JP2010267943A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2010267943A
JP2010267943A JP2009134480A JP2009134480A JP2010267943A JP 2010267943 A JP2010267943 A JP 2010267943A JP 2009134480 A JP2009134480 A JP 2009134480A JP 2009134480 A JP2009134480 A JP 2009134480A JP 2010267943 A JP2010267943 A JP 2010267943A
Authority
JP
Japan
Prior art keywords
polycrystalline
region
film
glass
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009134480A
Other languages
Japanese (ja)
Inventor
Akito Hara
明人 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU Gakuin
Original Assignee
TOHOKU Gakuin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU Gakuin filed Critical TOHOKU Gakuin
Priority to JP2009134480A priority Critical patent/JP2010267943A/en
Publication of JP2010267943A publication Critical patent/JP2010267943A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device intended to provide a high-efficiency thin-film polycrystalline silicon (Si) solar cell on glass. <P>SOLUTION: In this method of manufacturing the semiconductor device being a polycrystalline silicon (Si) solar cell, a large-particle-size polycrystalline silicon thin film is formed on a glass using a semiconductor-excited (diode-excited) solid-state continuous-wave laser; a PN junction is formed by forming a P-type region and an N-type region adjacently to each other in a region on the front surface side of the polycrystalline Si layer; a direction for connecting the P-type region to the N-type region is set generally parallel to a direction in which the crystal grain boundary of the polycrystalline Si runs; and a region where the Si layer does not exist partially is included. Thus, a translucent semiconductor device is formed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体製造方法に関し、特にガラス上に形成された半透明な高効率薄膜多結晶シリコン(Si)太陽電池を実現するための半導体製造方法に関する。  The present invention relates to a semiconductor manufacturing method, and more particularly to a semiconductor manufacturing method for realizing a translucent high-efficiency thin-film polycrystalline silicon (Si) solar cell formed on glass.

近時では、ガラス上の高効率Si系薄膜太陽電池が注目されている。現在のガラス上の薄膜Si系太陽電池は、非晶質あるいは微結晶からなる薄膜Si系材料が主流となっている。  Recently, high-efficiency Si-based thin-film solar cells on glass have attracted attention. Current thin-film Si-based solar cells on glass are mainly thin-film Si-based materials made of amorphous or microcrystals.

しかし、非晶質あるいは微結晶からなる薄膜Si系太陽電池は変換効率が低いという問題点があった。  However, a thin film Si solar cell made of amorphous or microcrystal has a problem that conversion efficiency is low.

ガラス上の薄膜Si系太陽電池、特に非晶質あるいは微結晶からなる薄膜Si系太陽電池は、バルク単結晶Si太陽電池あるいはバルク多結晶Si太陽電池に比較して変換効率が悪い。これは、非晶質Siあるいは微結晶Siの結晶品質が単結晶Siやバルク多結晶Siに比較して劣っていることに起因する。  Thin-film Si-based solar cells on glass, particularly thin-film Si-based solar cells made of amorphous or microcrystals, have a lower conversion efficiency than bulk single-crystal Si solar cells or bulk polycrystalline Si solar cells. This is because the crystal quality of amorphous Si or microcrystalline Si is inferior to that of single crystal Si or bulk polycrystalline Si.

従って、ガラス上に高品質の多結晶Siを形成することができれば、ガラス上の薄膜Si系太陽電池の変換効率に大きなブレークスルーをもたらすと期待される。  Therefore, if high-quality polycrystalline Si can be formed on glass, it is expected to bring about a great breakthrough in the conversion efficiency of thin-film Si-based solar cells on glass.

本発明は、前記課題に鑑みてなされたものであり、ガラス基板上に半透明な高効率薄膜多結晶Si太陽電池を形成するために、薄膜Siであり、半透明でありながら高い変換効率を有する多結晶Si薄膜を形成するための半導体製造方法を提供することを目的とする。  The present invention has been made in view of the above problems, and in order to form a translucent high-efficiency thin-film polycrystalline Si solar cell on a glass substrate, it is a thin-film Si and has high conversion efficiency while being translucent. An object of the present invention is to provide a semiconductor manufacturing method for forming a polycrystalline Si thin film.

本発明者は、鋭意検討の結果、以下に示す発明の諸態様に想到した。  As a result of intensive studies, the present inventor has conceived the following aspects of the invention.

半導体励起(ダイオード励起)された固体連続波レーザを利用してガラス上に部分的にSiを有する大粒径多結晶Si薄膜を形成し、この多結晶Si膜の表面上の異なる領域で、かつ近接する領域にPN接合を形成する。さらに、PN接合の方向は結晶粒界に概略平行である構造を有する。  A large-grain polycrystalline Si thin film partially having Si is formed on glass using a semiconductor-excited (diode-excited) solid-state continuous wave laser, and in different regions on the surface of the polycrystalline Si film, and A PN junction is formed in the adjacent region. Furthermore, the direction of the PN junction has a structure that is substantially parallel to the crystal grain boundary.

本発明によれば、ガラス上に大粒径の半透明な多結晶Siを形成することが可能になり、現在実用化されている非晶質Siや微結晶Siからなる薄膜Si系太陽電池よりも高効率の半透明な薄膜多結晶Si系太陽電池をガラス上に安価に実現することが可能になる。  According to the present invention, it becomes possible to form translucent polycrystalline Si having a large particle diameter on glass, and from a thin-film Si-based solar cell made of amorphous Si or microcrystalline Si that is currently in practical use. It is possible to realize a highly efficient translucent thin-film polycrystalline Si solar cell on glass at a low cost.

本発明により、ガラス基板上に高い変換効率を有する半透明な薄膜多結晶Si系太陽電池を安価に実現するための半導体製造方法が提案される。  The present invention proposes a semiconductor manufacturing method for realizing a translucent thin-film polycrystalline Si solar cell having high conversion efficiency on a glass substrate at a low cost.

以下、本発明の具体的な実施形態について詳述する。本実施例では、半導体励起(ダイオード励起)された固体連続波レーザとして、Nd:YVOの第2高調波である波長532nmを利用して大粒径多結晶Si薄膜を形成した例について詳細する。Hereinafter, specific embodiments of the present invention will be described in detail. In this embodiment, an example in which a large-grain polycrystalline Si thin film is formed using a wavelength of 532 nm, which is the second harmonic of Nd: YVO 4 , as a solid-state continuous wave laser pumped by a semiconductor (diode pump) will be described in detail. .

図1は、本実施形態によってガラス上に形成された半透明な薄膜多結晶Si系太陽電池の概略断面構造図である。  FIG. 1 is a schematic sectional view of a translucent thin-film polycrystalline Si solar cell formed on glass according to the present embodiment.

図2〜図4は、ガラス上の半透明な薄膜多結晶Si太陽電池の製造方法を工程順に示す概略模式図である。
先ず、図2(a)に示すように、ガラス基板上1にプラズマCVDにより不純物をドーピングしない、あるいは、わずかにN型またはわずかにP型にドープされた非晶質Si薄膜2を1000nm成長する。該非晶質Si薄膜は、シランガスを利用することにより形成される。
2 to 4 are schematic schematic diagrams showing a method for producing a translucent thin-film polycrystalline Si solar cell on glass in the order of steps.
First, as shown in FIG. 2A, an amorphous Si thin film 2 that is not doped with plasma CVD 1 or is slightly N-type or slightly P-type doped on a glass substrate 1 is grown to 1000 nm. . The amorphous Si thin film is formed by using silane gas.

続いて、図2(b)に示すように、Si層が存在する領域と存在しない領域をドライエッチングにより形成する。これにより、半透明な太陽電池を形成することが可能になる。なお、ドライエッチングにてSiを除去する領域の面積は必要に応じて設計することが許される。  Subsequently, as shown in FIG. 2B, a region where the Si layer exists and a region where the Si layer does not exist are formed by dry etching. This makes it possible to form a translucent solar cell. The area of the region where Si is removed by dry etching is allowed to be designed as necessary.

続いて、図2(c)に示すように、波長532nmを有する半導体励起固体CWレーザ(Nd:YVO,波長532nm)を利用し、パワー6.0ワットに設定し、レーザスキャン速度40cm/sでスキャンすることにより、大粒径多結晶Si層3を形成する。この時の結晶粒径は3μmx20μmである。Subsequently, as shown in FIG. 2C, a semiconductor-excited solid CW laser (Nd: YVO 4 , wavelength 532 nm) having a wavelength of 532 nm is used, the power is set to 6.0 watts, and the laser scanning speed is 40 cm / s. The large grain polycrystalline Si layer 3 is formed by scanning with. The crystal grain size at this time is 3 μm × 20 μm.

引き続いて、図3(a)に示すように多結晶Si半導体層の表面領域の隣接する領域にP領域とN領域を形成する。ここではイオン注入によりドープした。
この際、隣接するP領域からN領域に向けての方向は、大粒径多結晶Siの結晶粒界の方向と概略平行であることが好ましい。
Subsequently, as shown in FIG. 3A, a P region and an N region are formed in a region adjacent to the surface region of the polycrystalline Si semiconductor layer. Here, it was doped by ion implantation.
At this time, the direction from the adjacent P region to the N region is preferably substantially parallel to the direction of the crystal grain boundary of the large grain polycrystalline Si.

引き続いて、図3(b)に示すように、P領域あるいはN領域の活性化は550℃程度の低温の熱活性化あるいはレーザ活性化を利用して行いN+領域とP+領域を形成する。  Subsequently, as shown in FIG. 3B, the activation of the P region or the N region is performed using thermal activation or laser activation at a low temperature of about 550 ° C. to form the N + region and the P + region.

レーザ活性化に対しては、エキシマレーザを利用した活性化、あるいは固体レーザーを利用した活性化を行うことが好ましい。  For laser activation, activation using an excimer laser or activation using a solid laser is preferably performed.

最後に水素化処理を行い結晶粒界や界面の欠陥をターミネートする。  Finally, hydrogenation treatment is performed to terminate crystal grain boundaries and interface defects.

最終的な形態を図4に示す。図4(a)は概略断面図である。また、図4(b)は、平面図である。この図には、結晶粒界とN+領域、P+領域の関係が示されている。  The final form is shown in FIG. FIG. 4A is a schematic sectional view. FIG. 4B is a plan view. In this figure, the relationship between the crystal grain boundary, the N + region, and the P + region is shown.

本技術により、ガラス上に半透明な高効率薄膜多結晶Si太陽電池を形成することができる。光照射により発生したキャリアは、キャリアが流れる方向と結晶粒界の方向は概略平行であるため、結晶粒界で再結合することなく、電極に到達する。このためガラス上に高い変換効率を有する大粒径薄膜多結晶シリコン太陽電池を形成することが可能になる。  With this technique, a translucent high-efficiency thin-film polycrystalline Si solar cell can be formed on glass. The carriers generated by light irradiation reach the electrodes without recombination at the crystal grain boundaries because the carrier flow direction and the crystal grain boundary direction are substantially parallel. For this reason, it becomes possible to form a large grain thin film polycrystalline silicon solar cell having high conversion efficiency on glass.

本発明の実施形態を示す概略図である。It is the schematic which shows embodiment of this invention. 本発明の実施形態による半導体製造方法を工程順に示す概略図である。It is the schematic which shows the semiconductor manufacturing method by embodiment of this invention in process order. 図2に引き続き、本発明の実施形態による半導体製造方法を工程順に示す概略図である。FIG. 3 is a schematic view illustrating the semiconductor manufacturing method according to the embodiment of the present invention in the order of steps subsequent to FIG. 2. 図3に引き続き、本発明の実施形態による半導体製造方法を工程順に示す概略図である。FIG. 4 is a schematic view illustrating the semiconductor manufacturing method according to the embodiment of the present invention in the order of steps subsequent to FIG. 3.

1 ガラス基板
2 非晶質Si薄膜
3 レーザ結晶化による大粒径Si多結晶薄膜
4 N領域
5 P領域
6 結晶粒界
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Amorphous Si thin film 3 Large grain Si polycrystal thin film 4 by laser crystallization 4 N region 5 P region 6 Grain boundary

Claims (2)

半導体励起(ダイオード励起)された固体連続波レーザを利用して大粒径多結晶シリコン(Si)薄膜をガラス上に形成し、この多結晶Si層の表面側の異なる領域で、かつ近接する領域にPN接合を有し、さらにPN接合の配列の方向は多結晶Siの結晶粒界の方向と概略平行であり、部分的にSi層の存在しない領域を含むことを特徴とするガラス上の安価で高効率な半透明薄膜系多結晶Si太陽電池。A large-grain polycrystalline silicon (Si) thin film is formed on glass using a semiconductor-excited (diode-excited) solid-state continuous wave laser, and different regions on the surface side of the polycrystalline Si layer and adjacent regions PN junction, and the direction of the arrangement of the PN junction is substantially parallel to the direction of the grain boundary of the polycrystalline Si, and includes a region where the Si layer does not exist partially. And highly efficient semi-transparent thin-film polycrystalline Si solar cells. 波長300から600nmの波長を有する半導体励起(ダイオード励起)固体連続波レーザを利用することを特徴とした請求項1項。2. A semiconductor-pumped (diode-pumped) solid-state continuous wave laser having a wavelength of 300 to 600 nm is used.
JP2009134480A 2009-05-13 2009-05-13 Method of manufacturing semiconductor device Pending JP2010267943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134480A JP2010267943A (en) 2009-05-13 2009-05-13 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134480A JP2010267943A (en) 2009-05-13 2009-05-13 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2010267943A true JP2010267943A (en) 2010-11-25

Family

ID=43364643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134480A Pending JP2010267943A (en) 2009-05-13 2009-05-13 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2010267943A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129642A (en) * 1991-09-10 1993-05-25 Sanyo Electric Co Ltd Amorphous silicon solar cell and manufacture thereof
JP2002206168A (en) * 2000-10-24 2002-07-26 Canon Inc Method for depositing silicon-based thin film, method for depositing silicon-based semiconductor layer and photovoltaic element
JP2002299663A (en) * 2001-03-30 2002-10-11 Kanegafuchi Chem Ind Co Ltd See-through-type thin-film solar cell module
JP2004103628A (en) * 2002-09-05 2004-04-02 Hitachi Ltd Laser annealing device and method of laser-annealing tft substrate
JP2005216934A (en) * 2004-01-27 2005-08-11 Advanced Lcd Technologies Development Center Co Ltd Manufacturing method for semiconductor thin-film, semiconductor device and manufacturing method for thin-film transistor, thin-film transistor and liquid-crystal display and manufacturing method for driver-circuit integral type liquid-crystal display
JP2005259882A (en) * 2004-03-10 2005-09-22 Sharp Corp Method thin film patterning, patterning device, and manufacturing method of thin film solar cell
JP2005333016A (en) * 2004-05-20 2005-12-02 Sharp Corp Back surface electrode solar cell, and method for manufacturing the same
JP2006261182A (en) * 2005-03-15 2006-09-28 Hitachi Cable Ltd Process for fabricating thin film semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129642A (en) * 1991-09-10 1993-05-25 Sanyo Electric Co Ltd Amorphous silicon solar cell and manufacture thereof
JP2002206168A (en) * 2000-10-24 2002-07-26 Canon Inc Method for depositing silicon-based thin film, method for depositing silicon-based semiconductor layer and photovoltaic element
JP2002299663A (en) * 2001-03-30 2002-10-11 Kanegafuchi Chem Ind Co Ltd See-through-type thin-film solar cell module
JP2004103628A (en) * 2002-09-05 2004-04-02 Hitachi Ltd Laser annealing device and method of laser-annealing tft substrate
JP2005216934A (en) * 2004-01-27 2005-08-11 Advanced Lcd Technologies Development Center Co Ltd Manufacturing method for semiconductor thin-film, semiconductor device and manufacturing method for thin-film transistor, thin-film transistor and liquid-crystal display and manufacturing method for driver-circuit integral type liquid-crystal display
JP2005259882A (en) * 2004-03-10 2005-09-22 Sharp Corp Method thin film patterning, patterning device, and manufacturing method of thin film solar cell
JP2005333016A (en) * 2004-05-20 2005-12-02 Sharp Corp Back surface electrode solar cell, and method for manufacturing the same
JP2006261182A (en) * 2005-03-15 2006-09-28 Hitachi Cable Ltd Process for fabricating thin film semiconductor device

Similar Documents

Publication Publication Date Title
JP5459901B2 (en) Method for manufacturing photoelectric conversion device module
CN101877368B (en) Photoelectric conversion device and manufacturing method thereof
JP5572307B2 (en) Method for manufacturing photoelectric conversion device
TWI478360B (en) Method for manufacturing photoelectric conversion device
JP4999937B2 (en) Solar cell element and method for manufacturing solar cell element
JP5248995B2 (en) Method for manufacturing photoelectric conversion device
JP5564358B2 (en) Photoelectric conversion device and manufacturing method thereof
TWI660517B (en) Relative dopant concentration levels in solar cells
JP2017526164A (en) Improved front contact heterojunction processing
JP2008112848A (en) Process for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
JP2006310774A (en) Photovoltaic element and method for manufacturing the same
CN109983559B (en) Method for improving wafer performance for photovoltaic devices
JP2007281156A (en) Rear-surface-electrode type semiconductor heterojunction solar battery, and manufacturing method and apparatus thereof
JP2009105130A (en) Manufacturing method of photoelectromotive element
JP2004273887A (en) Crystalline thin film semiconductor device and solar cell element
JP6115806B2 (en) Photovoltaic device
US8003423B2 (en) Method for manufacturing a poly-crystal silicon photovoltaic device using horizontal metal induced crystallization
JP2006093212A (en) Method of forming polycrystal layer, semiconductor device, and its manufacturing method
JP2010267943A (en) Method of manufacturing semiconductor device
JP4684306B2 (en) Method for manufacturing thin film solar cell
TWI686958B (en) Solar cell and method of fabricating the same
JP2002217433A (en) Semiconductor device
JP2005064014A (en) Thin film crystal solar cell and its manufacturing method
JP2010199524A (en) Method of manufacturing semiconductor
Bogue The role of lasers in solar cell manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416