JP2010269266A - Dispersion liquid of photocatalyst particle and method for preparing the same - Google Patents

Dispersion liquid of photocatalyst particle and method for preparing the same Download PDF

Info

Publication number
JP2010269266A
JP2010269266A JP2009124381A JP2009124381A JP2010269266A JP 2010269266 A JP2010269266 A JP 2010269266A JP 2009124381 A JP2009124381 A JP 2009124381A JP 2009124381 A JP2009124381 A JP 2009124381A JP 2010269266 A JP2010269266 A JP 2010269266A
Authority
JP
Japan
Prior art keywords
dispersion
photocatalyst particles
particles
acid
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009124381A
Other languages
Japanese (ja)
Other versions
JP5407549B2 (en
Inventor
Tomohiro Inoue
友博 井上
Manabu Furudate
学 古舘
Kichiji Eikuchi
吉次 栄口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009124381A priority Critical patent/JP5407549B2/en
Publication of JP2010269266A publication Critical patent/JP2010269266A/en
Application granted granted Critical
Publication of JP5407549B2 publication Critical patent/JP5407549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion liquid in which photocatalyst particles are dispersed highly and to provide a method for preparing the dispersion liquid without using a dispersant. <P>SOLUTION: The dispersion liquid contains a dispersion medium, the photocatalyst particles and an acidic substance, wherein the photocatalyst particles having ≤50 nm average particle size (D<SB>50</SB>) when measured by a dynamic light scattering method are dispersed in the dispersion medium and the pH of the dispersion liquid is 1.0-6.5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は光触媒粒子の分散液及びその製造法に関し、詳細には、光触媒粒子が50nm以下の平均粒径で分散されており、透明性、紫外光及び可視光触媒活性に優れた薄膜を形成することができる分散液、及び分散剤を用いなくとも該分散液を作ることができる製造法に関する。   The present invention relates to a dispersion of photocatalyst particles and a method for producing the same. Specifically, the photocatalyst particles are dispersed with an average particle size of 50 nm or less, and a thin film excellent in transparency, ultraviolet light and visible photocatalytic activity is formed. The present invention relates to a dispersion capable of producing a dispersion and a production method capable of producing the dispersion without using a dispersant.

基材の表面に形成された光触媒薄膜は、その中に含まれる酸化チタン等の光触媒性金属化合物の触媒作用により有機物が分解され及び膜表面が親水性になることから、基材表面の清浄化、脱臭、抗菌等の用途に活用されている。現在、このような光触媒薄膜は、外装タイル、ガラス、外壁塗装、空気清浄機内部のフィルター、無機系の基材(セラミック、金属等)への応用が主体であるが、プラスティック材料等の有機系の基材への応用も近年盛んに検討されている(特許文献1及び2)。有機系の基材に光触媒性金属化合物を施与するには、該光触媒化合物粒子を分散させた分散液を基材に塗布して、乾燥する。しかし、従来の分散液を用いて有機系の基材上に形成された光触媒薄膜は、光触媒活性、特に可視光における活性、が不十分であり、基材表面の意匠性を阻害する問題があった。これは、分散液中での該光触媒化合物粒子の粒径が大きいことが一因である。   The photocatalytic thin film formed on the surface of the substrate cleans the surface of the substrate because the organic substance is decomposed and the film surface becomes hydrophilic by the catalytic action of a photocatalytic metal compound such as titanium oxide contained therein. It is used for deodorizing and antibacterial applications. Currently, such photocatalytic thin films are mainly applied to exterior tiles, glass, exterior wall coating, filters inside air cleaners, inorganic base materials (ceramics, metals, etc.), but organic materials such as plastic materials. In recent years, the application of these to the base material has been actively studied (Patent Documents 1 and 2). In order to apply the photocatalytic metal compound to the organic base material, a dispersion liquid in which the photocatalytic compound particles are dispersed is applied to the base material and dried. However, a photocatalytic thin film formed on an organic base material using a conventional dispersion has insufficient photocatalytic activity, particularly in visible light, and has a problem of hindering the design of the base material surface. It was. This is partly due to the large particle size of the photocatalytic compound particles in the dispersion.

酸化チタンを高度に分散するために、ビーズミル等の湿式分散機が使用されている(特許文献3)。その場合、粒子を微細化して行く過程で再凝集して粗粒が出来る問題がある。これを防ぐために、ポリアクリル酸、ポリカルボンアンモニウムカルボン酸等の分散剤が使用されている。しかし、分散剤は光触媒膜中に残るため、薄膜の物性の劣化等の原因となる場合がある。   In order to disperse titanium oxide highly, a wet disperser such as a bead mill is used (Patent Document 3). In this case, there is a problem that coarse particles are formed by re-aggregation in the process of making the particles finer. In order to prevent this, dispersants such as polyacrylic acid and polycarboxylic ammonium carboxylic acid are used. However, since the dispersant remains in the photocatalyst film, it may cause deterioration of physical properties of the thin film.

特開2006−116461号公報JP 2006-116461 A 特開2006−272757号公報JP 2006-272757 A 特開2005−60532号公報JP 2005-60532 A

そこで、本発明は、光触媒粒子が高度に分散された分散液、及び該分散液を、分散剤を使用することなく作ることができる製法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a dispersion in which photocatalyst particles are highly dispersed, and a production method capable of producing the dispersion without using a dispersant.

即ち、本発明は、分散媒と光触媒粒子と酸性物質を含む分散液であって、該光触媒粒子が動的光散乱法により求められる平均粒径(D50)50nm以下で該分散媒中に分散されており且つ該分散液のpHが1.0〜6.5である、分散液である。
また、本発明は、ビーズミルを用いて光触媒粒子の分散液を調製する方法であって、該ビーズミルは、中空円筒形状の容器と、該容器内に配置された攪拌部材及びビーズ分離手段とを備え、該ビーズが直径5〜100μmのジルコニア製球状ビーズであり、
(1)該攪拌部材を第一回転速度(r1)で回転させて、光触媒粒子と分散媒と酸性物質を含むpH1.0〜6.5の原料分散液と該ビーズを攪拌し、該光触媒粒子の動的光散乱法により求められる平均粒径(D50)を、該光触媒粒子の一次粒子の粒径の250〜350%にする工程、次いで
(2)該攪拌部材を、r1の50〜90%の第二回転速度(r2)で回転させて、該光触媒粒子の平均粒径を、その一次粒子の粒径の150〜250%にする工程、
を含む方法である。
That is, the present invention is a dispersion containing a dispersion medium, photocatalyst particles and an acidic substance, wherein the photocatalyst particles are dispersed in the dispersion medium with an average particle size (D 50 ) of 50 nm or less determined by a dynamic light scattering method. And a dispersion having a pH of 1.0 to 6.5.
The present invention is also a method for preparing a dispersion of photocatalyst particles using a bead mill, the bead mill comprising a hollow cylindrical container, a stirring member and bead separation means arranged in the container. , The beads are spherical beads made of zirconia having a diameter of 5 to 100 μm,
(1) The stirring member is rotated at the first rotation speed (r1) to stir the bead dispersion liquid having a pH of 1.0 to 6.5 containing the photocatalyst particles, the dispersion medium, and the acidic substance, and the beads, and the photocatalyst particles. The step of setting the average particle size (D 50 ) determined by the dynamic light scattering method of 250 to 350% of the particle size of the primary particles of the photocatalyst particles, and then (2) adjusting the stirring member to 50 to 90 of r1. % Rotating at a second rotation speed (r2) to make the average particle size of the photocatalyst particles 150-250% of the particle size of the primary particles,
It is a method including.

上記本発明の分散液は、光触媒粒子が50nm以下の平均粒径で分散されており、基材上に施与されて、紫外光及び可視光触媒活性および透明性に優れた膜を形成する。また、本発明の方法は、第1工程において強い剪断力で分散を行うので、粗粒が残らず、光触媒粒子の平均粒径が所定の大きさになった後は、より穏やかな剪断力で分散を行うので、粒子の再凝集及び粒子表面の破砕による光触媒機能の低下が起こらない。これにより、効率的に、且つ分散剤を使用しなくとも、光触媒粒子が粒径50nm以下で分散されている分散液を調製することができる。   In the dispersion of the present invention, photocatalyst particles are dispersed with an average particle size of 50 nm or less, and are applied onto a substrate to form a film excellent in ultraviolet light and visible photocatalytic activity and transparency. In addition, since the method of the present invention performs dispersion with a strong shearing force in the first step, no coarse particles remain, and after the average particle diameter of the photocatalyst particles reaches a predetermined size, a gentler shearing force is used. Since the dispersion is performed, the photocatalytic function does not deteriorate due to reaggregation of the particles and crushing of the particle surface. This makes it possible to prepare a dispersion in which photocatalyst particles are dispersed with a particle size of 50 nm or less efficiently and without using a dispersant.

[分散液]
本発明の分散液は、光触媒粒子の動的光散乱法・周波数解析(FFT−ヘテロダイン法)により求められる体積基準の50%累積分布径(D50)(以下「平均粒径」という)が50nm以下、好ましくは45nm以下、である。なお、平均粒径の下限値は、光触媒粒子の一次粒子の粒径である。平均粒径が50nm超では、光応答性、特に可視光応答性、及び透明性が充分ではない。平均粒径が一次粒子の粒径未満である状態は、いわゆる「過分散」であり、粒子の凝集等の問題が起こり好ましくない。
[Dispersion]
The dispersion liquid of the present invention has a volume-based 50% cumulative distribution diameter (D 50 ) (hereinafter referred to as “average particle diameter”) determined by dynamic light scattering / frequency analysis (FFT-heterodyne method) of photocatalyst particles of 50 nm. Hereinafter, it is preferably 45 nm or less. In addition, the lower limit of the average particle diameter is the particle diameter of the primary particles of the photocatalyst particles. When the average particle size exceeds 50 nm, photoresponsiveness, particularly visible light responsiveness, and transparency are not sufficient. The state in which the average particle size is less than the primary particle size is so-called “overdispersion”, which causes problems such as particle aggregation and is not preferable.

該分散液のpHは、1.0〜6.5であり、好ましくは2.0〜5.0である。該範囲内においては、光触媒粒子が帯電されて、粒子間の凝集が効果的に抑制される。該pHは、分散媒のpHをガラス電極等によりモニタしながら、後述する酸性物質を分散媒に添加することによって、調整することができる。pHが調整された該分散媒に光触媒粒子を添加して原料分散液とし、ビーズミルで処理するが、この間pHはほとんど変動せず、最終的に得られる分散液のpHも上記範囲である。 The pH of the dispersion is 1.0 to 6.5, preferably 2.0 to 5.0. Within this range, the photocatalyst particles are charged and aggregation between the particles is effectively suppressed. The pH can be adjusted by adding an acidic substance described later to the dispersion medium while monitoring the pH of the dispersion medium with a glass electrode or the like. Photocatalyst particles are added to the dispersion medium whose pH has been adjusted to obtain a raw material dispersion, which is then processed by a bead mill. During this time, the pH hardly varies, and the pH of the finally obtained dispersion is also in the above range.

光触媒粒子としては、酸化チタン系、酸化タングステン系、酸化亜鉛系、酸化ニオブ系等、n型半導体様のバンドギャップ構造を有する金属酸化物の結晶微粒子が挙げられる。例えば、アナターゼ型の二酸化チタン、ルチル型の二酸化チタン、ペルオキソチタン結晶、三酸化タングステン(WO)、酸化亜鉛(ZnO)、Gaドープ酸化亜鉛(GZO)、酸化ニオブ(Nb)等が挙げられる。好ましくは、これら金属酸化物の結晶内に異種元素、例えば窒素、硫黄、リン、炭素をドーピングしたもの、表面に異種金属もしくは化合物、例えば銅、鉄、ニッケル、金、銀、白金、炭素を担持したものが使用される。これらの一次粒子の粒径は、1nm〜50nm、好ましくは1nm〜40nm、より好ましくは1〜25nmである。このような、光触媒粒子としては、白金を担持したルチル型二酸化チタン(MPT−623(商品名)、粉体状、石原産業製)、鉄を担持したルチル型二酸化チタン(MPT−625(商品名)、粉体状、石原産業製)等が挙げられる。一次粒子の粒径は、例えば、X線回折法でScherrerの式を用いて求められる。光触媒粒子の配合量は、分散液の0.01〜20質量%、好ましくは0.5〜10質量%、である。前記下限値未満では分散媒を揮発させて製膜するのに時間及びエネルギーがかかり、前記上限値超では、分散液から薄膜を調製するのが困難となり、得られる膜の透明度が低くなる傾向がある。 Examples of the photocatalyst particles include titanium oxide-based, tungsten oxide-based, zinc oxide-based, niobium oxide-based, etc. metal oxide crystal particles having an n-type semiconductor-like band gap structure. For example, anatase type titanium dioxide, rutile type titanium dioxide, peroxotitanium crystal, tungsten trioxide (WO 3 ), zinc oxide (ZnO), Ga doped zinc oxide (GZO), niobium oxide (Nb 2 O 5 ), etc. Can be mentioned. Preferably, these metal oxide crystals are doped with different elements such as nitrogen, sulfur, phosphorus and carbon, and the surface carries different metals or compounds such as copper, iron, nickel, gold, silver, platinum and carbon. Used. The particle size of these primary particles is 1 nm to 50 nm, preferably 1 nm to 40 nm, more preferably 1 to 25 nm. As such photocatalyst particles, rutile type titanium dioxide carrying platinum (MPT-623 (trade name), powder, manufactured by Ishihara Sangyo), rutile type titanium dioxide carrying iron (MPT-625 (trade name) ), Powder form, manufactured by Ishihara Sangyo) and the like. The particle size of the primary particles can be obtained by using, for example, Scherrer's equation in the X-ray diffraction method. The compounding quantity of photocatalyst particle is 0.01-20 mass% of a dispersion liquid, Preferably it is 0.5-10 mass%. If it is less than the lower limit, it takes time and energy to volatilize the dispersion medium to form a film, and if it exceeds the upper limit, it becomes difficult to prepare a thin film from the dispersion, and the resulting film tends to be less transparent. is there.

分散媒としては、水、メタノール、エタノール、イソプロパノール等のアルコール類、またはこれらの混合物が使用される。好ましくは水、及び水とアルコールの混合物、より好ましくは水が使用される。水は上記pHの調整を阻害する不純物を含んでいなければよい。好ましくは精製水、蒸留水、イオン交換水を用い、より好ましくは精製水を用いる。 As the dispersion medium, water, alcohols such as methanol, ethanol, isopropanol, or a mixture thereof are used. Preferably water and a mixture of water and alcohol, more preferably water are used. Water does not have to contain impurities that hinder the pH adjustment. Preferably, purified water, distilled water, or ion exchange water is used, and more preferably purified water is used.

分散媒に、酸性物質を添加して、そのpHを1.0〜6.5、好ましくは2.0〜5.0に調整する。該酸性物質としては、塩酸、硝酸、硫酸、リン酸、酢酸、クエン酸、樟脳スルホン酸等のブレンステッド酸性物質、酸性基を有する高分子化合物、および酸性イオン交換樹脂からなる群より選ばれる少なくとも一種が使用される。これらの酸性物質は水もしくはアルコール溶液として添加してもよい。好ましくは、樟脳スルホン酸が使用される。 An acidic substance is added to the dispersion medium to adjust its pH to 1.0 to 6.5, preferably 2.0 to 5.0. The acidic substance is at least selected from the group consisting of Bronsted acidic substances such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid and camphorsulfonic acid, polymer compounds having acidic groups, and acidic ion exchange resins. A kind is used. These acidic substances may be added as water or an alcohol solution. Preferably camphor sulfonic acid is used.

好ましくは、本発明の分散液は分散剤を含有せず、実質的に光触媒粒子、分散媒、および酸性物質からなる。これにより、分散剤に起因する光触媒薄膜の物性の劣化を防止することができる。 Preferably, the dispersion of the present invention does not contain a dispersant and substantially consists of photocatalyst particles, a dispersion medium, and an acidic substance. Thereby, deterioration of the physical property of the photocatalyst thin film resulting from a dispersing agent can be prevented.

[分散方法]
上記本発明の分散液は、中空円筒形状の容器と、該容器内に配置された攪拌部材及びビーズ分離手段とを備えるビーズミルで、直径5〜100μmのジルコニア製球状ビーズを用いて、下記工程を含む方法で調製することができる。
(1)該攪拌部材を第一回転速度(r1)で回転させて、光触媒粒子と分散媒と酸性物質を含むpH1.0〜6.5の原料分散液と該ビーズを攪拌し、該光触媒粒子の動的光散乱法により求められる平均粒径(D50)を、該光触媒粒子の一次粒子の粒径の250〜350%にする工程、次いで
(2)該攪拌部材を、r1の50〜90%の第二回転速度(r2)で回転させて、該光触媒粒子の平均粒径を、その一次粒子の粒径の150〜250%にする工程。
[Distribution method]
The dispersion of the present invention is a bead mill comprising a hollow cylindrical container, a stirring member and a bead separating means arranged in the container, and the following steps are performed using spherical beads made of zirconia having a diameter of 5 to 100 μm. It can be prepared by the method including.
(1) The stirring member is rotated at the first rotation speed (r1) to stir the bead dispersion liquid having a pH of 1.0 to 6.5 containing the photocatalyst particles, the dispersion medium, and the acidic substance, and the beads, and the photocatalyst particles. The step of setting the average particle size (D 50 ) determined by the dynamic light scattering method of 250 to 350% of the particle size of the primary particles of the photocatalyst particles, and then (2) adjusting the stirring member to 50 to 90 of r1. % Rotating at a second rotation speed (r2) of 150% to make the average particle size of the photocatalyst particles 150-250% of the particle size of the primary particles.

ビーズミルは、直径が100μm以下の微小なビーズを用いることができるビーズミルを用いる。該ビーズミルは、通常、「ベッセル」と呼ばれる中空円筒形状の容器と、該容器内に配置され、原料分散液及びビーズを攪拌するための攪拌部材を備える。該攪拌部材としては、該容器と同軸に配置され、中空円筒形状もしくは羽根車形状を有するものを使用することができる。好ましくは、中空円筒形状の攪拌部材が使用される。斯かる中空円筒形状の攪拌部材を備えるミルは、容器の内壁と該攪拌部材の外壁の間の環状部で粒子が粉砕され、アニュラー型ビーズミルと呼ばれる(例えば特開2006−751号公報を参照されたい)。   As the bead mill, a bead mill that can use fine beads having a diameter of 100 μm or less is used. The bead mill generally includes a hollow cylindrical container called “vessel” and a stirring member disposed in the container and for stirring the raw material dispersion and the beads. As the stirring member, one that is disposed coaxially with the container and has a hollow cylindrical shape or an impeller shape can be used. Preferably, a hollow cylindrical stirring member is used. Such a mill having a hollow cylindrical stirring member is called an annular bead mill in which particles are pulverized at an annular portion between the inner wall of the container and the outer wall of the stirring member (see, for example, JP-A-2006-751). Wanna)

より好ましくは、循環型ビーズミルが使用される。該循環型ビーズミルは、原料分散液をタンクからビーズミルへと送液してビーズミルで分散処理した後、ビーズ分離手段によってビーズから分離してタンクへと戻し、これを、粒子が所望の小ささになるまで繰り返す。該ビーズを分離する手段としては、遠心分離装置、ギャップセパレータ及び分離スクリーンがあり、好ましくは遠心分離装置が使用される。このようなビーズミルは、特開2007−275832号公報、特開2007−190447号公報等に記載されており、市販されているものとしては、ナノ・ゲッター(アシザワ・ファインテック(株)製)、及びウルトラアペックスミル(寿工業(株)製)が挙げられる。   More preferably, a circulation type bead mill is used. In the circulation type bead mill, the raw material dispersion is fed from the tank to the bead mill and dispersed by the bead mill, and then separated from the beads by the bead separation means and returned to the tank. Repeat until. Means for separating the beads include a centrifugal separator, a gap separator, and a separation screen, and a centrifugal separator is preferably used. Such bead mills are described in JP-A-2007-275842, JP-A-2007-190447, and the like, and as commercially available, Nano Getter (manufactured by Ashizawa Finetech Co., Ltd.), And Ultra Apex Mill (manufactured by Kotobuki Industries Co., Ltd.).

使用するビーズは、直径が100μm以下のものが好ましく、5〜50μmの範囲ものがより好ましい。ビーズの材質はジルコニアまたはイットリウム部分安定化ジルコニア製のものが磨耗が少ない点で好ましい。このようなビーズの例として、PlasmaBeads PB ZrO:Y 50Φ(イットリウム部分安定化ジルコニアビーズ、粒径範囲40〜60μm、高周波熱錬(株)製)が挙げられる。 The beads to be used preferably have a diameter of 100 μm or less, and more preferably in the range of 5 to 50 μm. The beads are preferably made of zirconia or yttrium partially-stabilized zirconia because of less wear. As an example of such beads, PlasmaBeads PB ZrO 2 : Y 50Φ (yttrium partially stabilized zirconia beads, particle size range 40-60 μm, manufactured by Induction Heat Refining Co., Ltd.) can be mentioned.

上記工程(1)において、ビーズは粉砕処理が行われる部分、例えば前記環状部、の容積の30〜70%、好ましくは40〜60%、となる量で用いる。第一回転速度(r1)は、できるだけ大きいことが好ましく、使用するミルの攪拌部材の可能最高回転速度の60〜90%程度で行う。先に述べたアニュラー型ビーズミルの場合、回転速度は中空円筒形状の攪拌部材の周速度で規定され、r1は10〜20m/s、好ましくは12〜15m/sである。工程(2)における第二回転速度(r2)はr1の50〜90%、好ましくは70〜80%である。このように回転速度を下げることで過分散が防止される。なお、r1からr2に減じる際に、段階的に減じてもよい。   In the step (1), the beads are used in an amount of 30 to 70%, preferably 40 to 60%, of the volume of the part to be pulverized, for example, the annular part. The first rotation speed (r1) is preferably as large as possible, and is about 60 to 90% of the maximum possible rotation speed of the stirring member of the mill to be used. In the case of the annular bead mill described above, the rotational speed is defined by the peripheral speed of the hollow cylindrical stirring member, and r1 is 10 to 20 m / s, preferably 12 to 15 m / s. The second rotational speed (r2) in the step (2) is 50 to 90%, preferably 70 to 80% of r1. Thus, excessive dispersion is prevented by reducing the rotation speed. In addition, when reducing from r1 to r2, you may reduce in steps.

原料分散液は、上記酸性物質を添加してpHを調整した分散媒に、分散液の質量の0.01〜20質量%、好ましくは0.5〜10質量%、の光触媒粒子を添加して調製する。或いは、分散媒のpHを調整した段階で、分散媒のみビーズミルとタンクの間を数分程度循環させた後に、光触媒粒子をタンク内の分散媒に添加してもよい。 The raw material dispersion is prepared by adding 0.01 to 20% by weight, preferably 0.5 to 10% by weight, of photocatalyst particles to the dispersion medium adjusted to pH by adding the acidic substance. Prepare. Alternatively, the photocatalyst particles may be added to the dispersion medium in the tank after only the dispersion medium is circulated between the bead mill and the tank for several minutes at the stage where the pH of the dispersion medium is adjusted.

工程(1)及び(2)の間、光触媒粒子の粒径をモニタする。工程(1)において、該光触媒粒子の一次粒子の粒径の250〜350%、好ましくは280〜320%になるまで回転速度r1で攪拌する。粒子径が前記下限値より小さくなると、過分散が起こる可能性があり、一方、前記上限値超では粗粒子が残る可能性がある。工程(2)では、光触媒粒子の一次粒子の粒径の150〜250%、好ましくは100〜200%、になるまで回転速度r2で攪拌する。   During steps (1) and (2), the particle size of the photocatalyst particles is monitored. In the step (1), stirring is performed at a rotational speed r1 until the particle size of the primary particles of the photocatalyst particles is 250 to 350%, preferably 280 to 320%. When the particle diameter is smaller than the lower limit value, overdispersion may occur. On the other hand, when the particle size exceeds the upper limit value, coarse particles may remain. In the step (2), stirring is performed at a rotational speed r2 until the particle size of the primary particles of the photocatalyst particles is 150 to 250%, preferably 100 to 200%.

上記工程(1)及び(2)中のベッセル内温度は5℃〜90℃の範囲、好ましくは25℃〜70℃にする。 The temperature in the vessel in the steps (1) and (2) is in the range of 5 ° C to 90 ° C, preferably 25 ° C to 70 ° C.

好ましくは、本発明の方法は分散剤を使用しない。これにより、分散剤に起因する光触媒薄膜の物性の劣化を防止することができる。   Preferably, the method of the present invention does not use a dispersant. Thereby, deterioration of the physical property of the photocatalyst thin film resulting from a dispersing agent can be prevented.

得られた分散液は、種々の基材に施与することができ、特に、有機系の基材に施与するのに適する。該基材としては、例えば、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル、ポリエチレン、ポリプロピレン等のフィルム、成形品が挙げられる。該基体上に光触媒薄膜を形成する前に、例えば、コロナ処理、常圧(もしくは大気圧)プラズマ処理、または低圧低温プラズマ処理により表面処理することが好ましい。   The resulting dispersion can be applied to a variety of substrates and is particularly suitable for application to organic substrates. Examples of the substrate include films and molded articles such as polyethylene terephthalate (PET), polyvinyl chloride, polyethylene, and polypropylene. Before forming the photocatalytic thin film on the substrate, it is preferable to perform surface treatment by, for example, corona treatment, normal pressure (or atmospheric pressure) plasma treatment, or low pressure low temperature plasma treatment.

光触媒分散液を基体に塗布するには、従来公知の方法であってよい。例えば、ディップコーティング法、スピンコーティング法、刷毛塗り法が挙げられる。塗布量は、乾燥後の厚みが約50〜500nmになるような量である。塗膜の乾燥は、70〜150℃で行うことができる。   In order to apply the photocatalyst dispersion liquid to the substrate, a conventionally known method may be used. For example, a dip coating method, a spin coating method, and a brush coating method can be mentioned. The coating amount is such that the thickness after drying is about 50 to 500 nm. The coating film can be dried at 70 to 150 ° C.

以下、本発明を実施例により説明する。ただし、本発明はこれらの例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to these examples.

<実施例1〜4、比較例1〜3>
表1に示す各分散液を調製した。光触媒粒子としては酸化チタン(MPT−623(商品名)、白金担持二酸化チタン結晶微粒子/ルチル型、一次粒子の粒径20nm、石原産業製)、または酸化チタン(MPT−625(商品名)、鉄担持二酸化チタン結晶微粒子/ルチル型、一次粒子の粒径20nm、石原産業製)を用い、分散媒としては精製水を用いて、以下の方法により調製した。
分散媒に、樟脳スルホン酸(和光純薬(株)製)を添加して、25℃でpHメーター(D−51S、(株)堀場製作所製)を用いて測定しながら、pHを3.0とした。但し、比較例3はpH調整を行わなかった。ビーズミルとして、循環型アニュラー型ビーズミルである、ナノ・ゲッター DMR−110(商品名)(アシザワ・ファインテック製)のベッセルに、粉砕室の容積30〜70%となる量のジルコニアビーズ(Plasma Beads PB ZrO:Y(商品名)、高周波熱錬(株)製)を入れた。次いで、分散媒をタンクからベッセル内に送液した。該ビーズミルの攪拌機の回転を、回転速度12m/s〜13m/sで、開始した。回転開始直後に、攪拌を継続しつつ、原料分散液質量の1.0質量%に相当する量の光触媒粒子をタンク内に添加した。約10分間隔で、タンクから分散液を採取して、粒子径を測定した。実施例1〜4では、攪拌開始10分後に、光触媒粒子の平均粒径が、原料酸化チタンの一次粒子の粒径の280〜340%となったため、回転速度を10m/sまで落とした。実施例1及び2では、更に10分後に速度を8m/sまで低下した。これに対して、比較例1、2では初期回転速度を維持した。夫々、合計で30分攪拌した所で機器を停止して、ベッセル内の液を回収して分散液を得た。
<Examples 1-4, Comparative Examples 1-3>
Each dispersion shown in Table 1 was prepared. As photocatalyst particles, titanium oxide (MPT-623 (trade name), platinum-supported titanium dioxide fine particles / rutile type, primary particle size 20 nm, manufactured by Ishihara Sangyo), or titanium oxide (MPT-625 (trade name), iron (Supported titanium dioxide crystal fine particles / rutile type, primary particle size 20 nm, manufactured by Ishihara Sangyo) and purified water as a dispersion medium was prepared by the following method.
While adding camphor sulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd.) to the dispersion medium and measuring it with a pH meter (D-51S, manufactured by Horiba, Ltd.) at 25 ° C., the pH was adjusted to 3.0. It was. However, Comparative Example 3 did not adjust the pH. As a bead mill, a circular annular bead mill, Nano Getter DMR-110 (trade name) (manufactured by Ashizawa Finetech), a zirconia bead (Plasma Beads PB) in an amount of 30 to 70% of the grinding chamber volume. ZrO 2 : Y (trade name), manufactured by Induction Heat Refining Co., Ltd.) was added. Next, the dispersion medium was fed from the tank into the vessel. The rotation of the stirrer of the bead mill was started at a rotational speed of 12 m / s to 13 m / s. Immediately after the start of rotation, photocatalyst particles in an amount corresponding to 1.0% by mass of the mass of the raw material dispersion were added to the tank while continuing stirring. At intervals of about 10 minutes, the dispersion was collected from the tank and the particle size was measured. In Examples 1 to 4, since the average particle diameter of the photocatalyst particles became 280 to 340% of the particle diameter of the primary particles of the raw material titanium oxide 10 minutes after the start of stirring, the rotation speed was reduced to 10 m / s. In Examples 1 and 2, the speed was reduced to 8 m / s after another 10 minutes. In contrast, in Comparative Examples 1 and 2, the initial rotation speed was maintained. Each was stirred for a total of 30 minutes, the equipment was stopped, and the liquid in the vessel was recovered to obtain a dispersion.

得られた分散液について、以下の方法で評価を行った。
<粒径測定>
マイクロトラックUPA−EX(日機装社製)を用いて粒度測定し、平均粒径D50(nm)を決定した。
<分散液の安定性>
分散液を50mLのガラス製バイアルに取り、蓋をした状態で暗所静置した。この状態で、バイアルの底に白い沈殿物が見られるようになるまでの日数を確認した。
The obtained dispersion was evaluated by the following method.
<Particle size measurement>
The particle size was measured using Microtrac UPA-EX (manufactured by Nikkiso Co., Ltd.), and the average particle size D 50 (nm) was determined.
<Dispersion stability>
The dispersion was taken in a 50 mL glass vial and allowed to stand in the dark with the lid on. In this state, the number of days until a white precipitate became visible at the bottom of the vial was confirmed.

分散液を用いて下記方法で薄膜を調製した。
<光触媒薄膜の評価>
分散液を、基材に塗布して光触媒薄膜を作製した。基材としてポリエチレンテレフタレートフィルム(厚さ50μm)を用いた。A4サイズにカットした該フィルム表面をコロナ放電処理した後、分散液をバーコーターによって塗布し、100℃のオーブンで加熱して乾燥し、乾燥後の厚さ約200nmの光触媒薄膜を作製した。得られた膜について以下の測定を行った。
<光触媒薄膜の膜厚測定>
薄膜測定装置(F−20(製品名)、FILMETRICS社製)、及び走査型電子顕微鏡(S−3400NX(製品名)、日立ハイテクノロジーズ製)を用いて測定した。
<全光線透過率及びヘイズ>
日本電色工業社のデジタルヘイズメーターNDH−20Dにより測定した。
<光触媒活性の測定>
得られた光触媒薄膜上に、1.0mmol/Lの濃度のメチレンブルーの水溶液を塗布し、60℃で乾燥して、該薄膜表面を完全に覆う量のメチレンブルーを吸着させた。乾燥後直ちに、光触媒評価チェッカーPCC−2(商品名、ULVAC理工社製)を用い、メチレンブルー吸着面に於ける青色色素の吸光度(波長664nm)の測定を開始し、紫外線1mW/cm(190〜400nm)、可視光(波長400〜600nm)1mW/cmを夫々10分間照射して、メチレンブルー吸着面に於ける青色色素の吸光度(波長664nm)の減少(×10)を測定した。
A thin film was prepared by the following method using the dispersion.
<Evaluation of photocatalytic thin film>
The dispersion was applied to a substrate to produce a photocatalytic thin film. A polyethylene terephthalate film (thickness 50 μm) was used as the substrate. The surface of the film cut to A4 size was subjected to corona discharge treatment, and then the dispersion was applied by a bar coater and heated and dried in an oven at 100 ° C. to produce a dried photocatalytic thin film having a thickness of about 200 nm. The obtained film was subjected to the following measurements.
<Measurement of photocatalytic film thickness>
Measurement was performed using a thin film measuring apparatus (F-20 (product name), manufactured by FILMETRICS) and a scanning electron microscope (S-3400NX (product name), manufactured by Hitachi High-Technologies).
<Total light transmittance and haze>
It measured with the digital haze meter NDH-20D of Nippon Denshoku Industries Co., Ltd.
<Measurement of photocatalytic activity>
On the obtained photocatalyst thin film, an aqueous solution of methylene blue having a concentration of 1.0 mmol / L was applied and dried at 60 ° C. to adsorb an amount of methylene blue completely covering the thin film surface. Immediately after drying, using a photocatalyst evaluation checker PCC-2 (trade name, manufactured by ULVAC Riko Co., Ltd.), the measurement of the absorbance (wavelength 664 nm) of the blue dye on the methylene blue adsorption surface was started, and ultraviolet light 1 mW / cm 2 (190-190) 400 nm) and 1 mW / cm 2 of visible light (wavelength 400 to 600 nm) were irradiated for 10 minutes, respectively, and the decrease (× 10 3 ) in the absorbance (wavelength 664 nm) of the blue dye on the methylene blue adsorption surface was measured.

Figure 2010269266
Figure 2010269266

表1に示すように、分散液のpHが本願発明の範囲外である比較例3は、得られた分散液中の触媒粒子の平均粒径が大きかった。また、回転速度を低下することなく調製した比較例1、2で得られた分散液における触媒粒子の平均粒径は、実施例と比べて顕著に大きかった。これらに対して、実施例で得られた分散液では光触媒粒子が高度に微細化されており、得られた光触媒膜は、紫外光、可視光共に、触媒活性が高かった。   As shown in Table 1, in Comparative Example 3 in which the pH of the dispersion was outside the range of the present invention, the average particle diameter of the catalyst particles in the obtained dispersion was large. Moreover, the average particle diameter of the catalyst particles in the dispersions obtained in Comparative Examples 1 and 2 prepared without reducing the rotation speed was significantly larger than that in the Examples. In contrast, the photocatalyst particles were highly miniaturized in the dispersions obtained in the examples, and the obtained photocatalyst film had high catalytic activity for both ultraviolet light and visible light.

本発明の分散液は、有機基材上に透明性が高く、触媒活性が高い光触媒薄膜を形成するのに有用である。また、本発明の方法は、該分散液を迅速に調製するのに有用である。 The dispersion of the present invention is useful for forming a photocatalytic thin film having high transparency and high catalytic activity on an organic substrate. The method of the present invention is also useful for rapidly preparing the dispersion.

Claims (16)

分散媒と光触媒粒子と酸性物質を含む分散液であって、該光触媒粒子が動的光散乱法により求められる平均粒径(D50)50nm以下で該分散媒中に分散されており且つ該分散液のpHが1.0〜6.5である、分散液。 A dispersion containing a dispersion medium, photocatalyst particles and an acidic substance, wherein the photocatalyst particles are dispersed in the dispersion medium with an average particle size (D 50 ) of 50 nm or less determined by a dynamic light scattering method, and the dispersion A dispersion in which the pH of the liquid is 1.0 to 6.5. 前記光触媒粒子が、二酸化チタン、酸化亜鉛、ペルオキソチタン結晶、又は酸化タングステンからなる、請求項1に係る分散液。 The dispersion according to claim 1, wherein the photocatalyst particles are made of titanium dioxide, zinc oxide, peroxotitanium crystals, or tungsten oxide. 前記光触媒粒子が、白金を担持したルチル型二酸化チタン、又は鉄を担持したルチル型二酸化チタンからなる、請求項2に係る分散液。 The dispersion according to claim 2, wherein the photocatalyst particles are made of rutile titanium dioxide carrying platinum or rutile titanium dioxide carrying iron. 前記分散媒が水又は水とアルコールの混合物である、請求項1〜3のいずれか1項に係る分散液。 The dispersion according to any one of claims 1 to 3, wherein the dispersion medium is water or a mixture of water and alcohol. 前記酸性物質が、塩酸、硝酸、硫酸、リン酸、酢酸、クエン酸、樟脳スルホン酸、酸性基を有する高分子化合物、及び酸性イオン交換樹脂からなる群より選ばれる少なくとも一種である、請求項1〜4のいずれか1項に係る分散液。 The acidic substance is at least one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, camphorsulfonic acid, a polymer compound having an acidic group, and an acidic ion exchange resin. A dispersion according to any one of -4. 分散剤を含まない、請求項1〜5のいずれか1項に係る分散液。 The dispersion according to any one of claims 1 to 5, which does not contain a dispersant. ビーズミルを用いて光触媒粒子の分散液を調製する方法であって、該ビーズミルは、中空円筒形状の容器と、該容器内に配置された攪拌部材及びビーズ分離手段とを備え、該ビーズが直径5〜100μmのジルコニア製球状ビーズであり、
(1)該攪拌部材を第一回転速度(r1)で回転させて、光触媒粒子と分散媒と酸性物質を含むpH1.0〜6.5の原料分散液と該ビーズを攪拌し、該光触媒粒子の動的光散乱法により求められる平均粒径(D50)を、該光触媒粒子の一次粒子の粒径の250〜350%にする工程、次いで
(2)該攪拌部材を、r1の50〜90%の第二回転速度(r2)で回転させて、該光触媒粒子の平均粒径を、その一次粒子の粒径の150〜250%にする工程、
を含む方法。
A method for preparing a dispersion of photocatalyst particles using a bead mill, wherein the bead mill includes a hollow cylindrical container, a stirring member and bead separation means arranged in the container, and the beads have a diameter of 5 ˜100 μm zirconia spherical beads,
(1) The stirring member is rotated at the first rotation speed (r1) to stir the bead dispersion liquid having a pH of 1.0 to 6.5 containing the photocatalyst particles, the dispersion medium, and the acidic substance, and the beads, and the photocatalyst particles. The step of setting the average particle size (D 50 ) determined by the dynamic light scattering method of 250 to 350% of the particle size of the primary particles of the photocatalyst particles, and then (2) adjusting the stirring member to 50 to 90 of r1. % Rotating at a second rotation speed (r2) to make the average particle size of the photocatalyst particles 150-250% of the particle size of the primary particles,
Including methods.
前記攪拌部材が中空円筒形状であり、前記ビーズ分離手段が前記攪拌部材の内部に前記攪拌部材と同軸に配置された遠心分離羽根である、請求項7に係る方法。 The method according to claim 7, wherein the stirring member has a hollow cylindrical shape, and the bead separating means is a centrifugal blade disposed coaxially with the stirring member inside the stirring member. 回転速度が前記攪拌部材の周速度であり、r1が10〜20m/sであり、r2が6〜10m/sである、請求項8記載の方法。 The method according to claim 8, wherein the rotational speed is a peripheral speed of the stirring member, r1 is 10 to 20 m / s, and r2 is 6 to 10 m / s. 工程(1)及び(2)の間の前記容器内の温度が25℃〜70℃である、請求項7〜9のいずれか1項に係る方法。 The method which concerns on any one of Claims 7-9 whose temperature in the said container between process (1) and (2) is 25 to 70 degreeC. 前記光触媒粒子のX線回折法によりにより求められる一次粒子の粒径が1〜25nmである、請求項7〜10のいずれか1項記載の方法。 The method according to any one of claims 7 to 10, wherein the particle diameter of primary particles obtained by an X-ray diffraction method of the photocatalyst particles is 1 to 25 nm. 前記光触媒粒子が、二酸化チタン、酸化亜鉛、ペルオキソチタン結晶、又は酸化タングステンからなる、請求項7〜11のいずれか1項に係る方法。 The method according to any one of claims 7 to 11, wherein the photocatalytic particles comprise titanium dioxide, zinc oxide, peroxotitanium crystals, or tungsten oxide. 前記光触媒粒子が、白金を担持したルチル型二酸化チタン、又は鉄を担持したルチル型二酸化チタンからなる、請求項12に係る方法。 The method according to claim 12, wherein the photocatalyst particles comprise rutile titanium dioxide carrying platinum or rutile titanium dioxide carrying iron. 前記分散媒が水又は水とアルコールの混合物である、請求項7〜13のいずれか1項に係る方法。 The method according to any one of claims 7 to 13, wherein the dispersion medium is water or a mixture of water and alcohol. 前記酸性物質が、塩酸、硝酸、硫酸、リン酸、酢酸、クエン酸、樟脳スルホン酸、酸性基を有する高分子化合物、及び酸性イオン交換樹脂からなる群より選ばれる少なくとも一種である、請求項7〜14のいずれか1項に係る方法。 The acidic substance is at least one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, camphorsulfonic acid, a polymer compound having an acidic group, and an acidic ion exchange resin. The method according to any one of -14. 分散剤を使用しない、請求項7〜15のいずれか1項に係る方法。 The method according to any one of claims 7 to 15, wherein no dispersant is used.
JP2009124381A 2009-05-22 2009-05-22 Photocatalyst particle dispersion and process for producing the same Active JP5407549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124381A JP5407549B2 (en) 2009-05-22 2009-05-22 Photocatalyst particle dispersion and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124381A JP5407549B2 (en) 2009-05-22 2009-05-22 Photocatalyst particle dispersion and process for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013007318A Division JP5644877B2 (en) 2013-01-18 2013-01-18 Method for producing dispersion of photocatalyst particles

Publications (2)

Publication Number Publication Date
JP2010269266A true JP2010269266A (en) 2010-12-02
JP5407549B2 JP5407549B2 (en) 2014-02-05

Family

ID=43417740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124381A Active JP5407549B2 (en) 2009-05-22 2009-05-22 Photocatalyst particle dispersion and process for producing the same

Country Status (1)

Country Link
JP (1) JP5407549B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531555A (en) * 2014-10-14 2017-10-26 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles A photocatalytic composition comprising metal particles and two types of semiconductors, wherein the two types of semiconductors include one made of indium oxide.
JP7423840B1 (en) 2023-03-22 2024-01-29 株式会社アデランス Manufacturing method of photocatalyst coating agent

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07819A (en) * 1993-02-10 1995-01-06 Ishihara Sangyo Kaisha Ltd Titanium oxide for catalyst and removal of harmful substance using same
JPH072522A (en) * 1992-12-21 1995-01-06 Ishihara Sangyo Kaisha Ltd Production of titanium oxide film
JPH10146531A (en) * 1996-09-20 1998-06-02 Daiken Kagaku Kogyo Kk Metal superfine particle carrying photocatayst and of its production
JPH11207871A (en) * 1998-01-30 1999-08-03 Nippon Soda Co Ltd Blind
JP2002146283A (en) * 2000-11-07 2002-05-22 Taki Chem Co Ltd Photocatalytic coating fluid containing titanium oxide and its manufacturing method and titanium oxide photocatalytic structure
JP2003221230A (en) * 2002-01-31 2003-08-05 Sumitomo Chem Co Ltd Ceramic dispersion and its production method
JP2004197064A (en) * 2002-05-27 2004-07-15 Sumitomo Chem Co Ltd Method for producing ceramic dispersion
JP2005060532A (en) * 2003-08-12 2005-03-10 Taiyo Kogyo Corp Photocatalyst dispersion and preparation method therefor
JP2006000751A (en) * 2004-06-17 2006-01-05 Kansai Paint Co Ltd Annular type bead mill, pigment dispersion system provided with the same, and pigment dispersion method using the system
JP2006007128A (en) * 2004-06-28 2006-01-12 Kansai Paint Co Ltd Annular type bead mill, pigment dispersion system provided with it and pigment dispersion method using the system
WO2008056744A1 (en) * 2006-11-10 2008-05-15 Yuka Collaboration Corporation Method for producing coating agent exhibiting photocatalytic activity and coating agent obtained by the same
JP2010274142A (en) * 2009-04-30 2010-12-09 Shin-Etsu Chemical Co Ltd Dispersion of photocatalyst particles, and method of producing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072522A (en) * 1992-12-21 1995-01-06 Ishihara Sangyo Kaisha Ltd Production of titanium oxide film
JPH07819A (en) * 1993-02-10 1995-01-06 Ishihara Sangyo Kaisha Ltd Titanium oxide for catalyst and removal of harmful substance using same
JPH10146531A (en) * 1996-09-20 1998-06-02 Daiken Kagaku Kogyo Kk Metal superfine particle carrying photocatayst and of its production
JPH11207871A (en) * 1998-01-30 1999-08-03 Nippon Soda Co Ltd Blind
JP2002146283A (en) * 2000-11-07 2002-05-22 Taki Chem Co Ltd Photocatalytic coating fluid containing titanium oxide and its manufacturing method and titanium oxide photocatalytic structure
JP2003221230A (en) * 2002-01-31 2003-08-05 Sumitomo Chem Co Ltd Ceramic dispersion and its production method
JP2004197064A (en) * 2002-05-27 2004-07-15 Sumitomo Chem Co Ltd Method for producing ceramic dispersion
JP2005060532A (en) * 2003-08-12 2005-03-10 Taiyo Kogyo Corp Photocatalyst dispersion and preparation method therefor
JP2006000751A (en) * 2004-06-17 2006-01-05 Kansai Paint Co Ltd Annular type bead mill, pigment dispersion system provided with the same, and pigment dispersion method using the system
JP2006007128A (en) * 2004-06-28 2006-01-12 Kansai Paint Co Ltd Annular type bead mill, pigment dispersion system provided with it and pigment dispersion method using the system
WO2008056744A1 (en) * 2006-11-10 2008-05-15 Yuka Collaboration Corporation Method for producing coating agent exhibiting photocatalytic activity and coating agent obtained by the same
JP2010274142A (en) * 2009-04-30 2010-12-09 Shin-Etsu Chemical Co Ltd Dispersion of photocatalyst particles, and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531555A (en) * 2014-10-14 2017-10-26 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles A photocatalytic composition comprising metal particles and two types of semiconductors, wherein the two types of semiconductors include one made of indium oxide.
JP7423840B1 (en) 2023-03-22 2024-01-29 株式会社アデランス Manufacturing method of photocatalyst coating agent

Also Published As

Publication number Publication date
JP5407549B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5510521B2 (en) Photocatalyst particle dispersion and process for producing the same
JP6040021B2 (en) Antibacterial antiviral composition and method for producing the same
JP5077941B2 (en) Core-shell type cerium oxide fine particles or dispersion containing the same and method for producing them
US8741431B2 (en) Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
EP3546426B1 (en) Black-film-forming mixed powder and production method therefor
EP2607318B1 (en) Method for producing dispersion of rutile-type titanium oxide particles
JP2011136873A (en) Vanadium dioxide fine particles, manufacturing method and thermo-chromic film
KR101251567B1 (en) Nickel powder, process for producing the same, and conductive paste
JP2006335619A (en) Titanium oxide particle, and production method and application thereof
Zou et al. Synthesis and characterization of enhanced photocatalytic activity with Li+-doping nanosized TiO2 catalyst
EP2085142A1 (en) Method for producing coating agent exhibiting photocatalytic activity and coating agent obtained by the same
TWI598301B (en) Hold BiVO 4 Titanium oxide, a method of producing the same, and an antiviral composition
KR101621831B1 (en) Ultrafine particles of titanium dioxide and process for producing the same
JP5644877B2 (en) Method for producing dispersion of photocatalyst particles
JP5407549B2 (en) Photocatalyst particle dispersion and process for producing the same
JP5343604B2 (en) Method for producing titanium oxide photocatalyst thin film
US20070295938A1 (en) Electro Conductive Tin Oxide Powder and Method for Producing the Same
KR20160073308A (en) Method for producing bivo_4 -carried titanium oxide and antiviral composition
JP2010090011A (en) Titanium oxide powder, dispersion liquid, and method of producing the titanium oxide powder
JP2009242225A (en) Tin-doped indium oxide particles and their manufacturing method
Kannadasan et al. Synergistic effect of bimetal ions (Ce, Pb) incorporation on optical, structural, and sensory activity of ZnO nanocrystals
JP2007314418A (en) Low halogen-low rutile type ultrafine-grained titanium oxide and production method thereof
TW201217049A (en) Process for producing dispersion of copper ion-modified tungsten oxide photocatalyst
JP2010146878A (en) Conductive zinc oxide particulate and its manufacturing method
JP6096536B2 (en) Photocatalyst composite particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120809

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150