WO2014141784A1 - Battery control device - Google Patents

Battery control device Download PDF

Info

Publication number
WO2014141784A1
WO2014141784A1 PCT/JP2014/052826 JP2014052826W WO2014141784A1 WO 2014141784 A1 WO2014141784 A1 WO 2014141784A1 JP 2014052826 W JP2014052826 W JP 2014052826W WO 2014141784 A1 WO2014141784 A1 WO 2014141784A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
battery
control device
stop
information
Prior art date
Application number
PCT/JP2014/052826
Other languages
French (fr)
Japanese (ja)
Inventor
雄希 奥田
浅野 誠二
直之 田代
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014141784A1 publication Critical patent/WO2014141784A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0825Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to prevention of engine restart failure, e.g. disabling automatic stop at low battery state

Definitions

  • the present invention relates to a battery control device, for example, a battery control device that controls charging / discharging of a battery mounted on a vehicle.
  • a vehicle equipped with such a power generation control mechanism and an idling stop mechanism generally discharges a battery more deeply than a vehicle not equipped with these mechanisms. In many cases, the battery is left in a state where the charging rate is low.
  • a vehicle equipped with a power generation control mechanism and an idling stop mechanism generally reduces the opportunity to drive an alternator that is a generator, the state of charge of a battery charged by the alternator (for example, the charging rate) is changed. It is difficult to adjust to a desired state.
  • a lead battery generally used as a power supply device for automobiles is known to have a significantly reduced battery capacity due to deterioration referred to as passivation when left with a low charging rate. ing.
  • the lead battery mainly electrically insulates the positive electrode mainly composed of lead oxide, the negative electrode mainly composed of lead, an electrolyte solution composed of dilute sulfuric acid, and the positive electrode and the negative electrode.
  • power is charged / discharged through a positive electrode terminal and a negative electrode terminal which are composed of a separator for holding an electrolytic solution and a casing for packaging them, and are connected to the positive electrode and the negative electrode.
  • lead sulfate is generated at the positive electrode and the negative electrode as the discharge progresses due to the discharge reaction shown in the following chemical formulas (1) to (3), and is opposite to the arrows shown in chemical formulas (1) to (3) during charging. By the reaction in the direction, lead sulfate is reduced to lead on the negative electrode side, and lead sulfate is oxidized to lead oxide on the positive electrode side.
  • Lead sulfate produced by the discharge reaction of a lead battery is insulative, and lead sulfate deposited on the positive electrode and negative electrode by the discharge reaction is reduced to lead on the negative electrode side or oxidized to lead oxide on the positive electrode side by the charging reaction. .
  • the lead battery is left for a long time with a low charging rate, the lead sulfate deposited on the positive electrode and the negative electrode by the discharge reaction will not easily change to lead or lead oxide even if the lead battery is charged, The internal resistance (discharge resistance) is remarkably increased, and the capacity of the lead battery is greatly reduced. Further, since the amount of lead sulfate deposited on the positive electrode and the negative electrode increases as the charge rate of the lead battery decreases, the deterioration of the battery is accelerated particularly when the charge rate of the left lead battery is low.
  • the battery is discharged deeper and the charged state of the battery is adjusted to a desired state as compared with the vehicle not including these mechanisms. Since the battery is often left in a state where the charging rate is low, there is a problem that the deterioration of the battery is accelerated. For example, when starting an engine, it is necessary to supply a large amount of power from a battery to an electric motor represented by a starter motor. Therefore, in this field, for example, when a vehicle is parked or left for a long time, the battery is charged. It is desired to develop a control device that can adjust the state to a desired state and suppress the deterioration of the battery to ensure the reliability of the battery.
  • Patent Document 1 discloses a technique for charging a main battery (power storage unit) connected to an alternator (generator) or a starter motor in preparation for starting the engine at the next boarding. Yes.
  • the vehicle power supply device disclosed in Patent Literature 1 is operated to be turned on when the vehicle is activated, and the activation switch that is operated to be turned off when the vehicle activation state is stopped is switched to the off state.
  • the main battery is charged by continuing the engine operating state.
  • the main battery can be charged in preparation for starting the engine at the next boarding, and the main battery is not limited by the power required for starting the engine. Can be deeply discharged.
  • the present invention has been made in view of the above-described problems, and its object is to connect a starter motor or the like while suppressing a deviation between the sense of operation of the start switch by the driver or the like and the start state of the vehicle. It is an object of the present invention to provide a battery control apparatus that can efficiently charge and discharge a battery to be charged, suppress deterioration of the battery due to parking of the vehicle or leaving the vehicle for a long period of time, and increase the reliability of the battery.
  • a battery control device is a battery control device that controls charging / discharging of a battery that supplies electric power to an in-vehicle device mounted on the vehicle, and the start of the vehicle
  • a start / stop timing estimation unit that estimates a start / stop timing for stopping the state
  • a charge rate adjustment unit that adjusts the charge rate of the battery based on an estimation result of the start / stop timing estimation unit.
  • the start / stop timing at which the start state of the vehicle is stopped is estimated based on an operation of turning off the start switch by a driver or the like, and the charge rate of the battery is determined based on the estimation result.
  • the battery charge rate can be adjusted to a desired state (a state suitable for storing the battery) before the vehicle start state is stopped. For example, the driver feels that the start switch is operated.
  • the battery reliability can be improved by suppressing the deterioration of the battery due to the parking of the vehicle or the long-term leaving of the vehicle while suppressing the deviation between the vehicle and the starting state of the vehicle.
  • FIG. 1 is an overall configuration diagram schematically showing a system configuration of a vehicle equipped with Embodiment 1 of a battery control device according to the present invention.
  • the internal block diagram which shows schematically the internal structure of the alternator shown in FIG.
  • the schematic diagram which shows an example of the charge rate of the lead battery in the vehicle shown in FIG. 1, the output signal of a vehicle speed sensor, the output signal of an accelerator pedal sensor, and the output signal of a brake pedal sensor in time series.
  • the schematic diagram which shows an example of the charging rate of the lead battery when the vehicle shown in FIG. 1 is parked, the generated voltage of the alternator, the output signal of the vehicle speed sensor, the idling stop prohibition flag, and the in-vehicle device power consumption restriction mode flag in time series.
  • the schematic diagram explaining typically the relationship between the estimated remaining travel time when the vehicle by which Embodiment 2 of the control apparatus of the battery which concerns on this invention is mounted moves to the destination, and the charge start time of a battery.
  • the figure which shows the relationship between the difference of the desired charge rate of a battery, the present charge rate, and estimated remaining travel time.
  • FIG. 1 schematically shows a system configuration of a vehicle on which Embodiment 1 of the battery control apparatus according to the present invention is mounted.
  • FIG. 2 schematically shows the internal configuration of the alternator (generator) shown in FIG.
  • an engine 101 is mounted on a vehicle 100, and driving force obtained by the engine 101 is transmitted to driving wheels 104 via a transmission 102 and a differential mechanism 103. .
  • a starter motor 105 as a starting device is assembled to the engine 101, and an alternator 106 is connected via a drive belt 107.
  • the crankshaft 101a of the engine 101 is connected to the crankshaft 106a of the alternator 106 via a winding transmission mechanism including a drive belt 107 and a pulley (not shown) as components, and the alternator 106 is
  • the engine 101 is driven to rotate in accordance with the rotation of the crankshaft 101a to generate electric power.
  • the starter motor 105 and the alternator 106 are connected to a lead battery (battery) 108 for supplying power, and the starter motor 105, the alternator 106, and the engine 101 are controlled by a controller (control device) 111. Is communicably connected.
  • the alternator 106 mainly includes a stator coil 201 wound around a stator (not shown), a field coil 202 wound around a rotor (not shown) arranged inside the stator, and a rectifier. 203.
  • the stator coil 201 is composed of a three-phase coil.
  • the stator coil 201 generates a three-phase AC induced current, and the generated induced current is converted into a DC current by the rectifier 203 and output from the alternator 106. ing.
  • the alternator 106 has an adjustment function for adjusting the generated voltage and a stop function for stopping the generated output.
  • the alternator 106 has a regulator 204 that adjusts the generated voltage.
  • the regulator 204 is, for example, an IC type attached to the alternator 106.
  • a power transistor for example, a power MOS-FET (Metal / Oxide / Semiconductor / -Field / Effect / Transistor), an insulated gate bipolar transistor (IGBT: Insulated / Gate Bipolar Transistor), etc.
  • the drive circuit 206 of the regulator 204 performs PWM control for adjusting the DUTY ratio based on the generated voltage command signal (DUTY signal as the drive signal) transmitted from the controller 111.
  • the regulator 204 switches the switch 205 based on the signal output from the drive circuit 206 to energize the field coil 202. More specifically, the regulator 204 controls the current flowing to the field coil 202 by repeatedly switching the switch 205 to an on state or an off state via the drive circuit 206. By adjusting the current flowing to the field coil 202 in this way, the regulator 204 changes the voltage induced in the field coil 202, increases the output voltage generated in the stator coil 201, and changes the power generation voltage of the alternator 106.
  • the current flowing to the field coil 202 increases in proportion to the DUTY ratio of the generated voltage command signal (DUTY signal as a drive signal) transmitted from the controller 111 to the drive circuit 206 of the regulator 204.
  • the output voltage generated in the stator coil 201 also increases and the power generation voltage of the alternator 106 increases.
  • the alternator 106 only needs to change the generated voltage in accordance with the change in the DUTY ratio of the DUTY signal as a drive signal transmitted to the drive circuit 206 of the regulator 204.
  • the DUTY signal can be changed using an appropriate inverting circuit.
  • the relationship between the change in the DUTY ratio and the increase / decrease in the generated voltage of the alternator 106 may be reversed.
  • the drive circuit 206 of the regulator 204 is omitted, the controller 111 performs PWM control on the switch 205, and the switch 205 is switched by transmitting a DUTY signal as a drive signal directly from the controller 111 to the switch 205. May be.
  • the regulator 204 may be configured to set the power generation voltage of the alternator 106 in at least two stages (for example, 14.5 V and 12.8 V), or the power generation voltage of the alternator 106 within a predetermined range (for example, 10.6 to It is good also as a structure (it is called a linear regulator) set continuously in the range of 15.5V.
  • the generated voltage of the alternator 106 is preferably set to at least two stages of voltage including a relatively high voltage and a relatively low voltage close to the voltage of the lead battery 108.
  • the generated voltage of the alternator 106 is When setting the voltage close to the voltage of the lead battery 108, it is desirable to change the set voltage according to the charge rate of the lead battery 108.
  • the reason is that the power generation output of the alternator 106 is suppressed, and if the potential difference between the power generation voltage of the alternator 106 and the voltage of the lead battery 108 is small, the charging of the lead battery 108 by the alternator 106 is suppressed, and the power generation of the alternator 106 is suppressed. This is because the drive torque of the alternator 106 generated by the above is reduced, and the load on the engine 101 is reduced.
  • the vehicle 100 shown in FIG. 1 further includes a power generation control mechanism and an idling stop mechanism.
  • the power generation control mechanism is, for example, a regenerative system that converts kinetic energy into electric energy by the alternator 106 and actively regenerates and absorbs the kinetic energy when the vehicle 100 shifts to an inertia traveling state or a decelerating traveling state.
  • the regulator 204 of the alternator 106 is controlled as described above to reduce the power generation voltage of the alternator 106 or stop the power generation output of the alternator 106 to reduce the load on the engine 101.
  • the idling stop mechanism is to automatically stop the engine 101 when the vehicle 100 is temporarily stopped to reduce fuel consumption, and the driver starts the vehicle 100 with the engine 101 stopped.
  • the starter motor 105 is quickly driven to automatically restart the engine 101. Note that when the engine 101 is automatically stopped by the idling stop mechanism, the alternator 106 is also stopped.
  • various in-vehicle devices 109 are connected to the lead battery 108 of the vehicle 100.
  • the in-vehicle device 109 is a device that is driven by electric power supplied from the alternator 106 and the lead battery 108.
  • Each device that includes a camera 118, a radar 119, a communication module 120, and the like and that constitutes the in-vehicle device 109 is connected to the controller 111 so as to be communicable.
  • An appropriate method or standard is selected as a communication method or communication standard used for communication within the vehicle 100 or communication with the outside by the communication module 120.
  • the navigation system (own vehicle position detection device or own vehicle position estimation device) 117 includes, for example, parking lot intrusion information, destination information and use base information, and estimation to the destination and use base. Various information such as the remaining travel time is transmitted to the controller 111.
  • the camera (external recognition device) 118 uses, for example, a method such as pattern matching, detects the parking area of the parking lot, the use base of the own vehicle, and the like from the image information obtained by imaging, and detects the detected parking.
  • the section information and the use base information are transmitted to the controller 111.
  • the radar (external recognition device) 119 is a parking assistance system or an automatic parking system that combines the acquisition of the surrounding environment information of the vehicle 100 and the image acquisition by the camera 118, for example, a preceding vehicle, an obstacle, or the side when the vehicle 100 is traveling. It is a device used in a security system provided by acquiring ambient environment information of the vehicle 100 represented by a vehicle traveling on the other side, and transmits various types of information used in those systems to the controller 111.
  • a security system for example, when it is determined that the relative speed between the host vehicle and the preceding vehicle exceeds a predetermined value and the host vehicle may collide with the preceding vehicle without being decelerated, the safety system automatically For example, a system that applies a brake.
  • the communication module (external communication device) 120 is a device that receives various types of information from the outside of the host vehicle through appropriate communication means.
  • the main use base for example, home or company
  • the received various information is transmitted to the controller 111, the multimedia system 116, and the navigation system 117.
  • the vehicle 100 includes a gear shift sensor 121, a steering angle sensor 122, an accelerator pedal sensor 123, a brake pedal sensor 124, a vehicle speed sensor 127, an ignition switch 125, and a parking assistance system switch 126. They are communicably connected to the controller 111, and are detected signals detected by a gear shift sensor 121, a steering angle sensor 122, an accelerator pedal sensor 123, a brake pedal sensor 124, a vehicle speed sensor 127, an ignition switch 125, and a parking assist system switch. The operation signal 126 is transmitted to the controller 111.
  • the lead battery 108 of the vehicle 100 includes, for example, a voltage sensor that measures the voltage of the lead battery 108, a current sensor that measures the inflow / outflow current of the lead battery 108, a temperature sensor that measures the temperature of the lead battery 108, and the like.
  • a battery state detection device 110 is attached.
  • the battery state detection device 110 measures information on the battery state such as the voltage, current, and temperature of the lead battery 108, and determines the charge state (for example, charge rate and charge amount) and deterioration state of the lead battery 108 based on the measurement result.
  • the estimation result is transmitted to the controller 111.
  • the battery state detection device 110 includes, for example, a microcomputer for calculation for estimating the charge rate of the lead battery 108, calculation results of the microcomputer, and information on the battery state such as voltage, current, and temperature of the lead battery 108.
  • a memory or the like that stores the memory after the activation state of 100 may be installed.
  • the battery state detection device 110 transmits measurement results such as the voltage, current, and temperature of the lead battery 108 to the controller 111, and the controller 111 detects the lead battery 108 based on the measurement results transmitted from the battery state detection device 110. You may estimate a charge condition or a deterioration state.
  • the no-load voltage charge voltage in the no-load state
  • the charge of the lead battery 108 are charged.
  • a method of estimating the charging rate (SOC) from the voltage measurement result of the lead battery 108 using a linear relationship with the rate (see FIG. 3) can be mentioned.
  • the no-load voltage and current of the lead battery 108 immediately before starting the engine 101 are measured using a large current flowing through the starter motor 105 when the engine 101 is started.
  • the discharge resistance of the lead battery 108 is calculated from the voltage measurement result of the lead battery 108 in the battery, and the relationship between the measurement result and the calculation result, the no-load voltage of the lead battery 108, the discharge resistance, and the charge rate measured in advance by experiments (FIG. 4, a method for estimating the charge rate (SOC) of the lead battery 108 using a no-load voltage-discharge resistance-charge rate map).
  • the battery charge rate (SOC: State : of Charge) is a value indicating the amount of battery electricity that can be discharged with respect to the design battery capacity (also called nominal capacity or design capacity). This is a value obtained by dividing the amount of discharged electricity measured when the battery is discharged at the time by the designed battery capacity. For example, when the lead battery 108 has a nominal capacity of 50 Ah and the lead battery 108 can discharge 40 Ah in a certain charged state, the charge rate of the lead battery 108 is 0.8.
  • the charge rate of the lead battery 108 is estimated using the measurement result of the no-load voltage of the lead battery 108.
  • the engine 101 is started and the alternator 106 is driven, and the in-vehicle device 109 is driven.
  • the charging / discharging current (charge / discharge current) of the lead battery 108 measured by a current sensor provided in the battery state detection device 110 is integrated over time, and the charge obtained when the engine 101 is started is calculated.
  • the charging rate of the lead battery 108 is estimated by sequentially updating the rate.
  • an operation other than integration may be performed, or a mathematical process such as a Kalman filter may be performed.
  • an appropriate method can be applied, and an example thereof is a method of estimating from the measurement result of the discharge resistance of the lead battery 108.
  • the discharge resistance increase rate increases in accordance with the progress of deterioration of the lead battery 108 (decrease in the discharge capacity ratio of the lead battery 108) ( 5), the discharge resistance of the battery in a new state when the battery is replaced is recorded in advance, and the recorded discharge resistance is compared with the discharge resistance of the battery every time the engine 101 is started.
  • the lead battery 108 It is determined that the lead battery 108 has deteriorated when the calculated discharge resistance increase rate exceeds a predetermined determination threshold.
  • the rate of increase in discharge resistance is a value obtained by dividing the discharge resistance of a deteriorated battery by the discharge resistance of a new battery at the time of battery replacement, and the discharge capacity ratio is from the full charge of the deteriorated battery. Is a value obtained by dividing the discharge capacity by the discharge capacity of a new battery at the time of battery replacement.
  • the relationship shown in FIGS. 3, 4 and 5 referred to in the description of the method for estimating the charged state and the deteriorated state of the lead battery 108 is based on the results of experiments conducted by the inventors on the lead battery.
  • the relationship between the charge rate and the no-load voltage, the relationship between the no-load voltage, the discharge resistance and the charge rate, the relationship between the discharge capacity ratio and the discharge resistance increase rate, etc. vary depending on, for example, the characteristics of the lead battery.
  • FIG. 6 shows, in time series, an example of the charge rate of the lead battery, the output signal of the vehicle speed sensor, the output signal of the accelerator pedal sensor, and the output signal of the brake pedal sensor in the vehicle shown in FIG.
  • the controller 111 determines that the vehicle 100 is in an accelerated running state based on the output signal of the accelerator pedal sensor 123, the controller 111 adjusts the generated voltage of the alternator 106 so that the generated voltage of the alternator 106 is equal to the voltage of the lead battery 108, The charging current output from the alternator 106 is decreased.
  • the controller 111 determines that there is an acceleration request from the driver or the like based on the output signal of the accelerator pedal sensor 123, the controller 111 reduces the charging current output from the alternator 106 to reduce the load on the alternator 106, and The driving force is distributed to the acceleration side of the vehicle 100, and the electric power stored in the lead battery 108 is supplied to the in-vehicle device 109. As a result, the charging rate of the lead battery 108 decreases (time t10 to t11, t12 to t13, t14 to t15, t16 to t17 in FIG. 6).
  • the controller 111 determines that the accelerator pedal is returned by the output signal of the accelerator pedal sensor 123 and the vehicle 100 is in the inertia running state, or the brake pedal is depressed by the output signal of the brake pedal sensor 124, the vehicle 100. Is determined to be in a decelerating running state, the power generation voltage of the alternator 106 is changed so that the power generation voltage of the alternator 106 is higher than the voltage of the lead battery 108, and the charging current output from the alternator 106 is increased. .
  • the power generation voltage of the alternator 106 is set relatively high, and the charging current output from the alternator 106 is increased, thereby increasing the load on the alternator 106 and reducing the kinetic energy.
  • the kinetic energy is converted to electric energy and regenerated and absorbed, and the lead battery 108 is charged to increase the charging rate of the lead battery 108 (in FIG. 6, times t11 to t12, t13 to t14, t15 to t16). , T17 to t18).
  • the generated voltage of the alternator 106 may be the same or different between the inertial traveling state in which the accelerator pedal is returned and the decelerating traveling state in which the brake pedal is depressed. That is, the controller 111 determines whether the vehicle 100 is in an inertia traveling state or in a decelerating traveling state using a brake based on the output signals of the accelerator pedal sensor 123 and the brake pedal sensor 124, and the determination result is Based on this, the generated voltage of the alternator 106 may be changed. Because the deceleration required by the driver is different between the coasting state where the accelerator pedal is released and the deceleration traveling state where the brake pedal is depressed, the deceleration required by the driver is considered to be relatively large. The kinetic energy that is regenerated and absorbed can be further increased by making the power generation voltage of the alternator 106 relatively high (relatively large power generation load of the alternator 106) in a decelerated running state by the brake operation.
  • the engine 101 and the alternator 106 are stopped by the idling stop mechanism (time t18 in FIG. 6).
  • lead battery 108 is discharged until the charging rate reaches SMin, which is the lower limit (time t18 to t20 in FIG. 6).
  • SMin the lower limit value
  • the lower limit value SMin of the charging rate of the lead battery 108 is a charging rate at which the voltage of the lead battery 108 does not significantly decrease even when a large current is discharged when the engine 101 is restarted.
  • the charging rate of the lead battery 108 changes according to the timing when the start state of the vehicle 100 is stopped by turning off the ignition switch (also referred to as start switch) 125. If the lead battery 108 is left for a long time with a low charging rate as described above, the lead sulfate deposited on the positive electrode and the negative electrode by the discharge reaction changes to lead or lead oxide even if the lead battery is charged. The degree of progress of deterioration of the lead battery 108 changes according to the amount of lead sulfate deposited on the positive electrode and the negative electrode due to the discharge reaction, that is, according to the charge rate of the lead battery 108.
  • the charging rate of the lead battery 108 decreases as time elapses from time t18 (for example, full charge) to time t19, and further from time t19 to time t20. Degradation is accelerated.
  • the controller 111 mounted on the vehicle 100 includes a start / stop timing estimation unit 130 and a charge rate adjustment unit 131, and the start / stop timing estimation unit 130.
  • the driver or the like operates the ignition switch 125 from the on state to the off state to estimate the start / stop time at which the start state of the vehicle 100 is stopped, and the charging rate adjustment unit 131 estimates the estimation result of the start / stop time estimation unit 130.
  • the charge rate of the lead battery 108 is adjusted based on the above. More specifically, the controller 111 causes the start / stop timing estimation unit 130 to turn off the ignition switch 125 after the driver causes the vehicle 100 to enter the parking lot and park it in a predetermined parking area.
  • the start stop time for stopping the start state is estimated using information (for example, parking lot intrusion information) provided from the navigation system 117.
  • the controller 111 controls the power generation voltage of the alternator 106, the idling stop mechanism, the power consumption of the in-vehicle device 109, and the like based on the estimation result of the start / stop timing estimation unit 130 by the charge rate adjustment unit 131 to control the lead battery 108. Increase charge rate.
  • FIG. 7 shows an example of the charge rate of the lead battery when the vehicle shown in FIG. 1 is parked, the generated voltage of the alternator, the output signal of the vehicle speed sensor, the idling stop prohibition flag, and the in-vehicle device power consumption restriction mode flag in time series. It is shown.
  • the vehicle 100 when the vehicle 100 is traveling in a normal traveling state (time t21 to t22) or when the vehicle 100 is temporarily stopped without entering the parking lot (time t22 to t24).
  • the vehicle 100 is controlled using a power generation control mechanism and an idling stop mechanism, which are fuel efficiency improvement technologies.
  • the vehicle 100 is cruising at a substantially constant speed, and the charging rate of the lead battery 108 is within the range of SMin, which is the lower limit value, and SMax, which is the upper limit value.
  • SMin the charging rate of the lead battery 108
  • SMax the upper limit value.
  • Transmits a generated voltage command signal corresponding to the voltage S0 at which the load of the alternator 106 is minimized to the regulator 204 of the alternator 106 the generated voltage of the alternator 106 is set to the voltage S0, and the charge rate of the lead battery 108 Decreases within the range of SMin and SMax.
  • the lower limit value SMin of the charging rate of the lead battery 108 is preferably set within a range of 0.75 to 0.99, and is preferably set within a range of 0.80 to 0.95.
  • the upper limit value SMax of the charging rate of the lead battery 108 is at least larger than the lower limit value SMin, and is preferably set to 1.0.
  • the upper limit value SMax may be set to a value smaller than 1.0 (for example, 0.9 or 0.95) or a value larger than 1.0 (for example, 1.1 or 1.2).
  • 1.0 is desirably 1.2 or less when set to a value larger than 1.0.
  • the vehicle 100 is in a decelerating running state, and the controller 111 transmits a generated voltage command signal corresponding to the voltage S2 higher than the voltage S0 to the regulator 204 of the alternator 106, and the generated voltage of the alternator 106 is changed.
  • the voltage S2 is set, the lead battery 108 is rapidly charged, and the charging rate increases within the range of SMin and SMax.
  • the controller 111 transmits again the generated voltage command signal corresponding to the voltage S0 to the regulator 204 of the alternator 106, the generated voltage of the alternator 106 is set to the voltage S0, and the load on the alternator 106 is minimized.
  • the charging rate of the lead battery 108 gradually decreases within the range of SMin and SMMax.
  • the controller 111 when the charge rate of the lead battery 108 is within the range of SMin and SMax, when charging the lead battery 108, the controller 111 has a relatively high value relative to the regulator 204 of the alternator 106. The generated voltage command signal is transmitted, and the PWM signal of the drive circuit 206 is adjusted in the increasing direction of the DUTY ratio. On the other hand, when the charging of the lead battery 108 is suppressed, the controller 111 transmits a relatively low power generation voltage command signal to the regulator 204 of the alternator 106, and converts the PWM signal of the drive circuit 206 into the DUTY ratio. Adjust in the decreasing direction.
  • the navigation system 117 sends the parking lot entry information to the controller 111 (for example, the parking lot entry timing of the vehicle 100). And information such as predicted parking lot entry time). For example, when the navigation system 117 uses the map information stored therein and determines that the position of the vehicle 100 is on the parking lot site position, the navigation system 117 transmits the parking lot entry information to the controller 111. When the parking lot approach information is transmitted from the navigation system 117, the controller 111 estimates that the activation state of the vehicle 100 will eventually be stopped, and sets the voltage S1 (S2 ⁇ S1> S0) to the regulator 204 of the alternator 106.
  • the controller 111 estimates that the activation state of the vehicle 100 will eventually be stopped, and sets the voltage S1 (S2 ⁇ S1> S0) to the regulator 204 of the alternator 106.
  • a corresponding power generation voltage command signal is transmitted, the power generation voltage of the alternator 106 is set to the voltage S1, and the lead battery 108 is charged while traveling in the parking lot with the vehicle 100.
  • the controller 111 estimates in advance that the startup state of the vehicle 100 is stopped by the driver or the like, and the startup state of the vehicle 100
  • the charging rate of the lead battery 108 can be adjusted to a desired state (a state suitable for storage) before the battery is stopped.
  • the controller 111 sets an idling stop prohibition flag for the idling stop mechanism when the vehicle 100 enters the parking lot at time t25 (or when the vehicle 100 is predicted to enter the parking lot). .
  • the controller 111 sets an idling stop prohibition flag for the idling stop mechanism when the vehicle 100 enters the parking lot at time t25 (or when the vehicle 100 is predicted to enter the parking lot).
  • the vehicle 100 cruises in the parking lot from time t25 to t26, decelerates in the parking lot from time t26 to t27, and temporarily stops at time t27 to t28 (for example, with other vehicles in the parking lot)
  • the automatic stop of the engine 101 by the idling stop mechanism is prohibited, and the alternator 106 of the automatic stop of the engine 101 Since the stop is suppressed, the power generation voltage of the alternator 106 can be maintained at the voltage S1, and the lead battery 108 can be efficiently charged while avoiding a reduction in the charging opportunity of the lead battery 108.
  • the vehicle 100 When the vehicle 100 is moved to a desired parking area in the parking lot from time t25 to t27, the vehicle 100 is temporarily stopped from time t27 to t28, and when the driver starts a predetermined parking operation at time t28, the parking operation is performed.
  • the parking operation information regarding is transmitted to the controller 111. For example, when a driver operates the direction indicator 113 to turn on a hazard lamp, or when a parking area is detected by pattern matching or the like based on image information of the camera 118, the direction indicator 113 or the camera 118 transfers to the controller 111.
  • the parking operation information is transmitted, and the controller 111 determines that the driver starts the parking operation of the vehicle 100 based on the information.
  • the controller 111 determines that the driver has started the parking operation of the vehicle 100 at time t28, the controller 111 sets an in-vehicle device power consumption restriction mode flag for the in-vehicle device 109. Specifically, the controller 111 stops driving of comfort devices such as the electric heater 114 and the blower fan 115 except for a safety device such as the headlight 112 in the in-vehicle device 109, or consumes the comfort device.
  • the in-vehicle device power consumption restriction mode flag for suppressing power is set, and the driver or the like is notified via the multimedia system 116 that the in-vehicle device 109 is in the in-vehicle device power consumption restriction mode. Examples of the multimedia system 116 include a display device or lamp attached to an audio or video monitor, a console panel, a meter, or the like. The user is notified that the in-vehicle device power consumption restriction mode is set.
  • the engine 101 is automatically stopped by the idling stop mechanism from when the driver starts the parking operation of the vehicle 100 at time t28 until the start-up state of the vehicle 100 is stopped by turning off the ignition switch 125 at time t29.
  • the power consumption of the in-vehicle device 109 is reduced and the discharge of the lead battery 108 is suppressed. Therefore, it is possible to further promote the charging of the lead battery 108 while maintaining the power generation voltage of the alternator 106 at the voltage S1. it can. Therefore, the charging rate of the lead battery 108 when the starting state of the vehicle 100 is stopped by the operation of the ignition switch 125 to the off state at time t29 can be efficiently increased to a desired charging rate. Even when the lead battery 108 is parked and left unattended, deterioration of the lead battery 108 can be suppressed.
  • the charging rate of the lead battery 108 reaches the upper limit value SMax or a charging rate suitable for storage of the lead battery 108 before the start-up state of the vehicle 100 is stopped, charging of the lead battery 108 is stopped.
  • the inventors have confirmed that the charging rate suitable for storage of the lead battery 108 is within the range of 0.93 to 0.95 at the time of stopping the start-up state of the vehicle 100 by turning off the ignition switch 125. ing.
  • the above-described in-vehicle device power consumption restriction mode may be arbitrarily canceled by, for example, a driver's switch operation or the like.
  • the in-vehicle device power consumption restriction mode for example, when driving of comfort devices such as the electric heater 114 and the blower fan 115 is stopped, the air conditioning set temperature in the cabin of the vehicle 100 and the actual temperature in the cabin are greatly different. If it is determined that passenger comfort is impaired, the controller 111 may automatically cancel the passenger comfort.
  • the lead battery 108 When the charging rate of the lead battery 108 is estimated by the battery state detection device 110 attached to the battery 108 and the estimated charging rate of the lead battery 108 reaches a desired charging rate and a predetermined time elapses, the lead battery The lower limit value SMin of the charging rate of 108 is changed to a value close to the desired charging rate within the range of the above SMin and SMax, the idling stop prohibition flag and the in-vehicle device power consumption restriction mode flag are canceled, and the normal idling stop mechanism It is desirable to return to the control of the vehicle 100 using.
  • the lead battery 108 is not adjusted to a desired charging rate
  • a multi-vehicle mounted on the vehicle 100 is used.
  • the charging rate of the lead battery 108 is displayed via the media system 116, and the recommended start / stop time and the time from the current time to the start / stop time are notified to the driver or the like.
  • a user such as a driver allows the engine 101 to be driven even after the ignition switch 125 is turned off, the engine 101 and the alternator 106 are continuously driven after the ignition switch 125 is turned off, Charging may be continued.
  • the controller 111 when the vehicle 100 enters the parking lot and the parking lot entry information is transmitted from the navigation system 117 to the controller 111 (time t25), the controller 111 eventually stops the activation state of the vehicle 100.
  • the lead battery 108 is charged by setting the power generation voltage of the alternator 106 to the voltage S1.
  • driving is performed.
  • the controller 111 estimates that the activation state of the vehicle 100 will be stopped at some point when it is determined that the person has started the parking operation of the vehicle 100 (time t28) or when the parking area in the parking lot is detected by the camera 118 or the like.
  • the lead battery 108 is charged by adjusting the power generation voltage of the alternator 106. Good.
  • the controller 111 sets the in-vehicle device power consumption restriction mode flag for the in-vehicle device 109. For example, in order to charge the lead battery 108 more rapidly, the parking system entry information from the navigation system 117 to the controller 111 is described. The controller 111 may set the in-vehicle device power consumption restriction mode flag for the in-vehicle device 109 at the time (time t25) at which is transmitted.
  • FIG. 8 schematically illustrates the relationship between the estimated remaining travel time and the charging start time of the battery when the vehicle equipped with the battery control device according to the second embodiment of the present invention moves to the destination or use base.
  • FIG. 9 shows the relationship between the desired charge rate of the battery, the difference between the current charge rate and the estimated remaining travel time.
  • the battery control device according to the second embodiment is different from the battery control device according to the first embodiment described above in that information used when estimating the start / stop timing of the vehicle 100 is different. It is the same as that of the control apparatus of 1 battery. Therefore, the detailed description of the same configuration as the battery control device of the first embodiment is omitted.
  • various information such as destination information and use base information provided from the navigation system 117, estimated remaining travel time to the destination or use base, and estimated remaining travel distance to the destination or use base.
  • the start / stop timing of the vehicle 100 is estimated using various information provided from the communication module 120.
  • the navigation system 117 includes, for example, destination information set for route guidance of the vehicle 100, route learning results based on the travel history of the vehicle 100, bases used (for example, home and company locations, other than that) Based on the registration information of the parking lot location, etc.), the destination information, the base information, the estimated remaining travel time to the destination and the base based on the proximity to the destination and base, the estimated remaining travel distance, etc. 111.
  • the navigation system 117 determines a predetermined distance (for example, 1 km to When the host vehicle enters the range of 10 km), the destination information and the use base information are transmitted to the controller 111. Further, as shown in FIG. 8, the navigation system 117 transmits the estimated remaining travel time to the controller 111, for example, when the estimated remaining travel time becomes equal to or less than a predetermined value (for example, 5 to 15 minutes).
  • a predetermined value for example, 1 km to 10 km
  • the controller 111 When the controller 111 receives the destination information, use base information, estimated remaining travel time, and the like transmitted from the navigation system 117, the controller 111 estimates that the activation state of the vehicle 100 is stopped by the driver or the like, and the activation state of the vehicle 100 The lead battery 108 is charged before the battery is stopped, and the charge rate of the lead battery 108 is adjusted to a desired state (a state suitable for storage). At that time, the controller 111 may set an idling stop prohibition flag for the idling stop mechanism or may set an in-vehicle device power consumption restriction mode flag for the in-vehicle device 109.
  • the predetermined value set for transmitting the destination information and the use base information from the navigation system 117 to the controller 111, the predetermined distance, and the predetermined value set for transmitting the estimated remaining travel time are: You may change suitably based on the information regarding the charge state of the battery detected by the battery state detection apparatus 110. FIG. That is, as shown in FIGS. 8 and 9, the difference between the current charge rate of the lead battery 108 detected by the battery state detection device 110 and the desired charge rate is large, and the lead battery 108 is charged to the desired charge rate. When it is assumed that the time required to do this will be long, the predetermined value or the predetermined distance may be set to a relatively long time or a relatively long distance.
  • the predetermined value set for transmitting the estimated remaining travel time is set to 5 minutes
  • the predetermined value set for transmitting the estimated remaining travel time is set to 10 minutes
  • the current lead battery 108 When the difference between the charging rate and the desired charging rate is 0.15, the predetermined value set for transmitting the estimated remaining travel time is set to 15 minutes, and lead according to the charging rate of the lead battery 108 You may change the time which starts charge of the battery 108 (namely, charge rate adjustment start time which starts adjustment of the charge rate of the lead battery 108).
  • the navigation system 117 can calculate the estimated remaining travel time to the destination and the use base without the driver inputting the destination information to the navigation system 117.
  • the periphery of the vehicle 100 is a use base of the vehicle 100 ( For example, there is a high possibility that it is a home, a company location, or a parking lot location other than that.
  • the navigation system 117 stores the position information where the activation state of the vehicle 100 is stopped by the turning-off operation of the ignition switch 125 for the past several times (for example, the past 20 times), and points where the vehicle 100 frequently appears in the stored position information. Based on the estimated use base of the vehicle 100, the estimated remaining travel time on the shortest route to the use base of the vehicle 100 is calculated.
  • the navigation system 117 determines that the calculated estimated remaining travel time is less than or equal to a predetermined value (for example, 10 minutes) or within a predetermined distance (for example, 5 km) from the estimated use base of the vehicle 100.
  • a predetermined value for example, 10 minutes
  • a predetermined distance for example, 5 km
  • the controller 111 transmits destination information and use base information transmitted from the navigation system 117.
  • the lead battery 108 is charged to adjust the charge rate of the lead battery 108 to a desired state (a state suitable for storage).
  • the navigation system 117 refers to points where the starting state of the vehicle 100 has been stopped in the past, and is within a predetermined distance (for example, 5 km) from the use base of the vehicle 100 where all or almost all of those points are estimated.
  • the range of use of the vehicle 100 by a driver or the like is limited, and the predetermined distance is reduced to ensure a range in which the control of the vehicle 100 using a normal idling stock mechanism is performed. It is desirable to do.
  • the communication module 120 of the in-vehicle device 109 includes, for example, facility information transmitted from a transmission antenna device provided at a destination facility, guidance information such as parking guidance, and the like in a parking lot provided from a parking lot.
  • the parking section guidance information for guiding the vacant parking section is received and transmitted to the controller 111 when the information is received.
  • the controller 111 estimates that the start state of the vehicle 100 is stopped by a driver or the like, and charges the lead battery 108 before the start state of the vehicle 100 is stopped. Then, the charge rate of the lead battery 108 is adjusted to a desired state (a state suitable for storage).
  • information provided from the navigation system 117 for example, destination information and use base information, estimated remaining travel time to the destination and use base, etc.
  • information provided from the communication module 120 are used.
  • the start state of the vehicle 100 is not stopped at the start / stop time estimated for some reason, or when the vehicle 100 arrives at the main use base or destination. Eventually, the case where the activation state of the vehicle 100 is not stopped may occur.
  • a predetermined time for example, 5 minutes or more or 10 minutes or more
  • a predetermined time for example, 5 minutes or more or 10 minutes after arrival at the main use base or destination.
  • a predetermined time for example, 3 minutes or more, 5 minutes or more
  • the vehicle 100 When the vehicle travels through the base or destination and travels as it is and the vehicle speed reaches a predetermined value or higher (for example, a predetermined value within a range of 5 km / h to 40 km / h), the charge rate of the lead battery 108 is desired.
  • the control for adjusting the charging rate of the vehicle may be stopped, the idling stop prohibition flag and the in-vehicle device power consumption restriction mode flag may be canceled in some cases, and the control may be returned to normal vehicle 100 control.
  • the battery control device of the third embodiment is different from the battery control device of the first and second embodiments described above in that the information used when estimating the start / stop timing of the vehicle 100 is different. This is the same as the battery control device of the first and second embodiments. Therefore, the detailed description of the same configuration as the battery control device of the first and second embodiments is omitted.
  • the start / stop timing of the vehicle 100 is estimated mainly using image information obtained from the camera 118.
  • the camera 118 in the in-vehicle device 109 detects a boundary line indicating the parking area drawn in the parking lot from the image information obtained by imaging, and transmits the parking area information to the controller 111.
  • the controller 111 receives the parking area information transmitted from the camera 118, the controller 111 preliminarily estimates that the vehicle 100 is parked in the parking area by the driver or the like and the activation state of the vehicle 100 is stopped.
  • the lead battery 108 is charged before the battery is stopped, and the charge rate of the lead battery 108 is adjusted to a desired state (a state suitable for storage).
  • the camera 118 extracts the amount of information characteristic of the vehicle (for example, the shape and color of a headlight, tail lamp, box-shaped vehicle shape, license plate, etc.) from the image information obtained by imaging, It is determined whether there is a parked vehicle in the vehicle, and based on the determination result, it is determined whether the host vehicle has entered the parking lot, and the determination is made when it is determined that the host vehicle has entered the parking lot.
  • a result parking lot approach information
  • the camera 118 can acquire not only visible light information but also infrared light information, the temperature of the vehicle in the image is measured using a two-color method or the like from two wavelengths of visible light and infrared light.
  • the host vehicle has entered the parking lot. Also, since the exhaust gas discharged from the tail pipe of an automobile is relatively high compared to the ambient temperature, the temperature around the tail pipe of the vehicle in the image is measured, and the temperature measurement result and the engine of the host vehicle are measured. When the difference with the intake air temperature is larger than the predetermined value, it is determined that the vehicle in the image is in the activated state. When the difference between the temperature measurement result and the engine intake air temperature of the own vehicle is smaller than the predetermined value, It may be determined that the vehicle in the image is in the start-stop state and the host vehicle has entered the parking lot.
  • the camera 118 extracts a plurality of feature points from image information in the vicinity of the previous point where the activation state of the vehicle 100 was stopped or the previous point where the activation state of the vehicle 100 was stopped, and extracted.
  • image information in the vicinity of the previous point where the activation state of the vehicle 100 was stopped or in the vicinity of the previous point where the activation state of the vehicle 100 was stopped is, for example, at the point where the ignition switch 125 is turned off.
  • Image information for example, image information at a point where a gear shift sensor 121 detects a gear shift to a reverse range or a back gear, a captured image that is a predetermined time before the ignition switch 125 is turned off, and the like can be used.
  • the battery control device differs from the battery control devices according to the first to third embodiments described above in that information used when estimating the start / stop timing of the vehicle 100 is different. This is the same as the battery control apparatus of the first to third embodiments. Therefore, the detailed description of the same configuration as the battery control device of the first to third embodiments is omitted.
  • the start / stop of the vehicle 100 is mainly performed using the ambient environment information of the vehicle 100 obtained from the radar 119, detection signals detected by the gear shift sensor 121, the steering angle sensor 122, the vehicle speed sensor 127, and the like. Estimate the time.
  • the radar 119 determines whether there is another vehicle or an obstacle at a short distance (for example, a short distance of 1 m to 10 m) on the front, rear left and right, and side of the vehicle 100.
  • the determination result is transmitted to the controller 111.
  • the controller 111 determines that there is another vehicle or an obstacle at a short distance to the front, rear left and right, or side of the vehicle 100, and shifts the gear from the drive range to the neutral, reverse range, or parking range.
  • the controller 111 steers a unique driving operation (driving operation from the start of the parking operation to the end of the parking operation) during parking, such as turning back and backward of the vehicle 100 in a relatively short time (for example, within one minute).
  • a unique driving operation driving operation from the start of the parking operation to the end of the parking operation
  • the controller 111 steers a unique driving operation (driving operation from the start of the parking operation to the end of the parking operation) during parking, such as turning back and backward of the vehicle 100 in a relatively short time (for example, within one minute).
  • a gear shift is made from the drive range or forward gear to the neutral range, reverse range, or back gear. Is detected by the gear shift sensor 121, and then, for example, if the steering angle sensor 122 detects that the steering angle has changed more than a predetermined value to either the left or right within one minute, the driver retreats the vehicle 100 and parks. It is likely that you are trying. Therefore, the controller 111 estimates that the vehicle 100 will be parked and the activation state of the vehicle 100 will be stopped by the driver or the like when the parking operation information regarding the specific driving operation at the time of parking is obtained.
  • the battery control device differs from the battery control devices according to the first to fourth embodiments described above in that information used when estimating the start / stop timing of the vehicle 100 is different. This is the same as the battery control apparatus of the first to fourth embodiments. Therefore, the detailed description of the same configuration as the battery control device of the first to fourth embodiments is omitted.
  • the fifth embodiment information obtained from a parking assist system or an automatic parking system using image information mainly behind the vehicle 100 obtained from the camera 118 and a detection signal detected by the steering angle sensor 122 is used.
  • the start / stop timing of the vehicle 100 is estimated.
  • the parking assist system and the automatic parking system are based on the rear and side image information obtained from the camera 118 and the steering angle sensor 122 in response to a request from the driver, for example, by a switch operation of the parking assist system switch 126.
  • This is a system for guiding the parking of the vehicle 100 while displaying the expected traveling direction of the vehicle 100 on the multimedia system 116 or the like based on the detected signal. Therefore, when this parking assistance system or automatic parking system is driven, the driver is likely to park the vehicle 100.
  • the parking assist system switch 126 or the like When the parking assist system switch 126 or the like is operated by the driver, the parking assist system or the automatic parking system transmits an operation signal to the controller 111.
  • the controller 111 receives the operation signal, the driver or the like It is preliminarily estimated that 100 is parked and the starting state of vehicle 100 is stopped, and lead battery 108 is charged before the starting state of vehicle 100 is stopped, and the charging rate of lead battery 108 is set to a desired state ( To a state suitable for storage).
  • the pedal sensor 124, the vehicle speed sensor 127, the parking support system 126, and the like By appropriately combining various information obtained from the pedal sensor 124, the vehicle speed sensor 127, the parking support system 126, and the like, the start / stop timing of the vehicle 100 can be estimated more precisely.
  • the battery control device of the sixth embodiment is different from the battery control devices of the first to fifth embodiments described above in the form of a battery that supplies power to the in-vehicle device 109 mounted on the vehicle 100.
  • the configuration is the same as that of the battery control apparatus of the first to fifth embodiments. Therefore, the detailed description of the same configuration as the battery control device of the first to fifth embodiments is omitted.
  • a lithium ion secondary battery having a high energy density is used as a battery for supplying electric power to the in-vehicle device 109 mounted on the vehicle 100.
  • the lithium ion secondary battery is mainly composed of a positive electrode, a negative electrode, a separator that electrically insulates the positive electrode and the negative electrode and holds an electrolytic solution.
  • the positive electrode of the lithium ion secondary battery is formed from a lithium transition metal composite oxide, and in particular, lithium cobalt dioxide (LiCoO 2 ) is suitably used as a material for forming the positive electrode.
  • a material for forming the positive electrode for example, a conductive polymer typified by polyaniline or the like is also used.
  • the negative electrode of a lithium ion secondary battery is formed from a compound capable of rapidly increasing and releasing lithium ions, and a carbon material is generally applied as a material for the formation, for example, artificial graphite such as flakes and lumps including natural graphite
  • a graphite-based carbon material such as mesophase pitch-based graphite, an amorphous carbon material obtained by firing a furan resin obtained from furfuryl alcohol, or the like is used.
  • metal oxides, such as lithium titanate and a tin alloy are applied as a forming material of a negative electrode.
  • the separator is formed from olefins that hold the electrolyte, nonwoven fabric, paper or the like.
  • the electrolyte include carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and nonaqueous solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, ⁇ -butyrolactone, and 1-2-dimethoxyethane.
  • Preferably used are lithium perchlorates, lithium organic boron salts, lithium salts of fluorinated compounds, lithium salts such as lithium imide salts, and the like.
  • the electrolytic solution can also be applied as a gel electrolyte by being included in a polymer made of polyethylene oxide, polyvinylidene fluoride, or the like.
  • lithium ions are extracted from the interlayer of the lithium transition metal composite oxide used for the positive electrode, the oxidation state of the positive electrode is increased, and the charge of the positive electrode is made relatively high. Therefore, when the charging rate of the lithium ion secondary battery is increased, a large amount of lithium ions are extracted from the lithium transition metal composite oxide used for the positive electrode, the crystal structure becomes unstable, and the deterioration of the positive electrode proceeds. It is known. Also, if the lithium ion secondary battery is left in a state where the charging rate is high, the electrolyte in the battery is oxidized and the electrolyte changes, or the volume of the negative electrode expands due to the insertion of lithium ions into the negative electrode. It is known that deterioration of not only the positive electrode but also the electrolyte and the negative electrode may progress, such as the negative electrode being compressed.
  • the charge rate adjustment unit 131 adjusts the charge rate of the lithium ion secondary battery to a charge rate suitable for storage.
  • the charging rate adjustment unit 131 of the controller 111 controls the power generation voltage of the alternator 106, the driving of the idling stop mechanism, the power consumption of the in-vehicle device 109, etc., and charges or discharges the lithium ion secondary battery.
  • the charge rate of the ion secondary battery is adjusted to a charge rate suitable for storage. For example, when the start / stop timing at which the start state of the vehicle 100 is stopped is estimated, and the charge rate of the lithium ion secondary battery is relatively high, the charge rate adjusting unit 131 of the controller 111 generates power generated by the alternator 106. Controls the voltage and actively drives comfort devices such as the electric heater 114 and the blower fan 115 in the in-vehicle device 109, or stores the charging rate of the lithium ion secondary battery using a power consumption load (not shown). Reduce the charge rate to a suitable level.
  • the charge rate adjustment unit 131 of the controller 111 By controlling the power generation voltage and the like, the lithium ion secondary battery is positively charged and the charging rate is increased to a charging rate suitable for storage.
  • the charging rate of the lithium ion secondary battery cannot be adjusted to a charging rate suitable for storage by the start / stop timing when the starting state of the vehicle 100 is stopped.
  • a user such as a driver allows the engine 101 to be driven even after the ignition switch 125 is turned off
  • the engine 101 and the vehicle-mounted device 109 are continuously driven even after the ignition switch 125 is turned off.
  • the secondary battery may be continuously charged or discharged.
  • the charging rate suitable for storage of the lithium ion secondary battery is 0.4-0. 0.7, more preferably within the range of 0.5 to 0.65.
  • the start / stop timing for stopping the start state of the vehicle 100 is estimated, By charging or discharging the lithium ion secondary battery based on the estimation result and adjusting the charging rate to a charging rate suitable for storage, battery deterioration due to parking of the vehicle 100 or long-term neglect of the vehicle 100 is prevented. It is possible to effectively suppress and increase the reliability of the battery.
  • a lead battery (reservation-type charge / discharge reaction that involves dissolution and deposition of metal) or a lithium ion secondary battery (as a battery for supplying power to the in-vehicle device 109 mounted on the vehicle 100)
  • a lithium ion secondary battery as a battery for supplying power to the in-vehicle device 109 mounted on the vehicle 100
  • an intercalation reaction in which ions enter and exit between layers of the forming material of the positive electrode and the negative electrode
  • an appropriate battery whose charge rate can be adjusted according to electrochemical characteristics can be applied as the battery.
  • in-vehicle batteries examples include a nickel metal hydride secondary battery that performs an intercalation reaction, an electric double layer capacitor (capacitor) that uses physical adsorption of cations and anions floating near the electrode, and an electric double layer capacitor positive electrode. And a hybrid capacitor (for example, a lithium ion capacitor) in which an intercalation negative electrode is combined.
  • Embodiments 1 to 6 described above the form in which the battery is used as a single battery module has been described. However, the number of batteries mounted on the vehicle 100 can be changed as appropriate.
  • the starter motor 105 and the alternator 106 are separately configured.
  • the starter motor 105 and the alternator 106 have an engine start function and a power generation function integrated with each other. You may use the motor generator as an engine starter and generator.
  • Examples of the engine 101 mounted on the vehicle 100 include a gasoline engine and a diesel engine that are generally used as a power source for automobiles.
  • the engine 101 includes, for example, a single-cylinder or multi-cylinder reciprocating engine, It may be a rotary engine.
  • the vehicle 100 is equipped with, for example, a battery that is different from a battery that supplies power to the in-vehicle device 109.
  • the vehicle may have a hybrid system equipped with a motor (electric motor) driven by a battery.
  • the configuration in which the power generation voltage of the alternator 106 is set in three stages (S0, S1, S2) by the controller 111 has been described.
  • the value of the power generation voltage set in the alternator 106 and the like The number of stages can be changed as appropriate.
  • the value of the power generation voltage and the number of steps set in the alternator 106 can be arbitrarily set.
  • the generated voltage set in the alternator 106 may be changed based on the charging rate of the battery detected by the battery state detection device 110, the estimated remaining travel time provided by the navigation system 117, and the like.
  • the present invention is not limited to the above-described first to sixth embodiments, and includes various modifications.
  • the first to sixth embodiments described above are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • SYMBOLS 100 Vehicle 101 ... Engine 101a ... Engine crankshaft 102 ... Transmission 103 ... Differential mechanism 104 ... Drive wheel 105 ... Starter motor 106 ... Alternator (generator) 106a ⁇ alternator crankshaft 107 ⁇ drive belt 108 ⁇ lead battery (battery) 109: On-vehicle equipment 110 ... Battery state detection device 111 ... Controller (control device) DESCRIPTION OF SYMBOLS 112 ... Headlight 113 ... Direction indicator 114 ... Electric heater 115 ... Blower fan 116 ... Multimedia system 117 ... Navigation system (own vehicle position detection apparatus or own vehicle position estimation apparatus) ) 118 ...

Abstract

Provided is a battery control device capable of efficiently charging or discharging a battery while suppressing a discrepancy between the feeling of operation of a start switch by a driver, for example, and a vehicle starting state, and that is capable of increasing battery reliability by suppressing battery degradation due to parking of the vehicle or a long period of neglect of the vehicle. A controller (111) for controlling the charging or discharging of a lead battery (108) for supplying electric power to an on-board device (109) mounted on a vehicle (100) is provided with: a starting-stop timing estimation unit (130) that estimates a starting-stop timing for stopping a starting state of the vehicle (100); and a charge rate adjusting unit (131) that adjusts the charge rate for the lead battery (108) on the basis of a result of estimation by the starting-stop timing estimation unit (130).

Description

バッテリの制御装置Battery control device
 本発明は、バッテリの制御装置に係り、例えば車両に搭載されるバッテリの充放電を制御するバッテリの制御装置に関する。 The present invention relates to a battery control device, for example, a battery control device that controls charging / discharging of a battery mounted on a vehicle.
 従来から、自動車等の車両の燃費向上を目的として、走行中に車両に搭載されたオルタネータ(発電機)を停止したり、減速時にオルタネータを積極的に発電させる、いわゆる発電制御機構を備えた車両の開発が進められている。また、近年では、更なる燃費向上を目的として、一時的な停車時に前記オルタネータに連結されるエンジンを自動的に停止するアイドリングストップ機構(エンジン自動停止再始動機構ともいう)を備えた車両の開発も進められている。 Conventionally, a vehicle equipped with a so-called power generation control mechanism that stops an alternator (generator) mounted on a vehicle while traveling or actively generates power when the vehicle decelerates for the purpose of improving the fuel efficiency of a vehicle such as an automobile. Development is underway. In recent years, for the purpose of further improving fuel efficiency, development of a vehicle equipped with an idling stop mechanism (also referred to as an engine automatic stop / restart mechanism) that automatically stops the engine connected to the alternator when the vehicle is temporarily stopped. Is also underway.
 ところで、このような発電制御機構やアイドリングストップ機構を備えた車両は、これらの機構を備えていない車両と比較して、一般にバッテリがより深く放電されるため、例えば車両の運転を終了して駐車する際に、バッテリが充電率の低い状態で放置されることが多い。また、発電制御機構やアイドリングストップ機構を備えた車両は、上記したように、一般に発電機であるオルタネータの駆動機会が減少するため、前記オルタネータによって充電されるバッテリの充電状態(例えば充電率)を所望の状態に調整することが難しい。 By the way, a vehicle equipped with such a power generation control mechanism and an idling stop mechanism generally discharges a battery more deeply than a vehicle not equipped with these mechanisms. In many cases, the battery is left in a state where the charging rate is low. In addition, as described above, since a vehicle equipped with a power generation control mechanism and an idling stop mechanism generally reduces the opportunity to drive an alternator that is a generator, the state of charge of a battery charged by the alternator (for example, the charging rate) is changed. It is difficult to adjust to a desired state.
 例えば、自動車用の電源装置として一般に使用される鉛バッテリは、充電率が低い状態で放置されると、不動態化(サルフェーション)と称される劣化によってバッテリ容量が大幅に低下することが知られている。 For example, a lead battery generally used as a power supply device for automobiles is known to have a significantly reduced battery capacity due to deterioration referred to as passivation when left with a low charging rate. ing.
 具体的には、鉛バッテリは、主に、酸化鉛を主たる形成素材とする正極と、鉛を主たる形成素材とする負極と、希硫酸からなる電解液と、正極と負極を電気的に絶縁するとともに電解液を保持するセパレータと、それらをパッケージングする筺体とから構成され、正極及び負極に接続された正極端子及び負極端子を通じて電力が充放電される。この鉛バッテリは、以下の化学式(1)~(3)に示す放電反応により、放電の進行に従って正極及び負極で硫酸鉛が生成され、充電時には化学式(1)~(3)に示す矢印と逆向きの反応により、負極側で硫酸鉛が鉛へ還元され、正極側で硫酸鉛が酸化鉛へ酸化される。 Specifically, the lead battery mainly electrically insulates the positive electrode mainly composed of lead oxide, the negative electrode mainly composed of lead, an electrolyte solution composed of dilute sulfuric acid, and the positive electrode and the negative electrode. At the same time, power is charged / discharged through a positive electrode terminal and a negative electrode terminal which are composed of a separator for holding an electrolytic solution and a casing for packaging them, and are connected to the positive electrode and the negative electrode. In this lead battery, lead sulfate is generated at the positive electrode and the negative electrode as the discharge progresses due to the discharge reaction shown in the following chemical formulas (1) to (3), and is opposite to the arrows shown in chemical formulas (1) to (3) during charging. By the reaction in the direction, lead sulfate is reduced to lead on the negative electrode side, and lead sulfate is oxidized to lead oxide on the positive electrode side.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 鉛バッテリの放電反応で生成される硫酸鉛は絶縁性であり、放電反応により正極と負極に堆積した硫酸鉛は、充電反応により負極側で鉛へ還元されもしくは正極側で酸化鉛へ酸化される。しかしながら、鉛バッテリが充電率の低い状態で長期に亘って放置されると、放電反応により正極と負極に堆積した硫酸鉛は、鉛バッテリを充電しても鉛や酸化鉛へ変化し難くなり、その内部抵抗(放電抵抗)が著しく増加し、鉛バッテリの容量が大幅に低下する。また、鉛バッテリの充電率が低くなるに従って正極と負極の硫酸鉛の堆積量が増加するため、特に、放置された鉛バッテリの充電率が低い場合にはバッテリの劣化が加速されてしまう。 Lead sulfate produced by the discharge reaction of a lead battery is insulative, and lead sulfate deposited on the positive electrode and negative electrode by the discharge reaction is reduced to lead on the negative electrode side or oxidized to lead oxide on the positive electrode side by the charging reaction. . However, if the lead battery is left for a long time with a low charging rate, the lead sulfate deposited on the positive electrode and the negative electrode by the discharge reaction will not easily change to lead or lead oxide even if the lead battery is charged, The internal resistance (discharge resistance) is remarkably increased, and the capacity of the lead battery is greatly reduced. Further, since the amount of lead sulfate deposited on the positive electrode and the negative electrode increases as the charge rate of the lead battery decreases, the deterioration of the battery is accelerated particularly when the charge rate of the left lead battery is low.
 このように、発電制御機構やアイドリングストップ機構を備えた車両は、これらの機構を備えていない車両と比較して、バッテリがより深く放電されると共に、バッテリの充電状態を所望の状態に調整することが困難であり、バッテリが充電率の低い状態で放置されることが多いため、バッテリの劣化が加速されるといった問題が生じ得る。例えば、エンジン始動時には、バッテリからスタータモータに代表される電動機へ大きな電力を供給する必要があるため、当該分野においては、例えば車両を駐車したり長期的に車両を放置する際に、バッテリの充電状態を所望の状態に調整し、バッテリの劣化を抑制してバッテリの信頼性を確保し得る制御装置の開発が望まれている。 As described above, in the vehicle including the power generation control mechanism and the idling stop mechanism, the battery is discharged deeper and the charged state of the battery is adjusted to a desired state as compared with the vehicle not including these mechanisms. Since the battery is often left in a state where the charging rate is low, there is a problem that the deterioration of the battery is accelerated. For example, when starting an engine, it is necessary to supply a large amount of power from a battery to an electric motor represented by a starter motor. Therefore, in this field, for example, when a vehicle is parked or left for a long time, the battery is charged. It is desired to develop a control device that can adjust the state to a desired state and suppress the deterioration of the battery to ensure the reliability of the battery.
 このような問題に対し、特許文献1には、次回乗車時のエンジン始動に備えてオルタネータ(発電機)やスタータモータに接続されるメインバッテリ(蓄電体)を充電しておく技術が開示されている。 To deal with such a problem, Patent Document 1 discloses a technique for charging a main battery (power storage unit) connected to an alternator (generator) or a starter motor in preparation for starting the engine at the next boarding. Yes.
 特許文献1に開示されている車両用電源装置は、車両を起動させる際にオン状態に操作され、車両の起動状態を停止させる際にオフ状態に操作される起動スイッチがオフ状態に切り換えられるときに、メインバッテリの充電状態が所定値を下回る場合には、エンジンの運転状態を継続してメインバッテリを充電する装置である。 The vehicle power supply device disclosed in Patent Literature 1 is operated to be turned on when the vehicle is activated, and the activation switch that is operated to be turned off when the vehicle activation state is stopped is switched to the off state. In addition, when the state of charge of the main battery falls below a predetermined value, the main battery is charged by continuing the engine operating state.
特開2011-163282号公報JP 2011-163282 A
 特許文献1に開示されている車両用電源装置によれば、次回乗車時のエンジン始動に備えてメインバッテリを充電しておくことができ、エンジン始動に必要とされる電力にとらわれることなくメインバッテリを深く放電させることができる。 According to the vehicle power supply device disclosed in Patent Document 1, the main battery can be charged in preparation for starting the engine at the next boarding, and the main battery is not limited by the power required for starting the engine. Can be deeply discharged.
 しかしながら、特許文献1に開示されている車両用電源装置においては、起動スイッチがオフ状態に切り換えられた後に、メインバッテリの充電状態が目標値に到達するまで、エンジンの運転状態を継続してメインバッテリを充電するため、運転者等による起動スイッチの操作と車両の起動状態とが合致しないといった問題や車両の燃費が低下するといった問題がある。 However, in the vehicle power supply device disclosed in Patent Document 1, after the start switch is switched to the OFF state, the engine operating state is continuously maintained until the main battery charging state reaches the target value. Since the battery is charged, there is a problem that the operation of the start switch by the driver or the like does not match the start state of the vehicle and a problem that the fuel consumption of the vehicle is reduced.
 本発明は、前記問題に鑑みてなされたものであって、その目的とするところは、運転者等による起動スイッチの操作感覚と車両の起動状態との乖離を抑制しながら、スタータモータ等に接続されるバッテリを効率的に充放電し、車両の駐車や車両の長期的な放置等によるバッテリの劣化を抑制し、バッテリの信頼性を高めることのできるバッテリの制御装置を提供することにある。 The present invention has been made in view of the above-described problems, and its object is to connect a starter motor or the like while suppressing a deviation between the sense of operation of the start switch by the driver or the like and the start state of the vehicle. It is an object of the present invention to provide a battery control apparatus that can efficiently charge and discharge a battery to be charged, suppress deterioration of the battery due to parking of the vehicle or leaving the vehicle for a long period of time, and increase the reliability of the battery.
 上記する課題を解決するために、本発明に係るバッテリの制御装置は、車両に搭載された車載機器へ電力を供給するバッテリの充放電を制御するバッテリの制御装置であって、前記車両の起動状態を停止する起動停止時期を推定する起動停止時期推定部と、前記起動停止時期推定部の推定結果に基づいて前記バッテリの充電率を調整する充電率調整部と、を備えることを特徴とする。 In order to solve the above-described problems, a battery control device according to the present invention is a battery control device that controls charging / discharging of a battery that supplies electric power to an in-vehicle device mounted on the vehicle, and the start of the vehicle A start / stop timing estimation unit that estimates a start / stop timing for stopping the state; and a charge rate adjustment unit that adjusts the charge rate of the battery based on an estimation result of the start / stop timing estimation unit. .
 本発明のバッテリの制御装置によれば、例えば運転者等による起動スイッチのオフ操作に基づいて車両の起動状態が停止される起動停止時期を推定し、その推定結果に基づいてバッテリの充電率を調整することによって、車両の起動状態が停止される以前からバッテリの充電率を所望の状態(バッテリの保存に適した状態)へ調整することができるため、例えば運転者等による起動スイッチの操作感覚と車両の起動状態との乖離を抑制しながら、車両の駐車や車両の長期的な放置等によるバッテリの劣化を抑制してバッテリの信頼性を高めることができる。 According to the battery control apparatus of the present invention, for example, the start / stop timing at which the start state of the vehicle is stopped is estimated based on an operation of turning off the start switch by a driver or the like, and the charge rate of the battery is determined based on the estimation result. By adjusting, the battery charge rate can be adjusted to a desired state (a state suitable for storing the battery) before the vehicle start state is stopped. For example, the driver feels that the start switch is operated. The battery reliability can be improved by suppressing the deterioration of the battery due to the parking of the vehicle or the long-term leaving of the vehicle while suppressing the deviation between the vehicle and the starting state of the vehicle.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明に係るバッテリの制御装置の実施形態1が搭載された車両のシステム構成を概略的に示す全体構成図。1 is an overall configuration diagram schematically showing a system configuration of a vehicle equipped with Embodiment 1 of a battery control device according to the present invention. 図1に示すオルタネータの内部構成を概略的に示す内部構成図。The internal block diagram which shows schematically the internal structure of the alternator shown in FIG. 図1に示す鉛バッテリの充電率と無負荷電圧の関係を示す図。The figure which shows the charge rate of the lead battery shown in FIG. 1, and the relationship between a no-load voltage. 図1に示す鉛バッテリの無負荷電圧と放電抵抗と充電率の関係を示す図。The figure which shows the no load voltage of the lead battery shown in FIG. 1, the relationship between discharge resistance, and a charging rate. 図1に示す鉛バッテリの放電容量割合と放電抵抗増加率の関係を示す図。The figure which shows the relationship between the discharge capacity ratio and discharge resistance increase rate of the lead battery shown in FIG. 図1に示す車両における鉛バッテリの充電率と車速センサの出力信号とアクセルペダルセンサの出力信号とブレーキペダルセンサの出力信号の一例を時系列で示す模式図。The schematic diagram which shows an example of the charge rate of the lead battery in the vehicle shown in FIG. 1, the output signal of a vehicle speed sensor, the output signal of an accelerator pedal sensor, and the output signal of a brake pedal sensor in time series. 図1に示す車両が駐車される際の鉛バッテリの充電率とオルタネータの発電電圧と車速センサの出力信号とアイドリングストップ禁止フラグと車載機器消費電力制限モードフラグの一例を時系列で示す模式図。The schematic diagram which shows an example of the charging rate of the lead battery when the vehicle shown in FIG. 1 is parked, the generated voltage of the alternator, the output signal of the vehicle speed sensor, the idling stop prohibition flag, and the in-vehicle device power consumption restriction mode flag in time series. 本発明に係るバッテリの制御装置の実施形態2が搭載された車両が目的地へ移動する際の推定残り旅行時間とバッテリの充電開始時期の関係を模式的に説明する模式図。The schematic diagram explaining typically the relationship between the estimated remaining travel time when the vehicle by which Embodiment 2 of the control apparatus of the battery which concerns on this invention is mounted moves to the destination, and the charge start time of a battery. バッテリの所望の充電率と現在の充電率の差と推定残り旅行時間の関係を示す図。The figure which shows the relationship between the difference of the desired charge rate of a battery, the present charge rate, and estimated remaining travel time.
 以下、本発明に係るバッテリの制御装置の実施形態を図面を参照して説明する。 Hereinafter, embodiments of a battery control device according to the present invention will be described with reference to the drawings.
[実施形態1]
 図1は、本発明に係るバッテリの制御装置の実施形態1が搭載された車両のシステム構成を概略的に示したものである。また、図2は、図1に示すオルタネータ(発電機)の内部構成を概略的に示したものである。
[Embodiment 1]
FIG. 1 schematically shows a system configuration of a vehicle on which Embodiment 1 of the battery control apparatus according to the present invention is mounted. FIG. 2 schematically shows the internal configuration of the alternator (generator) shown in FIG.
 図1に示すように、車両100にはエンジン101が搭載されており、エンジン101によって得られる駆動力は、変速機102及びディファレンシャル機構103を介して駆動輪104へ伝達されるようになっている。 As shown in FIG. 1, an engine 101 is mounted on a vehicle 100, and driving force obtained by the engine 101 is transmitted to driving wheels 104 via a transmission 102 and a differential mechanism 103. .
 また、エンジン101には始動装置としてのスタータモータ105が組み付けられると共に、駆動ベルト107を介してオルタネータ106が連結されている。より具体的には、エンジン101のクランク軸101aが、駆動ベルト107及びプーリ(不図示)を構成要素とする巻掛伝達機構を介してオルタネータ106のクランク軸106aと接続されており、オルタネータ106は、エンジン101のクランク軸101aの回転に従動して回転駆動して電力を発生するようになっている。また、スタータモータ105とオルタネータ106はそれぞれ、電力供給用の鉛バッテリ(バッテリ)108と接続されると共に、スタータモータ105とオルタネータ106とエンジン101は、それらの駆動を制御するコントローラ(制御装置)111と通信可能に接続されている。 Further, a starter motor 105 as a starting device is assembled to the engine 101, and an alternator 106 is connected via a drive belt 107. More specifically, the crankshaft 101a of the engine 101 is connected to the crankshaft 106a of the alternator 106 via a winding transmission mechanism including a drive belt 107 and a pulley (not shown) as components, and the alternator 106 is The engine 101 is driven to rotate in accordance with the rotation of the crankshaft 101a to generate electric power. The starter motor 105 and the alternator 106 are connected to a lead battery (battery) 108 for supplying power, and the starter motor 105, the alternator 106, and the engine 101 are controlled by a controller (control device) 111. Is communicably connected.
 オルタネータ106は、図2に示すように、主に、ステータ(不図示)に捲回されたステータコイル201とステータの内側に配置されたロータ(不図示)に捲回されたフィールドコイル202と整流器203とを有している。ステータコイル201は三相コイルで構成され、当該ステータコイル201によって三相交流の誘起電流を発電し、発電された誘導電流は整流器203で直流電流に変換されてオルタネータ106から出力されるようになっている。 As shown in FIG. 2, the alternator 106 mainly includes a stator coil 201 wound around a stator (not shown), a field coil 202 wound around a rotor (not shown) arranged inside the stator, and a rectifier. 203. The stator coil 201 is composed of a three-phase coil. The stator coil 201 generates a three-phase AC induced current, and the generated induced current is converted into a DC current by the rectifier 203 and output from the alternator 106. ing.
 また、オルタネータ106は、発電電圧を調整する調整機能や発電出力を停止する停止機能を備えている。 Further, the alternator 106 has an adjustment function for adjusting the generated voltage and a stop function for stopping the generated output.
 具体的には、オルタネータ106は、その発電電圧を調整するレギュレータ204を有している。このレギュレータ204は、例えばオルタネータ106に付帯するIC式のものであり、例えば、パワートランジスタやパワーMOS-FET(Metal Oxide Semiconductor - Field Effect Transistor)、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)などに代表される電力用途の半導体素子を使用したスイッチ205と駆動回路206とから構成されている。 Specifically, the alternator 106 has a regulator 204 that adjusts the generated voltage. The regulator 204 is, for example, an IC type attached to the alternator 106. For example, a power transistor, a power MOS-FET (Metal / Oxide / Semiconductor / -Field / Effect / Transistor), an insulated gate bipolar transistor (IGBT: Insulated / Gate Bipolar Transistor), etc. And a drive circuit 206 using a switch 205 using a semiconductor element for electric power represented by
 レギュレータ204の駆動回路206は、コントローラ111から送信される発電電圧指令信号(駆動信号としてのDUTY信号)に基づいて、DUTY比を調整するPWM制御を実施する。 The drive circuit 206 of the regulator 204 performs PWM control for adjusting the DUTY ratio based on the generated voltage command signal (DUTY signal as the drive signal) transmitted from the controller 111.
 レギュレータ204は、駆動回路206から出力される信号に基づきスイッチ205をスイッチングしてフィールドコイル202に通電する。より具体的には、レギュレータ204は、駆動回路206を介してスイッチ205をオン状態又はオフ状態に繰り返し切り替えることによって、フィールドコイル202へ流れる電流を制御する。このようにフィールドコイル202へ流れる電流を調整することによって、レギュレータ204は、フィールドコイル202へ誘起される電圧を変化させ、ステータコイル201で発生する出力電圧を増加させ、オルタネータ106の発電電圧を変化させる。なお、フィールドコイル202へ流れる電流は、コントローラ111からレギュレータ204の駆動回路206へ送信される発電電圧指令信号(駆動信号としてのDUTY信号)のDUTY比に比例して大きくなる。DUTY信号のDUTY比が増加してフィードコイル202へ流れる電流が増加すると、ステータコイル201で発生する出力電圧も増加し、オルタネータ106の発電電圧が増加する。 The regulator 204 switches the switch 205 based on the signal output from the drive circuit 206 to energize the field coil 202. More specifically, the regulator 204 controls the current flowing to the field coil 202 by repeatedly switching the switch 205 to an on state or an off state via the drive circuit 206. By adjusting the current flowing to the field coil 202 in this way, the regulator 204 changes the voltage induced in the field coil 202, increases the output voltage generated in the stator coil 201, and changes the power generation voltage of the alternator 106. Let Note that the current flowing to the field coil 202 increases in proportion to the DUTY ratio of the generated voltage command signal (DUTY signal as a drive signal) transmitted from the controller 111 to the drive circuit 206 of the regulator 204. When the DUTY ratio of the DUTY signal increases and the current flowing to the feed coil 202 increases, the output voltage generated in the stator coil 201 also increases and the power generation voltage of the alternator 106 increases.
 なお、オルタネータ106は、レギュレータ204の駆動回路206へ送信される駆動信号としてのDUTY信号のDUTY比の変化に応じてその発電電圧が変更されればよく、例えば適宜の反転回路を用いてDUTY信号のDUTY比の変化とオルタネータ106の発電電圧の増減の関係を反対にしてもよい。また、レギュレータ204の駆動回路206を省略し、コントローラ111がスイッチ205に対してPWM制御を実施し、コントローラ111からスイッチ205へ直接的に駆動信号としてのDUTY信号を送信してスイッチ205をスイッチングしてもよい。 The alternator 106 only needs to change the generated voltage in accordance with the change in the DUTY ratio of the DUTY signal as a drive signal transmitted to the drive circuit 206 of the regulator 204. For example, the DUTY signal can be changed using an appropriate inverting circuit. The relationship between the change in the DUTY ratio and the increase / decrease in the generated voltage of the alternator 106 may be reversed. Further, the drive circuit 206 of the regulator 204 is omitted, the controller 111 performs PWM control on the switch 205, and the switch 205 is switched by transmitting a DUTY signal as a drive signal directly from the controller 111 to the switch 205. May be.
 また、レギュレータ204は、例えばオルタネータ106の発電電圧を少なくとも二段階(例えば14.5Vと12.8V)に設定する構成としてもよいし、オルタネータ106の発電電圧を所定範囲内(例えば10.6~15.5Vの範囲内)で連続的に設定する構成(リニアレギュレータという)としてもよい。ここで、オルタネータ106の発電電圧は、比較的高い電圧と鉛バッテリ108の電圧に近い比較的低い電圧とを含む少なくとも二段階の電圧に設定されるのが好ましく、特に、オルタネータ106の発電電圧を鉛バッテリ108の電圧に近い電圧に設定する場合には、鉛バッテリ108の充電率に応じてその設定電圧を変化させることが望ましい。その理由としては、オルタネータ106の発電出力が抑制されるとともに、オルタネータ106の発電電圧と鉛バッテリ108の電圧との電位差が小さいとオルタネータ106による鉛バッテリ108への充電が抑制され、オルタネータ106の発電によって発生するオルタネータ106の駆動トルクが小さくなり、エンジン101の負荷が減少するためである。 For example, the regulator 204 may be configured to set the power generation voltage of the alternator 106 in at least two stages (for example, 14.5 V and 12.8 V), or the power generation voltage of the alternator 106 within a predetermined range (for example, 10.6 to It is good also as a structure (it is called a linear regulator) set continuously in the range of 15.5V. Here, the generated voltage of the alternator 106 is preferably set to at least two stages of voltage including a relatively high voltage and a relatively low voltage close to the voltage of the lead battery 108. In particular, the generated voltage of the alternator 106 is When setting the voltage close to the voltage of the lead battery 108, it is desirable to change the set voltage according to the charge rate of the lead battery 108. The reason is that the power generation output of the alternator 106 is suppressed, and if the potential difference between the power generation voltage of the alternator 106 and the voltage of the lead battery 108 is small, the charging of the lead battery 108 by the alternator 106 is suppressed, and the power generation of the alternator 106 is suppressed. This is because the drive torque of the alternator 106 generated by the above is reduced, and the load on the engine 101 is reduced.
 図1に示す車両100は、更に、発電制御機構やアイドリングストップ機構を備えている。 The vehicle 100 shown in FIG. 1 further includes a power generation control mechanism and an idling stop mechanism.
 ここで、発電制御機構とは、例えば、車両100が惰性走行状態や減速走行状態に移行した際にオルタネータ106によって運動エネルギを電気エネルギへ変換して当該運動エネルギを積極的に回生吸収する回生システムや、運転者からの加速要求時や定速走行時に、上記したようにオルタネータ106のレギュレータ204を制御し、オルタネータ106の発電電圧を減少もしくはオルタネータ106の発電出力を停止してエンジン101の負荷を軽減するシステムを含む機構である。 Here, the power generation control mechanism is, for example, a regenerative system that converts kinetic energy into electric energy by the alternator 106 and actively regenerates and absorbs the kinetic energy when the vehicle 100 shifts to an inertia traveling state or a decelerating traveling state. In addition, when acceleration is requested from the driver or when driving at a constant speed, the regulator 204 of the alternator 106 is controlled as described above to reduce the power generation voltage of the alternator 106 or stop the power generation output of the alternator 106 to reduce the load on the engine 101. A mechanism that includes a mitigating system.
 また、アイドリングストップ機構とは、車両100が一時的に停車する際などにエンジン101を自動的に停止して燃料消費量を低減させると共に、エンジン101が停止した状態で運転者が車両100を発進させる兆候を検出した際には、迅速にスタータモータ105を駆動してエンジン101を自動的に再始動する機構である。なお、このアイドリングストップ機構によってエンジン101が自動的に停止した際には、オルタネータ106も共に停止する。 In addition, the idling stop mechanism is to automatically stop the engine 101 when the vehicle 100 is temporarily stopped to reduce fuel consumption, and the driver starts the vehicle 100 with the engine 101 stopped. When a sign to be detected is detected, the starter motor 105 is quickly driven to automatically restart the engine 101. Note that when the engine 101 is automatically stopped by the idling stop mechanism, the alternator 106 is also stopped.
 また、車両100の鉛バッテリ108には、上記するオルタネータ106とスタータ105のほか、各種車載機器109が接続されている。 In addition to the alternator 106 and the starter 105 described above, various in-vehicle devices 109 are connected to the lead battery 108 of the vehicle 100.
 車載機器109は、オルタネータ106と鉛バッテリ108から供給される電力によって駆動する装置であり、例えばヘッドライト112、方向指示器113、電気ヒータ114、送風ファン115、マルチメディアシステム116、ナビゲーションシステム117、カメラ118、レーダ119、通信モジュール120などから構成され、車載機器109を構成する各装置は、コントローラ111と通信可能に接続されている。なお、車両100内での通信や通信モジュール120による外部との通信に用いられる通信方式や通信規格は、適宜の方式や規格が選択される。 The in-vehicle device 109 is a device that is driven by electric power supplied from the alternator 106 and the lead battery 108. For example, the headlight 112, the direction indicator 113, the electric heater 114, the blower fan 115, the multimedia system 116, the navigation system 117, Each device that includes a camera 118, a radar 119, a communication module 120, and the like and that constitutes the in-vehicle device 109 is connected to the controller 111 so as to be communicable. An appropriate method or standard is selected as a communication method or communication standard used for communication within the vehicle 100 or communication with the outside by the communication module 120.
 上記する車載機器109のうち特に、ナビゲーションシステム(自車位置検出装置又は自車位置推定装置)117は、例えば、駐車場侵入情報、目的地情報や使用拠点情報、目的地や使用拠点までの推定残り旅行時間などの各種情報をコントローラ111へ送信する。 Among the in-vehicle devices 109 described above, in particular, the navigation system (own vehicle position detection device or own vehicle position estimation device) 117 includes, for example, parking lot intrusion information, destination information and use base information, and estimation to the destination and use base. Various information such as the remaining travel time is transmitted to the controller 111.
 また、カメラ(外界認識装置)118は、例えばパターンマッチングなどの方法を使用し、撮像して得られた画像情報から駐車場の駐車区画や自車両の使用拠点などを検出し、検出された駐車区画情報や使用拠点情報などをコントローラ111へ送信する。 Further, the camera (external recognition device) 118 uses, for example, a method such as pattern matching, detects the parking area of the parking lot, the use base of the own vehicle, and the like from the image information obtained by imaging, and detects the detected parking. The section information and the use base information are transmitted to the controller 111.
 また、レーダ(外界認識装置)119は、車両100の周囲環境情報の取得とカメラ118による画像取得とを組み合わせた駐車支援システムや自動駐車システム、車両100の走行時に例えば先行車両や障害物、側方を走行する車両に代表される車両100の周囲環境情報の取得によって提供される保安システムなどに利用される装置であり、それらのシステムに利用する各種情報をコントローラ111へ送信する。なお、保安システムとしては、例えば、自車両と先行車両との相対速度が所定値以上となり、自車両が減速されずに先行車両に追突する可能性があると判断された場合に、自動的にブレーキをかけるシステムなどが挙げられる。 Further, the radar (external recognition device) 119 is a parking assistance system or an automatic parking system that combines the acquisition of the surrounding environment information of the vehicle 100 and the image acquisition by the camera 118, for example, a preceding vehicle, an obstacle, or the side when the vehicle 100 is traveling. It is a device used in a security system provided by acquiring ambient environment information of the vehicle 100 represented by a vehicle traveling on the other side, and transmits various types of information used in those systems to the controller 111. As a security system, for example, when it is determined that the relative speed between the host vehicle and the preceding vehicle exceeds a predetermined value and the host vehicle may collide with the preceding vehicle without being decelerated, the safety system automatically For example, a system that applies a brake.
 また、通信モジュール(外部通信装置)120は、自車両の外部から適宜の通信手段を介して各種情報を受信する装置であり、例えば、駐車場や自車両の主な使用拠点(例えば自宅や会社所在地、それ以外の使用駐車場位置など)に設けられた送信アンテナ装置から発信される施設情報や使用拠点情報、広域に提供される渋滞情報、事故発生時に救助を要請する救難情報などを受信し、受信した各種情報をコントローラ111やマルチメディアシステム116、ナビゲーションシステム117へ送信する。 The communication module (external communication device) 120 is a device that receives various types of information from the outside of the host vehicle through appropriate communication means. For example, the main use base (for example, home or company) of a parking lot or the host vehicle. Receives facility information, use base information, traffic congestion information provided from a wide area, rescue information for requesting rescue in the event of an accident, etc. The received various information is transmitted to the controller 111, the multimedia system 116, and the navigation system 117.
 更に、車両100は、ギアシフトセンサ121、操舵角センサ122、アクセルペダルセンサ123、ブレーキペダルセンサ124、車速センサ127、イグニッションスイッチ125、及び駐車支援システムスイッチ126を備えている。それらはコントローラ111と通信可能に接続されており、ギアシフトセンサ121、操舵角センサ122、アクセルペダルセンサ123、ブレーキペダルセンサ124、車速センサ127によって検出された検出信号、イグニッションスイッチ125や駐車支援システムスイッチ126の操作信号などはコントローラ111へ送信される。 Further, the vehicle 100 includes a gear shift sensor 121, a steering angle sensor 122, an accelerator pedal sensor 123, a brake pedal sensor 124, a vehicle speed sensor 127, an ignition switch 125, and a parking assistance system switch 126. They are communicably connected to the controller 111, and are detected signals detected by a gear shift sensor 121, a steering angle sensor 122, an accelerator pedal sensor 123, a brake pedal sensor 124, a vehicle speed sensor 127, an ignition switch 125, and a parking assist system switch. The operation signal 126 is transmitted to the controller 111.
 また、車両100の鉛バッテリ108には、例えば鉛バッテリ108の電圧を測定する電圧センサ、鉛バッテリ108の流出入電流を測定する電流センサ、鉛バッテリ108の温度を測定する温度センサなどから構成されるバッテリ状態検出装置110が取り付けられている。 The lead battery 108 of the vehicle 100 includes, for example, a voltage sensor that measures the voltage of the lead battery 108, a current sensor that measures the inflow / outflow current of the lead battery 108, a temperature sensor that measures the temperature of the lead battery 108, and the like. A battery state detection device 110 is attached.
 バッテリ状態検出装置110は、鉛バッテリ108の電圧、電流、温度などのバッテリ状態に関する情報を測定し、その測定結果に基づいて鉛バッテリ108の充電状態(例えば充電率や充電量)や劣化状態を推定し、その推定結果をコントローラ111へ送信する。なお、バッテリ状態検出装置110は、例えば鉛バッテリ108の充電率を推定するための演算用のマイクロコンピュータ、マイクロコンピュータの演算結果や鉛バッテリ108の電圧、電流、温度などのバッテリ状態に関する情報を車両100の起動状態の停止後も記憶するメモリなどを搭載していてもよい。また、バッテリ状態検出装置110は、鉛バッテリ108の電圧、電流、温度などの測定結果をコントローラ111へ送信し、コントローラ111がバッテリ状態検出装置110から送信された測定結果に基づいて鉛バッテリ108の充電状態や劣化状態を推定してもよい。 The battery state detection device 110 measures information on the battery state such as the voltage, current, and temperature of the lead battery 108, and determines the charge state (for example, charge rate and charge amount) and deterioration state of the lead battery 108 based on the measurement result. The estimation result is transmitted to the controller 111. Note that the battery state detection device 110 includes, for example, a microcomputer for calculation for estimating the charge rate of the lead battery 108, calculation results of the microcomputer, and information on the battery state such as voltage, current, and temperature of the lead battery 108. A memory or the like that stores the memory after the activation state of 100 may be installed. Further, the battery state detection device 110 transmits measurement results such as the voltage, current, and temperature of the lead battery 108 to the controller 111, and the controller 111 detects the lead battery 108 based on the measurement results transmitted from the battery state detection device 110. You may estimate a charge condition or a deterioration state.
 ここで、鉛バッテリ108の充電状態の推定方法としては、適宜の方法を適用することができるが、その一例としては、例えば、鉛バッテリ108の無負荷電圧(無負荷状態の充電電圧)と充電率との線形関係(図3参照)を利用し、鉛バッテリ108の電圧測定結果から充電率(SOC)を推定する方法が挙げられる。また、その推定方法の他例としては、エンジン101の始動時にスタータモータ105に流れる大電流を利用してエンジン101の始動直前の鉛バッテリ108の無負荷電圧と電流を測定し、エンジン101の動作中の鉛バッテリ108の電圧測定結果から鉛バッテリ108の放電抵抗を算出し、これらの測定結果と算出結果、予め実験によって測定した鉛バッテリ108の無負荷電圧と放電抵抗と充電率の関係(図4参照、無負荷電圧‐放電抵抗‐充電率マップ)を利用して鉛バッテリ108の充電率(SOC)を推定する方法が挙げられる。 Here, as a method for estimating the state of charge of the lead battery 108, an appropriate method can be applied. As an example, for example, the no-load voltage (charge voltage in the no-load state) and the charge of the lead battery 108 are charged. A method of estimating the charging rate (SOC) from the voltage measurement result of the lead battery 108 using a linear relationship with the rate (see FIG. 3) can be mentioned. As another example of the estimation method, the no-load voltage and current of the lead battery 108 immediately before starting the engine 101 are measured using a large current flowing through the starter motor 105 when the engine 101 is started. The discharge resistance of the lead battery 108 is calculated from the voltage measurement result of the lead battery 108 in the battery, and the relationship between the measurement result and the calculation result, the no-load voltage of the lead battery 108, the discharge resistance, and the charge rate measured in advance by experiments (FIG. 4, a method for estimating the charge rate (SOC) of the lead battery 108 using a no-load voltage-discharge resistance-charge rate map).
 なお、バッテリの充電率(SOC:State of Charge)とは、設計上のバッテリ容量(公称容量や設計容量ともいう)に対する放電可能なバッテリ電気量を示した値であり、具体的には、ある時点でバッテリを放電させた際に測定される放電電気量を設計上のバッテリ容量で除した値である。例えば、鉛バッテリ108の公称容量が50Ahであり、その鉛バッテリ108がある充電状態で40Ahの電気量を放電可能である場合には、鉛バッテリ108の充電率は0.8である。 The battery charge rate (SOC: State : of Charge) is a value indicating the amount of battery electricity that can be discharged with respect to the design battery capacity (also called nominal capacity or design capacity). This is a value obtained by dividing the amount of discharged electricity measured when the battery is discharged at the time by the designed battery capacity. For example, when the lead battery 108 has a nominal capacity of 50 Ah and the lead battery 108 can discharge 40 Ah in a certain charged state, the charge rate of the lead battery 108 is 0.8.
 上記する推定方法では、鉛バッテリ108の無負荷電圧の測定結果を用いて当該鉛バッテリ108の充電率を推定したが、エンジン101が始動してオルタネータ106が駆動状態となり、かつ車載機器109が駆動する環境下では、鉛バッテリ108からの放電又は鉛バッテリ108への充電によって、鉛バッテリ108の無負荷電圧を精緻に測定することが難しい。このような場合には、例えば、バッテリ状態検出装置110に配設された電流センサで測定された鉛バッテリ108の流出入電流(充放電電流)を時間積算し、エンジン101の始動時に求めた充電率を逐次更新することによって、鉛バッテリ108の充電率を推定する。このような方法で充電率を推定する場合には、その推定精度を向上させるために、積分以外の演算を実施してもよいし、例えばカルマンフィルタのような数学的処理を施してもよい。 In the estimation method described above, the charge rate of the lead battery 108 is estimated using the measurement result of the no-load voltage of the lead battery 108. However, the engine 101 is started and the alternator 106 is driven, and the in-vehicle device 109 is driven. Under such circumstances, it is difficult to precisely measure the no-load voltage of the lead battery 108 by discharging from the lead battery 108 or charging the lead battery 108. In such a case, for example, the charging / discharging current (charge / discharge current) of the lead battery 108 measured by a current sensor provided in the battery state detection device 110 is integrated over time, and the charge obtained when the engine 101 is started is calculated. The charging rate of the lead battery 108 is estimated by sequentially updating the rate. When the charging rate is estimated by such a method, in order to improve the estimation accuracy, an operation other than integration may be performed, or a mathematical process such as a Kalman filter may be performed.
 また、鉛バッテリ108の劣化状態の推定方法としては、適宜の方法を適用することができるが、その一例としては、例えば、鉛バッテリ108の放電抵抗の測定結果から推定する方法が挙げられる。鉛バッテリ108の放電抵抗の測定結果から劣化状態を推定する場合には、例えば、鉛バッテリ108の劣化の進行(鉛バッテリ108の放電容量割合の低下)に応じて放電抵抗増加率が増加する(図5参照)ことを利用し、バッテリ交換時における新品状態のバッテリの放電抵抗を予め記録し、記録された放電抵抗とエンジン101の始動毎のバッテリの放電抵抗を比較して放電抵抗増加率を算出し、算出された放電抵抗増加率が所定の判定閾値を上回る場合に鉛バッテリ108が劣化したと判定する。なお、このような方法で鉛バッテリ108が劣化したと判定された場合には、発電制御機構やアイドリングストップ機構の利用を制限したり、運転者等に対して鉛バッテリ108の交換を要求する警告を行ってもよい。ここで、放電抵抗増加率とは、劣化状態のバッテリの放電抵抗をバッテリ交換時における新品状態のバッテリの放電抵抗で除した値であり、放電容量割合とは、劣化状態のバッテリの満充電からの放電容量を、バッテリ交換時における新品状態のバッテリの放電容量で除した値である。 Further, as a method for estimating the deterioration state of the lead battery 108, an appropriate method can be applied, and an example thereof is a method of estimating from the measurement result of the discharge resistance of the lead battery 108. When the deterioration state is estimated from the measurement result of the discharge resistance of the lead battery 108, for example, the discharge resistance increase rate increases in accordance with the progress of deterioration of the lead battery 108 (decrease in the discharge capacity ratio of the lead battery 108) ( 5), the discharge resistance of the battery in a new state when the battery is replaced is recorded in advance, and the recorded discharge resistance is compared with the discharge resistance of the battery every time the engine 101 is started. It is determined that the lead battery 108 has deteriorated when the calculated discharge resistance increase rate exceeds a predetermined determination threshold. When it is determined that the lead battery 108 has deteriorated by such a method, the use of the power generation control mechanism or the idling stop mechanism is restricted, or a warning requesting the driver or the like to replace the lead battery 108 is given. May be performed. Here, the rate of increase in discharge resistance is a value obtained by dividing the discharge resistance of a deteriorated battery by the discharge resistance of a new battery at the time of battery replacement, and the discharge capacity ratio is from the full charge of the deteriorated battery. Is a value obtained by dividing the discharge capacity by the discharge capacity of a new battery at the time of battery replacement.
 なお、鉛バッテリ108の充電状態及び劣化状態の推定方法の説明で参照した図3、図4及び図5で示す関係は、発明者等が鉛バッテリを対象として行った実験結果に基づくものであり、充電率と無負荷電圧の関係、無負荷電圧と放電抵抗と充電率の関係、放電容量割合と放電抵抗増加率の関係などは、例えば鉛バッテリの特性などに応じて変化するものである。 The relationship shown in FIGS. 3, 4 and 5 referred to in the description of the method for estimating the charged state and the deteriorated state of the lead battery 108 is based on the results of experiments conducted by the inventors on the lead battery. The relationship between the charge rate and the no-load voltage, the relationship between the no-load voltage, the discharge resistance and the charge rate, the relationship between the discharge capacity ratio and the discharge resistance increase rate, etc. vary depending on, for example, the characteristics of the lead battery.
 図6は、図1に示す車両における鉛バッテリの充電率と車速センサの出力信号とアクセルペダルセンサの出力信号とブレーキペダルセンサの出力信号の一例を時系列で示したものである。 FIG. 6 shows, in time series, an example of the charge rate of the lead battery, the output signal of the vehicle speed sensor, the output signal of the accelerator pedal sensor, and the output signal of the brake pedal sensor in the vehicle shown in FIG.
 コントローラ111は、アクセルペダルセンサ123の出力信号によって車両100が加速走行状態となったと判断すると、オルタネータ106の発電電圧が鉛バッテリ108の電圧と同等となるようにオルタネータ106の発電電圧を調整し、オルタネータ106から出力される充電電流を減少させる。 When the controller 111 determines that the vehicle 100 is in an accelerated running state based on the output signal of the accelerator pedal sensor 123, the controller 111 adjusts the generated voltage of the alternator 106 so that the generated voltage of the alternator 106 is equal to the voltage of the lead battery 108, The charging current output from the alternator 106 is decreased.
 すなわち、コントローラ111は、アクセルペダルセンサ123の出力信号によって運転者等から加速要求があると判断すると、オルタネータ106から出力される充電電流を減少させて当該オルタネータ106の負荷を減少させ、エンジン101の駆動力を車両100の加速側へ配分し、車載機器109には鉛バッテリ108に蓄電された電力を供給する。そのため、鉛バッテリ108の充電率は低下する(図6中、時刻t10~t11、t12~t13、t14~t15、t16~t17)。 That is, when the controller 111 determines that there is an acceleration request from the driver or the like based on the output signal of the accelerator pedal sensor 123, the controller 111 reduces the charging current output from the alternator 106 to reduce the load on the alternator 106, and The driving force is distributed to the acceleration side of the vehicle 100, and the electric power stored in the lead battery 108 is supplied to the in-vehicle device 109. As a result, the charging rate of the lead battery 108 decreases (time t10 to t11, t12 to t13, t14 to t15, t16 to t17 in FIG. 6).
 一方で、コントローラ111は、アクセルペダルセンサ123の出力信号によってアクセルペダルが戻されて車両100が惰性走行状態となったと判断した場合やブレーキペダルセンサ124の出力信号によってブレーキペダルが踏み込まれて車両100が減速走行状態となったと判断した場合には、オルタネータ106の発電電圧が鉛バッテリ108の電圧よりも高くなるようにオルタネータ106の発電電圧を変更し、オルタネータ106から出力される充電電流を増加させる。 On the other hand, when the controller 111 determines that the accelerator pedal is returned by the output signal of the accelerator pedal sensor 123 and the vehicle 100 is in the inertia running state, or the brake pedal is depressed by the output signal of the brake pedal sensor 124, the vehicle 100. Is determined to be in a decelerating running state, the power generation voltage of the alternator 106 is changed so that the power generation voltage of the alternator 106 is higher than the voltage of the lead battery 108, and the charging current output from the alternator 106 is increased. .
 このように、例えば惰性走行時や減速時には、オルタネータ106の発電電圧を相対的に高く設定し、オルタネータ106から出力される充電電流を増加させることによって、オルタネータ106の負荷が増加し、運動エネルギを電気エネルギへ変換して当該運動エネルギが回生吸収されるとともに、鉛バッテリ108が充電されて当該鉛バッテリ108の充電率は増加する(図6中、時刻t11~t12、t13~t14、t15~t16、t17~t18)。 Thus, for example, during coasting or deceleration, the power generation voltage of the alternator 106 is set relatively high, and the charging current output from the alternator 106 is increased, thereby increasing the load on the alternator 106 and reducing the kinetic energy. The kinetic energy is converted to electric energy and regenerated and absorbed, and the lead battery 108 is charged to increase the charging rate of the lead battery 108 (in FIG. 6, times t11 to t12, t13 to t14, t15 to t16). , T17 to t18).
 ここで、オルタネータ106の発電電圧は、アクセルペダルが戻された惰性走行状態とブレーキペダルが踏み込まれたブレーキ操作による減速走行状態で同一であってもよいし、異なっていてもよい。すなわち、コントローラ111は、アクセルペダルセンサ123とブレーキペダルセンサ124の出力信号に基づいて、車両100が惰性走行状態であるかあるいはブレーキを用いた減速走行状態であるかを判定し、その判定結果に基づいてオルタネータ106の発電電圧を変更してもよい。アクセルペダルが戻された惰性走行状態とブレーキペダルが踏み込まれたブレーキ操作による減速走行状態とでは、運転者が要求する減速度が異なるため、運転者が要求する減速度が相対的に大きいと考えられるブレーキ操作による減速走行状態で、オルタネータ106の発電電圧を相対的に高く(オルタネータ106の発電負荷を相対的に大きく)することによって、回生吸収する運動エネルギをより増加させことができる。 Here, the generated voltage of the alternator 106 may be the same or different between the inertial traveling state in which the accelerator pedal is returned and the decelerating traveling state in which the brake pedal is depressed. That is, the controller 111 determines whether the vehicle 100 is in an inertia traveling state or in a decelerating traveling state using a brake based on the output signals of the accelerator pedal sensor 123 and the brake pedal sensor 124, and the determination result is Based on this, the generated voltage of the alternator 106 may be changed. Because the deceleration required by the driver is different between the coasting state where the accelerator pedal is released and the deceleration traveling state where the brake pedal is depressed, the deceleration required by the driver is considered to be relatively large. The kinetic energy that is regenerated and absorbed can be further increased by making the power generation voltage of the alternator 106 relatively high (relatively large power generation load of the alternator 106) in a decelerated running state by the brake operation.
 車速センサ127によって検出された車速が0となって車両100が一時的に停車すると、アイドリングストップ機構によってエンジン101とオルタネータ106が停止する(図6中、時刻t18)。そして、アイドリングストップ機構によってエンジン101が再始動されない場合には、鉛バッテリ108は、その充電率が下限値であるSMinとなるまで放電される(図6中、時刻t18~t20)。ここで、鉛バッテリ108の充電率の下限値SMinは、エンジン101の再始動時に大電流の放電を行っても鉛バッテリ108の電圧が著しく低下しない程度の充電率である。 When the vehicle speed detected by the vehicle speed sensor 127 becomes 0 and the vehicle 100 stops temporarily, the engine 101 and the alternator 106 are stopped by the idling stop mechanism (time t18 in FIG. 6). When engine 101 is not restarted by the idling stop mechanism, lead battery 108 is discharged until the charging rate reaches SMin, which is the lower limit (time t18 to t20 in FIG. 6). Here, the lower limit value SMin of the charging rate of the lead battery 108 is a charging rate at which the voltage of the lead battery 108 does not significantly decrease even when a large current is discharged when the engine 101 is restarted.
 時刻t18~t20の間では、イグニッションスイッチ(起動スイッチともいう)125のオフ操作によって車両100の起動状態が停止される時期に応じて、鉛バッテリ108の充電率は変化する。鉛バッテリ108は、上記したように充電率の低い状態で長期に亘って放置されると、放電反応により正極と負極に堆積した硫酸鉛が鉛バッテリを充電しても鉛や酸化鉛へ変化し難くなると共に、放電反応により正極と負極に堆積した硫酸鉛の堆積量に応じて、すなわち鉛バッテリ108の充電率に応じて鉛バッテリ108の劣化の進行度合いが変化する。具体的には、車両100の起動状態の停止後、時刻t18(例えば満充電)から時刻t19、更に時刻t19から時刻t20へ経過するに従って、鉛バッテリ108の充電率が低下して鉛バッテリ108の劣化は加速される。 Between time t18 and t20, the charging rate of the lead battery 108 changes according to the timing when the start state of the vehicle 100 is stopped by turning off the ignition switch (also referred to as start switch) 125. If the lead battery 108 is left for a long time with a low charging rate as described above, the lead sulfate deposited on the positive electrode and the negative electrode by the discharge reaction changes to lead or lead oxide even if the lead battery is charged. The degree of progress of deterioration of the lead battery 108 changes according to the amount of lead sulfate deposited on the positive electrode and the negative electrode due to the discharge reaction, that is, according to the charge rate of the lead battery 108. Specifically, after the vehicle 100 is stopped in the start-up state, the charging rate of the lead battery 108 decreases as time elapses from time t18 (for example, full charge) to time t19, and further from time t19 to time t20. Degradation is accelerated.
 そこで、本実施形態1では、車両100に搭載されたコントローラ111が、図1に示すように、起動停止時期推定部130と充電率調整部131とを有しており、起動停止時期推定部130によって、運転者等がイグニッションスイッチ125をオン状態からオフ状態へ操作して車両100の起動状態を停止する起動停止時期を推定し、充電率調整部131によって、起動停止時期推定部130の推定結果に基づいて鉛バッテリ108の充電率を調整する。より具体的には、コントローラ111は、起動停止時期推定部130によって、運転者が車両100を駐車場へ進入させて所定の駐車区画へ駐車させた後にイグニッションスイッチ125をオフ操作して車両100の起動状態を停止する起動停止時期をナビゲーションシステム117から提供される情報(例えば駐車場侵入情報など)を用いて推定する。また、コントローラ111は、充電率調整部131によって、起動停止時期推定部130の推定結果に基づいてオルタネータ106の発電電圧、アイドリングストップ機構、車載機器109の消費電力等を制御して鉛バッテリ108の充電率を増加させる。 Therefore, in the first embodiment, as shown in FIG. 1, the controller 111 mounted on the vehicle 100 includes a start / stop timing estimation unit 130 and a charge rate adjustment unit 131, and the start / stop timing estimation unit 130. Thus, the driver or the like operates the ignition switch 125 from the on state to the off state to estimate the start / stop time at which the start state of the vehicle 100 is stopped, and the charging rate adjustment unit 131 estimates the estimation result of the start / stop time estimation unit 130. The charge rate of the lead battery 108 is adjusted based on the above. More specifically, the controller 111 causes the start / stop timing estimation unit 130 to turn off the ignition switch 125 after the driver causes the vehicle 100 to enter the parking lot and park it in a predetermined parking area. The start stop time for stopping the start state is estimated using information (for example, parking lot intrusion information) provided from the navigation system 117. In addition, the controller 111 controls the power generation voltage of the alternator 106, the idling stop mechanism, the power consumption of the in-vehicle device 109, and the like based on the estimation result of the start / stop timing estimation unit 130 by the charge rate adjustment unit 131 to control the lead battery 108. Increase charge rate.
 図7は、図1に示す車両が駐車される際の鉛バッテリの充電率とオルタネータの発電電圧と車速センサの出力信号とアイドリングストップ禁止フラグと車載機器消費電力制限モードフラグの一例を時系列で示したものである。 FIG. 7 shows an example of the charge rate of the lead battery when the vehicle shown in FIG. 1 is parked, the generated voltage of the alternator, the output signal of the vehicle speed sensor, the idling stop prohibition flag, and the in-vehicle device power consumption restriction mode flag in time series. It is shown.
 図示するように、車両100が通常の走行状態で走行している場合(時刻t21~t22)や駐車場への進入が予測されていない状態で一時的に停止した場合(時刻t22~t24)には、燃費向上技術である発電制御機構やアイドリングストップ機構を用いて車両100が制御される。 As shown in the figure, when the vehicle 100 is traveling in a normal traveling state (time t21 to t22) or when the vehicle 100 is temporarily stopped without entering the parking lot (time t22 to t24). The vehicle 100 is controlled using a power generation control mechanism and an idling stop mechanism, which are fuel efficiency improvement technologies.
 具体的には、時刻t21~t22では、車両100が略定速で巡航しており、鉛バッテリ108の充電率は下限値であるSMinと上限値であるSMaxの範囲内にあるため、コントローラ111がオルタネータ106のレギュレータ204に対して当該オルタネータ106の負荷が最小となる電圧S0に対応する発電電圧指令信号を送信し、オルタネータ106の発電電圧がその電圧S0に設定され、鉛バッテリ108の充電率はSMinとSMaxの範囲内で減少する。なお、鉛バッテリ108の充電率の下限値SMinは、0.75~0.99の範囲内で設定されることが好ましく、0.80~0.95の範囲内で設定されることが望ましい。また、鉛バッテリ108の充電率の上限値SMaxは、少なくとも下限値SMinよりも大きな値であり、1.0に設定されることが好ましい。なお、その上限値SMaxは、1.0よりも小さい値(例えば0.9や0.95)や1.0よりも大きな値(例えば1.1や1.2)に設定されてもよいが、1.0よりも大きな値に設定する場合には1.2以下とすることが望ましい。 Specifically, from time t21 to t22, the vehicle 100 is cruising at a substantially constant speed, and the charging rate of the lead battery 108 is within the range of SMin, which is the lower limit value, and SMax, which is the upper limit value. Transmits a generated voltage command signal corresponding to the voltage S0 at which the load of the alternator 106 is minimized to the regulator 204 of the alternator 106, the generated voltage of the alternator 106 is set to the voltage S0, and the charge rate of the lead battery 108 Decreases within the range of SMin and SMax. Note that the lower limit value SMin of the charging rate of the lead battery 108 is preferably set within a range of 0.75 to 0.99, and is preferably set within a range of 0.80 to 0.95. Further, the upper limit value SMax of the charging rate of the lead battery 108 is at least larger than the lower limit value SMin, and is preferably set to 1.0. The upper limit value SMax may be set to a value smaller than 1.0 (for example, 0.9 or 0.95) or a value larger than 1.0 (for example, 1.1 or 1.2). , 1.0 is desirably 1.2 or less when set to a value larger than 1.0.
 時刻t22~t23では、車両100が減速走行状態にあり、コントローラ111がオルタネータ106のレギュレータ204に対して電圧S0よりも高い電圧S2に対応する発電電圧指令信号を送信し、オルタネータ106の発電電圧がその電圧S2に設定され、鉛バッテリ108が急速に充電されて充電率がSMinとSMaxの範囲内で増加する。 From time t22 to t23, the vehicle 100 is in a decelerating running state, and the controller 111 transmits a generated voltage command signal corresponding to the voltage S2 higher than the voltage S0 to the regulator 204 of the alternator 106, and the generated voltage of the alternator 106 is changed. The voltage S2 is set, the lead battery 108 is rapidly charged, and the charging rate increases within the range of SMin and SMax.
 時刻t23~t24では、車両100が所定時間だけ停車したことにより、アイドリングストップ機構によってエンジン101が停止すると共に、オルタネータ106も停止して鉛バッテリ108の充電率がSMinとSMaxの範囲内で減少する。その後、時刻t24では、車両100が発進する兆候が検出され、アイドリングストップ機構によってエンジン101が再始動し、車両100の駐車場への進入が検出される(又は車両100の駐車場への進入が予測される)時刻t25まで、当該車両100は加速と巡航を行う。その際、コントローラ111はオルタネータ106のレギュレータ204に対して上記電圧S0に対応する発電電圧指令信号を再び送信し、オルタネータ106の発電電圧がその電圧S0に設定され、オルタネータ106の負荷が最小となるように抑制され、鉛バッテリ108の充電率はSMinとSMaxの範囲内で次第に減少する。 From time t23 to t24, when the vehicle 100 stops for a predetermined time, the engine 101 is stopped by the idling stop mechanism, the alternator 106 is also stopped, and the charge rate of the lead battery 108 decreases within the range of SMin and SMax. . Thereafter, at time t24, a sign that the vehicle 100 starts is detected, the engine 101 is restarted by the idling stop mechanism, and the vehicle 100 is detected to enter the parking lot (or the vehicle 100 has entered the parking lot). The vehicle 100 accelerates and cruises until predicted time t25. At that time, the controller 111 transmits again the generated voltage command signal corresponding to the voltage S0 to the regulator 204 of the alternator 106, the generated voltage of the alternator 106 is set to the voltage S0, and the load on the alternator 106 is minimized. Thus, the charging rate of the lead battery 108 gradually decreases within the range of SMin and SMMax.
 すなわち、鉛バッテリ108の充電率がSMinとSMaxの範囲内にある場合であって、鉛バッテリ108を充電する際には、コントローラ111は、オルタネータ106のレギュレータ204に対して相対的に高い値の発電電圧指令信号を送信し、駆動回路206のPWM信号をDUTY比の増加方向へ調整する。一方で、鉛バッテリ108の充電を抑制する際には、コントローラ111は、オルタネータ106のレギュレータ204に対して相対的に低い値の発電電圧指令信号を送信し、駆動回路206のPWM信号をDUTY比の減少方向へ調整する。 That is, when the charge rate of the lead battery 108 is within the range of SMin and SMax, when charging the lead battery 108, the controller 111 has a relatively high value relative to the regulator 204 of the alternator 106. The generated voltage command signal is transmitted, and the PWM signal of the drive circuit 206 is adjusted in the increasing direction of the DUTY ratio. On the other hand, when the charging of the lead battery 108 is suppressed, the controller 111 transmits a relatively low power generation voltage command signal to the regulator 204 of the alternator 106, and converts the PWM signal of the drive circuit 206 into the DUTY ratio. Adjust in the decreasing direction.
 時刻t25で車両100が駐車場へ進入する(又は車両100が駐車場へ進入することが予測される)と、ナビゲーションシステム117からコントローラ111へ駐車場進入情報(例えば、車両100の駐車場進入時期や駐車場進入予測時期などの情報)が送信される。例えば、ナビゲーションシステム117は、内部に保存された地図情報を使用し、車両100の自車位置が駐車場の敷地位置上にあると判断すると、コントローラ111へ駐車場進入情報を送信する。コントローラ111は、ナビゲーションシステム117から駐車場進入情報が送信されると、いずれ車両100の起動状態が停止されると推定し、オルタネータ106のレギュレータ204に対して電圧S1(S2≧S1>S0)に対応する発電電圧指令信号を送信し、オルタネータ106の発電電圧はその電圧S1に設定され、駐車場内を車両100で走行しながら鉛バッテリ108が充電される。これにより、オルタネータ106の発電負荷が増加して車両100の燃費性能が低下するものの、コントローラ111は、運転者等によって車両100の起動状態が停止されることを予め推定し、車両100の起動状態が停止される以前から鉛バッテリ108の充電率を所望の状態(保存に適した状態)へ調整することができる。 When the vehicle 100 enters the parking lot at time t25 (or when the vehicle 100 is predicted to enter the parking lot), the navigation system 117 sends the parking lot entry information to the controller 111 (for example, the parking lot entry timing of the vehicle 100). And information such as predicted parking lot entry time). For example, when the navigation system 117 uses the map information stored therein and determines that the position of the vehicle 100 is on the parking lot site position, the navigation system 117 transmits the parking lot entry information to the controller 111. When the parking lot approach information is transmitted from the navigation system 117, the controller 111 estimates that the activation state of the vehicle 100 will eventually be stopped, and sets the voltage S1 (S2 ≧ S1> S0) to the regulator 204 of the alternator 106. A corresponding power generation voltage command signal is transmitted, the power generation voltage of the alternator 106 is set to the voltage S1, and the lead battery 108 is charged while traveling in the parking lot with the vehicle 100. As a result, although the power generation load of the alternator 106 increases and the fuel efficiency of the vehicle 100 decreases, the controller 111 estimates in advance that the startup state of the vehicle 100 is stopped by the driver or the like, and the startup state of the vehicle 100 The charging rate of the lead battery 108 can be adjusted to a desired state (a state suitable for storage) before the battery is stopped.
 また、コントローラ111は、時刻t25で車両100が駐車場へ進入した時点(又は車両100が駐車場へ進入することが予測された時点)で、アイドリングストップ機構に対してアイドリングストップ禁止フラグを設定する。これにより、例えば時刻t25~t26で車両100が駐車場内を巡航し、時刻t26~t27で駐車場内で減速し、時刻t27~t28で一時的に停車した場合(例えば、駐車場内での他車両との衝突を回避するために停車した場合や駐車操作を開始する前に停車した場合等)であっても、アイドリングストップ機構によるエンジン101の自動停止が禁止され、エンジン101の自動停止によるオルタネータ106の停止が抑止されるため、オルタネータ106の発電電圧を電圧S1に維持し続けることができ、鉛バッテリ108の充電機会が低減することを回避して鉛バッテリ108を効率的に充電することができる。なお、車両100が駐車場内で減速する時刻t26~t27では、オルタネータ106の発電電圧を通常の電圧S2に設定し、鉛バッテリ108をより急速に充電してもよい。 In addition, the controller 111 sets an idling stop prohibition flag for the idling stop mechanism when the vehicle 100 enters the parking lot at time t25 (or when the vehicle 100 is predicted to enter the parking lot). . Thus, for example, when the vehicle 100 cruises in the parking lot from time t25 to t26, decelerates in the parking lot from time t26 to t27, and temporarily stops at time t27 to t28 (for example, with other vehicles in the parking lot) Even if the vehicle stops to avoid a collision or the vehicle stops before starting the parking operation), the automatic stop of the engine 101 by the idling stop mechanism is prohibited, and the alternator 106 of the automatic stop of the engine 101 Since the stop is suppressed, the power generation voltage of the alternator 106 can be maintained at the voltage S1, and the lead battery 108 can be efficiently charged while avoiding a reduction in the charging opportunity of the lead battery 108. Note that at times t26 to t27 when the vehicle 100 decelerates in the parking lot, the power generation voltage of the alternator 106 may be set to the normal voltage S2, and the lead battery 108 may be charged more rapidly.
 時刻t25~t27で車両100が駐車場内の所望の駐車区画へ移動され、時刻t27~t28で車両100が一時的に停車され、時刻t28で運転者が所定の駐車操作を開始すると、その駐車操作に関する駐車操作情報がコントローラ111へ送信される。例えば、運転者が方向指示器113を操作してハザードランプを点灯したり、カメラ118の画像情報に基づきパターンマッチング等によって駐車区画が検出されると、方向指示器113やカメラ118からコントローラ111へそれらの駐車操作情報が送信され、コントローラ111はそれらの情報に基づいて運転者が車両100の駐車操作を開始すると判定する。 When the vehicle 100 is moved to a desired parking area in the parking lot from time t25 to t27, the vehicle 100 is temporarily stopped from time t27 to t28, and when the driver starts a predetermined parking operation at time t28, the parking operation is performed. The parking operation information regarding is transmitted to the controller 111. For example, when a driver operates the direction indicator 113 to turn on a hazard lamp, or when a parking area is detected by pattern matching or the like based on image information of the camera 118, the direction indicator 113 or the camera 118 transfers to the controller 111. The parking operation information is transmitted, and the controller 111 determines that the driver starts the parking operation of the vehicle 100 based on the information.
 時刻t28でコントローラ111が運転者が車両100の駐車操作を開始したと判定すると、コントローラ111は、車載機器109に対して車載機器消費電力制限モードフラグを設定する。具体的には、コントローラ111は、車載機器109のうち例えばヘッドライト112等の保安装置等を除いて、電気ヒータ114や送風ファン115等の快適装置の駆動を停止したり、その快適装置の消費電力を抑制する車載機器消費電力制限モードフラグを設定すると共に、マルチメディアシステム116を介して運転者等にそれらの車載機器109が車載機器消費電力制限モードであることを通知する。なお、マルチメディアシステム116としては、例えばオーディオやビデオモニタ、コンソールパネルやメータ等に取り付けられた表示装置やランプ等を挙げることができ、例えば音声や映像、サインの表示、ランプの点灯等によって運転者等に車載機器消費電力制限モードであることを通知する。 When the controller 111 determines that the driver has started the parking operation of the vehicle 100 at time t28, the controller 111 sets an in-vehicle device power consumption restriction mode flag for the in-vehicle device 109. Specifically, the controller 111 stops driving of comfort devices such as the electric heater 114 and the blower fan 115 except for a safety device such as the headlight 112 in the in-vehicle device 109, or consumes the comfort device. The in-vehicle device power consumption restriction mode flag for suppressing power is set, and the driver or the like is notified via the multimedia system 116 that the in-vehicle device 109 is in the in-vehicle device power consumption restriction mode. Examples of the multimedia system 116 include a display device or lamp attached to an audio or video monitor, a console panel, a meter, or the like. The user is notified that the in-vehicle device power consumption restriction mode is set.
 これにより、例えば時刻t28で運転者が車両100の駐車操作を開始してから時刻t29でイグニッションスイッチ125のオフ操作によって車両100の起動状態を停止するまで、アイドリングストップ機構によるエンジン101の自動停止が禁止されると共に、車載機器109の消費電力が低減されて鉛バッテリ108の放電が抑制されるため、オルタネータ106の発電電圧を電圧S1に維持しつつ、鉛バッテリ108の充電を更に促進することができる。したがって、時刻t29でイグニッションスイッチ125のオフ状態への操作によって車両100の起動状態が停止される際の鉛バッテリ108の充電率を所望の充電率まで効率的に高めることができ、車両100が長期に亘って駐車されて鉛バッテリ108が放置された場合であっても、鉛バッテリ108の劣化を抑制することができる。 Thus, for example, the engine 101 is automatically stopped by the idling stop mechanism from when the driver starts the parking operation of the vehicle 100 at time t28 until the start-up state of the vehicle 100 is stopped by turning off the ignition switch 125 at time t29. In addition to being prohibited, the power consumption of the in-vehicle device 109 is reduced and the discharge of the lead battery 108 is suppressed. Therefore, it is possible to further promote the charging of the lead battery 108 while maintaining the power generation voltage of the alternator 106 at the voltage S1. it can. Therefore, the charging rate of the lead battery 108 when the starting state of the vehicle 100 is stopped by the operation of the ignition switch 125 to the off state at time t29 can be efficiently increased to a desired charging rate. Even when the lead battery 108 is parked and left unattended, deterioration of the lead battery 108 can be suppressed.
 なお、車両100の起動状態が停止される前に鉛バッテリ108の充電率が上限値SMaxや鉛バッテリ108の保存に適した充電率に到達した場合には、鉛バッテリ108の充電を停止する。発明者等は、鉛バッテリ108の保存に適した充電率が、イグニッションスイッチ125のオフ操作による車両100の起動状態の停止の時点で0.93~0.95の範囲内であることを確認している。 If the charging rate of the lead battery 108 reaches the upper limit value SMax or a charging rate suitable for storage of the lead battery 108 before the start-up state of the vehicle 100 is stopped, charging of the lead battery 108 is stopped. The inventors have confirmed that the charging rate suitable for storage of the lead battery 108 is within the range of 0.93 to 0.95 at the time of stopping the start-up state of the vehicle 100 by turning off the ignition switch 125. ing.
 ここで、上記する車載機器消費電力制限モードは、例えば運転者等のスイッチ操作等によって任意に解除されてもよい。また、車載機器消費電力制限モードは、例えば電気ヒータ114や送風ファン115等の快適装置の駆動を停止した際などに車両100のキャビン内の空調設定温度とキャビン内の実際の温度が大幅に乖離して乗員の快適性が損なわれると判断される場合には、コントローラ111によって自動的に解除されてもよい。 Here, the above-described in-vehicle device power consumption restriction mode may be arbitrarily canceled by, for example, a driver's switch operation or the like. In addition, in the in-vehicle device power consumption restriction mode, for example, when driving of comfort devices such as the electric heater 114 and the blower fan 115 is stopped, the air conditioning set temperature in the cabin of the vehicle 100 and the actual temperature in the cabin are greatly different. If it is determined that passenger comfort is impaired, the controller 111 may automatically cancel the passenger comfort.
 ところで、上記するように、ナビゲーションシステム117から提供される情報を用いて車両100の起動状態が停止される起動停止時期を推定する際、何らかの要因によって推定された起動停止時期に車両100の起動状態が停止されない場合や、推定された起動停止時期よりも以前に車両100の起動状態が停止され、鉛バッテリ108が所望の充電率に調整されない場合などが発生し得る。 By the way, as described above, when estimating the start / stop time at which the start state of the vehicle 100 is stopped using the information provided from the navigation system 117, the start state of the vehicle 100 at the start / stop time estimated by some factor. May not be stopped, or the start state of the vehicle 100 may be stopped before the estimated start / stop timing, and the lead battery 108 may not be adjusted to a desired charge rate.
 そこで、前者の場合(推定された起動停止時期に車両100の起動状態が停止されない場合)には、前記起動停止時期から所定時間が経過して車両100が起動している場合に、例えば、鉛バッテリ108に取り付けられたバッテリ状態検出装置110によって鉛バッテリ108の充電率を推定し、推定された鉛バッテリ108の充電率が所望の充電率へ到達して所定時間が経過した場合に、鉛バッテリ108の充電率の下限値SMinを上記SMinとSMaxの範囲内かつ所望の充電率に近い値へ変更し、アイドリングストップ禁止フラグと車載機器消費電力制限モードフラグを解除して、通常のアイドリングストッ機構を用いた車両100の制御へ戻ることが望ましい。 Therefore, in the former case (when the start state of the vehicle 100 is not stopped at the estimated start / stop timing), when the vehicle 100 is started after a predetermined time has elapsed from the start / stop timing, for example, lead When the charging rate of the lead battery 108 is estimated by the battery state detection device 110 attached to the battery 108 and the estimated charging rate of the lead battery 108 reaches a desired charging rate and a predetermined time elapses, the lead battery The lower limit value SMin of the charging rate of 108 is changed to a value close to the desired charging rate within the range of the above SMin and SMax, the idling stop prohibition flag and the in-vehicle device power consumption restriction mode flag are canceled, and the normal idling stop mechanism It is desirable to return to the control of the vehicle 100 using.
 一方で、後者の場合(推定された起動停止時期よりも以前に車両100の起動状態が停止され、鉛バッテリ108が所望の充電率に調整されない場合)には、例えば車両100に搭載されたマルチメディアシステム116を介して鉛バッテリ108の充電率を表示し、推奨する起動停止時期や現在から起動停止時期までの時間を運転者等に通知する。また、運転者等の使用者がイグニッションスイッチ125のオフ操作後もエンジン101の駆動を許容する場合には、イグニッションスイッチ125のオフ操作後もエンジン101とオルタネータ106を引き続き駆動し、鉛バッテリ108の充電を継続してもよい。 On the other hand, in the latter case (when the start state of the vehicle 100 is stopped before the estimated start / stop timing and the lead battery 108 is not adjusted to a desired charging rate), for example, a multi-vehicle mounted on the vehicle 100 is used. The charging rate of the lead battery 108 is displayed via the media system 116, and the recommended start / stop time and the time from the current time to the start / stop time are notified to the driver or the like. In addition, when a user such as a driver allows the engine 101 to be driven even after the ignition switch 125 is turned off, the engine 101 and the alternator 106 are continuously driven after the ignition switch 125 is turned off, Charging may be continued.
 なお、上記する実施形態では、車両100が駐車場へ進入してナビゲーションシステム117からコントローラ111へ駐車場進入情報が送信された時点(時刻t25)で、コントローラ111がいずれ車両100の起動状態が停止されると推定し、オルタネータ106の発電電圧を電圧S1に設定して鉛バッテリ108を充電する形態について説明したが、例えば、コントローラ111による車両100の起動停止時期の推定精度を高めるために、運転者が車両100の駐車操作を開始したと判定した時点(時刻t28)やカメラ118等によって駐車場内の駐車区画が検出された時点で、コントローラ111がいずれ車両100の起動状態が停止されると推定し、オルタネータ106の発電電圧を調整して鉛バッテリ108を充電してもよい。 In the above-described embodiment, when the vehicle 100 enters the parking lot and the parking lot entry information is transmitted from the navigation system 117 to the controller 111 (time t25), the controller 111 eventually stops the activation state of the vehicle 100. In the above description, the lead battery 108 is charged by setting the power generation voltage of the alternator 106 to the voltage S1. For example, in order to increase the estimation accuracy of the start / stop timing of the vehicle 100 by the controller 111, driving is performed. The controller 111 estimates that the activation state of the vehicle 100 will be stopped at some point when it is determined that the person has started the parking operation of the vehicle 100 (time t28) or when the parking area in the parking lot is detected by the camera 118 or the like. The lead battery 108 is charged by adjusting the power generation voltage of the alternator 106. Good.
 また、上記する実施形態では、駐車場内で車両100が走行する際の車載機器109の電力を確保するために、運転者が車両100の駐車操作を開始したと判定した時点(時刻t28)で、コントローラ111が車載機器109に対して車載機器消費電力制限モードフラグを設定する形態について説明したが、例えば、鉛バッテリ108をより急速に充電するために、ナビゲーションシステム117からコントローラ111へ駐車場進入情報が送信された時点(時刻t25)で、コントローラ111が車載機器109に対して車載機器消費電力制限モードフラグを設定してもよい。 Moreover, in embodiment mentioned above, in order to ensure the electric power of the vehicle equipment 109 at the time of the vehicle 100 driving | running | working in a parking lot, when it determines with the driver | operator having started the parking operation of the vehicle 100 (time t28), The controller 111 sets the in-vehicle device power consumption restriction mode flag for the in-vehicle device 109. For example, in order to charge the lead battery 108 more rapidly, the parking system entry information from the navigation system 117 to the controller 111 is described. The controller 111 may set the in-vehicle device power consumption restriction mode flag for the in-vehicle device 109 at the time (time t25) at which is transmitted.
[実施形態2]
 図8は、本発明に係るバッテリの制御装置の実施形態2が搭載された車両が目的地や使用拠点へ移動する際の推定残り旅行時間とバッテリの充電開始時期の関係を模式的に説明したものである。また、図9は、バッテリの所望の充電率と現在の充電率の差と推定残り旅行時間の関係を示したものである。
[Embodiment 2]
FIG. 8 schematically illustrates the relationship between the estimated remaining travel time and the charging start time of the battery when the vehicle equipped with the battery control device according to the second embodiment of the present invention moves to the destination or use base. Is. FIG. 9 shows the relationship between the desired charge rate of the battery, the difference between the current charge rate and the estimated remaining travel time.
 実施形態2のバッテリの制御装置は、上記する実施形態1のバッテリの制御装置に対して、車両100の起動停止時期を推定する際に利用する情報が相違しており、その他の構成は実施形態1のバッテリの制御装置と同様である。したがって、実施形態1のバッテリの制御装置と同様の構成にはその詳細な説明は省略する。 The battery control device according to the second embodiment is different from the battery control device according to the first embodiment described above in that information used when estimating the start / stop timing of the vehicle 100 is different. It is the same as that of the control apparatus of 1 battery. Therefore, the detailed description of the same configuration as the battery control device of the first embodiment is omitted.
 この実施形態2では、例えば、ナビゲーションシステム117から提供される目的地情報や使用拠点情報、目的地や使用拠点までの推定残り旅行時間、目的地や使用拠点までの推定残り旅行距離などの各種情報、通信モジュール120から提供される各種情報などを利用して、車両100の起動停止時期を推定する。 In the second embodiment, for example, various information such as destination information and use base information provided from the navigation system 117, estimated remaining travel time to the destination or use base, and estimated remaining travel distance to the destination or use base. The start / stop timing of the vehicle 100 is estimated using various information provided from the communication module 120.
 車載機器109のうちナビゲーションシステム117は、例えば、車両100の経路案内のために設定された目的地情報、車両100の走行履歴に基づく経路学習結果、使用拠点(例えば自宅や会社所在地、それ以外の使用駐車場位置など)の登録情報などに基づいて、目的地情報や使用拠点情報、目的地や使用拠点への接近による目的地や使用拠点までの推定残り旅行時間や推定残り旅行距離などをコントローラ111へ送信する。 Among the in-vehicle devices 109, the navigation system 117 includes, for example, destination information set for route guidance of the vehicle 100, route learning results based on the travel history of the vehicle 100, bases used (for example, home and company locations, other than that) Based on the registration information of the parking lot location, etc.), the destination information, the base information, the estimated remaining travel time to the destination and the base based on the proximity to the destination and base, the estimated remaining travel distance, etc. 111.
 具体的には、ナビゲーションシステム117は、例えば、ナビゲーションシステム117によって算出される残りの走行距離が所定値(例えば1km~10km)以下となった場合、目的地や使用拠点から所定距離(例えば1km~10km)の範囲内へ自車が進入した場合などに、目的地情報や使用拠点情報をコントローラ111へ送信する。また、ナビゲーションシステム117は、図8に示すように、例えば推定残り旅行時間が所定値(例えば5分~15分)以下となった場合などにその推定残り旅行時間をコントローラ111へ送信する。 Specifically, for example, when the remaining travel distance calculated by the navigation system 117 is equal to or less than a predetermined value (for example, 1 km to 10 km), the navigation system 117 determines a predetermined distance (for example, 1 km to When the host vehicle enters the range of 10 km), the destination information and the use base information are transmitted to the controller 111. Further, as shown in FIG. 8, the navigation system 117 transmits the estimated remaining travel time to the controller 111, for example, when the estimated remaining travel time becomes equal to or less than a predetermined value (for example, 5 to 15 minutes).
 コントローラ111は、ナビゲーションシステム117から送信される目的地情報や使用拠点情報、推定残り旅行時間などを受信すると、運転者等によって車両100の起動状態が停止されると推定し、車両100の起動状態が停止される以前から鉛バッテリ108を充電して鉛バッテリ108の充電率を所望の状態(保存に適した状態)へ調整する。その際、コントローラ111は、アイドリングストップ機構に対してアイドリングストップ禁止フラグを設定したり、車載機器109に対して車載機器消費電力制限モードフラグを設定してもよい。 When the controller 111 receives the destination information, use base information, estimated remaining travel time, and the like transmitted from the navigation system 117, the controller 111 estimates that the activation state of the vehicle 100 is stopped by the driver or the like, and the activation state of the vehicle 100 The lead battery 108 is charged before the battery is stopped, and the charge rate of the lead battery 108 is adjusted to a desired state (a state suitable for storage). At that time, the controller 111 may set an idling stop prohibition flag for the idling stop mechanism or may set an in-vehicle device power consumption restriction mode flag for the in-vehicle device 109.
 ここで、ナビゲーションシステム117からコントローラ111へ目的地情報や使用拠点情報を送信するために設定される前記所定値や前記所定距離、推定残り旅行時間を送信するために設定される前記所定値は、バッテリ状態検出装置110によって検出されるバッテリの充電状態に関する情報に基づいて適宜変更してもよい。すなわち、図8及び図9に示すように、バッテリ状態検出装置110によって検出される現在の鉛バッテリ108の充電率と所望の充電率との差が大きく、鉛バッテリ108を所望の充電率に充電するのに要する時間が長くなると想定される場合には、前記所定値や前記所定距離を相対的に長い時間や相対的に長い距離に設定してもよい。例えば、現在の鉛バッテリ108の充電率と所望の充電率との差が0.05である場合には、推定残り旅行時間を送信するために設定される前記所定値を5分とし、現在の鉛バッテリ108の充電率と所望の充電率との差が0.10である場合には、推定残り旅行時間を送信するために設定される前記所定値を10分とし、現在の鉛バッテリ108の充電率と所望の充電率との差が0.15である場合には、推定残り旅行時間を送信するために設定される前記所定値を15分とし、鉛バッテリ108の充電率に応じて鉛バッテリ108の充電を開始する時期(すなわち、鉛バッテリ108の充電率の調整を開始する充電率調整開始時期)を変更してもよい。 Here, the predetermined value set for transmitting the destination information and the use base information from the navigation system 117 to the controller 111, the predetermined distance, and the predetermined value set for transmitting the estimated remaining travel time are: You may change suitably based on the information regarding the charge state of the battery detected by the battery state detection apparatus 110. FIG. That is, as shown in FIGS. 8 and 9, the difference between the current charge rate of the lead battery 108 detected by the battery state detection device 110 and the desired charge rate is large, and the lead battery 108 is charged to the desired charge rate. When it is assumed that the time required to do this will be long, the predetermined value or the predetermined distance may be set to a relatively long time or a relatively long distance. For example, if the difference between the current charge rate of the lead battery 108 and the desired charge rate is 0.05, the predetermined value set for transmitting the estimated remaining travel time is set to 5 minutes, When the difference between the charge rate of the lead battery 108 and the desired charge rate is 0.10, the predetermined value set for transmitting the estimated remaining travel time is set to 10 minutes, and the current lead battery 108 When the difference between the charging rate and the desired charging rate is 0.15, the predetermined value set for transmitting the estimated remaining travel time is set to 15 minutes, and lead according to the charging rate of the lead battery 108 You may change the time which starts charge of the battery 108 (namely, charge rate adjustment start time which starts adjustment of the charge rate of the lead battery 108).
 ところで、例えば、通常の通勤や買い物等では、運転者がナビゲーションシステム117に目的地情報を入力して利用する場合は極めて少ない。そこで、ナビゲーションシステム117は、運転者がナビゲーションシステム117に目的地情報を入力しなくても目的地や使用拠点までの推定残り旅行時間を算出することができる。 By the way, for example, in normal commuting and shopping, there are very few cases where the driver inputs destination information to the navigation system 117 and uses it. Therefore, the navigation system 117 can calculate the estimated remaining travel time to the destination and the use base without the driver inputting the destination information to the navigation system 117.
 具体的には、過去に車両100の起動状態が停止された地点から所定範囲内(例えば50m以内)で再び車両100の起動状態が停止された場合には、その周辺が車両100の使用拠点(例えば自宅や会社所在地、それ以外の使用駐車場位置など)である可能性が高い。ナビゲーションシステム117は、イグニッションスイッチ125のオフ操作などによって車両100の起動状態が停止された位置情報を過去数回(例えば過去20回)記憶し、記憶された位置情報で頻出する地点を車両100の使用拠点であると推定し、推定された車両100の使用拠点に基づいてその車両100の使用拠点への最短経路での推定残り旅行時間を算出する。なお、ナビゲーションシステム117は、算出された推定残り旅行時間が所定値(例えば10分)以下となった場合や、推定された車両100の使用拠点から所定距離(例えば5km)の範囲内に車両100が進入した場合などに、推定残り旅行時間や推定残り旅行距離、目的地情報、使用拠点情報などをコントローラ111へ送信し、コントローラ111は、ナビゲーションシステム117から送信される目的地情報や使用拠点情報、推定残り旅行時間や推定残り旅行距離などを受信すると、鉛バッテリ108を充電して鉛バッテリ108の充電率を所望の状態(保存に適した状態)へ調整する。 Specifically, when the activation state of the vehicle 100 is stopped again within a predetermined range (for example, within 50 m) from the point where the activation state of the vehicle 100 was stopped in the past, the periphery of the vehicle 100 is a use base of the vehicle 100 ( For example, there is a high possibility that it is a home, a company location, or a parking lot location other than that. The navigation system 117 stores the position information where the activation state of the vehicle 100 is stopped by the turning-off operation of the ignition switch 125 for the past several times (for example, the past 20 times), and points where the vehicle 100 frequently appears in the stored position information. Based on the estimated use base of the vehicle 100, the estimated remaining travel time on the shortest route to the use base of the vehicle 100 is calculated. Note that the navigation system 117 determines that the calculated estimated remaining travel time is less than or equal to a predetermined value (for example, 10 minutes) or within a predetermined distance (for example, 5 km) from the estimated use base of the vehicle 100. When the vehicle enters, the estimated remaining travel time, estimated remaining travel distance, destination information, use base information, etc. are transmitted to the controller 111. The controller 111 transmits destination information and use base information transmitted from the navigation system 117. When the estimated remaining travel time, estimated remaining travel distance, and the like are received, the lead battery 108 is charged to adjust the charge rate of the lead battery 108 to a desired state (a state suitable for storage).
 なお、ナビゲーションシステム117は、過去に車両100の起動状態が停止された地点を参照し、それらの地点の全部もしくはほぼ全部が推定された車両100の使用拠点から所定距離(例えば5km)の範囲内に含まれる場合に、運転者等による車両100の使用範囲が限定的であると判断し、前記所定距離を小さくして、通常のアイドリングストッ機構を用いた車両100の制御を実施する範囲を確保することが望ましい。 The navigation system 117 refers to points where the starting state of the vehicle 100 has been stopped in the past, and is within a predetermined distance (for example, 5 km) from the use base of the vehicle 100 where all or almost all of those points are estimated. The range of use of the vehicle 100 by a driver or the like is limited, and the predetermined distance is reduced to ensure a range in which the control of the vehicle 100 using a normal idling stock mechanism is performed. It is desirable to do.
 一方、車載機器109のうち通信モジュール120は、例えば目的地の施設に設けられた送信アンテナ装置から発信される施設情報や駐車場の誘導案内などの案内情報、駐車場から提供される駐車場内の空いた駐車区画を案内する駐車区画案内情報などを受信し、それらの情報を受信した時点でコントローラ111へ送信する。コントローラ111は、通信モジュール120から送信される上記情報を受信すると、運転者等によって車両100の起動状態が停止されると推定し、車両100の起動状態が停止される以前から鉛バッテリ108を充電して鉛バッテリ108の充電率を所望の状態(保存に適した状態)へ調整する。 On the other hand, the communication module 120 of the in-vehicle device 109 includes, for example, facility information transmitted from a transmission antenna device provided at a destination facility, guidance information such as parking guidance, and the like in a parking lot provided from a parking lot. The parking section guidance information for guiding the vacant parking section is received and transmitted to the controller 111 when the information is received. When the controller 111 receives the information transmitted from the communication module 120, the controller 111 estimates that the start state of the vehicle 100 is stopped by a driver or the like, and charges the lead battery 108 before the start state of the vehicle 100 is stopped. Then, the charge rate of the lead battery 108 is adjusted to a desired state (a state suitable for storage).
 なお、上記するように、ナビゲーションシステム117から提供される情報(例えば目的地情報や使用拠点情報、目的地や使用拠点までの推定残り旅行時間など)や通信モジュール120から提供される情報を用いて車両100の起動状態を停止する起動停止時期を推定する際、何らかの要因によって推定された起動停止時期に車両100の起動状態が停止されない場合や、主たる使用拠点や目的地に到着したにも関わらず最終的に車両100の起動状態が停止されない場合などが発生し得る。 As described above, information provided from the navigation system 117 (for example, destination information and use base information, estimated remaining travel time to the destination and use base, etc.) and information provided from the communication module 120 are used. When estimating the start / stop time for stopping the start state of the vehicle 100, when the start state of the vehicle 100 is not stopped at the start / stop time estimated for some reason, or when the vehicle 100 arrives at the main use base or destination. Eventually, the case where the activation state of the vehicle 100 is not stopped may occur.
 そこで、例えば、推定された起動停止時期から所定時間(例えば5分以上や10分以上など)が経過した場合や、主たる使用拠点や目的地に到着してから所定時間(例えば5分以上や10分以上など)車両100が起動している場合、鉛バッテリ108の充電率が所望の充電率に到達してから所定時間(例えば3分以上や5分以上など)が経過した場合、車両100が使用拠点や目的地を通過してそのまま走行し、車速が所定値以上(例えば5km/h~40km/hの範囲内の所定値以上)に到達した場合には、鉛バッテリ108の充電率を所望の充電率へ調整する制御を中止し、場合によりアイドリングストップ禁止フラグと車載機器消費電力制限モードフラグを解除して、通常の車両100の制御へ戻ってもよい。 Therefore, for example, when a predetermined time (for example, 5 minutes or more or 10 minutes or more) has elapsed from the estimated start / stop timing, or for a predetermined time (for example, 5 minutes or more or 10 minutes after arrival at the main use base or destination). When the vehicle 100 is activated), when a predetermined time (for example, 3 minutes or more, 5 minutes or more) has elapsed since the charging rate of the lead battery 108 reaches a desired charging rate, the vehicle 100 When the vehicle travels through the base or destination and travels as it is and the vehicle speed reaches a predetermined value or higher (for example, a predetermined value within a range of 5 km / h to 40 km / h), the charge rate of the lead battery 108 is desired. The control for adjusting the charging rate of the vehicle may be stopped, the idling stop prohibition flag and the in-vehicle device power consumption restriction mode flag may be canceled in some cases, and the control may be returned to normal vehicle 100 control.
[実施形態3]
 実施形態3のバッテリの制御装置は、上記する実施形態1、2のバッテリの制御装置に対して、車両100の起動停止時期を推定する際に利用する情報が相違しており、その他の構成は実施形態1、2のバッテリの制御装置と同様である。したがって、実施形態1、2のバッテリの制御装置と同様の構成にはその詳細な説明は省略する。
[Embodiment 3]
The battery control device of the third embodiment is different from the battery control device of the first and second embodiments described above in that the information used when estimating the start / stop timing of the vehicle 100 is different. This is the same as the battery control device of the first and second embodiments. Therefore, the detailed description of the same configuration as the battery control device of the first and second embodiments is omitted.
 この実施形態3では、主にカメラ118から得られる画像情報などを利用して、車両100の起動停止時期を推定する。 In the third embodiment, the start / stop timing of the vehicle 100 is estimated mainly using image information obtained from the camera 118.
 車載機器109のうちカメラ118は、撮像して得られた画像情報から駐車場内に描かれた駐車区画を示す境界線を検出し、その駐車区画情報をコントローラ111へ送信する。コントローラ111は、カメラ118から送信される駐車区画情報を受信すると、運転者等によって車両100が駐車区画に駐車されて車両100の起動状態が停止されることを予め推定し、車両100の起動状態が停止される以前から鉛バッテリ108を充電して鉛バッテリ108の充電率を所望の状態(保存に適した状態)へ調整する。 The camera 118 in the in-vehicle device 109 detects a boundary line indicating the parking area drawn in the parking lot from the image information obtained by imaging, and transmits the parking area information to the controller 111. When the controller 111 receives the parking area information transmitted from the camera 118, the controller 111 preliminarily estimates that the vehicle 100 is parked in the parking area by the driver or the like and the activation state of the vehicle 100 is stopped. The lead battery 108 is charged before the battery is stopped, and the charge rate of the lead battery 108 is adjusted to a desired state (a state suitable for storage).
 また、カメラ118は、撮像して得られた画像情報から車両に特徴的な情報量(例えば、ヘッドライトやテールランプ、箱型の車両形状、ナンバープレートなどの形状や色)を抽出し、画像中に駐車状態の車両があるか否かを判断し、その判断結果に基づいて自車両が駐車場に進入したか否かを判断し、自車両が駐車場に進入したと判断した場合にその判断結果(駐車場進入情報)をコントローラ111へ送信してもよい。その際、カメラ118が可視光情報のみならず赤外光情報を取得し得る場合には、可視光と赤外光の2波長から2色法などを利用して画像中の車両の温度を計測し、画像中にエンジンが停止した車両(渋滞に従列して走行している車両とは異なる)が多数検出される場合に、自車両が駐車場に進入したと判断してもよい。また、自動車のテールパイプから排出される排出ガスは周辺気温と比較して相対的に高温であるため、画像中の車両のテールパイプ周辺の温度を計測し、その温度計測結果と自車両のエンジン吸気温度との差が所定値よりも大きい場合には画像中の車両が起動状態にあると判断し、その温度計測結果と自車両のエンジン吸気温度との差が所定値よりも小さい場合には画像中の車両が起動停止状態にあり、自車両が駐車場に進入したと判断してもよい。 In addition, the camera 118 extracts the amount of information characteristic of the vehicle (for example, the shape and color of a headlight, tail lamp, box-shaped vehicle shape, license plate, etc.) from the image information obtained by imaging, It is determined whether there is a parked vehicle in the vehicle, and based on the determination result, it is determined whether the host vehicle has entered the parking lot, and the determination is made when it is determined that the host vehicle has entered the parking lot. A result (parking lot approach information) may be transmitted to the controller 111. At that time, if the camera 118 can acquire not only visible light information but also infrared light information, the temperature of the vehicle in the image is measured using a two-color method or the like from two wavelengths of visible light and infrared light. Then, when a large number of vehicles (which are different from a vehicle traveling in a traffic jam) are detected in the image, it may be determined that the host vehicle has entered the parking lot. Also, since the exhaust gas discharged from the tail pipe of an automobile is relatively high compared to the ambient temperature, the temperature around the tail pipe of the vehicle in the image is measured, and the temperature measurement result and the engine of the host vehicle are measured. When the difference with the intake air temperature is larger than the predetermined value, it is determined that the vehicle in the image is in the activated state. When the difference between the temperature measurement result and the engine intake air temperature of the own vehicle is smaller than the predetermined value, It may be determined that the vehicle in the image is in the start-stop state and the host vehicle has entered the parking lot.
 また、カメラ118は、車両100の起動状態が停止された前回の地点又は車両100の起動状態が停止された前回の地点の近傍での画像情報から特徴点を複数点抽出しておき、抽出された特徴点と合致する特徴点を有する画像が撮像された場合に、車両100が主たる使用拠点に到達した又は接近したと判断し、その使用拠点情報をコントローラ111へ送信してもよい。なお、車両100の起動状態が停止された前回の地点又は車両100の起動状態が停止された前回の地点の近傍での画像情報としては、例えば、イグニッションスイッチ125のオフ操作がなされた地点での画像情報、例えばリバースレンジやバックギアへのギアシフトがギアシフトセンサ121により検出された地点での画像情報、イグニッションスイッチ125のオフ操作がなされる所定時間だけ以前の撮像画像などを用いることができる。 Further, the camera 118 extracts a plurality of feature points from image information in the vicinity of the previous point where the activation state of the vehicle 100 was stopped or the previous point where the activation state of the vehicle 100 was stopped, and extracted. When an image having a feature point that matches the detected feature point is captured, it may be determined that the vehicle 100 has reached or approached the main use base, and the use base information may be transmitted to the controller 111. Note that image information in the vicinity of the previous point where the activation state of the vehicle 100 was stopped or in the vicinity of the previous point where the activation state of the vehicle 100 was stopped is, for example, at the point where the ignition switch 125 is turned off. Image information, for example, image information at a point where a gear shift sensor 121 detects a gear shift to a reverse range or a back gear, a captured image that is a predetermined time before the ignition switch 125 is turned off, and the like can be used.
[実施形態4]
 実施形態4のバッテリの制御装置は、上記する実施形態1~3のバッテリの制御装置に対して、車両100の起動停止時期を推定する際に利用する情報が相違しており、その他の構成は実施形態1~3のバッテリの制御装置と同様である。したがって、実施形態1~3のバッテリの制御装置と同様の構成にはその詳細な説明は省略する。
[Embodiment 4]
The battery control device according to the fourth embodiment differs from the battery control devices according to the first to third embodiments described above in that information used when estimating the start / stop timing of the vehicle 100 is different. This is the same as the battery control apparatus of the first to third embodiments. Therefore, the detailed description of the same configuration as the battery control device of the first to third embodiments is omitted.
 この実施形態4では、主にレーダ119から得られる車両100の周囲環境情報や、ギアシフトセンサ121や操舵角センサ122、車速センサ127によって検出される検出信号などを利用して、車両100の起動停止時期を推定する。 In the fourth embodiment, the start / stop of the vehicle 100 is mainly performed using the ambient environment information of the vehicle 100 obtained from the radar 119, detection signals detected by the gear shift sensor 121, the steering angle sensor 122, the vehicle speed sensor 127, and the like. Estimate the time.
 車載機器109のうちレーダ119は、車両100の前方、後方の左右、側方の近距離(例えば1m~10mの近距離など)に他車両や障害物が存在するか否かを判断し、その判断結果をコントローラ111へ送信する。コントローラ111は、その判断結果に基づいて車両100の前方、後方の左右、側方の近距離に他車両や障害物が存在すると判断され、かつドライブレンジからニュートラルやリバースレンジ、パーキングレンジへのギアシフトがギアシフトセンサ121より検出された際に、運転者等によって車両100が駐車操作されて車両100の起動状態が停止されることを予め推定し、車両100の起動状態が停止される以前から鉛バッテリ108を充電して鉛バッテリ108の充電率を所望の状態(保存に適した状態)へ調整する。 Among the in-vehicle devices 109, the radar 119 determines whether there is another vehicle or an obstacle at a short distance (for example, a short distance of 1 m to 10 m) on the front, rear left and right, and side of the vehicle 100. The determination result is transmitted to the controller 111. Based on the determination result, the controller 111 determines that there is another vehicle or an obstacle at a short distance to the front, rear left and right, or side of the vehicle 100, and shifts the gear from the drive range to the neutral, reverse range, or parking range. Is detected by the gear shift sensor 121, it is preliminarily estimated that the vehicle 100 is parked by the driver or the like and the start-up state of the vehicle 100 is stopped, and the lead battery before the start-up state of the vehicle 100 is stopped. 108 is charged to adjust the charging rate of the lead battery 108 to a desired state (a state suitable for storage).
 また、コントローラ111は、比較的短時間(例えば1分以内)での車両100の切り返しと後退のような駐車時に特有の運転操作(駐車操作開始から駐車操作終了までの間の運転操作)が操舵角センサ122やギアシフトセンサ121により検出された際にも、運転者等によって車両100が駐車されて車両100の起動状態が停止されることを予め推定し、車両100の起動状態が停止される以前から鉛バッテリ108を充電して鉛バッテリ108の充電率を所望の状態(保存に適した状態)へ調整する。 In addition, the controller 111 steers a unique driving operation (driving operation from the start of the parking operation to the end of the parking operation) during parking, such as turning back and backward of the vehicle 100 in a relatively short time (for example, within one minute). Even when detected by the angle sensor 122 or the gear shift sensor 121, it is preliminarily estimated that the vehicle 100 is parked by the driver or the like and the activation state of the vehicle 100 is stopped, and before the activation state of the vehicle 100 is stopped. The lead battery 108 is charged to adjust the charging rate of the lead battery 108 to a desired state (a state suitable for storage).
 具体的には、車速センサ127によって検出される車速が所定値以下となった後や車速が0になった後に、ドライブレンジや前進ギアからニュートラルレンジやリバースレンジ、バックギアへギアシフトがなされたことがギアシフトセンサ121により検出され、その後、例えば1分以内に操舵角が左右のどちらかに所定値以上変化したことが操舵角センサ122により検出された場合、運転者が車両100を後退させて駐車しようとしている可能性が高い。そのため、コントローラ111は、そのような駐車時に特有の運転操作に関する駐車操作情報を得た際には、運転者等によっていずれ車両100が駐車されて車両100の起動状態が停止されると推定する。 Specifically, after the vehicle speed detected by the vehicle speed sensor 127 falls below a predetermined value or after the vehicle speed becomes zero, a gear shift is made from the drive range or forward gear to the neutral range, reverse range, or back gear. Is detected by the gear shift sensor 121, and then, for example, if the steering angle sensor 122 detects that the steering angle has changed more than a predetermined value to either the left or right within one minute, the driver retreats the vehicle 100 and parks. It is likely that you are trying. Therefore, the controller 111 estimates that the vehicle 100 will be parked and the activation state of the vehicle 100 will be stopped by the driver or the like when the parking operation information regarding the specific driving operation at the time of parking is obtained.
[実施形態5]
 実施形態5のバッテリの制御装置は、上記する実施形態1~4のバッテリの制御装置に対して、車両100の起動停止時期を推定する際に利用する情報が相違しており、その他の構成は実施形態1~4のバッテリの制御装置と同様である。したがって、実施形態1~4のバッテリの制御装置と同様の構成にはその詳細な説明は省略する。
[Embodiment 5]
The battery control device according to the fifth embodiment differs from the battery control devices according to the first to fourth embodiments described above in that information used when estimating the start / stop timing of the vehicle 100 is different. This is the same as the battery control apparatus of the first to fourth embodiments. Therefore, the detailed description of the same configuration as the battery control device of the first to fourth embodiments is omitted.
 この実施形態5では、主にカメラ118から得られる車両100の後方や側方の画像情報と操舵角センサ122によって検出される検出信号を用いた駐車支援システムや自動駐車システムから得られる情報を利用して、車両100の起動停止時期を推定する。 In the fifth embodiment, information obtained from a parking assist system or an automatic parking system using image information mainly behind the vehicle 100 obtained from the camera 118 and a detection signal detected by the steering angle sensor 122 is used. Thus, the start / stop timing of the vehicle 100 is estimated.
 駐車支援システムや自動駐車システムは、例えば駐車支援システムスイッチ126のスイッチ操作等による運転者からの要求に応じて、カメラ118から得られる車両100の後方や側方の画像情報と操舵角センサ122によって検出される検出信号とに基づいて、予想される車両100の進行方向をマルチメディアシステム116等に表示しながら、車両100の駐車を誘導するシステムである。よって、この駐車支援システムや自動駐車システムが駆動されると、運転者が車両100を駐車しようとしている可能性が高い。 The parking assist system and the automatic parking system are based on the rear and side image information obtained from the camera 118 and the steering angle sensor 122 in response to a request from the driver, for example, by a switch operation of the parking assist system switch 126. This is a system for guiding the parking of the vehicle 100 while displaying the expected traveling direction of the vehicle 100 on the multimedia system 116 or the like based on the detected signal. Therefore, when this parking assistance system or automatic parking system is driven, the driver is likely to park the vehicle 100.
 駐車支援システムや自動駐車システムは、運転者によって駐車支援システムスイッチ126等が操作されると、その操作信号をコントローラ111へ送信し、コントローラ111は、その操作信号を受信すると、運転者等によって車両100が駐車操作されて車両100の起動状態が停止されることを予め推定し、車両100の起動状態が停止される以前から鉛バッテリ108を充電して鉛バッテリ108の充電率を所望の状態(保存に適した状態)へ調整する。 When the parking assist system switch 126 or the like is operated by the driver, the parking assist system or the automatic parking system transmits an operation signal to the controller 111. When the controller 111 receives the operation signal, the driver or the like It is preliminarily estimated that 100 is parked and the starting state of vehicle 100 is stopped, and lead battery 108 is charged before the starting state of vehicle 100 is stopped, and the charging rate of lead battery 108 is set to a desired state ( To a state suitable for storage).
 なお、車両100の起動停止時期を推定する際には、上記する実施形態1~5で説明したナビゲーションシステム117、カメラ118、レーダ119、ギアシフトセンサ121、操舵角センサ122、アクセルペダルセンサ123、ブレーキペダルセンサ124、車速センサ127及び駐車支援システム126等から得られる各種情報を適宜組み合わせることによって、車両100の起動停止時期をより精緻に推定することができる。 When estimating the start / stop timing of the vehicle 100, the navigation system 117, the camera 118, the radar 119, the gear shift sensor 121, the steering angle sensor 122, the accelerator pedal sensor 123, the brake described in the first to fifth embodiments described above. By appropriately combining various information obtained from the pedal sensor 124, the vehicle speed sensor 127, the parking support system 126, and the like, the start / stop timing of the vehicle 100 can be estimated more precisely.
[実施形態6]
 実施形態6のバッテリの制御装置は、上記する実施形態1~5のバッテリの制御装置に対して、車両100に搭載された車載機器109へ電力を供給するバッテリの形態が相違しており、その他の構成は実施形態1~5のバッテリの制御装置と同様である。したがって、実施形態1~5のバッテリの制御装置と同様の構成にはその詳細な説明は省略する。
[Embodiment 6]
The battery control device of the sixth embodiment is different from the battery control devices of the first to fifth embodiments described above in the form of a battery that supplies power to the in-vehicle device 109 mounted on the vehicle 100. The configuration is the same as that of the battery control apparatus of the first to fifth embodiments. Therefore, the detailed description of the same configuration as the battery control device of the first to fifth embodiments is omitted.
 この実施形態6では、車両100に搭載された車載機器109へ電力を供給するバッテリとして、高いエネルギ密度を有するリチウムイオン二次バッテリを使用する。 In the sixth embodiment, a lithium ion secondary battery having a high energy density is used as a battery for supplying electric power to the in-vehicle device 109 mounted on the vehicle 100.
 リチウムイオン二次バッテリは、主に、正極、負極、正極と負極を電気的に絶縁しかつ電解液を保持するセパレータから構成されている。 The lithium ion secondary battery is mainly composed of a positive electrode, a negative electrode, a separator that electrically insulates the positive electrode and the negative electrode and holds an electrolytic solution.
 リチウムイオン二次バッテリの正極は、リチウム遷移金属複合酸化物から形成され、その形成素材としては特に二酸化コバルトリチウム(LiCoO2)が好適に使用される。また、正極の形成素材としては、例えばポリアニリンなどに代表される導電性高分子なども適用される。 The positive electrode of the lithium ion secondary battery is formed from a lithium transition metal composite oxide, and in particular, lithium cobalt dioxide (LiCoO 2 ) is suitably used as a material for forming the positive electrode. In addition, as a material for forming the positive electrode, for example, a conductive polymer typified by polyaniline or the like is also used.
 リチウムイオン二次バッテリの負極は、リチウムイオンを急増放出可能な化合物から形成され、その形成素材としては一般に炭素材料が適用され、例えば、天然黒鉛をはじめとする燐片状や塊状などの人造黒鉛、メソフェーズピッチ系黒鉛などの黒鉛系炭素材料、フルフリルアルコールなどから得られるフラン樹脂などを焼成した非晶質系炭素材料が適用される。また、負極の形成素材としては、チタン酸リチウムや錫合金などの金属酸化物なども適用される。 The negative electrode of a lithium ion secondary battery is formed from a compound capable of rapidly increasing and releasing lithium ions, and a carbon material is generally applied as a material for the formation, for example, artificial graphite such as flakes and lumps including natural graphite In addition, a graphite-based carbon material such as mesophase pitch-based graphite, an amorphous carbon material obtained by firing a furan resin obtained from furfuryl alcohol, or the like is used. Moreover, metal oxides, such as lithium titanate and a tin alloy, are applied as a forming material of a negative electrode.
 また、セパレータは、電解液を保持するオレフィン類や不織布、紙などから形成される。電解液としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどのカーボネート類、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ―ブチロラクトン、1-2-ジメトキシエタンなどの非水溶媒などが好適に用いられ、これらにリチウムの過塩素酸塩、有機ホウ素リチウム塩、含フッ素化化合物のリチウム塩、リチウムイミド塩などのリチウム塩を溶解したものが適用される。なお、電解液は、ポリエチレンオキシドやポリフッ化ビニリデンなどからなるポリマーに含ませてゲル電解質として適用することもできる。 Also, the separator is formed from olefins that hold the electrolyte, nonwoven fabric, paper or the like. Examples of the electrolyte include carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and nonaqueous solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, and 1-2-dimethoxyethane. Preferably used are lithium perchlorates, lithium organic boron salts, lithium salts of fluorinated compounds, lithium salts such as lithium imide salts, and the like. The electrolytic solution can also be applied as a gel electrolyte by being included in a polymer made of polyethylene oxide, polyvinylidene fluoride, or the like.
 リチウムイオン二次バッテリを充電する場合、正極に使用するリチウム遷移金属複合酸化物の層間からリチウムイオンを引き抜き、正極の酸化状態を高めて正極の電位を相対的に高い電位として電荷を蓄える。したがって、リチウムイオン二次バッテリの充電率を高くすると、正極に使用するリチウム遷移金属複合酸化物から多くのリチウムイオンが引き抜かれた状態となり、その結晶構造が不安定となり、正極の劣化が進行することが知られている。また、リチウムイオン二次バッテリを充電率が高い状態で放置すると、バッテリ内の電解液が酸化されて電解液が変質したり、負極へのリチウムイオンの挿入により負極の体積が膨張して筺体により当該負極が圧縮されるなど、正極のみならず電解液や負極の劣化も進行する可能性があることが知られている。 When charging a lithium ion secondary battery, lithium ions are extracted from the interlayer of the lithium transition metal composite oxide used for the positive electrode, the oxidation state of the positive electrode is increased, and the charge of the positive electrode is made relatively high. Therefore, when the charging rate of the lithium ion secondary battery is increased, a large amount of lithium ions are extracted from the lithium transition metal composite oxide used for the positive electrode, the crystal structure becomes unstable, and the deterioration of the positive electrode proceeds. It is known. Also, if the lithium ion secondary battery is left in a state where the charging rate is high, the electrolyte in the battery is oxidized and the electrolyte changes, or the volume of the negative electrode expands due to the insertion of lithium ions into the negative electrode. It is known that deterioration of not only the positive electrode but also the electrolyte and the negative electrode may progress, such as the negative electrode being compressed.
 一方で、リチウムイオン二次バッテリを充電率が低い状態(放電状態)で放置すると、上記したように、次回のエンジン始動に必要とされる電力を十分に蓄えておくことができない可能性がある。 On the other hand, if the lithium ion secondary battery is left in a state where the charging rate is low (discharged state), as described above, there is a possibility that the electric power required for the next engine start cannot be sufficiently stored. .
 したがって、車両100に搭載された車載機器109へ電力を供給するためのバッテリとしてリチウムイオン二次バッテリを使用する場合には、起動停止時期推定部130によって、運転者等がイグニッションスイッチ125をオン状態からオフ状態へ操作して車両100の起動状態を停止する起動停止時期を推定した際に、充電率調整部131によって、リチウムイオン二次バッテリの充電率を保存に適した充電率に調整する。具体的には、コントローラ111の充電率調整部131は、オルタネータ106の発電電圧、アイドリングストップ機構の駆動、車載機器109の消費電力などを制御し、リチウムイオン二次バッテリを充電もしくは放電し、リチウムイオン二次バッテリの充電率を保存に適した充電率まで調整する。例えば、車両100の起動状態が停止される起動停止時期を推定した際、リチウムイオン二次バッテリの充電率が相対的に高い場合には、コントローラ111の充電率調整部131は、オルタネータ106の発電電圧を制御すると共に、車載機器109のうちの電気ヒータ114や送風ファン115などの快適装置を積極的に駆動したり、不図示の電力消費負荷を用いてリチウムイオン二次バッテリの充電率を保存に適した充電率まで減少させる。一方で、車両100の起動状態が停止される起動停止時期を推定した際、リチウムイオン二次バッテリの充電率が相対的に低い場合には、コントローラ111の充電率調整部131は、オルタネータ106の発電電圧などを制御して、リチウムイオン二次バッテリを積極的に充電してその充電率を保存に適した充電率まで増加させる。 Therefore, when a lithium ion secondary battery is used as a battery for supplying electric power to the in-vehicle device 109 mounted on the vehicle 100, the driver or the like turns on the ignition switch 125 by the start / stop timing estimation unit 130. When the start / stop timing for stopping the start state of the vehicle 100 is estimated by operating from 1 to 4, the charge rate adjustment unit 131 adjusts the charge rate of the lithium ion secondary battery to a charge rate suitable for storage. Specifically, the charging rate adjustment unit 131 of the controller 111 controls the power generation voltage of the alternator 106, the driving of the idling stop mechanism, the power consumption of the in-vehicle device 109, etc., and charges or discharges the lithium ion secondary battery. The charge rate of the ion secondary battery is adjusted to a charge rate suitable for storage. For example, when the start / stop timing at which the start state of the vehicle 100 is stopped is estimated, and the charge rate of the lithium ion secondary battery is relatively high, the charge rate adjusting unit 131 of the controller 111 generates power generated by the alternator 106. Controls the voltage and actively drives comfort devices such as the electric heater 114 and the blower fan 115 in the in-vehicle device 109, or stores the charging rate of the lithium ion secondary battery using a power consumption load (not shown). Reduce the charge rate to a suitable level. On the other hand, when the start / stop timing at which the start state of the vehicle 100 is stopped is estimated, when the charge rate of the lithium ion secondary battery is relatively low, the charge rate adjustment unit 131 of the controller 111 By controlling the power generation voltage and the like, the lithium ion secondary battery is positively charged and the charging rate is increased to a charging rate suitable for storage.
 なお、車両100の起動状態を停止する起動停止時期までにリチウムイオン二次バッテリの充電率を保存に適した充電率まで調整することができない、あるいは調整することができないと予測される場合であって、運転者等の使用者がイグニッションスイッチ125のオフ操作後もエンジン101の駆動を許容する場合には、イグニッションスイッチ125のオフ操作後もエンジン101や車載機器109等を引き続き駆動し、リチウムイオン二次バッテリの充電もしくは放電を継続してもよい。 In this case, the charging rate of the lithium ion secondary battery cannot be adjusted to a charging rate suitable for storage by the start / stop timing when the starting state of the vehicle 100 is stopped. Thus, when a user such as a driver allows the engine 101 to be driven even after the ignition switch 125 is turned off, the engine 101 and the vehicle-mounted device 109 are continuously driven even after the ignition switch 125 is turned off. The secondary battery may be continuously charged or discharged.
 本発明者等は、車両100に搭載された車載機器109へ電力を供給するためにリチウムイオン二次バッテリを使用する場合、リチウムイオン二次バッテリの保存に適した充電率は0.4~0.7の範囲内、より好ましくは0.5~0.65の範囲内であることを確認している。 When the present inventors use a lithium ion secondary battery to supply electric power to the in-vehicle device 109 mounted on the vehicle 100, the charging rate suitable for storage of the lithium ion secondary battery is 0.4-0. 0.7, more preferably within the range of 0.5 to 0.65.
 このように、車両100に搭載された車載機器109へ電力を供給するためのバッテリとしてリチウムイオン二次バッテリを使用する場合には、車両100の起動状態を停止する起動停止時期を推定し、その推定結果に基づいてリチウムイオン二次バッテリを充電もしくは放電してその充電率を保存に適した充電率に調整することによって、車両100の駐車や車両100の長期的な放置等によるバッテリの劣化を効果的に抑制してバッテリの信頼性を高めることができる。 Thus, when a lithium ion secondary battery is used as a battery for supplying electric power to the in-vehicle device 109 mounted on the vehicle 100, the start / stop timing for stopping the start state of the vehicle 100 is estimated, By charging or discharging the lithium ion secondary battery based on the estimation result and adjusting the charging rate to a charging rate suitable for storage, battery deterioration due to parking of the vehicle 100 or long-term neglect of the vehicle 100 is prevented. It is possible to effectively suppress and increase the reliability of the battery.
 なお、上記する実施形態1~6では、車両100に搭載された車載機器109へ電力を供給するバッテリとして鉛バッテリ(金属の溶解析出を伴うリザーブ型の充放電反応)やリチウムイオン二次バッテリ(正極及び負極の形成素材の層間にイオンが出入りするインターカレーション反応)を用いる形態について説明したが、前記バッテリとしては、電気化学特性に応じて充電率を調整し得る適宜のバッテリを適用できる。そのような車載用バッテリとしては、例えば、インターカレーション反応を行うニッケル水素二次バッテリ、電極近傍に浮遊したカチオン及びアニオンの物理吸着を利用した電気二重層キャパシタ(コンデンサ)、電気二重層キャパシタ正極とインターカレーション負極を組み合わせたハイブリッドキャパシタ(例えばリチウムイオンキャパシタ)などを挙げることができる。 In the first to sixth embodiments described above, a lead battery (reservation-type charge / discharge reaction that involves dissolution and deposition of metal) or a lithium ion secondary battery (as a battery for supplying power to the in-vehicle device 109 mounted on the vehicle 100) Although an embodiment using an intercalation reaction in which ions enter and exit between layers of the forming material of the positive electrode and the negative electrode) has been described, an appropriate battery whose charge rate can be adjusted according to electrochemical characteristics can be applied as the battery. Examples of such in-vehicle batteries include a nickel metal hydride secondary battery that performs an intercalation reaction, an electric double layer capacitor (capacitor) that uses physical adsorption of cations and anions floating near the electrode, and an electric double layer capacitor positive electrode. And a hybrid capacitor (for example, a lithium ion capacitor) in which an intercalation negative electrode is combined.
 また、上記する実施形態1~6では、バッテリを単独の電池モジュールとして使用する形態について説明したが、車両100に対するバッテリの搭載数は適宜変更することができる。 In Embodiments 1 to 6 described above, the form in which the battery is used as a single battery module has been described. However, the number of batteries mounted on the vehicle 100 can be changed as appropriate.
 また、上記する実施形態1~6では、スタータモータ105とオルタネータ106とが別体に構成される形態について説明したが、スタータモータ105とオルタネータ106のエンジン始動機能と発電機能を一体とした自動車用エンジン始動装置兼発電機としての電動発電機を使用してもよい。 In the first to sixth embodiments described above, the starter motor 105 and the alternator 106 are separately configured. However, the starter motor 105 and the alternator 106 have an engine start function and a power generation function integrated with each other. You may use the motor generator as an engine starter and generator.
 また、車両100に搭載されるエンジン101としては、自動車の動力源として一般に使用されるガソリンエンジンやディーゼルエンジンなどを挙げることができると共に、そのエンジン101は、例えば単気筒や多気筒のレシプロエンジン、ロータリーエンジンなどであってもよい。 Examples of the engine 101 mounted on the vehicle 100 include a gasoline engine and a diesel engine that are generally used as a power source for automobiles. The engine 101 includes, for example, a single-cylinder or multi-cylinder reciprocating engine, It may be a rotary engine.
 また、上記する実施形態1~6では、車両100の動力源としてエンジン101を用いる形態について説明したが、車両100は、例えば車載機器109へ電力を供給するバッテリとは異なるバッテリを搭載し、そのバッテリによって駆動されるモータ(電動機)を搭載したハイブリッドシステムを有する車両であってもよい。 Further, in the first to sixth embodiments described above, the mode in which the engine 101 is used as the power source of the vehicle 100 has been described. However, the vehicle 100 is equipped with, for example, a battery that is different from a battery that supplies power to the in-vehicle device 109. The vehicle may have a hybrid system equipped with a motor (electric motor) driven by a battery.
 また、上記する実施形態1~6では、コントローラ111によってオルタネータ106の発電電圧が三段階(S0、S1、S2)に設定される形態について説明したが、オルタネータ106に設定される発電電圧の値や段階数は適宜変更することができる。例えば、オルタネータ106として発電電圧を連続的に設定し得るリニアレギュレータを使用する場合には、オルタネータ106に設定される発電電圧の値や段階数は任意に設定することができる。また、オルタネータ106に設定される発電電圧は、バッテリ状態検出装置110によって検出されるバッテリの充電率とナビゲーションシステム117によって提供される推定残り旅行時間などに基づいて変更してもよい。 In the first to sixth embodiments described above, the configuration in which the power generation voltage of the alternator 106 is set in three stages (S0, S1, S2) by the controller 111 has been described. However, the value of the power generation voltage set in the alternator 106 and the like The number of stages can be changed as appropriate. For example, when a linear regulator capable of continuously setting the power generation voltage is used as the alternator 106, the value of the power generation voltage and the number of steps set in the alternator 106 can be arbitrarily set. Further, the generated voltage set in the alternator 106 may be changed based on the charging rate of the battery detected by the battery state detection device 110, the estimated remaining travel time provided by the navigation system 117, and the like.
 なお、本発明は上記した実施形態1~6に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態1~6は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the above-described first to sixth embodiments, and includes various modifications. For example, the first to sixth embodiments described above are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
100・・・車両
101・・・エンジン
101a・・エンジンのクランク軸
102・・・変速機
103・・・ディファレンシャル機構
104・・・駆動輪
105・・・スタータモータ
106・・・オルタネータ(発電機)
106a・・オルタネータのクランク軸
107・・・駆動ベルト
108・・・鉛バッテリ(バッテリ)
109・・・車載機器
110・・・バッテリ状態検出装置
111・・・コントローラ(制御装置)
112・・・ヘッドライト
113・・・方向指示器
114・・・電気ヒータ
115・・・送風ファン
116・・・マルチメディアシステム
117・・・ナビゲーションシステム(自車位置検出装置又は自車位置推定装置)
118・・・カメラ(外界認識装置)
119・・・レーダ(外界認識装置)
120・・・通信モジュール(外部通信装置)
121・・・ギアシフトセンサ
122・・・操舵角センサ
123・・・アクセルペダルセンサ
124・・・ブレーキペダルセンサ
125・・・イグニッションスイッチ
126・・・駐車支援システムスイッチ
127・・・車速センサ(車速検出装置)
130・・・起動停止時期推定部
131・・・充電率調整部
201・・・ステータコイル
202・・・フィールドコイル
203・・・整流器
204・・・レギュレータ
205・・・スイッチ
206・・・駆動回路
DESCRIPTION OF SYMBOLS 100 ... Vehicle 101 ... Engine 101a ... Engine crankshaft 102 ... Transmission 103 ... Differential mechanism 104 ... Drive wheel 105 ... Starter motor 106 ... Alternator (generator)
106a ··· alternator crankshaft 107 ··· drive belt 108 ··· lead battery (battery)
109: On-vehicle equipment 110 ... Battery state detection device 111 ... Controller (control device)
DESCRIPTION OF SYMBOLS 112 ... Headlight 113 ... Direction indicator 114 ... Electric heater 115 ... Blower fan 116 ... Multimedia system 117 ... Navigation system (own vehicle position detection apparatus or own vehicle position estimation apparatus) )
118 ... Camera (external recognition device)
119: Radar (external recognition device)
120 ... Communication module (external communication device)
121 ... Gear shift sensor 122 ... Steering angle sensor 123 ... Accelerator pedal sensor 124 ... Brake pedal sensor 125 ... Ignition switch 126 ... Parking assist system switch 127 ... Vehicle speed sensor (vehicle speed detection) apparatus)
130 ... start / stop timing estimation unit 131 ... charge rate adjustment unit 201 ... stator coil 202 ... field coil 203 ... rectifier 204 ... regulator 205 ... switch 206 ... drive circuit

Claims (15)

  1.  車両に搭載された車載機器へ電力を供給するバッテリの充放電を制御するバッテリの制御装置であって、
     前記車両の起動状態を停止する起動停止時期を推定する起動停止時期推定部と、
     前記起動停止時期推定部の推定結果に基づいて、前記バッテリの充電率を調整する充電率調整部と、を備えることを特徴とするバッテリの制御装置。
    A battery control device that controls charging and discharging of a battery that supplies electric power to an in-vehicle device mounted on a vehicle,
    A start / stop time estimation unit for estimating a start / stop time for stopping the start state of the vehicle;
    A battery control apparatus comprising: a charge rate adjustment unit that adjusts a charge rate of the battery based on an estimation result of the start / stop timing estimation unit.
  2.  前記起動停止時期推定部は、駐車場進入情報、駐車区画検出情報、車両に対する駐車操作情報、車両の目的地情報、車両の使用拠点情報、目的地または使用拠点までの推定残り旅行時間、目的地または使用拠点までの推定残り旅行距離の少なくとも一つに基づいて、前記起動停止時期を推定することを特徴とする、請求項1に記載のバッテリの制御装置。 The start / stop timing estimation unit includes parking lot entry information, parking zone detection information, parking operation information for vehicles, vehicle destination information, vehicle use base information, estimated remaining travel time to the destination or use base, destination The battery control device according to claim 1, wherein the start / stop timing is estimated based on at least one of an estimated remaining travel distance to the use base.
  3.  前記車両は、該車両が所定時間停車した際に該車両に搭載されたエンジンを自動的に停止するアイドリングストップ機構を有し、
     前記制御装置は、前記起動停止時期推定部の推定結果に基づいて、前記アイドリングストップ機構によるエンジンの自動的な停止を禁止することを特徴とする、請求項1に記載のバッテリの制御装置。
    The vehicle has an idling stop mechanism that automatically stops an engine mounted on the vehicle when the vehicle stops for a predetermined time,
    The battery control device according to claim 1, wherein the control device prohibits automatic engine stop by the idling stop mechanism based on an estimation result of the start / stop timing estimation unit.
  4.  前記制御装置は、前記起動停止時期推定部の推定結果に基づいて、前記車載機器の消費電力を調整して前記バッテリの充電率を調整することを特徴とする、請求項1に記載のバッテリの制御装置。 The said control apparatus adjusts the charging rate of the said battery by adjusting the power consumption of the said vehicle equipment based on the estimation result of the said start / stop timing estimation part, The battery of Claim 1 characterized by the above-mentioned. Control device.
  5.  前記起動停止時期推定部は、車速検出装置、自車位置検出装置、自車位置推定装置、外界認識装置、外部通信装置、ギアシフトセンサ、操舵角センサ、アクセルペダルセンサ、ブレーキペダルセンサ、駐車支援システムのうちの少なくとも一つから得られる情報に基づいて、前記起動停止時期を推定することを特徴とする、請求項1に記載のバッテリの制御装置。 The start / stop timing estimation unit includes a vehicle speed detection device, a vehicle position detection device, a vehicle position estimation device, an external environment recognition device, an external communication device, a gear shift sensor, a steering angle sensor, an accelerator pedal sensor, a brake pedal sensor, and a parking assistance system. The battery control device according to claim 1, wherein the start / stop timing is estimated based on information obtained from at least one of the two.
  6.  前記制御装置は、前記起動停止時期推定部によって推定された前記起動停止時期から所定時間が経過して前記車両が起動している場合に、前記アイドリングストップ機構によるエンジンの自動的な停止の禁止を解除することを特徴とする、請求項3に記載のバッテリの制御装置。 The control device prohibits the automatic stop of the engine by the idling stop mechanism when the vehicle has been started after a predetermined time has elapsed from the start / stop time estimated by the start / stop time estimation unit. The battery control device according to claim 3, wherein the battery control device is released.
  7.  前記制御装置は、前記起動停止時期推定部によって推定された前記起動停止時期から所定時間が経過して前記車両が起動している場合に、前記車載機器の消費電力の調整を解除することを特徴とする、請求項4に記載のバッテリの制御装置。 The control device cancels the adjustment of the power consumption of the in-vehicle device when the vehicle is started after a predetermined time has elapsed from the start / stop time estimated by the start / stop time estimation unit. The battery control device according to claim 4.
  8.  前記制御装置は、前記起動停止時期推定部によって推定された前記起動停止時期、もしくは、現在から前記起動停止時期までの時間を通知することを特徴とする、請求項1に記載のバッテリの制御装置。 2. The battery control device according to claim 1, wherein the control device notifies the start / stop timing estimated by the start / stop timing estimation unit or a time from the present to the start / stop timing. .
  9.  前記充電率調整部は、充電率検出装置によって検出されるバッテリの充電率に応じて、前記バッテリの充電率の調整を開始する充電率調整開始時期を変更することを特徴とする、請求項1に記載のバッテリの制御装置。 The charging rate adjustment unit changes a charging rate adjustment start timing for starting adjustment of the charging rate of the battery according to a charging rate of the battery detected by a charging rate detection device. The battery control device described in 1.
  10.  前記バッテリは、前記車両に搭載された発電機によって充電されることを特徴とする、請求項1に記載のバッテリの制御装置。 The battery control device according to claim 1, wherein the battery is charged by a generator mounted on the vehicle.
  11.  前記制御装置は、駐車場進入情報、車両の目的地情報、車両の使用拠点情報、目的地または使用拠点までの推定残り旅行時間、目的地または使用拠点までの推定残り旅行距離の少なくとも一つに基づき前記起動停止時期を推定し、前記アイドリングストップ機構によるエンジンの自動的な停止を禁止することを特徴とする、請求項3に記載のバッテリの制御装置。 The control device includes at least one of parking lot entry information, vehicle destination information, vehicle use base information, estimated remaining travel time to the destination or use base, and estimated remaining travel distance to the destination or use base. The battery control device according to claim 3, wherein the start / stop timing is estimated based on the engine, and automatic stop of the engine by the idling stop mechanism is prohibited.
  12.  前記制御装置は、車両に対する駐車操作情報、車両の目的地情報、車両の使用拠点情報、目的地または使用拠点までの推定残り旅行時間、目的地または使用拠点までの推定残り旅行距離の少なくとも一つに基づき前記起動停止時期を推定し、前記車載機器の消費電力を調整して前記バッテリの充電率を調整することを特徴とする、請求項4に記載のバッテリの制御装置。 The control device includes at least one of parking operation information for the vehicle, vehicle destination information, vehicle use base information, estimated remaining travel time to the destination or use base, and estimated remaining travel distance to the destination or use base. The battery control device according to claim 4, wherein the start / stop timing is estimated based on the power supply and the power consumption of the in-vehicle device is adjusted to adjust the charging rate of the battery.
  13.  前記バッテリは、鉛バッテリもしくはリチウムイオン二次バッテリであることを特徴とする、請求項1に記載のバッテリの制御装置。 The battery control device according to claim 1, wherein the battery is a lead battery or a lithium ion secondary battery.
  14.  前記充電率調整部は、前記起動停止時期推定部の推定結果に基づいて、前記鉛バッテリを充電することを特徴とする、請求項13に記載のバッテリの制御装置。 The battery control device according to claim 13, wherein the charge rate adjustment unit charges the lead battery based on an estimation result of the start / stop timing estimation unit.
  15.  前記充電率調整部は、前記起動停止時期推定部の推定結果及び前記リチウムイオン二次バッテリの充電率に基づいて、前記リチウムイオン二次バッテリを充電もしくは放電することを特徴とする、請求項13に記載のバッテリの制御装置。 The charging rate adjusting unit charges or discharges the lithium ion secondary battery based on an estimation result of the start / stop timing estimation unit and a charging rate of the lithium ion secondary battery. The battery control device described in 1.
PCT/JP2014/052826 2013-03-13 2014-02-07 Battery control device WO2014141784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-049770 2013-03-13
JP2013049770A JP2014172587A (en) 2013-03-13 2013-03-13 Control device for battery

Publications (1)

Publication Number Publication Date
WO2014141784A1 true WO2014141784A1 (en) 2014-09-18

Family

ID=51536460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052826 WO2014141784A1 (en) 2013-03-13 2014-02-07 Battery control device

Country Status (2)

Country Link
JP (1) JP2014172587A (en)
WO (1) WO2014141784A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114655147A (en) * 2022-05-05 2022-06-24 浙江春风动力股份有限公司 All-terrain vehicle
WO2022201180A1 (en) * 2021-03-25 2022-09-29 Tvs Motor Company Limited A system for controlling a headlamp of a vehicle and method thereof
US11685323B2 (en) 2021-08-31 2023-06-27 Zhejiang CFMOTO Power Co., Ltd. Off-road vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292113B2 (en) * 2014-12-19 2018-03-14 マツダ株式会社 Vehicle power supply control device
JP2016164010A (en) * 2015-03-06 2016-09-08 株式会社富士通ゼネラル On-vehicle camera system
JP6390668B2 (en) 2016-06-20 2018-09-19 トヨタ自動車株式会社 Hybrid vehicle
KR102443338B1 (en) * 2017-09-12 2022-09-15 현대자동차주식회사 Battery charging control method and system
KR102370923B1 (en) * 2017-09-26 2022-03-07 현대자동차주식회사 Spatial Classification type Stop Control Method and Vehicle thereof
JP2021097450A (en) * 2019-12-13 2021-06-24 株式会社Gsユアサ Method and device for adjusting charge conditions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345877A (en) * 1999-06-01 2000-12-12 Mitsubishi Electric Corp Engine stopping and starting device
JP2003111201A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Automotive control system
JP2005291158A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Power generation control device of internal combustion engine
JP2010221828A (en) * 2009-03-23 2010-10-07 Fujitsu Ten Ltd Economy running control device
JP2010269712A (en) * 2009-05-22 2010-12-02 Nissan Motor Co Ltd Control device for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952235B1 (en) * 2009-10-29 2015-01-16 Commissariat Energie Atomique METHOD FOR CHARGING OR DISCHARGING A BATTERY TO DETERMINE THE END OF CHARGE OR DISCHARGE BASED ON CURRENT MEASUREMENTS AND TEMPERATURE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345877A (en) * 1999-06-01 2000-12-12 Mitsubishi Electric Corp Engine stopping and starting device
JP2003111201A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Automotive control system
JP2005291158A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Power generation control device of internal combustion engine
JP2010221828A (en) * 2009-03-23 2010-10-07 Fujitsu Ten Ltd Economy running control device
JP2010269712A (en) * 2009-05-22 2010-12-02 Nissan Motor Co Ltd Control device for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201180A1 (en) * 2021-03-25 2022-09-29 Tvs Motor Company Limited A system for controlling a headlamp of a vehicle and method thereof
US11685323B2 (en) 2021-08-31 2023-06-27 Zhejiang CFMOTO Power Co., Ltd. Off-road vehicle
CN114655147A (en) * 2022-05-05 2022-06-24 浙江春风动力股份有限公司 All-terrain vehicle

Also Published As

Publication number Publication date
JP2014172587A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
WO2014141784A1 (en) Battery control device
JP7001349B2 (en) Automatic operation control device
US9776635B2 (en) Apparatus and method to maximize vehicle functionality and fuel economy with improved drivability during engine auto stop-start operations
JP7201040B2 (en) Control device for self-driving vehicles
JP5740269B2 (en) Vehicle control device
CN109747627B (en) Hybrid vehicle and heating control method for the hybrid vehicle
US10913443B2 (en) Powertrain control based on auxiliary battery characteristics
KR101836250B1 (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
JP2000257461A (en) Engine controller for hybrid vehicle
EP3074289A1 (en) Control apparatus for vehicle and control method for engine
CN108501952B (en) System and method for changing start-stop events
US20070099755A1 (en) System and method for controlling idling stop of hybrid electric vehicle
JP2015080977A (en) Travel control device of hybrid vehicle
US10737582B2 (en) Hybrid vehicle, controller for hybrid vehicle, and control method for hybrid vehicle
JP2010064499A (en) Hybrid vehicle
US11458949B2 (en) Travel assistance apparatus for hybrid vehicle
JP2008230405A (en) Power supply device for vehicle
JP2017137053A (en) Hybrid vehicle control device
JP2013241129A (en) Electric power generation control device for hybrid vehicle
JP7143812B2 (en) vehicle
US10583827B2 (en) Hybrid vehicle and control device mounted thereon
CN109941290B (en) Vehicle braking energy feedback control method and device and vehicle
US20190351893A1 (en) Apparatus and method for controlling mild hybrid electric vehicle
CN115195892A (en) System and method for providing drag acceleration assist during in-service charging of a vehicle
US10532728B2 (en) Hybrid vehicle and controller for hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764352

Country of ref document: EP

Kind code of ref document: A1