input device, a GPS receiver, a vehicle speed sensor, a storage device, and the like. The GPS receiver receives signal radio waves from GPS satellites to detect the current position of the vehicle, and obtains weather forecasts and traffic jam information through communication with an information center or vehicle-to-vehicle communication via a mobile phone. Further, a route to the destination set by the input device is searched using the road map stored in the storage device, and route guidance is performed.

図2は、発電コントローラ4が実行する、目標SOC決定のための制御ルーチンを説明するフローチャートである。発電コントローラ4はこのルーチンをエンジンの運転中に一定間隔で実行する。一定間隔は例えば10ミリ秒とする。   FIG. 2 is a flowchart for explaining a control routine for determining the target SOC, which is executed by the power generation controller 4. The power generation controller 4 executes this routine at regular intervals while the engine is operating. The fixed interval is, for example, 10 milliseconds.

ステップS1では、これから通ろうとするルート(以下、進行ルートという)に渋滞があるか否かを、ナビ情報に基づいて判断する。渋滞がない場合はステップS2へ進む。渋滞がある場合は、ステップS4に進んで通常走行用の目標SOCを設定する。通常走行用の目標SOCとは、発電装置1による走行中の駆動力の確保と、制動時に回生制動により発電した電力の充電が可能なSOCをいう。例えば30〜80%程度の範囲内とする。   In step S <b> 1, it is determined based on the navigation information whether there is a traffic jam on a route to be taken (hereinafter referred to as a travel route). If there is no traffic jam, the process proceeds to step S2. If there is a traffic jam, the process proceeds to step S4, where a target SOC for normal driving is set. The target SOC for normal travel refers to an SOC that can secure driving force during travel by the power generation device 1 and charge the power generated by regenerative braking during braking. For example, it is within a range of about 30 to 80%.

ステップS2では、進行ルートを走行中かつ自車と通信可能な車両があるか否かを判定する。当該車両がある場合はステップS3へ進み、ない場合はステップS5へ進む。   In step S2, it is determined whether there is a vehicle that is traveling along the traveling route and can communicate with the host vehicle. If the vehicle is present, the process proceeds to step S3, and if not, the process proceeds to step S5.

ステップS3では、当該車両から低車時間情報を受信する。ステップS5では、VICS情報から渋滞距離、渋滞を通過するのに要する時間(以下、渋滞時間という)等の情報を受信する。   In step S3, low vehicle time information is received from the vehicle. In step S5, information such as a traffic jam distance and a time required to pass through the traffic jam (hereinafter referred to as a traffic jam time) is received from the VICS information.

ステップS3またはステップS5で情報を受信したら、ステップS6へ進み、受信した情報に基づいて渋滞予測時の目標SOCを設定し、処理を終了する。渋滞予測時の目標SOCとは、次回エンジン始動時に、低温環境下でもスタータモータで確実に始動できるようなSOCのことをいう。例えば、外気温がゼロ度の場合には95%程度である。   When information is received in step S3 or step S5, the process proceeds to step S6, a target SOC at the time of traffic jam prediction is set based on the received information, and the process is terminated. The target SOC at the time of traffic jam prediction means an SOC that can be reliably started by a starter motor even in a low temperature environment at the next engine start. For example, when the outside air temperature is zero degrees, it is about 95%.

図3は、渋滞中の停車時間を予測するために用いるマップの一例である。縦軸及び横軸に、それぞれ車車間通信またはVICS情報から入手可能な渋滞距離及び渋滞通過に要する時間(以下、渋滞時間という)をとって、これに統計的に求めた予測停車時間を割り付けたものである。   FIG. 3 is an example of a map used for predicting a stop time during a traffic jam. On the vertical and horizontal axes, the traffic distance and the time required to pass the traffic (hereinafter referred to as traffic time) obtained from inter-vehicle communication or VICS information, respectively, were assigned statistically estimated stoppage times. Is.

渋滞距離が同じであれば、渋滞時間が長いほど停車時間が長いと予測される。また、渋滞時間が同じであれば、渋滞距離が短いほど停車時間が長いと予測される。   If the traffic distance is the same, the longer the traffic time, the longer the stop time is predicted. If the traffic time is the same, the shorter the traffic distance, the longer the stop time is predicted.

なお、図3のマップ内の予測停車時間はあくまでも一例であり、実際には、図3中の各ウィンドウについて、過去の渋滞における実績等を統計的に処理し、例えば平均値+1σ等に設定する。ただし、上述した渋滞距離及び渋滞時間と予測時間の長さとの関係については、同様の傾向がある。   Note that the estimated stoppage time in the map of FIG. 3 is merely an example. Actually, for each window in FIG. 3, the past performance in the traffic jam is statistically processed, and set to, for example, an average value + 1σ . However, there is a similar tendency with respect to the relationship between the above-described traffic distance and traffic time and the length of the predicted time.

上記マップに基づいて渋滞中の予測停車時間を予測したら、それに基づいて下式(1)により充電必要量を算出する。通常走行時の目標SOCにこの充電必要量を加えたものが、渋滞予測時の目標SOCとなる。   If the estimated stoppage time during a traffic jam is predicted based on the map, the required charging amount is calculated by the following equation (1) based on the predicted stoppage time. The target SOC at the time of traffic jam prediction is obtained by adding the required amount of charge to the target SOC during normal driving.

充電必要量[As]=予測停車時間[s]×アイドルストップ中のバッテリ放電量[A] ・・・(1)     Charge required amount [As] = Predicted stop time [s] × Battery discharge amount during idle stop [A] (1)

ここで、アイドルストップ中バッテリ放電量は、前回アイドルストップ時に電流センサ3bで測定した放電電流値を用いる。   Here, as the battery discharge amount during idle stop, the discharge current value measured by the current sensor 3b at the previous idle stop is used.

つまり、充電必要量とは、アイドルストップ中に車両補機等、例えばエアコンやカーナビゲーションシステム等、により消費される電力の予測値である。そして、スタータモータの駆動用電力に加えて、さらにこの充電必要量をアイドルストップ前に充電しておけば、アイドルストップ解除後に確実にエンジン始動を行うことができる。   That is, the amount of charge required is a predicted value of power consumed by a vehicle auxiliary machine such as an air conditioner or a car navigation system during an idle stop. In addition to the driving power for the starter motor, if the required charging amount is charged before the idle stop, the engine can be reliably started after the idle stop is released.

発電コントローラ4は、上記のようにして定まる充電必要量となるように、充電を開始する。一般に、充電は減速時等のように発電装置1の発電効率がよいタイミングで実施する。渋滞ではない通常走行であれば、このような充電でも必要な充電量を賄うことができるが、渋滞時には必要な充電量に対して発電量が不足するおそれがある。   The power generation controller 4 starts charging so that the required charging amount determined as described above is obtained. In general, charging is performed at a timing when the power generation efficiency of the power generator 1 is good, such as during deceleration. If the vehicle is traveling normally without traffic jams, the required amount of charge can be covered even with such charging, but the amount of power generation may be insufficient with respect to the required amount of charge during traffic jams.

そこで、渋滞が予測され、かつ充電必要量が発生した場合には、発電コントローラ4は、発電装置1の発電効率によらず、つまり加速時や定速走行時のように発電装置1の発電効率が低い場合であっても、バッテリSOCの維持または増大のために発電装置1の発電電圧を上昇させる。   Therefore, when a traffic jam is predicted and a necessary amount of charging occurs, the power generation controller 4 does not depend on the power generation efficiency of the power generation apparatus 1, that is, the power generation efficiency of the power generation apparatus 1 during acceleration or constant speed travel. Even when the battery power is low, the power generation voltage of the power generation device 1 is increased in order to maintain or increase the battery SOC.

図4は渋滞が予測され、かつ充電必要量が発生した場合の制御を実施したときのタイムチャートの一例である。ここでは、通常運転時にもエンジン始動に必要な電力は確保するように目標バッテリSOCを設定し、t0でエンジン始動してからt1までは加速し、t1〜t2で減速した後t2〜t3は定速走行し、t3〜t4で減速して、t4からは渋滞によって停車する場合について示している。   FIG. 4 is an example of a time chart when control is performed when a traffic jam is predicted and a necessary amount of charging occurs. Here, the target battery SOC is set so as to secure the power necessary for starting the engine even during normal operation, the engine is started at t0, accelerates until t1, decelerates at t1-t2, and then t2-t3 is constant. It shows a case where the vehicle travels at a high speed, decelerates at t3 to t4, and stops at t4 due to traffic congestion.

t0からt1までは加速走行のため、発電装置1の発電効率は相対的に低い。そこで、現状のバッテリSOCを維持可能な程度に発電電圧を上昇させる。なお、ここでのエンジン始動は、アイドルストップ解除によるエンジン始動でも、通常のエンジン始動でもよい。   From t0 to t1, the power generation efficiency of the power generation apparatus 1 is relatively low because of accelerated traveling. Therefore, the generated voltage is increased to such an extent that the current battery SOC can be maintained. The engine start here may be an engine start by releasing the idle stop or a normal engine start.

t1からt2の間は、減速状態のため発電装置1の発電効率が相対的に高くなる。そこで、バッテリSOCを上昇させる程度まで発電装置1の発電電圧を上昇させる。   Between t1 and t2, the power generation efficiency of the power generator 1 is relatively high due to the deceleration state. Therefore, the power generation voltage of the power generator 1 is increased to the extent that the battery SOC is increased.

t2〜t3の間は、t0からt1の間と同様に発電効率が相対的に低いので、バッテリSOCを保持する程度の発電電圧とする。t3〜t4の間は、t1〜t2の間と同様に発電効率が相対的に高いので、バッテリSOCを上昇させる程度まで発電装置1の発電電圧を上昇させる。これにより、エンジン始動からアイドルストップまでの間に、バッテリSOCは低下することなく、徐々に上昇することとなる。   Since the power generation efficiency is relatively low during the period from t2 to t3 as in the period from t0 to t1, the power generation voltage is set so as to hold the battery SOC. Since the power generation efficiency is relatively high during the period from t3 to t4 as in the period from t1 to t2, the power generation voltage of the power generation apparatus 1 is increased to the extent that the battery SOC is increased. As a result, the battery SOC gradually increases without decreasing from the engine start to the idle stop.

このように、発電効率が高い場合にはバッテリSOCが上昇するように、発電効率が低い場合にはバッテリSOCを維持するように、それぞれ発電装置1の発電効率を制御する。その結果、アイドルストップ中に放電し続けても、t6まではエンジン再始動に必要な電力を確保することができる。   As described above, the power generation efficiency of the power generator 1 is controlled so that the battery SOC increases when the power generation efficiency is high, and the battery SOC is maintained when the power generation efficiency is low. As a result, even if discharging continues during idling stop, electric power necessary for engine restart can be secured until t6.

これに対して、例えばt2からt3の間の発電効率が相対的に低い状態で発電電圧を上昇させなかった場合には、図4中に破線で示すようにt2からt3の間でバッテリSOCは低下してしまう。このため、発電効率が相対的に高いt3からt4の間に再び発電電圧を高めても、アイドルストップを介しするt4の時点でのバッテリSOCは、本実施形態よりも低くなる。そして、アイドルストップ中の放電量が同じであれば、t6よりも早いt5の時点で、エンジン再始動に必要なバッテリSOCまで低下してしまう。つまり、アイドルストップはt5までしか継続できない。つまり、本実施形態によれば、t5〜t6の分だけアイドルストップを長時間実施することができる。   On the other hand, for example, when the power generation voltage is not increased while the power generation efficiency between t2 and t3 is relatively low, the battery SOC is between t2 and t3 as indicated by a broken line in FIG. It will decline. For this reason, even if the power generation voltage is increased again between t3 and t4 where the power generation efficiency is relatively high, the battery SOC at the time t4 through the idle stop is lower than in this embodiment. If the discharge amount during the idle stop is the same, the battery SOC required for restarting the engine is reduced at a time t5 earlier than t6. That is, the idle stop can be continued only until t5. That is, according to the present embodiment, the idle stop can be performed for a long time by t5 to t6.

以上のように本実施形態によれば、次のような効果が得られる。   As described above, according to the present embodiment, the following effects can be obtained.

(1)発電コントローラ4は、渋滞が予測された場合には、通常運転時よりもバッテリSOCの目標値を高く設定するので、渋滞により低車した場合のアイドルストップ可能時間を、より長く確保することができる。その結果、燃費性能の向上を図ることができる。   (1) When traffic congestion is predicted, the power generation controller 4 sets the target value of the battery SOC higher than that during normal operation. Therefore, the power generation controller 4 ensures a longer idle stop possible time when the vehicle is low due to traffic congestion. be able to. As a result, the fuel efficiency can be improved.

(2)発電コントローラ4は、渋滞が予測された場合のバッテリSOCの目標値を、IT装置6が取得した渋滞中の停車時間に応じて設定するので、過充電や充電不足を回避することができる。   (2) Since the power generation controller 4 sets the target value of the battery SOC when the traffic jam is predicted according to the stop time during the traffic jam acquired by the IT device 6, it is possible to avoid overcharging and insufficient charging. it can.

(3)IT装置6は、渋滞中の停車時間を、進行ルート上を走行する他車との車車間通信により取得するので、より正確な停車時間を得ることができ、充電必要量の精度が高まる。   (3) Since the IT device 6 obtains the stop time in a traffic jam through inter-vehicle communication with other vehicles traveling on the traveling route, it can obtain a more accurate stop time and the accuracy of the required amount of charge Rise.

(4)発電コントローラ4は、渋滞が予測された場合のバッテリSOCの目標値を、IT装置6から取得した情報、渋滞距離及び渋滞時間に基づいて予測した渋滞中の停車時間に応じて設定するので、充電必要量を算出することができる。   (4) The power generation controller 4 sets the target value of the battery SOC when the traffic jam is predicted according to the stop time during the traffic jam predicted based on the information acquired from the IT device 6, the traffic jam distance and the traffic jam time. Therefore, the amount of charge required can be calculated.

(5)発電コントローラ4は、予測した渋滞中の停車時間が長いほど、バッテリSOCの目標値を高く設定するので、アイドルストップ可能時間をより長く確保することができる。   (5) Since the power generation controller 4 sets the target value of the battery SOC higher as the predicted stoppage time in the traffic jam is longer, the idling stop possible time can be secured longer.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

1 発電装置
2 バッテリ
3a 温度センサ
3b 電流センサ
4 発電コントローラ
5 電装部品
6 IT装置
DESCRIPTION OF SYMBOLS 1 Power generator 2 Battery 3a Temperature sensor 3b Current sensor 4 Power generation controller 5 Electrical component 6 IT apparatus

Claims (6)

発電機の発電量及びバッテリの充電量を制御する発電制御手段と、
進行ルート上の渋滞の有無を予測する渋滞予測手段と、
を備える車両の制御装置において、
前記発電制御手段は、前記渋滞予測手段により渋滞が予測された場合に、渋滞が予測されない場合に比べて前記バッテリ充電量を高く設定することを特徴とする車両の制御装置。
Power generation control means for controlling the power generation amount of the generator and the charge amount of the battery;
A traffic jam forecasting means for forecasting the presence or absence of traffic jam on the route,
In a vehicle control device comprising:
The power generation control unit sets the battery charge amount higher when the traffic jam is predicted by the traffic jam prediction unit than when the traffic jam is not predicted.
前記発電制御手段は、前記渋滞が予測された場合のバッテリ充電量を、前記渋滞予測手段が取得した渋滞中の停車時間に応じて設定することを特徴とする請求項1に記載の車両の制御装置。   2. The vehicle control according to claim 1, wherein the power generation control unit sets a battery charge amount when the traffic jam is predicted according to a stop time during the traffic jam acquired by the traffic jam prediction unit. apparatus. 前記渋滞予測手段は、前記渋滞中の停車時間を、進行ルート上を走行する他車との車車間通信により取得することを特徴とする請求項2に記載の車両の制御装置。   The vehicle control device according to claim 2, wherein the traffic jam prediction means acquires the stop time during the traffic jam by inter-vehicle communication with another vehicle traveling on a traveling route. 前記発電制御手段は、前記渋滞が予測された場合のバッテリ充電量を、前記渋滞予測手段から取得した情報に基づいて予測した渋滞中の停車時間に応じて設定することを特徴とする請求項1に記載の車両の制御装置。   The power generation control unit sets the battery charge amount when the traffic jam is predicted according to a stop time during the traffic jam predicted based on information acquired from the traffic jam prediction unit. The vehicle control device described in 1. 前記渋滞予測手段から取得した情報が、渋滞距離及び渋滞通過に要する時間であることを特徴とする請求項4に記載の車両の制御装置。   The vehicle control device according to claim 4, wherein the information acquired from the traffic jam prediction unit is a traffic jam distance and a time required to pass the traffic jam. 前記発電制御手段は、予測した前記渋滞中の停車時間が長いほど、前記バッテリ充電量を高く設定することを特徴とする請求項2から5のいずれか一つに記載の車両の制御装置。   6. The vehicle control device according to claim 2, wherein the power generation control unit sets the battery charge amount to be higher as the predicted stoppage time in the traffic jam is longer.
JP2009123899A 2009-05-22 2009-05-22 Vehicle control device Active JP5412954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123899A JP5412954B2 (en) 2009-05-22 2009-05-22 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123899A JP5412954B2 (en) 2009-05-22 2009-05-22 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2010269712A true JP2010269712A (en) 2010-12-02
JP5412954B2 JP5412954B2 (en) 2014-02-12

Family

ID=43418117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123899A Active JP5412954B2 (en) 2009-05-22 2009-05-22 Vehicle control device

Country Status (1)

Country Link
JP (1) JP5412954B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013072976A1 (en) 2011-11-18 2013-05-23 トヨタ自動車株式会社 Traveling environment prediction device, vehicle control device, and methods therefor
JP2014060884A (en) * 2012-09-19 2014-04-03 Mazda Motor Corp Vehicle power supply device
JP2014136535A (en) * 2013-01-18 2014-07-28 Toyota Motor Corp Vehicle control device, vehicle, and vehicle control method
WO2014141784A1 (en) * 2013-03-13 2014-09-18 日立オートモティブシステムズ株式会社 Battery control device
EP2792551A4 (en) * 2011-12-12 2015-06-10 Toyota Motor Co Ltd Power consumption prediction device, vehicle control device, vehicle, power consumption prediction method, and vehicle control method
EP2949919A1 (en) * 2014-05-14 2015-12-02 Toyota Jidosha Kabushiki Kaisha Electric power generation control of a vehicle based on the vehicle operating history
CN106143470A (en) * 2015-05-15 2016-11-23 丰田自动车株式会社 Power control unit
JP2017221086A (en) * 2016-06-10 2017-12-14 株式会社デンソー On-vehicle power supply system
JP2019013132A (en) * 2017-04-13 2019-01-24 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Control apparatus and method for operating energy storage module of vehicle, energy storage module of vehicle, and electric brake device
US10266065B2 (en) 2016-09-05 2019-04-23 Toyota Jidosha Kabushiki Kaisha Electric vehicle and control method for electric vehicle
JP2021097450A (en) * 2019-12-13 2021-06-24 株式会社Gsユアサ Method and device for adjusting charge conditions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134719A (en) * 1998-10-29 2000-05-12 Isuzu Motors Ltd Battery charging controller for parallel hybrid electric vehicle
JP2000345877A (en) * 1999-06-01 2000-12-12 Mitsubishi Electric Corp Engine stopping and starting device
JP2003095042A (en) * 2001-09-21 2003-04-03 Denso Corp Power generation control device
JP2003111201A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Automotive control system
JP2005291158A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Power generation control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134719A (en) * 1998-10-29 2000-05-12 Isuzu Motors Ltd Battery charging controller for parallel hybrid electric vehicle
JP2000345877A (en) * 1999-06-01 2000-12-12 Mitsubishi Electric Corp Engine stopping and starting device
JP2003095042A (en) * 2001-09-21 2003-04-03 Denso Corp Power generation control device
JP2003111201A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Automotive control system
JP2005291158A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Power generation control device of internal combustion engine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013072976A1 (en) 2011-11-18 2013-05-23 トヨタ自動車株式会社 Traveling environment prediction device, vehicle control device, and methods therefor
JPWO2013072976A1 (en) * 2011-11-18 2015-04-02 トヨタ自動車株式会社 Driving environment prediction device, vehicle control device, and methods thereof
EP2781411A4 (en) * 2011-11-18 2016-01-06 Toyota Motor Co Ltd Traveling environment prediction device, vehicle control device, and methods therefor
US9827925B2 (en) 2011-11-18 2017-11-28 Toyota Jidosha Kabushiki Kaisha Driving environment prediction device, vehicle control device and methods thereof
EP2792551A4 (en) * 2011-12-12 2015-06-10 Toyota Motor Co Ltd Power consumption prediction device, vehicle control device, vehicle, power consumption prediction method, and vehicle control method
JP2014060884A (en) * 2012-09-19 2014-04-03 Mazda Motor Corp Vehicle power supply device
JP2014136535A (en) * 2013-01-18 2014-07-28 Toyota Motor Corp Vehicle control device, vehicle, and vehicle control method
WO2014141784A1 (en) * 2013-03-13 2014-09-18 日立オートモティブシステムズ株式会社 Battery control device
JP2014172587A (en) * 2013-03-13 2014-09-22 Hitachi Automotive Systems Ltd Control device for battery
EP2949919A1 (en) * 2014-05-14 2015-12-02 Toyota Jidosha Kabushiki Kaisha Electric power generation control of a vehicle based on the vehicle operating history
JP2016215729A (en) * 2015-05-15 2016-12-22 トヨタ自動車株式会社 Power supply control apparatus
CN106143470A (en) * 2015-05-15 2016-11-23 丰田自动车株式会社 Power control unit
JP2017221086A (en) * 2016-06-10 2017-12-14 株式会社デンソー On-vehicle power supply system
WO2017212976A1 (en) * 2016-06-10 2017-12-14 株式会社デンソー In-vehicle power supply system
US10677176B2 (en) 2016-06-10 2020-06-09 Denso Corporation Vehicle power system
US10266065B2 (en) 2016-09-05 2019-04-23 Toyota Jidosha Kabushiki Kaisha Electric vehicle and control method for electric vehicle
JP2019013132A (en) * 2017-04-13 2019-01-24 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Control apparatus and method for operating energy storage module of vehicle, energy storage module of vehicle, and electric brake device
JP7189669B2 (en) 2017-04-13 2022-12-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Controller and method for operating vehicle energy storage module, vehicle energy storage module, and electric braking system
JP2021097450A (en) * 2019-12-13 2021-06-24 株式会社Gsユアサ Method and device for adjusting charge conditions
JP7532770B2 (en) 2019-12-13 2024-08-14 株式会社Gsユアサ Charging condition adjustment method and charging condition adjustment device

Also Published As

Publication number Publication date
JP5412954B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5412954B2 (en) Vehicle control device
US10913442B2 (en) Hybrid vehicle
US8996196B2 (en) Information provision device and information provision method
US10843678B2 (en) Control system having at least one electronic control unit for controlling an internal combustion engine in a hybrid vehicle
US9008882B2 (en) Vehicle and control method of vehicle
CN108944903B (en) Hybrid vehicle
US20070073455A1 (en) Vehicle preferential treatment system, electrically powered vehicle, server used for vehicle preferential treatment system, and vehicle preferential treatment method
US20150061550A1 (en) Method for electrically regenerating an energy store
JP2002171603A (en) Control device for hybrid vehicle
JP2010064576A (en) Vehicle travel control method
WO2015049572A2 (en) Movement support apparatus, movement support method, and driving support system
JP2010279108A (en) Battery charge control device for electric vehicles
KR20170011162A (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
JP2008260384A (en) Vehicular power source control device
JP2017085723A (en) Electric car control device
CN114763077A (en) Information processing device and program
JP2016088440A (en) Hybrid drive vehicle output controller
JP2010154638A (en) Battery charge control device for motor vehicle
US11648929B2 (en) Hybrid vehicle
JP2011158277A (en) Navigation apparatus
JP2007116766A (en) Controller for vehicle generator
CN109955736B (en) Electric vehicle
KR101619492B1 (en) Apparatus and Method for Driving Control Using Route
JP2013126806A (en) Energy-saving vehicle and traveling control method thereof
JP2012127265A (en) Running pattern planning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5412954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150